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A B S T R A C T   

Cement manufacturing is widely recognized for its harmful impacts on the natural environment. In recent years, 
efforts have been made to improve the sustainability of cement manufacturing through the use of renewable 
energy, the capture of CO2 emissions, and partial replacement of cement with supplementary cementitious 
materials. To further enhance sustainability, optimizing the cement manufacturing process is essential. This can 
be achieved through the prediction and optimization of clinker phases in relation to chemical compositions of 
raw materials and manufacturing conditions. Cement clinkers are produced by heating raw materials in kilns, 
where both raw material compositions and processing conditions dictate the final chemical makeup of the 
clinkers. This study uses thermodynamic simulations to analyze phase assemblages of alite- and belite-enriched 
clinkers based on chemical compositions of raw materials and to create a database. The thermodynamic simu-
lations can accurately reproduce clinker phases in comparison with experimental results. Subsequently, the 
simulated database is employed to train a data-informed model, and the predictions are used to determine the 
optimal composition domains that produce high quality clinker (C3S>50 %) at different calcination tempera-
tures. Additionally, optimal lime saturation factor and alumina modulus are investigated to achieve target clinker 
phases. Overall, this study demonstrates the potential of using a data-informed approach to achieve smart and 
sustainable cement manufacturing process.   

1. Introduction 

Cement manufacturing is a major contributor to environmental 
degradation, primarily due to the depletion of natural minerals, the use 
of fossil fuels, and the emission of significant amounts of CO2. To miti-
gate these negative impacts, the industry is actively seeking ways to 
improve manufacturing efficiency, shift toward renewable energy, uti-
lize alternative fuels, and incorporate supplementary cementitious ma-
terials. Additionally, the optimization of cement clinker composition is a 
crucial step toward reducing the environmental impact. Cement plants 
have used new grinding equipment, dry-process instead of the wet- 
process kiln, modern clinker kilns, and multi-stage preheaters that can 

save energy [1]. The use of blends with renewable fuel and fossil fuel [2] 
or the use of solar calcination reactors [3] can reduce emissions and save 
energy in cement manufacturing. Furthermore, the use of alternative 
fuels (e.g., waste tires, waste oil and solvents, sewage sludge, domestic 
wastes, plastic, textile, and paper wastes) and biomass thermal energy 
sources (e.g., animal meal, waste wood, sawdust, and sewage sludge) 
release less greenhouse gas than fossil fuel [4]. By incorporating sup-
plementary cementitious materials (e.g., fly ash and slag) into concrete, 
a portion of the cement can be replaced, leading to a reduction in 
environmental impact from alleviating natural resource extraction and 
CO2 emission [5,6]. Despite the numerous techniques focusing on 
renewable energy and sustainable cementitious binders, they cannot 
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fundamentally convert the clinkering process to an efficient and sus-
tainable manner [1,4,7–10]. Modern cement plants strive to achieve 
maximum thermodynamic efficiency during the manufacturing of 
cement clinker [8]. To further improve the sustainability of cement 
production, optimization of the clinkering process is a key factor. This 
optimization not only leads to improved manufacturing efficiency and 
reactivity of clinkers, but also delivers substantial benefits, including 
energy savings, carbon footprint reduction, and natural resource 
conservation. 

Commercially produced cement clinkers can either be alite-enriched 
(Type I or III Portland cement (PC)) and belite-enriched (Type II or IV 
PC) [11,12]. Type I or III PC, where C3S (where: C = CaO; S = SiO2; A =
Al2O3, and F = Fe2O3) is the dominant phase, is the most prevalent type 
used in construction. In contrast, belite-enriched cement, where C2S is 
the dominant phase, releases less heat and produces small quantities of 
space-filling reaction products (e.g., calcium-silicate-hydrate) during 
hydration due to its lower reactivity. Such cements are either used for 
specific applications or require blending with other types of cement (e. 
g., PC, calcium sulfoaluminate cement, etc.) to mitigate their negative 
effects during construction [13,14]. In cement manufacturing, PC with a 
C3S content above 50 % is indicative of high-quality clinker. Throughout 
this manuscript, the term ’cement clinker’ generally refers both alite- 
and belite-enriched clinker, with specific mention made where neces-
sary to distinguish between the two. To evaluate the cement clinker 
quality, manufacturers typically use the following methods. One type of 
method is to use the combination of lime saturation factor (LSF), 
alumina modulus (AM = Al2O3/Fe2O3), silica modulus (SM =

SiO2/(Al2O3+Fe2O3)) [15,16], and the Bogue method [17]. LSF repre-
sents the ratio of the amount of lime in the raw material to the theo-
retical lime required by the major oxides (i.e., SiO2, Al2O3, and Fe2O3) 
(LSF = 100*CaO/(2.8SiO2+1.18Al2O3+0.65Fe2O3) [15]. For cement 
clinker, LSF usually ranges from 0.92 to 0.98 [15,16] while AM and SM 
fall between 1-to-4 and 2-to-3, respectively [15]. LSF can be used to 
optimize the C3S in the cement clinker at the clinkering temperature 
(~1450 ◦C) [15]. Due to the large variations and combinations in LSF, 
AM, and SM, manufacturers cannot simply optimize the clinker quality 
based on these three parameters. The Bogue method then calculates the 
dominant phases based on the raw material composition [17], but it has 
limitations (which cannot apply to belite enriched-cement) and may 
produce inaccurate results, especially for C3S, due to the lack of equi-
librium during cooling and the disregard of minor compounds [15,16, 
18,19]. 

The abovementioned methods provide only a rough estimation of 
phase compositions in PC. They are not capable of determining whether 
the final product will be an alite- or a belite-enriched cement. Therefore, 
many cement plants determine clinker recipes and assess actual com-
positions through quantitative x-ray diffraction (XRD) analyses, rather 
than relying on theoretical calculations. A substantial time difference 
between testing and manufacturing is expected. Such delayed feedback 
has made it difficult to implement changes to the manufacturing process, 
particularly given the potential for causing clinker quality issues. 
Furthermore, neither XRD analysis nor numerical models can provide 
information about phase evolution with respect to temperature. In other 
words, manufacturers are unable to determine the burning zone and the 
formation of the liquid phase and transitional phases during the heating 
and cooling processes. Such information can help manufacturers to 
optimize raw material ratio, enhance clinker quality, and make 
informed decisions about parameters (e.g., temperature, fuel quantity, 
etc.) of the clinkering process. Obtaining those details for each new 
clinker typically requires conducting complex experiments, which can 
be both costly and technologically challenging. The cement manufac-
turers require more practical, reliable, and efficient methods to estimate 
clinker quality when they characterize raw materials. 

Thermodynamic simulation is a possible solution, which allows re-
searchers to understand the phase assemblages of cement clinker and 
influences of raw material composition and calcination temperature. 

Several studies have demonstrated the capability of using thermody-
namic to estimate products of cement clinker. Hokfors et al. [20] syn-
thesized clinkers at 1500 ◦C to evaluate the formation of a phosphorus 
belite solid solution and its effect on alite formation. Montoya et al. [21] 
investigated the effect of iron substitution for aluminum in clinker. 
Hertel et al. [22] studied synthesizing calcium sulfoaluminate-ferrite 
clinkers through bauxite residue in combination with other materials. 
Costa et al. [23] used spend fluid catalytic cracking catalyst to provide 
additional alumina source during the cement manufacturing. All studies 
used XRD to analyze phase compositions of clinkers, and subsequently 
compared the results to thermodynamic simulations. The outcomes from 
those studies showed that thermodynamic simulations provided better 
agreement with experimentally-obtained chemical phases compared to 
the Bogue method, highlighting the utilization of thermodynamic 
modeling in advancing the understanding of the clinkering process. 
Thermodynamic simulations can be utilized to predict the phase com-
positions for clinkers once the raw materials have been known. How-
ever, it falls short in performing a reverse engineering task, which means 
it cannot optimize the blend of the raw materials to achieve target phase 
compositions of clinkers. 

Machine learning (ML) has been widely adopted in the field of 
cement science to predict the properties of cement as function of their 
mixture designs. The ML models learn the input-output relationships of 
cement from a training dataset, and subsequently use this knowledge to 
predict properties for new cement systems. Such knowledge also can be 
applied to perform reverse engineering. To be specific, the well-trained 
ML models can optimize mixture designs of raw materials to achieve 
target clinker phase compositions. Studies have shown that ML models 
produce reliable predictions of mechanical properties (e.g., compressive 
strength [24–26], tensile strength [27,28], and elastic modulus [29–31] 
of cement. Rheology, which represents the workability of cement sys-
tems, is another important property. Artificial neural network [32] and 
random forest [33] models are employed to predict the rheological 
properties of fresh cement. Prior research [34–37] showed that ML 
models capture the trend and produce predictions for the hydration 
kinetic of sustainable cementitious materials. Additionally, Ali et al. 
[38] utilized a feedforward network to optimize the clinker 
manufacturing process by utilizing sensor signals obtained from kilns. 
ML models can be utilized to improve the quality of clinker and enhance 
energy efficiency in operating cement plants. The study demonstrates 
the feasibility of this approach in cement plants with customized in-
frastructures and limited recipe variations. Notably, our study focuses 
on predicting the phase compositions of clinkers during heating and 
cooling processes based on chemical compositions of raw materials. 
Cement plants can adopt our approach to develop their own recipes, 
enhance clinker quality, and optimize their manufacturing processes 
without requiring any infrastructure upgrades. This novel approach 
distinguishes this study from prior research. In comparison to conven-
tional methods (i.e., experiments and numerical models), ML models 
have several advantages. ML models do not require x-ray diffraction and 
X-ray fluorescence analyses, which can be costly. Furthermore, the 
precision of phase compositions of cement clinkers can also be influ-
enced by the proficiency of researchers in analyzing data. Next, nu-
merical models (e.g., Bogue method) are calibrated for a specific range 
of compositions and phases. As a result, if the clinker composition falls 
outside of this range, certain phases may not be able to be calculated. 
The ML models do not require additional calibration for new cement 
compositions and can predict all possible phases by knowing simple 
parameters. 

This study employs thermodynamic models to simulate the phase 
assemblages of cement clinkers (both alite- and belite-enriched cements) 
during the heating and cooling processes. The thermodynamic model 
considers influences of temperature and compositions of raw materials 
on the formation and stability of clinker phases. The reliability of the 
model is evaluated by comparing its predictions with phase composi-
tions obtained from experiments and bogue method. Additionally, this 
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study investigates the influences of the LSF and the alumina modulus 
AM on the phase compositions of cement clinkers. The database ob-
tained from thermodynamic simulations is used to train and validate the 
performance of a deep learning (DL) model on predicting phase com-
positions of both alite- and belite-enriched clinkers. To further enhance 
the manufacturing process, optimal composition domains that produce 
high quality clinkers (C3S>50 %) are revealed. Moreover, the compo-
sitions of raw materials are optimized to achieve target phase compo-
sitions of clinkers. To the authors’ best knowledge, this is the first study 
to harness the power of the DL model to enhance the quality of clinkers 
by optimizing the composition of raw materials and develop a smart 
manufacturing process. 

2. Modeling methods 

2.1. Thermodynamic modeling 

This section focuses on analyzing clinkers during heating and cooling 
processes through thermodynamic modeling, aimed at understanding 
their phase compositions, developing phase assemblages of the clin-
kering process, and generating a comprehensive database for the DL 
model. The research is conducted systematically, following these steps. 

In this work, thermodynamic simulations were performed using 
FactSage free energy minimization software version 8.1 [39]. The sim-
ulations used thermodynamic databases for gaseous components 
(FactPS), and oxides in solid, liquid, and solution phases (FToxid and 
FTSalt). The performance of thermodynamic modeling was validated by 
simulating the phase compositions of seven clinkers, obtained from 
previous studies [15,40–42] (shown in Table 1). For thermodynamic 
simulations, seven clinkers have been selected from published literature. 
These clinkers were chosen because of the extensive information pro-
vided in these studies, encompassing aspects such as oxide composition, 
phase composition, and a range of calcination parameters. These pa-
rameters span from those used in producing alite-to belite-enriched ce-
ments and include data from both industrial and laboratory scales. 
Clinkers C1 and C2 originate from industrial production, while the 
others are synthesized in laboratory. The phase compositions of all these 
cement clinkers except for C1 were measured by quantitative XRD. The 
phase composition of C1 was obtained from bulk chemical analysis. 
Each clinker was simulated by heating it to its burning temperature and 
then cooling it down to 700 ◦C. All oxide compositions of those clinkers 
are used as inputs (including major and minor oxides) except for loss of 
ignition (LOI) in thermodynamic simulations. The computational 
modeling produced the clinker phase compositions, which were then 
compared to the experimental results. The calculations were carried out 
using the equilibrium module and all available products, with a system 
pressure set at 1 atm. 

This study calculated the phase assemblages of clinkers during the 
heating process between 1000 ◦C and 1500 ◦C with 10 ◦C intervals, and 
the phase compositions of the cooling process from 1450 ◦C, 1350 ◦C, 
and 1250 ◦C–700 ◦C, with 10 ◦C intervals. The database used in FactSage 
does not consist of standalone C3A and C4AF phases but include the 
combining phases (e.g., Ca(Al,Fe)2O4; Ca2(Al,Fe)2O5; and Ca3(Al, 

Fe)2O6) [43]. The Ca3(Al,Fe)2O6 phase incorporates C3A, while the other 
phases consist of C4AF. Previous research [20,43,44] indicated the C3A 
and C4AF content as the overall sum of the CaO-Al2O3-Fe2O3 solid so-
lutions known as C-A-F. In this study, the C3A and C4AF phases are 
presented together as the C3A+C4AF phase rather than as C-A-F. Clin-
kers also comprise minor phases, with the presence of Na2O, MgO, P2O5, 
SO3, K2O, TiO2, Mn2O3, SrO, MnO, ZnO, V2O5, Cr2O3, and BaO in the 
raw materials potentially resulting in numerous minor compounds. 
Therefore, the outputs of thermodynamic simulations are: C2S; C3S; C3A 
+ C4AF; CaO; oxide melt (liquid phase), and others. Others represents 
the sum of all minor phases. 

This study performed thermodynamic simulations for new clinkers 
using the main oxides (i.e., CaO, SiO2, Al2O3, Fe2O3, Na2O, and K2O) and 
a wide temperature range (shown in Table 2) to create a large database 
to train the DL model. The minor oxides (e.g., MgO, SO3, etc.) are 
ignored in the simulations for new clinkers. Most SO3 in PC do not 
engage in the clinkering process; they primarily originate from gypsum, 
added post-clinkering. Owing to minimal influences on the clinkering 
process, it is omitted from the database. Moreover. This study represents 
a pioneering effort in predicting and optimizing the phase composition 
of cement clinkers using DL model. The primary focus is on evaluating 
the ability of the model to accurately predict, and eventually optimize, 
the major phases in cement clinkers. Based on this ability to reliably 
predict as well as optimize the major clinker phases, future studies will 
be employed to develop more sophisticated models, which are capable 
of accounting for the full range of oxide compositions, including exact 
quantifications of minor phases, in cement clinkers. The database was 
also analyzed to rigorously evaluate the influences of raw material 
compositions on major clinker phases. Prior research [45,46] has 
established that the formation of lime-poor phases such as CS and C3S2 
in cement clinkers occurs when the molar ratio of CaO-to-SiO2 falls 
between 1 and 1.24. It is noteworthy that these phases are classified as 
other phases in this study because they do not dissolve in water to 
participate in the hydration reaction [15]. 

2.2. Deep learning 

In this study, a DL [47] model was used to predict phase composi-
tions of cement clinkers during the heating and cooling processes. The 
DL model consists of multiple computational elements, known as neu-
rons, that are arranged in layers and connected to each other in a way 
that allows them to process information in a hierarchical fashion. The 
hierarchical structure is comprised of three main layers: an input layer; 
one or more hidden layers; and an output layer [48]. The input layer 
receives information from the dataset and the output layer produces the 
final outputs to users. The hidden layers are in between the input and 
output layers, which are responsible for processing the data based on 
activation and weight functions. The connections between neurons are 
unidirectional, meaning that information flows in only one direction, 
from the input layer to the output layer. Additionally, the connections 
between neurons only exist between consecutive layers, meaning there 
are no connections between neurons within the same layer or between 
non-consecutive layers. Each neuron in a DL uses an activation function 

Table 1 
Oxide compositions of the raw materials for seven clinkers and their calcination temperatures obtained from previous studies.  

Sample CaO SiO2 Al2O3 Fe2O3 Na2O MgO SO3 K2O LOI Temp. Ref. 
C1 66.40 21.90 5.70 3.20 0.20 1.20 0.40 0.50 0.60 1450 [15] 
C2 64.81 22.44 4.67 2.59 0.41 1.36 1.01 1.26 0.66 1450 [40] 
C3 66.56 21.25 6.34 5.23 0.13 0.07 0.01 0.27 0.14 1450 [41] 
C4 62.81 25.00 6.34 5.23 0.13 0.07 0.01 0.27 0.14 1365 
C5 42.38 14.64 3.68 1.62 0.12 1.41 0.05 0.71 35.39 1450 [42] 
C6 40.36 16.85 4.23 1.85 0.14 1.58 0.06 0.82 34.11 1350 
C7 38.27 19.12 4.79 2.1 0.16 1.75 0.06 0.93 32.82 1300  
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to calculate intermediate output values. The activation function takes 
into account all of the neurons from the previous layer through the 
weight function and generates a new intermediate output value. This 
output value is then passed on as input to the next neuron layer. This 
process continues throughout the network until the final neuron layer is 
reached, which produces the final output. In this study, the 10-fold 
cross-validation (CV) method [26,49] and the grid-search method [26, 
35] are utilized to optimize the number of layers and number of neurons 
on each layer to avoid overfitting and underfitting. The results shown in 
this study were conducted by DL with 3 layers and 11 neurons on each 
layer. 

2.3. Database collection 

The database of cement clinkers was derived from the above-
mentioned thermodynamic simulations. The simulations were con-
ducted under heating and cooling processes. In the heating process, 
precursors were heated to 1300-to-1500 ◦C, and the chemical phases at 
high temperatures were outputs. In the cooling process, precursors were 
cooled from 1300-to-1500 ◦C to 700 ◦C, and the chemical phases at 
700 ◦C were outputs. In this study, we utilized a training dataset to train 
our model and learn input-output correlations. The testing dataset is 
utilized to evaluate the model’s prediction performance. The training 
dataset consisted of 1008 data-records, and their detailed compositions 
and processing temperatures are listed in Table 2. The testing dataset 
included 200 randomly selected data-records, with input variables 
chosen from within the domain of the training dataset. It is important to 
note that the training and testing datasets for the heating and cooling 
processes had identical input parameters. The chemical compositions of 
raw materials and simulated chemical phases of training and testing 
datasets are shown in Tables 3 and 4. For both datasets, the input pa-
rameters are: CaO content (%); SiO2 content (%); Al2O3 content (%); 
Fe2O3 content (%) and temperature (◦C). The Na2O and K2O content do 
not need to be included as input parameters as they remain constant for 

all data-records. The output parameters are: C3S content (%); C2S con-
tent (%); CaO content (%); C3A + C4AF content (%); oxide melt (%); and 
other phases (%). This study only focused on chemical phases––the main 
phases of cement clinkers––that can react with water during the hy-
dration while other inactive phases are considered as other phases. 
Certain clinkers do not form any C3S phase, and other formed phases (e. 
g., C2S, C3S2, etc.) have lower melting temperature, which leads to 100 
% liquid phase at 1500 ◦C. The prediction accuracy of the DL model on 
the testing dataset is evaluated by four statistical parameters including: 
Pearson correlation coefficient (R); coefficient of determination (R2); 
root mean squared error (RMSE); and mean absolute error (MAE). 
Equations for the statistical parameters can be found elsewhere [26,50, 
51]. 

3. Results and discussion 

3.1. Phase assemblages of cement clinker 

The thermodynamic simulations were employed to yield the phase 
assemblages of clinkers (C1-C7) obtained from previous studies. Fig. 1a, 
b, and c show the phase assemblages of the C1 clinker that was heated to 
1500 ◦C and cooled from 1450, to 1250 ◦C down to 700 ◦C. C1 clinker is 
an example of PC to investigate the influences of temperature on clinker 
phases. Fig. 1d, and e shows the phase assemblages of the C3 clinker that 
was heated to 1350 ◦C and cooled from 1350 ◦C down to 700 ◦C. C4 
clinker is an example of belite-enriched clinker; this clinker has been 
included to investigate the influence of temperature on clinker phases. 
Belite-enriched clinker is usually produced at lower temperature 
compared to PC, and thus, the simulation temperature remains low. The 
phase assemblages assist researchers to qualitatively and quantitatively 
understanding the cement clinkering process. 

It is important to understand the formation of C3S in clinker during 
the heating process, as shown in Fig. 1a. Below 1300 ◦C, the C2S is the 

Table 2 
Chemical compositions and processing conditions of cement clinkers for thermodynamic simulations.  

Composition CaO SiO2 Al2O3 Fe2O3 Na2O K2O 
Range (%mass) 40.0–70.0 2.0–54.0 3.0–12.0 1.0–14.0 1.0 1.0 
Step size (%mass) 5.0 100 – other oxides 3.0 1.0, 5.0, 9.0, and 14.0   
Heating Temperature 1300–1500 
Cooling Temperature 1500–1300 → 700 ◦C 
Temperature Step Size 25 ◦C  

Table 3 
Four statistical parameters pertaining the training dataset including 5 inputs and 
6 outputs (bold) of 1008 data-records for the heating and cooling processes.  

Attribute Unit Min. Max. Mean Std. Dev. 
CaO % 40 70 55 10 
SiO2 % 2 54 28.25 11.59 
Al2O3 % 3 12 7.51 3.35 
Fe2O3 % 1 14 7.25 4.81 
Temperature ◦C 1300 1500 1400 64.54 
Heating 
C3S % 0 73.51 11.52 18.70 
CaO % 0 41.81 4.53 9.64 
C2S % 0 80.96 17.41 22.92 
C3A þ C4AF % 0 40.26 1.89 6.18 
Oxide Melt % 17.04 100 60.85 25.42 
Others % 0 68.66 3.47 11.48 
Cooling 
C3S % 0 87.09 13.95 20.75 
CaO % 0 42.12 4.21 9.44 
C2S % 0 87.09 24.48 26.62 
C3A þ C4AF % 0 48.11 14.24 14.10 
Oxide Melt % 0 41.05 2.01 5.03 
Others % 6.35 100 13.31 35.22  

Table 4 
Four statistical parameters pertaining the testing dataset including 5 inputs and 
6 outputs (bold) of 200 data-records for the heating and cooling scenarios.  

Attribute Unit Min. Max. Mean Std. Dev. 
CaO % 41.15 69.94 56.35 7.91 
SiO2 % 4.03 48.28 26.67 9.26 
Al2O3 % 3 12 7.56 3.35 
Fe2O3 % 1 14 7.41 4.53 
Temperature ◦C 1300 1500 1373.37 64.13 
Heating 
C3S % 0 75.87 17.91 26.18 
CaO % 0 35.96 1.08 5.73 
C2S % 0 72.83 18.65 26.71 
C3A þ C4AF % 0 40.26 2.57 6.71 
Oxide Melt % 17.49 100 55.81 25.19 
Others % 0 69.99 3.84 11.95 
Cooling 
C3S % 0 76.19 17.28 24.89 
CaO % 0 36.27 1.65 5.83 
C2S % 0 86.21 28.54 27.58 
C3A þ C4AF % 0 48.09 16.86 13.89 
Oxide Melt % 0 13.54 1.64 3.94 
Others % 8.26 100 34.01 34.14  
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dominant phase. Our findings indicate that at around 1300 ◦C, there is a 
depletion of CaO and a decrease in the amount of C2S, marked by the 
initiation of C3S formation. This finding is in line with previous research 
[20]. Subsequently, the amount of C3S remains practically constant up 
to 1500 ◦C. The C3S formation takes place between 1300 and 1450 ◦C, 
and the optimal formation of C3S in the clinker is achieved at 1450 ◦C 
[15]. According to Harrisson [16], significant C3S formation begins near 
1450 ◦C. Hence, to produce cement clinkers with high C3S content, they 
must be calcinated 1450 ◦C, while high C2S clinker (belite-enriched 
clinker) must be calcinated below 1300 ◦C. Up to 1300 ◦C, the amount of 
the melting phase remains low, with a concentration below 10.62 %, 
which corresponds with previous findings in the literature [15]. The 
minor phases of clinkers contribute to the melting phase. However, as 
the temperature exceeds 1300 ◦C, the melting of C3A + C4AF phase 
occurs, resulting in the formation of additional liquid phase and subse-
quently reducing the system’s viscosity. As the temperature surpasses 
1350 ◦C, the C2S—which has not reacted with CaO to form C3S— starts 
melting and contributes to the formation of additional liquid phase. 
Those transition temperatures are in agreement with the results reported 
by Taylor [15]. Strother [16] have argued that the presence of 
calcium-rich content in the liquid phase can enhance the mobility of 
Ca2+ and accelerate the formation of C3S. Thus, if a clinker contains an 
adequate amount of C3A + C4AF phase, it may require a lower tem-
perature (below 1450 ◦C) and shorter processing time to complete the 
formation of C3S. 

Fig. 1b demonstrates that C3S remains in a stable phase during 
cooling and is not affected by temperature. As the temperature de-
creases, the liquid phases transform into C2S and C3A + C4AF phases. 
These three primary phases of clinkers remain unchanged when the 
temperature reaches 700 ◦C. The primary reactions during cooling 
include the crystallization of the melt phase, which produces C3A +
C4AF phase, and the polymorphic transition of C3S and C2S [15]. By 
comparing the phase assemblages depicted in Fig. 1b and c, it becomes 

evident that the cooling temperature can significantly affect the type 
and content of the final phases in cement clinkers. At 1250 ◦C, the 
insufficient reaction temperature prevents the formation of C3S, result-
ing in the dominance of C2S, C3A + C4AF, and CaO. For alite clinker, a 
high concentration (>5 %) of CaO is undesirable, as excessive CaO can 
cause unsoundness, as highlighted by Harrisson [16], and potentially 
compromise the quality of clinkers. The high content of C2S can influ-
ence strength development (belite hydrates more slowly than alite), 
while high content of C3A + C4AF phases can influence rapid set, high 
evolution of heat, and loss of plasticity in the fresh state [15]. 

For phase assemblage of belite-enriched cement, as illustrated in 
Fig. 1d–a relatively small amount of C3S forms even when heated to 
1350 ◦C. This is in contrast with the scenario depicted in Fig. 1a, wherein 
an excess of C3S forms at 1300 ◦C. The limited formation of C3S in belite- 
enriched cement is attributed to a deficiency in free lime, necessary for 
reacting with C2S. This observation further reinforces the significant 
impact of chemical composition on the final products of cement clinkers. 
In the case of belite-enriched cement, belite emerges as the dominant 
phase, aligning with expectations. Fig. 1e reveals that both C2S and C3S 
maintain stability during cooling and are unaffected by temperature 
changes. As the temperature decreases, the liquid phases transform into 
C3A and C4AF phases. Owing to the lower processing temperature, C2S 
does not transition into a liquid phase. These three primary clinker 
phases remain unaltered even when the temperature descends to 700 ◦C. 
Similar phase assemblage for clinker C4 is also found in the prior study 
[52]. 

To evaluate the performance of thermodynamic simulations in 
reproducing the phases present in cement clinkers, the simulated results 
are compared with experimental data in Table 5. The comparison is 
made using a parameter called It, which represents the difference be-
tween the simulated and experimental values. For C3S, It ranges from 
0.90 to 1.46, while for C2S, It ranges from 0.75 to 1.46. For C3A + C4AF, 
It ranges from 0.94 to 2.21. The typical standard deviation observed in 

Fig. 1. Phase assemblages of C1 clinker obtained from thermodynamic simulations while (a) heating to 1500 ◦C, (b) cooling from 1450 to 700 ◦C, (c) cooling from 
1250 to 700 ◦C; and C4 clinker obtained from thermodynamic simulations while (d) heating to 1350 ◦C; and (e) cooling from 1350 ◦C to 700 ◦C. 

J.P. Gonçalves et al.                                                                                                                                                                                                                            



Cement and Concrete Composites 147 (2024) 105436

6

XRD analysis for determining cement phase composition is ~5 % [53]. 
On a precursory level, this simulation error range appears to be quite 
significant. However, a closer examination reveals that most of the re-
sults fall within twice the standard deviation of experimental measure-
ments, indicating that the thermodynamic simulations are indeed 
reliable. When compared to the Bogue method, these thermodynamic 
simulations demonstrate superior reliability in predicting the phase 
composition of cement clinker, especially for C3S and C2S. Furthermore, 
thermodynamic simulations are capable of accurately determining the 
phase composition for belite-enriched cement, a feat the Bogue method 
cannot achieve. The thermodynamic simulations can also predict free 
lime and minor phases (which are categorized under other phases). The 
differences between experimental results and thermodynamic simula-
tions can be attributed to a few reasons. First, thermodynamic models 
cannot account for all processing parameters (e.g., kiln heat uniformity, 
dwell time, fineness). Therefore, it may not be possible to replicate 
identical experimental conditions. Second, the database used for ther-
modynamic simulations does not contain all polymorphic phases, which 
could potentially lead to slight variations in the results. Finally, mea-
surement errors in the experiments may introduce further differences 
between the actual and simulated compositions. On the whole, ther-
modynamic simulations emerge as the most reliable method—at least, in 
comparison to other competing methods—for revealing the phase 

composition of all types of cement clinkers, thus reducing or eliminating 
the need for experiments and XRD analyses. Table 5 presents additional 
information on LSF and AM of each sample. The data clearly indicates 
that when the LSF value is greater than 90 %, the dominant phase in the 
clinker is C3S. On the other hand, if the LSF value is lower than 90 %, 
there is not enough CaO in the clinker for C2S to convert into C3S. This 
results in lower amounts of C3S and a higher presence of C2S. Further-
more, Table 5 also suggests that a low AM value implies the appearance 
of more C3A + C4AF phases in the clinker. A more detailed study on the 
influence of LSF and AM on clinker compositions is presented in the next 
section. 

3.2. Lime saturation factor and alumina modulus 

The previous section demonstrates that thermodynamic simulation is 
a reliable tool for reproducing the phase assemblages of cement clinker 
at different processing temperatures. Building on these simulated re-
sults, this section examines the impact of LSF on C3S and C2S phases 
across a wide range of cement clinker compositions (shown in Table 2). 
Fig. 2 shows the C3S and C2S phases in clinkers at different LSF levels 
during both the cooling and heating processes. Notably, more points are 
observed between 100 % and 150 % LSF during the cooling process than 
heating. At high temperatures, most C2S melts and becomes the liquid 

Table 5 
Phase assemblages obtained from thermodynamic simulations and deep learning model compared against experimental values.  

Sample C3S (%) C2S (%) CaO (%) Oxide Melt (%) Others (%) C3A + C4AF (%) LSF (%) AM (unitless) 
C1 - 1450 - H 62.76 2.59 0 34.36 0.3 0 95 1.78 
C1 - 1450 - C 65.68 15.7 0 0.66 2.1 15.85 
C1-Bogue 61.29 18.18 – – – 19.91 
C1 - 1450 - Exp. 66.9 13.2 0.6 0 1.2 18 
Ib-C1 1.09 0.73 – – – 0.9 
It-C1-1450 1.02 0.84 – – – 1.14 
IDL-C1-1450 1.13 0.88 – – – 1.5 
C2 - 1450 - H 62.28 3.18 0 32.09 2.45 0 93 1.8 
C2 - 1450 - C 62.36 16.97 0 1.02 8.76 10.88 
C2-Bogue 57.89 23.75 – – – 16.62 
C2 - 1450 Exp. 68.6 12.8 2 – – 24 
Ib-C2 1.18 0.54 – – – 1.44 
It-C2-1450 1.1 0.75 – – – 2.21 
IDL-C2-1450 1.1 0.81 – – – 2.77 
C3 - 1450 - H 57.62 10.11 0 32.25 0.02 0 95 1.21 
C3 - 1450 - C 59.11 16.07 0 0.06 2.24 22.51 
C3-Bogue 59.68 16.4 – – – 24.01 
C3 - 1450 Exp. 63.5 12.4 – – – 24.1 
Ib-C3 1.06 0.73 – – – 1.01 
It-C3-1450 1.07 0.77 – – – 1.07 
IDL-C3-1450 1.16 0.8 – – – 1.28 
C4 - 1365 - H 14.74 57.374 0 26.17 0.00 1.73 78 1.21 
C4 - 1365 - C 14.74 60.453 0 0.01 1.98 22.83 
C4 - 1365 Exp. 14.2 65.2 – – – 21.6 
It-C4-1365 0.96 1.08 – – – 0.94 
IDL-C4-1365 0.78 1.33 – – – 1.17 
C5 - 1450 - H 60.71 0 0.25 37.94 1.1 0 91 2.27 
C5 - 1450 - C 61.28 18.55 0.25 0.01 7 12.91 
C5-Bogue 54.81 26.1 – – – 19.15 
C5 - 1450 Exp. 55 27 – – – 18 
Ib-C5 1.01 1.03    0.94 
It-C1-1450 0.9 1.46 – – – 1.39 
IDL-C1-1450 0.91 1.57 – – – 1.86 
C6 - 1350 - H 18.08 45.19 0 35.04 1.68 0 76 2.29 
C6 - 1350 - C 18.08 59.45 0 0.01 7.76 14.69 
C6 - 1350 Exp. 27 56 – – – 17 
It-C1-1350 1.49 0.94 – – – 1.16 
IDL-C1-1350 1.93 0.97 – – – 1.56 
C7 - 1300 - H 0 65.08 0 33.65 1.27 0 63 2.28 
C7 - 1300 - C 0 72.87 0 0.03 14.48 12.62 
C7 - 1300 Exp. 0 76 – – – 24 
It-C1-1300 – 1.04 – – – 1.9 
IDL-C1-1300 – 1.01 – – – 2.49 

* Ib = experimental value/value from Bogue method; It = experimental value/value from thermodynamic simulation at cooling temperature; IDL = experimental value/ 
value from deep learning at cooling temperature. 
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phase. Fig. 2 reveals that when LSF is within the range of 59 %–71 %, 
C2S is the dominant phase, while LSF in the 89 %–96 % range results in 
C3S as the dominant phase. Earlier studies [15,16] have suggested that 
the ideal LSF range for producing alite is between 92 % and 98 %. 
However, to date, research has yet to identify the optimal range for 
belite. LSF is an important factor for cement manufacturing, which can 
improve the manufacturing process for both alite- and belite-enrich 
cements. 

In the manufacturing of alite-enriched cement, the raw material ra-
tios are adjusted based on LSF because it has been found to be a useful 
indicator of the clinker composition, especially for C3S. However, there 
has been a lack of sufficient data supporting the relationship between 
LSF and C3S, resulting in the adjustment of LSF in a wide range. This 
wide range of LSF adjustments can lead to inferior raw material ratios 
that may waste energy and natural minerals in the production of un-
qualified clinkers. Such clinkers can be detrimental to the overall quality 
of the final products, resulting in decreased customer satisfaction and 
increased production costs. To address this issue, this study illustrates a 
narrow range of LSF required to achieve the optimal C3S compositions. 
Manufacturers can use this finding to refine their manufacturing pro-
cesses, thereby reducing unnecessary waste and promoting product 
quality. 

Belite-enriched cement is a type of low-energy cement that has 
gained attention due to its potential to reduce energy consumption and 
CO2 emissions during production [16]. The belite (~1350 kJ/kg) has a 
lower enthalpy of formation than the main cement phase, alite (~1810 
kJ/kg) [54]. In Fig. 1, it is observed that C2S requires a lower formation 
temperature than C3S. One method to promote energy reduction and 
reduce CO2 emissions in cement production is to decrease the LSF of raw 
materials [55]. This modification increases the belite content and de-
creases the alite content. However, for belite-enriched clinkers, there 
have been limited studies on the optimization of the C2S content with 
varying LSF. Many studies have shown that the LSF for general cement 
clinkers ranges from 75 % to 99 % [55–58]. This study indicates the 
optimal range for belite is 59 %–71 %. It is important to note that belite 
hydrates more slowly than alite, which can affect the mechanical 
properties of cementitious materials. Studies [56] have shown that the 
compressive strength of belite-enriched decreases progressively with 
increasing LSF values (99, 94, 89, 84, 80, and 75 %) at various ages (1, 3, 
19, 30, 100, and 300 days). To address the issue of slower strength 
development in belite-enriched cement, researchers have suggested 
improving reactivity or combining it with more reactive cementitious 
materials (e.g., calcium sulfoaluminate cement). Further research is 
needed to associate thermodynamic results, reactivity, and mechanical 
properties in order to optimize the use of belite-enriched cement as a 
low-energy and sustainable option for the construction industry. 

Fig. 3 shows the C3A + C4AF phase in clinkers corresponding to 
different AM levels during both the cooling and heating processes. Ac-
cording to the results shown in Fig. 3, the optimal AM range for C3A +
C4AF formation is between 0.2 and 3.0, which aligns with prior research 
reporting typical AM values of 1-to-4 for cement clinkers [15]. Prior 
literature [13] has indicated that the AM modulus significantly in-
fluences the formation of clinker phases, particularly the oxide melt, 
C3A, C4AF, and the formation temperature of C3S. High AM values 
signify low C3A + C4AF and high viscosity of the clinker system at high 
temperatures. As aforesaid, sufficient C3A + C4AF can enhance the ef-
ficiency of C2S reaction with CaO to form C3S. Consequently, when the 
AM is around 1, the C3A + C4AF can optimally influence the formation of 
C3S, which can aid in reducing the clinkering temperature and mini-
mizing energy consumption. 

3.3. Prediction and optimization of clinker quality 

In order to produce reliable predictions using the DL model, it is 
important to meet certain requirements. One key requirement is to have 
a large enough dataset for the DL model to learn input-output correla-
tions comprehensively. This can be achieved by using a training dataset 
that contains a sufficient number of data-records, ideally on the order of 
thousands, and that covers a wide range of domain-specific information. 
By training on a dataset of this size and diversity, the DL model will be 
better able to uncover underlying correlations and patterns in the data. 
Another important requirement for producing reliable predictions is to 
minimize overfitting and underfitting. Overfitting occurs when a DL 
model becomes too complex and is able to memorize the training data 
but is not able to generalize to new data. Underfitting, on the other hand, 
occurs when the model is too simple to capture the complexity of the 
data. To minimize these issues, it is important to optimize the hyper-
parameters of the DL model through techniques such as 10-fold cross- 
validation and grid-search methods. This will help the model reach its 
optimal structure and make more accurate predictions on new data. 
Fig. 4 show predictions of representative phases at heating and cooling 
processes produced by the DL model compared against results from 
thermodynamic simulations. The remaining predictions can be found in 
Fig. S1. Predictions errors evaluated by four statistical parameters are 
itemized in Table 6. 

As shown in Fig. 4 and Table 6, the DL model can produce predictions 
of chemical phases of cement clinker for heating and cooling processing, 
with R2 ranging from 0.74 to 0.99, and MAE ranging from 0.66 to 7.11 
%. The accuracy of predictions for the heating process is higher than 
those for cooling process. This is due to the fact that in the heating 
process, a majority of the cement clinker is in the form of melt oxide, 
making the chemical phases more straightforward and easier to capture. 

Fig. 2. C2S (solid triangle) and C3S (hollow circle) content corresponding to LSF at 1300, 1350, 1400, 1450, and 1500 ◦C as produced by thermodynamic simulations 
for (a) heating and (b) cooling process. The heating and coolong 
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In contrast, in the cooling process, the melt oxide forms various chemical 
phases, leading to a more complex database and a decrease in prediction 
accuracy. Generally, the DL model predicting the chemical phases of 
cement clinkers in a high-fidelity is made possible by the employment of 
a series of nonlinear logistic-transfer functions as activation functions 
for the neurons. These functions allow the model to develop complex 
input-output correlations, making it suitable for this task. During 
training, DL models utilize a local search-and-optimization mechanism 

[59–61] to find the optimal hyperparameters that minimize the error 
between the predicted and actual outputs. This approach generally leads 
to faster convergence and more reliable detection of extrema in the 
dataset. However, one of the main disadvantages of DL model is that it 
may converge to a local minimum rather than the global minimum, 
which can lead to inaccurate predictions. While this drawback is often 
inconsequential in datasets with broadly linear and/or monotonic 
input-output relationships, it can potentially lead to inaccurate pre-
dictions in the case of cement clinker, as the input-output correlations 
are expected to be complex and highly nonlinear. In this study, we 
addressed this issue by rigorously optimizing the hyper-parameters of 
the models through the 10-fold CV and grid search method [36,62]. It is 
expected that this optimization will overcome the inherent drawbacks of 
the DL model, allowing it to produce predictions in a high-fidelity 
manner. 

After predicting cement clinker phases obtained from thermody-
namic simulation, the DL model is employed to predict the phase 
composition of real cement clinkers (shown in Table 1). The predictions 
are compared with measured values and evaluated using IDL (shown in 
Table 5). The results indicate that the DL model performs less accurately 
compared to thermodynamic simulations. This is because the model is 
developed based on data from these simulations, which may have dis-
crepancies with real values. When the DL model produces predictions, it 
also introduces some errors to predictions. Due to the accumulation of 
errors, the DL model predicts phase compositions for real cement clin-
kers with moderate accuracy. To improve the accuracy, the model 
should be trained using a large and diverse database consisting solely of 
experimental data. 

Fig. 3. C3A + C4AF content corresponding to LSF at 1300, 1350, 1400, 1450, and 1500 ◦C as produced by thermodynamic simulations for (a) heating and (b) cooling 
process. Temperature. 

Fig. 4. The predictions of representative phases (a) C3S at heating; (b) C3S at cooling; and (c) C2S at cooling of cement clinkers as produced by DL model compared 
against simulated results. Coefficient of determination (R2) of predictions is shown in legends. The dashed line is ideal prediction, and solid lines represent 10 
% errors. 

Table 6 
Statistical parameters evaluating the prediction performance of DL model on 
chemical phases for heating and cooling scenarios.  

Chemical Phase R R2 MAE RMSE 
Unitless Unitless % % 

Heating 
C3S 0.9978 0.9957 2.881 3.346 
C2S 0.9959 0.9919 3.111 3.586 
CaO 0.9952 0.9905 1.071 1.194 
C3A þ C4AF 0.9740 0.9489 0.959 1.606 
Oxide Melt 0.9927 0.9855 2.922 3.635 
Others 0.9678 0.9367 2.463 3.449 
Cooling 
C3S 0.9851 0.9705 4.743 6.171 
C2S 0.9704 0.9416 7.118 8.806 
CaO 0.9931 0.9861 0.684 0.874 
C3A þ C4AF 0.9881 0.9765 1.528 2.143 
Oxide Melt 0.8603 0.7401 1.090 1.935 
Others 0.9879 0.9759 4.574 5.586  
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To further investigate the application of DL models in enhancing 
smart manufacturing processes, we conducted an extensive study to 
identify the optimal domains for producing high-quality clinkers 
(C3S>50 %) at different calcination temperatures, which involves pre-
dictions for various combinations of components in clinkers. As illus-
trated in Fig. 5, the optimal composition domain for high-quality 
clinkers is situated within the temperature range of 1300-1500 ◦C; and 
the composition domain [63] used by manufacturers is also shown. At 
1300 ◦C, a minimal optimal composition domain is observed, which is 
primarily due to the insufficient activation energy provided at this 
temperature to trigger the reaction that forms C3S from most C2S. When 
the molar ratio of CaO-to-SiO2 exceeds 3, C2S is more inclined to inte-
grate additional Ca atoms (occurring at the crystallization of C3S) due to 
the excess amount of free CaO. As the temperature increases to 1350 and 
1400 ◦C, a slight expansion of the optimal domain is noticed, though it 
still necessitates a CaO-to-SiO2 molar ratio greater than 3 but provides 
more availability in compositions. According to various studies [15,43, 
44], the majority of alite formation occurs after 1450 ◦C. Consequently, 
a substantial optimal domain region for high-quality clinkers emerges at 
1450 and 1500 ◦C. When the CaO-to-SiO2 molar ratio is higher than 1.6, 
C3S content can surpass 50 % at elevated temperatures. Compared to the 
prevailing optimal domain used by manufacturers, the domain identi-
fied in our study offers increased flexibility in terms of composition for 
producing superior quality clinkers. Moreover, when comparing the 
domains at 1450 and 1500 ◦C, it is evident that increasing the temper-
ature does not significantly enhance C3S formation. As a result, it is not 
necessary to calcinate the clinker above 1450 ◦C during the 
manufacturing process. 

The abovementioned results demonstrate that a well-trained deep 
learning model, with optimized hyperparameters, can predict the phase 
compositions of cement clinkers under various heating and cooling 
conditions in a high-fidelity manner. The model’s ability that uncovers 
the underlying relationships between the composition of raw materials 
and clinker phases can be utilized to optimize raw material ratios that 

achieve target phase compositions. To verify this hypothesis, the DL 
model in connection with a Bayesian optimization module [31,50,62,64, 
65] is utilized to optimize raw material ratios of clinkers that satisfy 
target C3S content. In the optimization process, the target C3S content 
was set to a range of 0–70 % with 5 % step size. Two types of clinkers 
were selected: (1) 6 % Al2O3 and 9 % Fe2O3, cooled from 1400 ◦C; and 
(2) 9 % Al2O3 and 6 % Fe2O3, cooled from 1450 ◦C. The deep learning 
model was then utilized to determine the optimal contents of SiO2 and 
CaO that would achieve the target C3S content. The optimization results 
are presented in Fig. 6. To provide a comparison, the oxide compositions 
obtained from thermodynamic simulations are also included in the 
figure. 

The results of the DL model, as shown in Fig. 6, are in good agree-
ment with the data obtained from thermodynamic simulations. This 
agreement between the predictions and experimental data provides 
confidence in the DL optimization. The data in Fig. 6 also reveals a 
counterintuitive trend. As the C3S content increases, the CaO-to-SiO2 
ratio shows an initial rise and then drops when the C3S content surpasses 
30 %. This raises an issue where a single composition may correspond to 
two different C3S content, which is incorrect in real experiments. This is 
also the reason that the downward part in Fig. 6a does not agree with 
outcomes of thermodynamic simulations. We hypothesize that addi-
tional constraints could be applied to the optimization process to avoid 
this issue; this strategy, which is admittedly nontrivial, will be explored 
in future studies aimed at modeling and predicting both minor and 
major phases of cement clinkers. Clinkers with high Al2O3 and Fe2O3 
content consume a significant amount of CaO to form C3A + C4AF 
phases, leading to clinkers with low C3S content, and vice versa. The 
correlation between Al2O3-Fe2O3 and C3S has not been thoroughly 
studied in both previous and current studies, so constraints have not 
been applied. Overall, the optimization results suggest that the DL model 
can effectively optimize raw material ratios of clinkers, which meets the 
desired phase compositions. This capability is significant, as it enables 
the DL model to quickly and accurately determine the ideal raw material 

Fig. 5. The optimal composition domain of high quality cement clinkers (C3S > 50 %) at (a) 1300 ◦C; (b) 1350 ◦C; (c) 1400 ◦C; (d) 1450 ◦C; and (e) 1500 ◦C. 
According to Lothenbach et al. [63], the manufacturers’ current optimal clinker domain is represented by (f). The optimal region is highlighted in color, and 
representative compositions within this domain are denoted by blue circles. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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ratios, even in cases where the underlying cause-effect correlations are 
not completely understood. By training the DL model with compre-
hensive databases, it has the potential to optimize raw material ratios of 
clinkers, which not only satisfy target phase compositions but also 
performance and sustainability criteria. 

4. Conclusions 

Cement manufacturing has harmful effects on the natural environ-
ment, which releases large amounts of CO2 and other greenhouse gases. 
To enhance the sustainability of cement industry, it is essential to 
optimize the manufacturing process. This involves predicting and opti-
mizing the major clinker phases in relation to the chemical composition 
of raw materials and manufacturing conditions. The chemical compo-
sitions of raw materials play a significant role in determining the phase 
composition of final clinkers. Manufacturers must carefully select and 
mix the raw materials to achieve the desired phase compositions. 
Manufacturing conditions such as the temperature and duration of 
heating and cooling also affect the phase compositions of final products. 
The optimization process involves adjusting these manufacturing con-
ditions to achieve the desired phase compositions with the minimum 
amount of energy consumption. This study employed thermodynamic 
simulations to calculate the phase compositions of cement clinkers 
during the heating and cooling processes based on the oxide composi-
tions of the raw materials. The effects of LSF and AM on the phase 
compositions of clinkers were investigated. Additionally, the DL model 
was employed to predict the phase compositions of clinkers and deter-
mine the optimal composition domains that produce high quality clin-
kers at various calcination temperature. 

The thermodynamic model provided valuable insights into the for-
mation and phase transition of clinkers during the heating and cooling 
processes, including C2S, C3S, C3A + C4AF, and oxide melt. At around 
1300 ◦C, CaO reacted with C2S to form C3S during the heating process. 
No significant final product changes were observed while cooling from 
1350 to 1500 ◦C. Cooling the clinker from 1250 ◦C resulted in the 
appearance of CaO and high C3A + C4AF content but did not allow C3S 
formation. The optimal LSF range for producing alite- and belite- 
enriched clinkers was around 59–71 % and 89–96 %, respectively. The 
DL model yielded reliable predictions of cement clinker phase compo-
sitions obtained from thermodynamic simulations. The outcomes also 
assist to determine the optimal composition domains that form high C3S 
content at different temperature. When the molar ratio of CaO-to-SiO2 
exceeds 3, the clinker can form sufficient C3S at 1300 ◦C. When the ratio 
reduces to 1.6, 1450 ◦C is required to calcinated high quality clinkers. 
Moreover, the DL model showed the capability to optimize the compo-
sitions of raw materials to achieve target C3S phases. This study 

demonstrates the potential of using the DL model to assist cement 
manufacturers in producing high-quality cement clinkers. However, 
there are several areas where future research could yield further im-
provements. One possibility is the development of a high-temperature 
thermodynamic simulation methodology that is more reliable and 
cost-effective than current thermodynamic simulations, which would 
enhance the quality of the database used to train the DL model. Addi-
tionally, incorporating minor oxides into the DL model could signifi-
cantly improve its predictive accuracy and generalizability. 
Furthermore, implementing additional constraints (e.g., thermody-
namic constraints) within the optimization process will help in pre-
venting the suggestion of unrealistic raw material compositions. 

Overall, the combination of thermodynamic simulation and machine 
learning models can be a promising tool for the development of new 
recipes and optimization of the clinkering processes, leading to a smart 
manufacturing process. By using these tools to guide the selection of raw 
materials, process parameters, and production pathways, it is possible to 
produce sustainable clinkers that meet high-quality standards. This can 
help reduce the environmental impact of cement production while 
maintaining the economic viability of the industry. 
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