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We develop fast and scalable methods for computing reduced-order nonlinear solutions (RONS). 
RONS was recently proposed as a framework for reduced-order modeling of time-dependent 
partial differential equations (PDEs), where the modes depend nonlinearly on a set of time-

varying parameters. RONS uses a set of ordinary differential equations (ODEs) for the parameters 
to optimally evolve the shape of the modes to adapt to the PDE’s solution. This method has already 
proven extremely effective in tackling challenging problems such as advection-dominated flows 
and high-dimensional PDEs. However, as the number of parameters grow, integrating the RONS 
equation and even its formation become computationally prohibitive. Here, we develop three 
separate methods to address these computational bottlenecks: symbolic RONS, collocation RONS 
and regularized RONS. We demonstrate the efficacy of these methods on two examples: Fokker–

Planck equation in high dimensions and the Kuramoto–Sivashinsky equation. In both cases, we 
observe that the proposed methods lead to several orders of magnitude in speedup and accuracy. 
Our proposed methods extend the applicability of RONS beyond reduced-order modeling by 
making it possible to use RONS for accurate numerical solution of linear and nonlinear PDEs. 
Finally, as a special case of RONS, we discuss its application to problems where the PDE’s solution 
is approximated by a neural network, with the time-dependent parameters being the weights 
and biases of the network. The RONS equations dictate the optimal evolution of the network’s 
parameters without requiring any training.

1. Introduction

Anderson and Farazmand [1] recently proposed reduced-order nonlinear solutions (RONS) as a new framework for deriving 
reduced-order models for time-dependent PDEs. RONS considers shape-morphing approximate solutions,

𝑢̂(𝐱,𝐪(𝑡)) =
𝑟∑
𝑖=1

𝛼𝑖(𝑡)𝑢𝑖(𝐱,𝛽𝛽𝛽𝑖(𝑡)), (1)

to the PDE which depend nonlinearly on time-varying parameters 𝐪(𝑡) = {𝛼𝑖(𝑡), 𝛽𝛽𝛽𝑖(𝑡)}𝑟𝑖=1. This is in contrast to most reduced-order 
models which consider approximate solutions 𝑢̂(𝐱, 𝐪(𝑡)) = ∑

𝑖 𝑞𝑖(𝑡)𝑢𝑖(𝐱) as a linear combination of time-independent modes 𝑢𝑖 (see 
[2,3], for reviews). By allowing nonlinear dependence on the parameters, RONS significantly expands the scope of reduced-order 
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modeling, resulting in more accurate reduced models capable of tackling challenging problems such as advection-dominated dynam-

ics.

We note that RONS should not be confused with parametric model reduction [2]. In our framework, the reduced-order solution 
depends on time-varying parameters which are distinct from the governing PDE’s parameters such as viscosity coefficients, domain 
size, etc.

As we review in Section 2, RONS uses a set of ordinary differential equations (ODEs) for the optimal evolution of parameters 
𝐪(𝑡) ∈ℝ𝑛 by minimizing the instantaneous error between the dynamics of the reduced-order solution 𝑢̂(𝐱, 𝐪(𝑡)) and the true dynamics 
of the PDE. Furthermore, RONS ensures that the resulting reduced-order model preserves conserved quantities of the PDE.

There are two main computational bottlenecks that may adversely affect the performance of RONS. The main computational 
cost of RONS comes from evaluating the functional inner products which are required to form the reduced-order equations. More 
specifically, in order to form the RONS reduced-order equations, (𝑛2) inner products must be evaluated, where 𝑛 is the number of 
parameters. Making matters worse, these inner products need to be reevaluated at each time step as the parameter values evolve. 
To compute these inner products, one can use quadrature, Monte Carlo integration, or symbolic computing. As the number of 
parameters 𝑛 grows, all these methods become quickly prohibitive. The second computational cost arises from the stiffness of the 
RONS equations. As mentioned earlier, RONS equations are a set of ODEs for the evolution of parameters 𝐪(𝑡). As the number of 
parameters increases, these ODEs can become stiff and therefore very slow to solve using explicit time integration.

In this paper, we develop three separate methods to address these computational bottlenecks, and thus drastically reduce the 
computational cost of RONS. For the first method, which we call symbolic RONS, we assume that the inner products can be computed 
symbolically. Exploiting the hidden structure of RONS equations, we reduce the number of required inner product computations 
to (𝐾2) where 𝐾 ≪ 𝑛 is an integer independent of 𝑛. Furthermore, because this method uses symbolic computation, the inner 
products do not need to be recomputed during time stepping. As a result, the computational cost remains low even when the number 
of parameters 𝑛 is very large. This scalability allows us to go beyond reduced-order modeling and use RONS as a spectral method 
where the modes (or basis functions) evolve over time through their nonlinear dependence on time-dependent parameters.

The second method, which we refer to as collocation RONS, introduces a collocation point version of RONS in case symbolic 
computations are not feasible. This method minimizes the discrepancy between the RONS dynamics and the governing PDE on 
a set of prescribed collocation points. Collocation RONS is applicable to general nonlinear PDEs, does not require inner product 
evaluations, and therefore does not require any symbolic computation. Furthermore, we show that using Monte Carlo integration to 
approximate the RONS equations coincides with solving a least squares problem which arises from our collocation point method. 
However, the system of equations arising from collocation RONS is significantly better conditioned than the Monte Carlo approach, 
and therefore numerically more stable.

Our third contribution addresses the stiffness of the RONS equations. When the number of model parameters is large, the RONS 
ODEs can become stiff and therefore slow to solve using explicit time integration schemes. To address this issue, we introduce 
a regularized version of RONS which is applicable to both symbolic RONS and collocation RONS. Regularized RONS introduces 
a Tikhonov penalization to the underlying minimization problem. This regularization significantly speeds up the numerical time 
integration of the RONS equations while insignificantly affecting the accuracy of the solutions.

These three methods expand the scope of RONS beyond reduced-order modeling. Specifically, they allow us to use a large 
number of modes 𝑟 to accurately solve PDEs using shape-morphing modes. Being mesh-free, RONS is applicable to PDEs in high 
spatial dimensions as we demonstrate in section 4.1.

1.1. Related work

Before RONS [1], several previous studies had already considered nonlinear shape-morphing approximate solutions 𝑢̂(𝐱, 𝐪(𝑡))
for specific PDEs. For instance, to build reduced-order models for the nonlinear Schrödinger (NLS) equation, several authors have 
proposed approximating wave packets with either Gaussian or hyperbolic secant envelopes [4–9]. The amplitude, width, and center 
of the wave packet are controlled by parameters that evolve over time. Refs. [7–9] use the variational Lagrangian formulation of 
NLS to obtain a set of ODEs for evolving these parameters. As an alternative approach, Adcock et al. [4,5] use the symmetries of 
NLS to evolve the parameters. Another example appears in fluid dynamics where vortex methods approximate the fluid flow as a 
superposition of point vortices [10], or their smooth approximations [11,12]. The position, strength, and shape of the vortices are 
then evolved based on the induced velocity of other vortices.

Although the idea of shape-morphing approximate solutions has been around for decades, the evolution of their shape parameters 
were determined using ad hoc methods on a case by case basis. RONS proposed a unified framework for evolving these parameters 
which is applicable to a broad range of PDEs, without relying on the variational structure or symmetries of the PDE.

Interestingly, in the context of evolutional deep neural networks (EDNNs), Du and Zaki [13] simultaneously and independently 
derived a set of evolution equations similar to RONS [1]. EDNNs approximate solutions of PDEs by evolving weights and biases 
of a deep neural network over time. Since the network’s activation functions are nonlinear, an EDNN depends nonlinearly on its 
parameters, i.e., weights and biases. As such, EDNNs are a special case of reduced-order nonlinear solutions. Therefore, it is not 
surprising that the EDNN equations are similar to RONS.

In spite of this similarity, there are some notable differences between EDNN and RONS. Namely, RONS ensures that the reduced-

order model respects the conserved quantities of the PDE. EDNN does not guarantee these conservation laws, although they can be 
2

easily enforced following the methodology introduced in [1]. On the other hand, Du and Zaki [13] show how various boundary 
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conditions of the PDE can be embedded into the EDNN framework, an important contribution which was not considered in the 
development of RONS.

As in RONS, forming the EDNN equations requires the evaluation of certain functional inner products. Du and Zaki [13] approx-

imate these inner products using Monte Carlo integration with uniform sampling. Bruna et al. [14] proposed an adaptive sampling 
method to estimate the integrals. Their adaptive samples are drawn from a distribution which depends on the approximate solution 
at any given time. They show that, for PDEs whose solutions are localized in space, adaptive sampling results in more accurate 
solutions than uniform sampling.

As mentioned earlier, an important feature of RONS is its ability to ensure that the approximate solutions preserve the conserved 
quantities of the original PDE. There are many studies which consider the same objective; however, the resulting methods are only 
applicable to a special class of governing equations. For instance, symplectic integrators are specifically designed to preserve the two-

form associated with a Hamiltonian system [15–17]. Similarly, Peng and Mohseni [18] developed proper symplectic decomposition 
(PSD) for Hamiltonian systems to ensures their reduced-order models preserve the Hamiltonian structure of the full-order model. 
Carlberg et al. [19] propose a finite-volume based method which guarantees preservation of conserved quantities in the reduced 
model. This method is only applicable to PDEs derived from conservation laws, and hence amenable to finite-volume discretization. 
In contrast, RONS preserves any finite number of conserved quantities of the PDE without making any restricting assumptions on the 
structure of the PDE.

Finally, we point out that the method of optimally time-dependent (OTD) modes [20–23] uses an expansion similar to Eq. (1). 
However, OTD is only applicable to stability analysis of linear or linearized PDEs. In contrast, RONS is applicable for reduced-order 
modeling and numerical approximation of general nonlinear PDEs.

1.2. Outline

This paper is organized as follows. In section 2, we briefly review the derivation of RONS and its relation to Galerkin-type 
methods. Section 3 contains our main theoretical results where we develop fast and scalable methods for constructing and solving 
the RONS equations. Section 4 contains numerical results demonstrating the application of the proposed methods to two different 
PDEs. We present our concluding remarks in section 5.

2. Set-up and preliminaries

In this section, we present a succinct review of RONS. We refer to Ref. [1] for a more detailed discussion. RONS builds reduced-

order models for PDEs of the general form

𝜕𝑢

𝜕𝑡
= 𝐹 (𝑢), 𝑢(𝐱,0) = 𝑢0(𝐱), (2)

where 𝑢 ∶𝐷×ℝ+ →ℝ𝑝, (𝐱, 𝑡) ↦ 𝑢(𝐱, 𝑡) is the solution of the PDE, 𝐷⊆ℝ𝑑 is the spatial domain, 𝐹 is a potentially nonlinear differential 
operator, and 𝑢0 is the initial condition. We assume the solution 𝑢(⋅, 𝑡) belongs to a Hilbert space 𝐻 with the inner product ⟨⋅, ⋅⟩𝐻
and the induced norm ‖ ⋅ ‖𝐻 . To simplify the exposition, we assume 𝑝 = 1 hereafter, i.e., 𝑢(𝐱, 𝑡) ∈ℝ. Generalization to 𝑝 > 1 and to 
complex-valued functions is straightforward [24].

We consider shape-morphing approximate solutions 𝑢̂(𝐱, 𝐪(𝑡)) which depend nonlinearly on a set of time-dependent parameters 
𝐪(𝑡) ∈ ℝ𝑛. RONS prescribes a set of ODEs to evolve the parameters 𝐪(𝑡) such that the instantaneous error between dynamics of the 
reduced-order solution 𝑢̂ and dynamics of the true PDE is minimized. The instantaneous error is defined by

 (𝐪, 𝐪̇) = 1
2
‖𝑢̂𝑡 − 𝐹 (𝑢̂)‖2

𝐻
, (3)

which measures the difference between the rate of change of the approximate solution 𝑢̂𝑡 and the rate of change 𝐹 (𝑢̂) dictated by the 
PDE. Here 𝑢̂𝑡 is shorthand for

𝑢̂𝑡(𝐱,𝐪(𝑡)) =
𝑛∑
𝑖=1

𝜕𝑢̂

𝜕𝑞𝑖
(𝐱,𝐪(𝑡))𝑞̇𝑖. (4)

If the PDE has no conserved quantity, the reduced-order equations are obtained by minimizing (3). However, let’s consider the more 
general case where the PDE has 𝑚 conserved quantities, 𝐼𝑘 ∶𝐻 →ℝ with 𝑘 ∈ {1, 2, ⋯ , 𝑚}. Since these quantities are conserved, they 
must satisfy 𝐼𝑘(𝑢(⋅, 𝑡)) = 𝐼𝑘(𝑢0) for all 𝑡 ≥ 0. It is desirable for the reduced-order model to also preserve these conserved quantities, 
since otherwise the reduced model may exhibit unphysical behavior [18,25].

To obtain an evolution equation for the parameters 𝐪(𝑡), we solve the constraint optimization problem

min
𝐪̇∈ℝ𝑛

 (𝐪, 𝐪̇),

subject to 𝐼𝑘(𝐪(𝑡)) = 𝐼𝑘(𝐪(0)), 𝑘 = 1,2, ...,𝑚, ∀𝑡 ≥ 0, (5)

where 𝐼𝑘(𝐪(𝑡)) is shorthand for 𝐼𝑘(𝑢̂(⋅, 𝐪(𝑡))). As shown in [1], the solution to this minimization problem is
𝑚∑
3

𝑀(𝐪)𝐪̇ = 𝐟(𝐪) −
𝑘=1

𝜆𝑘∇𝐼𝑘(𝐪), (6)



Journal of Computational Physics 498 (2024) 112649W. Anderson and M. Farazmand

Fig. 1. Geometric illustration of RONS. The shape-morphing approximate solution 𝑢̂ maps the parameter space Ω to the manifold . An evolution of the parameters 
𝐪(𝑡) is mapped to a curve on , and the tangent vector to the parameters 𝐪̇(𝑡) is mapped to 𝑢̂𝑡 in the tangent space of the manifold.

which we refer to as the RONS equation. Here 𝑀(𝐪) ∈ℝ𝑛×𝑛 is the symmetric positive definite metric tensor defined by

𝑀𝑖𝑗 =
⟨
𝜕𝑢̂

𝜕𝑞𝑖
,
𝜕𝑢̂

𝜕𝑞𝑗

⟩
𝐻

, 𝑖, 𝑗 ∈ {1,2,⋯ , 𝑛}. (7)

The entries of the right-hand side vector field 𝐟 ∶ℝ𝑛 →ℝ𝑛 are given by

𝑓𝑖 =
⟨
𝜕𝑢̂

𝜕𝑞𝑖
, 𝐹 (𝑢̂)

⟩
𝐻

, 𝑖 = 1,2,⋯ , 𝑛. (8)

The Lagrange multipliers 𝜆𝜆𝜆 = (𝜆1, ..., 𝜆𝑚)⊤ satisfy the linear system

𝐶(𝐪)𝜆𝜆𝜆 = 𝐛(𝐪), (9)

where 𝐶(𝐪) ∈ℝ𝑚×𝑚 is the symmetric positive definite constraint matrix defined by

𝐶𝑖𝑗 = ⟨∇𝐼𝑗 ,𝑀−1∇𝐼𝑖⟩, 𝑖, 𝑗 ∈ {1,2,⋯ ,𝑚}, (10)

and the vector 𝐛 = (𝑏1, 𝑏2, ⋯ , 𝑏𝑚)⊤ ∈ℝ𝑚 is given by

𝑏𝑖 = ⟨∇𝐼𝑖,𝑀−1𝐟⟩, 𝑖 = 1,2,⋯ ,𝑚, (11)

where ⟨⋅, ⋅⟩ denotes the standard Euclidean inner product. The gradients ∇𝐼𝑖 denote the partial derivatives with respect to the 
components of the parameters 𝐪.

If no conserved quantities are enforced, then we must solve the optimization problem (5) without any constraints. The unique 
minimizer of the unconstrained problem is given by omitting the summation term from Eq. (6), i.e.,

𝑀(𝐪)𝐪̇ = 𝐟(𝐪). (12)

As we mentioned in section 1.1, equation (12) was derived simultaneously and independently by Du and Zaki [13] in the context 
of EDNNs. However, the more general equation (6), which ensures the preservation of conserved quantities, was only derived in 
Ref. [1].

A geometric depiction of RONS in the unconstrained case is shown in Fig. 1. We view the shape-morphing approximate solution 
𝑢̂(⋅, 𝐪) as a map from the parameters 𝐪 to the Hilbert space 𝐻 where solutions of the PDE lie. The approximate solution 𝑢̂ maps the 
set of all viable parameter values 𝐪 ∈Ω ⊆ℝ𝑛 to an 𝑛-dimensional manifold  ⊂𝐻 . An arbitrary but smooth evolution of parameters 
𝐪(𝑡) defines a smooth curve in the set Ω. The tangent vector, or velocity, of this curve is given by 𝐪̇(𝑡). Under the map 𝑢̂, this curve 
is mapped onto a curve which lies on the manifold  in the function space 𝐻 . The tangent vector 𝐪̇(𝑡) is mapped to the tangent 
vector 𝑢̂𝑡 which lies on the tangent space of the manifold 𝑇𝑢̂. In general, the manifold is not invariant under the dynamics of the 
governing PDE (2), and therefore 𝐹 (𝑢̂) will not necessarily lie in tangent space. By minimizing (3) with respect to 𝐪̇(𝑡), we find the 
vector 𝑢̂𝑡 which is the orthogonal projection of 𝐹 (𝑢̂) onto 𝑇𝑢̂. In other words, we evolve the approximate solution 𝑢̂ so that it most 
closely resembles the expected PDE dynamics.

Conventional Galerkin projection models are a special case of RONS. Consider an approximate solution which depends linearly 
on the parameters,

𝑢̂(𝐱,𝐪(𝑡)) =
𝑛∑
𝑖=1

𝑞𝑖(𝑡)𝑢𝑖(𝐱), (13)

where the modes {𝑢𝑖}𝑛𝑖=1 are prescribed orthonormal functions, e.g., proper orthogonal decomposition (POD) modes. In this special 
4

case, the unconstrained RONS equation (12) coincides with standard Galerkin projection. More specifically, the metric tensor 𝑀(𝐪)
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becomes the identity matrix and the right-hand side vector is given by 𝑓𝑖 = ⟨𝑢𝑖, 𝐹 (𝑢̂)⟩𝐻 . From a geometric standpoint, for the reduced-

order solution (13), the manifold  becomes a flat subspace spanned by the modes {𝑢𝑖}𝑛𝑖=1. We refer to [1] for further details.

3. Fast and scalable computational methods

3.1. Computational bottlenecks

Although RONS has shown great promise for both reduced-order modeling and numerical simulation of PDEs [1,13,14,24], 
forming and solving the RONS equations can be computationally expensive. In this section, we first outline the main computational 
bottlenecks associated with RONS and then present our proposed remedies.

The computational cost of RONS equations (6) comes from three main sources:

1. Forming the metric tensor 𝑀(𝐪) and the vector field 𝐟(𝐪) (addressed in sections 3.2 and 3.3).

2. Stiffness of the RONS equations (addressed in section 3.4).

3. Inverting the metric tensor. By inverting the metric tensor we refer to any numerical method for solving the linear equation (6)

for 𝐪̇.

We now describe each of these computational bottlenecks in more detail. To form the metric tensor (7), we need to compute 𝑛2
inner products. Since this matrix is symmetric, the number of independent inner products is in fact 𝑛(𝑛 + 1)∕2. Additionally, to form 
the right-hand side vector (8), we need to compute 𝑛 inner products. Therefore, a total of 𝑛(𝑛 + 3)∕2 integrals need to be computed. 
As the number of parameters 𝑛 grows, this becomes computationally prohibitive. Making matters worse, during time stepping, 𝐪(𝑡)
changes and these integrals need to be recomputed at each time step. In section 3.2, we develop a method which drastically reduces 
the number of inner product computations. We refer to this method as symbolic RONS, or S-RONS for short.

Symbolic RONS requires the inner products to be symbolically computable. Depending on the choice of the approximate solution 
𝑢̂, this may not be feasible. In section 3.3, we develop a collocation point approach to RONS which does not require any integral or 
inner product computation and therefore reduces the computational cost of RONS by several orders of magnitude. We refer to this 
method as collocation RONS, or C-RONS for short.

The second issue arises from the fact that the RONS equations (6) can be stiff as a set of ODEs. As a result, using explicit schemes 
for time integration may require exceedingly small time steps. In section 3.4, we propose a regularized version of the optimization 
problem (5) which alleviate this issue. We refer to the resulting method as the regularized RONS, which can be used in conjunction 
with both S-RONS and C-RONS.

In our experience, the last issue (inverting the metric tensor) does not present a major roadblock. There exist several fast methods 
for solving large linear systems which can be used for inverting the metric tensor [26]. Therefore, we focus on items 1 and 2 above 
which constitutes the main computational bottlenecks.

3.2. Symbolic RONS

In this section, we present a method for efficient construction of the metric tensor 𝑀 and right-hand side vector 𝐟 using symbolic 
computation of the required inner products. We show that only a relatively small number of symbolic computations are required 
to build the RONS equation, provided that the shape-morphing approximate solution has a specific form and analytical symbolic 
expressions for the inner products in 𝑀 and 𝐟 can be obtained.

Specifically, we consider shape-morphing approximations of the form,

𝑢̂(𝐱,𝐪(𝑡)) =
𝑟∑
𝑖=1

𝛼𝑖(𝑡)𝜙(𝐱,𝛽𝛽𝛽𝑖(𝑡)). (14)

We refer to 𝜙(𝐱, 𝛽𝛽𝛽𝑖(𝑡)) as the 𝑖-th shape-morphing mode. The vector of shape parameters 𝛽𝛽𝛽𝑖 ∈ ℝ𝐾−1 controls the shape of the 𝑖-th 
mode; it contains parameters such as length scales and center of the mode. The scalar 𝛼𝑖(𝑡) denotes the mode amplitude. Therefore, 
parameters of the shape-morphing solution 𝑢̂ are given by 𝐪 = (𝛼1, 𝛽𝛽𝛽⊤1 , ..., 𝛼𝑟, 𝛽𝛽𝛽

⊤
𝑟 )

⊤ ∈ ℝ𝑟𝐾 , where 𝑛 = 𝑟𝐾 . Note that the number of 
shape parameters for each mode 𝐾 − 1 is independent of the number of terms 𝑟 in the sum. This independence plays an important 
role in the proposed computational method. To ensure that the RONS inner products (7)-(8) are well-defined, we require that 𝜙(𝐱, 𝛽𝛽𝛽𝑖)
must be differentiable almost everywhere with respect to the shape parameters. Additionally, 𝜙 and its derivatives with respect to 
the amplitudes and shape parameters must belong to the underlying Hilbert space 𝐻 .

As an example, we can consider Gaussian modes 𝜙 which lead to the approximate solution,

𝑢̂(𝑥,𝐪(𝑡)) =
𝑟∑
𝑖=1

𝐴𝑖(𝑡) exp
[
−

(𝑥− 𝑐𝑖(𝑡))2

𝐿2
𝑖
(𝑡)

]
, (15)

where 𝛼𝑖(𝑡) = 𝐴𝑖(𝑡) and 𝛽𝛽𝛽𝑖(𝑡) = (𝐿𝑖(𝑡), 𝑐𝑖(𝑡))⊤. Here 𝐴𝑖 controls the amplitude of the 𝑖th Gaussian, 𝐿𝑖 is a length scale that determine 
the Gaussian’s width, and 𝑐𝑖 determines the Gaussian’s center. We use this one-dimensional Gaussian mixture as an illustrative 
5

example throughout this section.
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There are many other possible choices of modes 𝜙 for the approximate solution. For example, we could take the modes to be 
nonlinear activation functions typically used in neural networks, such as the logistic function or hyperbolic tangent. In this case, 
Eq. (14) represents a shallow neural network and the shape parameters 𝛽𝛽𝛽𝑖 are the weights and biases of the 𝑖-th node. Another choice 
could be wavelet functions, where the shape parameters are dilations and translations.

In order to obtain a reasonable approximation of the governing PDE (2), the function 𝜙 should have nonzero spatial derivatives 
up to order of the governing PDE. If this requirement is not met, the highest order derivatives of the governing PDE will have no 
corresponding term in the RONS equation. As an example, let 𝜙 be the rectified linear unit (ReLU), where second- and higher-order 
spatial derivatives are zero almost everywhere. Consequently, when forming 𝐹 (𝑢̂), these higher order derivatives are zero almost 
everywhere and so they do not contribute to dynamics of the approximate solution when applying RONS.

We now exploit the structure of the shape-morphing approximation (14) to efficiently calculate the inner products in 𝑀 and 𝐟
using symbolic computation. We first discuss how to efficiently build the metric tensor 𝑀 . Consider arbitrary indices 𝑖, 𝑗 ∈ {1, ..., 𝑟}. 
Using these general indices and the approximate solution (14), all entries of 𝑀 will have the form of one of the following inner 
products,

𝛼𝑖𝛼𝑗 ∶=
⟨
𝜕𝑢̂

𝜕𝛼𝑖
,
𝜕𝑢̂

𝜕𝛼𝑗

⟩
𝐻

, (16a)

𝛼𝑖𝛽𝑗𝑘 ∶=
⟨
𝜕𝑢̂

𝜕𝛼𝑖
,
𝜕𝑢̂

𝜕𝛽𝑗𝑘

⟩
𝐻

, 𝑘 ∈ {1, ...,𝐾 − 1} (16b)

𝛽𝑖𝑘𝛽𝑗𝓁 ∶=
⟨

𝜕𝑢̂

𝜕𝛽𝑖𝑘
,
𝜕𝑢̂

𝜕𝛽𝑗𝓁

⟩
𝐻

, 𝑘,𝓁 ∈ {1, ...,𝐾 − 1} , (16c)

where 𝛽𝑖𝑘 denotes the 𝑘-th component of 𝛽𝛽𝛽𝑖 = (𝛽𝑖1, 𝛽𝑖2, ⋯ , 𝛽𝑖(𝐾−1))⊤. The advantage of using symbolic computation for the expressions 
in equation (16) is that after obtaining closed-form expressions for the inner products, we can build the entire metric tensor through 
substitution of the appropriate indices 𝑖 and 𝑗. For example, rather than computing 𝛼1𝛼2 , we simply need to substitute the values of 
𝛼1 and 𝛼2 into the already obtained symbolic expression for 𝛼𝑖𝛼𝑗 . This same principle holds regardless of which indices we choose 
as 𝑖 and 𝑗.

Note that, after obtaining closed-form expressions the inner products in equation (16), we can evaluate all entries of the metric 
tensor 𝑀 regardless of the number of modes 𝑟 used in the approximate solution. Additionally, we only need to perform the symbolic 
computations at the initial time and can then substitute the updated parameter values as we march the approximate solution forward

in time. Note that, by symmetry of the inner product, we only need to calculate 𝐾(𝐾 − 1)∕2 inner products for equation (16c). 
Therefore, there are in total 𝐾(𝐾 + 1)∕2 terms to be calculated in equation (16). We emphasize that this number is independent of 
the number of modes 𝑟 in the shape-morphing approximation (14); it only depends on the number of shape parameters 𝐾 .

Symbolic RONS (or S-RONS) can be alternatively described by examining the structure of the metric tensor. The matrix 𝑀 is 
composed of blocks 𝑀 (𝑖,𝑗) ∈ℝ𝐾×𝐾 such that

𝑀 =
⎡⎢⎢⎢⎣
𝑀 (1,1) 𝑀 (1,2) ⋯ 𝑀 (1,𝑟)

𝑀 (2,1) 𝑀 (2,2) ⋯ 𝑀 (2,𝑟)

⋮ ⋮ ⋱ ⋮
𝑀 (𝑟,1) 𝑀 (𝑟,2) ⋯ 𝑀 (𝑟,𝑟)

⎤⎥⎥⎥⎦ , (17)

where 𝑀 (𝑖,𝑗) = (𝑀 (𝑗,𝑖))⊤ since 𝑀 is symmetric. Each block can be expressed in terms of the inner products (16),

𝑀 (𝑖,𝑗) =

𝛼𝑖𝛼𝑗 𝛼𝑖𝛽𝑗1 ⋯ 𝛼𝑖𝛽𝑗(𝐾−1)

𝛽𝑖1𝛼𝑗 𝛽𝑖1𝛽𝑗1 ⋯ 𝛽𝑖1𝛽𝑗(𝐾−1)

⋮ ⋮ ⋱ ⋮

𝛽𝑖(𝐾−1)𝛼𝑗
𝛽𝑖(𝐾−1)𝛽𝑗1

⋯ 𝛽𝑖(𝐾−1)𝛽𝑗(𝐾−1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

With this labeling, the block 𝑀 (𝑖,𝑗) represents all of the inner products involving derivatives of the approximate solution with 
respect to the shape parameters 𝛽𝑖𝑘 and 𝛽𝑗𝑘 of the 𝑖-th and 𝑗-th modes and their respective amplitudes, 𝛼𝑖 and 𝛼𝑗 . Although there 
are 𝐾2 entries in 𝑀 (𝑖,𝑗), we only need to perform symbolic calculations for the 𝐾(𝐾 + 1)∕2 entries in the lower triangular part of 
the block. The remaining entries of the matrix, enclosed in a box in (18), are then determined by the symmetry of inner products 
in (16). In other words, if we have a closed-form expression for an entry 𝑞𝑖𝑞𝑗 in the lower triangular part of 𝑀 (𝑖,𝑗), we obtain 
the corresponding entry 𝑞𝑗 𝑞𝑖 in the upper triangular part of the block by simply swapping the values of 𝑞𝑖 and 𝑞𝑗 in the symbolic 
6

expression.
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As an example, consider the Gaussian mixture (15). We must symbolically compute six inner products to form the block,

𝑀 (𝑖,𝑗) =

⟨
𝜕𝑢̂

𝜕𝐴𝑖

, 𝜕𝑢̂
𝜕𝐴𝑗

⟩
𝐻

⟨
𝜕𝑢̂

𝜕𝐴𝑖

, 𝜕𝑢̂
𝜕𝐿𝑗

⟩
𝐻

⟨
𝜕𝑢̂

𝜕𝐴𝑖

, 𝜕𝑢̂
𝜕𝑐𝑗

⟩
𝐻⟨

𝜕𝑢̂

𝜕𝐿𝑖

, 𝜕𝑢̂
𝜕𝐴𝑗

⟩
𝐻

⟨
𝜕𝑢̂

𝜕𝐿𝑖

, 𝜕𝑢̂
𝜕𝐿𝑗

⟩
𝐻

⟨
𝜕𝑢̂

𝜕𝐿𝑖

, 𝜕𝑢̂
𝜕𝑐𝑗

⟩
𝐻⟨

𝜕𝑢̂

𝜕𝑐𝑖
, 𝜕𝑢̂
𝜕𝐴𝑗

⟩
𝐻

⟨
𝜕𝑢̂

𝜕𝑐𝑖
, 𝜕𝑢̂
𝜕𝐿𝑗

⟩
𝐻

⟨
𝜕𝑢̂

𝜕𝑐𝑖
, 𝜕𝑢̂
𝜕𝑐𝑗

⟩
𝐻

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

Note that the terms enclosed in the box can be evaluated using the lower triangular part of the matrix. For instance, ⟨𝜕𝐴𝑖
𝑢̂, 𝜕𝐿𝑗 𝑢̂⟩ is 

evaluated using the symbolic expression for ⟨𝜕𝐿𝑖 𝑢̂, 𝜕𝐴𝑗
𝑢̂⟩ by substituting the values of 𝐴𝑖 and 𝐿𝑗 instead of 𝐴𝑗 and 𝐿𝑖, respectively. 

Therefore, only 6 symbolic computations are required to form the matrix block (19) and consequently the entire metric tensor 𝑀 . 
In comparison, computing the metric tensor by a brute force method, such as quadrature or Monte Carlo methods, would require 
evaluating 𝑛(𝑛 + 1)∕2 = 3𝑟(3𝑟 + 1)∕2 integrals, which becomes prohibitive as the number of terms 𝑟 increases.

The idea for building 𝐟 is similar to that of the metric tensor. We again consider a general index 𝑖 ∈ {1, ..., 𝑟} and note all entries 
of 𝐟 will have the form of one of the following inner products:⟨

𝜕𝑢̂

𝜕𝛼𝑖
, 𝐹 (𝑢̂)

⟩
𝐻

,

⟨
𝜕𝑢̂

𝜕𝛽𝑖𝑘
,𝐹 (𝑢̂)

⟩
𝐻

, 𝑘 = 1, ...,𝐾 − 1. (20)

After using symbolic computation to obtain closed-form expressions for the 𝐾 inner products in equation (20), we can then build 𝐟
through substitution rather than individually calculating each of the 𝑛 = 𝑟𝐾 inner products in 𝐟 .

The vector field 𝐟 also has a block structure. We may consider 𝐟 as 𝑟 vectors 𝐟 (𝑖) ∈ℝ𝐾 stacked on top of each other so that

𝐟 =
⎡⎢⎢⎣
𝐟 (1)
⋮
𝐟 (𝑟)

⎤⎥⎥⎦ , (21)

where each vector 𝐟 (𝑖) is defined by

𝐟 (𝑖) =
[⟨

𝜕𝑢̂

𝜕𝛼𝑖
, 𝐹 (𝑢̂)

⟩
𝐻

,

⟨
𝜕𝑢̂

𝜕𝛽𝑖1
, 𝐹 (𝑢̂)

⟩
𝐻

, ⋯ ,

⟨
𝜕𝑢̂

𝜕𝛽𝑖(𝐾−1)
, 𝐹 (𝑢̂)

⟩
𝐻

]⊤
. (22)

To evaluate the entire vector 𝐟 , we only need the symbolic expression for one of the blocks 𝐟 (𝑖). Again using the Gaussian mixture as 
an example, we have

𝐟 (𝑖) =
[⟨

𝜕𝑢̂

𝜕𝐴𝑖

,𝐹 (𝑢̂)
⟩
𝐻

,

⟨
𝜕𝑢̂

𝜕𝐿𝑖

,𝐹 (𝑢̂)
⟩
𝐻

,

⟨
𝜕𝑢̂

𝜕𝑐𝑖
, 𝐹 (𝑢̂)

⟩
𝐻

]⊤
. (23)

Using a general index 𝑖 we need symbolic expressions for only three integrals to build the vector 𝐟 through substitution rather than 
computing 3𝑟 integrals.

In summary, building the metric tensor 𝑀 requires 𝐾(𝐾 + 1)∕2 symbolic integrations and building the right-hand side vector 𝐟
requires 𝐾 symbolic computations, resulting in only 𝐾(𝐾 + 3)∕2 symbolic computations to evaluate 𝑛(𝑛 + 1) terms appearing in the 
RONS equation (12). The above discussion leads to the following theorem.

Theorem 1. Consider a shape-morphing approximate solution of the form (14). Forming the metric tensor 𝑀 and the right-hand side vector 
𝐟 in the RONS equation (6) requires symbolic calculation of 𝐾(𝐾 +3)∕2 inner products. The number of symbolic computations is independent 
of the number of modes 𝑟 used in the approximate solution.

An important implication of Theorem 1 is that the number of modes 𝑟 can be increased arbitrarily without making the computa-

tions prohibitive. As a result, it extends RONS beyond a reduced-order modeling framework, where relatively small number of modes 
are used, and allows us to use RONS for accurate approximation of the PDE’s solutions. More specifically, one can think of (14)

as a spectral method with the modes 𝜙(⋅, 𝛽𝛽𝛽𝑖(𝑡)). In contrast to conventional spectral methods, such as the Fourier spectral method, 
the modes are allowed to change their shape and position over time to adapt to the solution of the PDE by evolving the shape 
parameters 𝛽𝛽𝛽𝑖(𝑡). As we show in section 4, this shape-morphing property is specially appealing for advection-dominated problems or 
high-dimensional PDEs with localized solutions.

The shape-morphing approximate solution (1) can be viewed alternatively as a shallow neural network with 𝑟 nodes, where 
(𝛼𝑖(𝑡), 𝛽𝛽𝛽𝑖(𝑡)) are the time-dependent parameters of the 𝑖-th node. The network’s parameters evolve according to the RONS equa-

tion (6), without requiring any data or training. Universal approximation theorems [27–29] ensure that, with an appropriate choice 
of activation function 𝜙, we can approximate the solution 𝑢 to arbitrary accuracy as long as the number of nodes 𝑟 is large enough. 
7

Here, 𝐾 is the number of parameters in a single node. Theorem 1 ensures that the RONS equations can be formed efficiently regard-
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less of the number of nodes 𝑟 in the shallow neural network. We point out that this theorem is not immediately applicable to deep 
evolutional neural networks [13].

Finally, we point out that the summation term in equation (6) involves the Lagrange multipliers 𝜆𝑘 which are obtained as the 
solution to the linear system (9). Note that this linear system only involves Euclidean inner products and therefore its construction is 
not computationally expensive.

3.3. Collocation RONS

While S-RONS is efficient, obtaining symbolic expressions for the required inner products may not always be feasible. In this 
section, we present a new approach to RONS where we only enforce that the approximate solution satisfies the governing PDE on 
a set of prescribed collocation points. This method is applicable for any choice of the approximate solution 𝑢̂ and does not require 
symbolic computing or numerical integration.

We first describe collocation RONS without enforcing any conserved quantities. We define the residual function,

𝑅(𝐱,𝐪, 𝐪̇) ∶= 𝑢̂𝑡 − 𝐹 (𝑢̂) =
𝑛∑

𝑗=1

𝜕𝑢̂

𝜕𝑞𝑗
𝑞̇𝑗 − 𝐹 (𝑢̂). (24)

The residual function 𝑅 measures the point-wise difference between the rate of change of the approximate solution 𝑢̂𝑡 and the 
dynamics 𝐹 (𝑢̂) dictated by the governing PDE. Previous studies [1,24,14,13] have all sought an evolution of parameters 𝐪(𝑡) which 
minimizes the norm of the residual function in the underlying Hilbert space by minimizing the cost function (3).

Here we propose a different approach. In its most general form, we assume 𝑅(⋅, 𝐪, 𝐪̇) ∶𝐷→ ℝ belongs to a function space 𝑉 to 
be specified shortly. For any test function 𝜙 ∈ 𝑉 ∗, we require ⟨𝜙, 𝑅⟩ = 0, where ⟨⋅, ⋅⟩ denotes the natural pairing between 𝑉 and 
its dual space 𝑉 ∗. For computational purposes, we reduce this problem to its finite-dimensional version. More specifically, as in the 
Petrov-Galerkin method [30], we choose a finite number of test functions {𝜙𝑖}𝑁𝑖=1 ∈ 𝑉 ∗ and require that ⟨𝜙𝑖, 𝑅⟩ = 0 for 𝑖 = 1, 2, ⋯ , 𝑁 .

As a special case, we derive a collocation method by assuming that 𝑅(⋅, 𝐪, 𝐪̇) is bounded, i.e., 𝑉 = 𝐿∞(𝐷). Furthermore, we 
consider the test functions 𝜙𝑖(𝐱) = 𝛿(𝐱 − 𝐱𝑖) for 𝑖 = 1, 2, ..., 𝑁 , where each 𝐱𝑖 is a collocation point in the spatial domain 𝐷. Note that 
𝜙𝑖 ∈𝐿1(𝐷) and the natural pairing implies

⟨𝜙𝑖,𝑅⟩ = ∫
𝐷

𝛿(𝐱 − 𝐱𝑖)𝑅(𝐱,𝐪, 𝐪̇)d𝐱 =𝑅(𝐱𝑖,𝐪, 𝐪̇) = 0, (25)

which requires the residual function to vanish at the collocation point 𝐱𝑖. Using definition (24), we obtain

𝑁∑
𝑗=1

𝜕𝑢̂

𝜕𝑞𝑗
(𝐱𝑖,𝐪)𝑞̇𝑗 = 𝐹 (𝑢̂)

||||𝐱=𝐱𝑖 , 𝑖 ∈ {1,2,⋯ ,𝑁}. (26)

We write (26) as a system of equations,

𝑀(𝐪)𝐪̇ = 𝐟̃(𝐪), (27)

where the collocation matrix 𝑀(𝐪) ∈ℝ𝑁×𝑛 is given by

𝑀𝑖𝑗 (𝐪) =
𝜕𝑢̂

𝜕𝑞𝑗
(𝐱𝑖,𝐪), 𝑖 ∈ {1,2,⋯ ,𝑁}, 𝑗 ∈ {1,2,⋯ , 𝑛}, (28)

and the vector ̃𝐟 (𝐪) ∈ℝ𝑁 is defined by

𝑓𝑖(𝐪) = 𝐹 (𝑢̂(𝐱,𝐪))
||||𝐱=𝐱𝑖 , 𝑖 ∈ {1,2,⋯ ,𝑁}. (29)

Note that equation (27) requires that the approximate solution 𝑢̂ satisfies the governing PDE at the collocation points 𝐱𝑖.
We refer to equation (27) as collection RONS, or C-RONS for short. Although this equation resembles the unconstrained RONS 

equation (12), there are notable differences. First, to form the C-RONS equation, numerical integrations or symbolic computations are 
not required; we only need point-wise evaluation of known functions in (28) and (29). Second, unlike the metric tensor 𝑀(𝐪) ∈ℝ𝑛×𝑛, 
the collocation matrix 𝑀(𝐪) is rectangular. Consequently, the linear system (27) may not have a unique solution.

If the number of collocation points is greater than the number of parameters, 𝑁 > 𝑛, then the system is overdetermined and 
a solution may not exist. If the number of collocation points is less than the number of parameters, 𝑁 < 𝑛, then the system is 
underdetermined and there may exist infinitely many solutions to the problem. In either case, we obtain 𝐪̇ by solving the least 
squares problem,

min
𝐪̇∈ℝ𝑛

‖𝑀 𝐪̇− 𝐟̃‖22, (30)

using the Moore-Penrose pseudoinverse of 𝑀 . Thus, for collocation RONS, the evolution of parameters is given by
8

𝐪̇ =𝑀+(𝐪)𝐟̃ (𝐪), (31)
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where 𝑀+(𝐪) ∈ ℝ𝑛×𝑁 denotes the pseudoinverse of the collocation matrix 𝑀(𝐪). If the C-RONS equation (27) is overdetermined, 
then the solution (31) is the unique solution to the least-squares problem (30). If the system of equations is underdetermined, then 
the solution (31) is the solution to the least-squares problem with minimal Euclidean norm [31].

Finally, we note that the least square problem (30) is equivalent to minimizing the residual sum 
∑𝑁

𝑖=1 |𝑅(𝐱𝑖, 𝐪, 𝐪̇)|2 over all 
possible 𝐪̇ ∈ℝ𝑛. In other words, instead of requiring the residual function to vanish at the collocation points as in (25), we choose 𝐪̇
so that the sum of squares of the residual is minimized.

Now we turn to the problem of enforcing the PDE’s conserved quantities in the approximate solution. Note from section 2, that 
the governing PDE may have a number of conserved quantities 𝐼𝑖 for 𝑖 = 1, 2, ⋯ , 𝑚. We would like to ensure that these quantities are 
also conserved along the approximate solution 𝑢̂(⋅, 𝐪(𝑡)). In other words, we require 𝐼𝑖(𝐪(𝑡)) = 𝐼𝑖(𝐪(0)) for all times 𝑡 ≥ 0. Taking the 
derivative of this identity with respect to time, we obtain the equivalent set of equations,

⟨∇𝐼𝑖(𝐪), 𝐪̇⟩ = 0, 𝑖 = 1,2,⋯ ,𝑚. (32)

These constraints, together with the C-RONS equation (27), lead to the larger system of equations,

𝑀𝑐(𝐪)𝐪̇ = 𝐟̃𝑐(𝐪), (33)

where the constrained collocation matrix 𝑀𝑐 ∈ℝ(𝑁+𝑚)×𝑛 and the constrained vector field ̃𝐟𝑐 ∈ℝ𝑁+𝑚 are defined by

𝑀𝑐(𝐪) ∶=

⎡⎢⎢⎢⎢⎢⎣

𝑀(𝐪)
∇𝐼1(𝐪)⊤

∇𝐼2(𝐪)⊤
⋮

∇𝐼𝑚(𝐪)⊤

⎤⎥⎥⎥⎥⎥⎦
, 𝐟̃𝑐(𝐪) ∶=

⎡⎢⎢⎢⎢⎢⎣

𝐟̃(𝐪)
0
0
⋮
0

⎤⎥⎥⎥⎥⎥⎦
. (34)

As before, we solve the linear system (33) using the pseudoinverse to obtain the constrained collocation equation 𝐪̇ =𝑀+
𝑐 𝐟̃𝑐 .

Remark 1. When the inner products (7)-(8) can be computed symbolically, we prefer to use S-RONS over C-RONS. This is because S-

RONS provides several significant benefits over C-RONS or other approximations of the inner products. First, symbolic computation 
allows us to obtain exact expressions for the inner products, thus avoiding approximation errors which arise from Monte Carlo 
sampling or quadrature. Second, when using C-RONS or Monte Carlo approximation, the inner products need to be recomputed at 
every time step. Furthermore, if the PDE’s initial condition changes, C-RONS or Monte Carlo approximations need to be recomputed. 
In contrast, when using S-RONS, symbolic computation of the inner products only needs to be performed once. During time stepping, 
the analytical symbolic expressions need to be evaluated at the new parameter values, but no additional symbolic computation is 
required. Similarly, if the initial condition changes, the same symbolic expressions can be reused. S-RONS is also more scalable 
compared to C-RONS or Monte Carlo sampling. For high-dimensional problems, we require many collocation points or samples to 
obtain accurate expressions of the inner products which is computationally expensive. S-RONS avoids this issue because we only 
need to calculate a small number of symbolic expressions that can be reused as we evolve the approximate solution (see Theorem 1). 
Thus, we use C-RONS only when the inner products cannot be computed symbolically.

3.3.1. Relation between Monte Carlo sampling and C-RONS

Monte Carlo integration has previously been used to approximate the inner products in the RONS equation [14,13]. We will show 
that, under certain conditions, the evolution of parameters provided by Monte Carlo approximation coincides with C-RONS (30). 
Although these two methods are mathematically equivalent, C-RONS proves to be numerically more stable.

For the Monte Carlo approximation, one draws a random sample {𝐱𝑘}𝑁𝑘=1 from the spatial domain 𝐷 to approximate the inner 
products which appear in equations (7) and (8). More specifically, taking the Hilbert space 𝐻 to be the space of square-integrable 
functions 𝐿2(𝐷), the Monte Carlo approximations for the metric tensor 𝑀 and right-hand side vector 𝐟 are given by

𝑀𝑖𝑗 (𝐪) ≈ 𝑀̄𝑖𝑗 (𝐪) ∶=
|𝐷|
𝑁

𝑁∑
𝑘=1

𝜕𝑢̂

𝜕𝑞𝑖
(𝐱𝑘,𝐪)

𝜕𝑢̂

𝜕𝑞𝑗
(𝐱𝑘,𝐪), 𝑖, 𝑗 ∈ {1, ..., 𝑛},

𝑓𝑖(𝐪) ≈ 𝑓𝑖(𝐪) ∶=
|𝐷|
𝑁

𝑁∑
𝑘=1

𝜕𝑢̂

𝜕𝑞𝑖
(𝐱𝑘,𝐪)𝐹 (𝑢̂)

||||𝐱=𝐱𝑘 , 𝑖 ∈ {1, ..., 𝑛}, (35)

where 𝑀̄ ∈ℝ𝑛×𝑛 and 𝐟 ∈ℝ𝑛 denote the Monte Carlo approximations and |𝐷| denotes the size of the spatial domain, assuming that 
it is bounded. Du and Zaki [13] draw the samples {𝐱𝑘}𝑁𝑘=1 from a uniform distribution. Bruna et al. [14] showed that drawing the 
samples from an adaptive distribution that depends on the approximate solution 𝑢̂ may lead to more accurate solutions. In either 
case, the unconstrained RONS (12) with Monte Carlo approximation can be written as

𝑀̄(𝐪)𝐪̇ = 𝐟(𝐪). (36)

Equation (35) reveals a close relation between C-RONS and the Monte Carlo approximation of RONS. Note that the Monte Carlo 
9

approximation of the metric tensor satisfies 𝑀̄ = (|𝐷|∕𝑁)𝑀⊤𝑀 , where 𝑀 is the collocation matrix (28). Similarly, the Monte Carlo 
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approximation of the right-hand side vector field 𝐟 satisfies 𝐟 = (|𝐷|∕𝑁)𝑀⊤ 𝐟̃ , where 𝐟̃ is the C-RONS vector field (29). Therefore, 
the Monte Carlo approximation of RONS (36) can be equivalently written as

𝑀⊤𝑀 𝐪̇ =𝑀⊤ 𝐟̃ , (37)

where 𝑀 is the collocation matrix.

The following theorem shows that, if the C-RONS matrix 𝑀 has full column rank, then the Monte Carlo approximation of RONS 
and the C-RONS equation (31) are mathematically equivalent.

Theorem 2. If the C-RONS matrix 𝑀 has full column rank, then the Monte Carlo approximation of RONS (36) is equivalent to C-RONS 
equation (31).

Proof. First recall that the Monte Carlo approximation (36) is equivalent to equation (37). If 𝑀 is full column rank, then 𝑀⊤𝑀 is 
invertible and therefore we have 𝐪̇ = (𝑀⊤𝑀)−1𝑀⊤ 𝐟̃(𝐪). On the other hand, since 𝑀 has full column rank, the pseudoinverse of 𝑀
is given explicitly by 𝑀+ = (𝑀⊤𝑀)−1𝑀⊤. Substituting this expression in C-RONS equation (31), we conclude that the Monte Carlo 
approximation of RONS and C-RONS lead to the same equation for 𝐪̇. □

Remark 2. We note an important distinction between the exact result of Theorem 2 and its numerical implementation. Although 
Theorem 2 states that C-RONS equation (27) and the Monte Carlo approximation of RONS (37) are equivalent in exact arithmetic, 
the C-RONS equation is numerically better conditioned than the Monte Carlo approach. To see this, note that 𝜅(𝑀⊤𝑀) = [𝜅(𝑀)]2, 
where the condition number is defined as 𝜅(𝑀) ∶= 𝜎max(𝑀)∕𝜎min(𝑀) with 𝜎max and 𝜎min denoting the maximal and minimal 
nonzero singular values of the matrix, respectively. Thus, it is numerically more stable to solve the C-RONS equation to obtain 𝐪̇. In 
other words, although 𝑀+ = (𝑀⊤𝑀)−1𝑀⊤ in exact arithmetic, it is well-known that this formula is numerically sensitive. Instead, 
we use the singular value decomposition of 𝑀 to compute its pseudoinverse which is numerically more stable [31]. In contrast, 
using the Monte Carlo approximation (37), one must inevitably work with the matrix 𝑀̄ ∝𝑀⊤𝑀 which in practice tends to have a 
significantly larger condition number than 𝑀 .

Theorem 2 sheds light on the unreasonable effectiveness of the Monte Carlo approximation applied to RONS. As we show 
in section 4.2 below, using Monte Carlo integration, with a relatively small samples size 𝑁 = 128, captures the behavior of the 
Kuramoto–Sivashinsky PDE reasonably well. This is surprising because the sample size is too small to accurately approximate the 
integrals involved in the metric tensor 𝑀 or the right-hand side vector 𝐟 (see section 4.2 for a quantitative comparison). Yet, the ap-

proximate solution is reasonably close to a true solution of the Kuramoto–Sivashinsky equation. Theorem 2 shows that this accuracy 
is not owed to the accuracy of the Monte Carlo approximation; rather it is due to the fact that this approximation, although disguised 
as a Monte Carlo method, is in fact a collocation method. As such, it minimizes the approximation error at 𝑁 = 128 collocation 
points. We discuss this point in greater detail in section 4.2.

3.4. Regularized RONS

In sections 3.2 and 3.3, we developed two efficient methods to construct the RONS equations. The next step is to solve the 
resulting ODEs in order to evolve the parameters 𝐪(𝑡) of the shape-morphing approximation 𝑢̂(𝐱, 𝐪(𝑡)). In our experience, when the 
number of parameters 𝑛 is large, the RONS equations may become stiff. As a result, using explicit schemes for numerical integration 
leads to exceedingly small time steps.

To overcome this problem, Refs [13,14] use implicit time integration which unfortunately introduces a different set of issues. 
Namely, implicit methods require solving a nonlinear system at every time step which adds to the computational cost of RONS. 
Furthermore, the iterative methods for solving the nonlinear system are not guaranteed to converge [32,33]. In order to address the 
possible stiffness of RONS equations, while avoiding implicit schemes, we introduce a regularized version of RONS.

More specifically, we add a Tikhonov penalization term [34,35] to the cost function (3), and define the regularized cost function,

̂ (𝐪, 𝐪̇) = 1
2
‖𝑢̂𝑡 − 𝐹 (𝑢̂)‖2

𝐻
+ 1

2
‖Γ𝐪̇‖22, (38)

where the full-rank Tikhonov matrix Γ ∈ℝ𝑃×𝑛 (𝑃 ≥ 𝑛) is to be specified. We then consider the constrained minimization problem,

min
𝐪̇∈ℝ𝑛

̂ (𝐪, 𝐪̇)

subject to 𝐼𝑘(𝐪(𝑡)) = 𝐼𝑘(𝐪(0)), 𝑘 = 1,2, ...,𝑚, ∀𝑡 ≥ 0. (39)

As before, the constraints ensure that the resulting solution 𝑢̂(𝐱, 𝐪(𝑡)) conserves the first integrals 𝐼𝑘. The following theorem gives the 
explicit form of a minimizer to the regularized optimization problem (39).

Theorem 3. If Γ has full column rank and the constraint gradients ∇𝐼1(𝐪), ∇𝐼2(𝐪), ⋯, ∇𝐼𝑚(𝐪) are linearly independent, then the solution 
10

to the regularized minimization problem (39) satisfies
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(𝑀(𝐪) + Γ⊤Γ)𝐪̇ = 𝐟(𝐪) −
𝑚∑
𝑖=1

𝜆̂𝑘∇𝐼𝑘(𝐪). (40)

The Lagrange multipliers 𝜆̂𝜆𝜆 = (𝜆̂1, ..., 𝜆̂𝑚)⊤ are determined through the linear system

𝐶̂(𝐪)𝜆̂𝜆𝜆 = 𝐛̂(𝐪), (41)

where 𝐶̂ is the regularized constraint matrix with entries,

𝐶̂𝑖𝑗 = ⟨∇𝐼𝑗 , (𝑀 + Γ⊤Γ)−1∇𝐼𝑖⟩, 𝑖, 𝑗 ∈ {1,2,⋯ ,𝑚}, (42)

and the vector ̂𝐛 = (𝑏̂1, ̂𝑏2, ⋯ , ̂𝑏𝑚)⊤ ∈ℝ𝑚 is given by

𝑏̂𝑖 = ⟨∇𝐼𝑖, (𝑀 + Γ⊤Γ)−1𝐟⟩, 𝑖 = 1,2,⋯ ,𝑚. (43)

Proof. See appendix A. □

We refer to equation (40) as the regularized RONS equation.

Remark 3. In addition to alleviating the stiffness of the RONS equations, the regularization also relaxes the assumptions needed on 
the shape-morphing solution 𝑢̂. Note that the metric tensor 𝑀 is symmetric by definition. It is also positive semi-definite because, 
for all 𝜉𝜉𝜉 ∈ℝ𝑛, we have

⟨𝜉𝜉𝜉,𝑀𝜉𝜉𝜉⟩ = 𝑛∑
𝑖=1

𝑛∑
𝑗=1

⟨
𝜕𝑢̂

𝜕𝑞𝑖
𝜉𝑖,

𝜕𝑢̂

𝜕𝑞𝑗
𝜉𝑗

⟩
𝐻

=
‖‖‖‖

𝑛∑
𝑖=1

𝜕𝑢̂

𝜕𝑞𝑖
𝜉𝑖
‖‖‖‖2𝐻 ≥ 0. (44)

In Ref. [1], to ensure that 𝑀 was positive definite and therefore invertible, we required the assumption that the approximate solution 
was an immersion (see Lemma 1 of [1]), i.e.,

dim
(

span

{
𝜕𝑢̂

𝜕𝑞1
,
𝜕𝑢̂

𝜕𝑞2
, ...,

𝜕𝑢̂

𝜕𝑞𝑛

})
= 𝑛. (45)

In regularized RONS, we do not require the immersion assumption. Note that, for regularized RONS, we only need the invertibility of 
𝑀 +Γ⊤Γ which is always guaranteed. This is because 𝑀 is positive semi-definite, and Γ⊤Γ is symmetric positive definite. Therefore, 
𝑀 + Γ⊤Γ is symmetric positive definite and invertible, regardless of whether the approximate solution 𝑢̂ is an immersion.

We can similarly apply Tikhonov regularization to C-RONS. Recall the least squares problem (30) which arises for the collocation 
point method, and consider its regularized counterpart,

min
𝐪̇∈ℝ𝑛

‖𝑀 𝐪̇− 𝐟̃‖22 + ‖Γ𝐪̇‖22
subject to 𝐼𝑘(𝐪(𝑡)) = 𝐼𝑘(𝐪(0)), 𝑘 = 1,2, ...,𝑚, ∀𝑡 ≥ 0. (46)

The following theorem gives an explicit expression to the solution of this optimization problem.

Theorem 4. If Γ has full column rank and the constraint gradients ∇𝐼1(𝐪), ∇𝐼2(𝐪), ⋯, ∇𝐼𝑚(𝐪) are linearly independent, the minimizer to 
the constrained optimization problem (46) satisfies

(𝑀⊤𝑀 + Γ⊤Γ)𝐪̇ =𝑀⊤ 𝐟̃ −
𝑚∑
𝑖=1

𝜆𝑘∇𝐼𝑘(𝐪), (47)

which we refer to as the regularized C-RONS equation. The Lagrange multipliers ̃𝜆𝜆𝜆 = (𝜆1, ..., ̃𝜆𝑚)⊤ are determined through the linear system

𝐶(𝐪)𝜆𝜆𝜆 = 𝐛̃(𝐪), (48)

where the regularized constraint matrix 𝐶 has entries,

𝐶𝑖𝑗 = ⟨∇𝐼𝑗 , (𝑀⊤𝑀 + Γ⊤Γ)−1∇𝐼𝑖⟩, 𝑖, 𝑗 ∈ {1,2,⋯ ,𝑚}, (49)

and the vector ̃𝐛 = (𝑏̃1, ̃𝑏2, ⋯ , ̃𝑏𝑚)⊤ ∈ℝ𝑚 is given by

𝑏̃𝑖 = ⟨∇𝐼𝑖, (𝑀⊤𝑀 + Γ⊤Γ)−1𝑀⊤ 𝐟̃⟩, 𝑖 = 1,2,⋯ ,𝑚. (50)
11

Proof. The proof of this theorem is very similar to that of Theorem 3 and therefore is omitted here for brevity. □
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As before, invertibility of (𝑀⊤𝑀 + Γ⊤Γ) is guaranteed by the fact that 𝑀⊤𝑀 is symmetric, positive semi-definite and Γ⊤Γ is 
positive definite. In the numerical examples presented in section 4, we take the matrix Γ to be a multiple of the identity matrix so 
that Γ⊤Γ = 𝛼𝐼 , where 𝛼 > 0 is a prescribed regularization parameter.

There exist several methods in the literature for choosing the optimal value of the regularization parameter 𝛼 such as the L-

curve method [34,36], generalized cross-validation [37–39], the quasi-optimality criterion [40–42], and an iterative scheme which 
converges to an optimal regularization parameter [43]. Applying these methods require repeated solves of the linear equation (40)

for S-RONS or (47) for C-RONS. Since these systems are not excessively large, the computational cost of solving the linear system 
is insignificant compared to the primary computational bottlenecks which are forming the RONS equations and its subsequent time 
integration. For example, the largest approximate solution we consider in this manuscript has 300 parameters (see section 4.1.2). 
This means that the linear system size is 300 (the S-RONS metric tensor is a 300 ×300 matrix), which is easily solvable with negligible 
computational cost.

4. Numerical results

In this section we present two numerical examples: the Fokker–Planck equation and the Kuramoto–Sivashinsky equation. The 
Fokker–Planck equation demonstrates the computational advantages of using symbolic RONS as introduced in section 3.2. The 
Kuramoto–Sivashinsky equation demonstrates the benefits of using the collocation point method (section 3.3) over Monte Carlo 
integration. In both numerical examples, we also discuss the advantages of regularization as described in section 3.4. We carried out 
our computations on a 2019 Macbook Pro with a 1.7 GHz Quad-Core Intel Core i7 processor. Time integration for the Kuramoto–

Sivashinsky equation was carried out using an explicit adaptive Runge-Kutta scheme, i.e., Matlab’s ode45 [44]. For the Fokker–

Planck equation, we used an explicit adaptive multi-step solver, i.e., Matlab’s ode113 [45].

4.1. Fokker–Planck equation

In this section we consider the Fokker–Planck equation in eight dimensions. We demonstrate that applying RONS with symbolic 
computation provides solutions which are several orders of magnitude more accurate and faster than the adaptive Monte Carlo sam-

pling technique used in [14]. We also demonstrate the importance of enforcing conserved quantities to obtain accurate approximate 
solutions of the Fokker–Planck equation.

Following Bruna et al. [14], we consider 𝑑 interacting particles whose motion is governed by the system of stochastic differential 
equations (SDEs),

d𝑋𝑖 = 𝑔(𝑡,𝑋𝑖)d𝑡+
𝑑∑
𝑗=1

𝐾(𝑋𝑖,𝑋𝑗 )d𝑡+
√
2𝜈d𝑊𝑖, 𝑖 = 1,2, ..., 𝑑. (51)

Here 𝑋𝑖(𝑡) denotes the position of the 𝑖-th particle at time 𝑡, 𝑔 ∶ [0, ∞) × ℝ → ℝ is a forcing term, 𝐾 ∶ ℝ × ℝ → ℝ describes the 
pairwise interactions between particles, 𝜈 is a positive diffusion constant, and 𝑊𝑖 is a standard Wiener process. The Fokker–Planck 
equation is a deterministic PDE which describes the evolution of the probability density function (PDF), 𝑝(𝐱, 𝑡), for the location of 
the particles. The Fokker–Planck equation associated with (51) reads

𝜕𝑝

𝜕𝑡
=

𝑑∑
𝑖=1

− 𝜕

𝜕𝑥𝑖

[(
𝑔(𝑡, 𝑥𝑖) +

𝑑∑
𝑗=1

𝐾(𝑥𝑖, 𝑥𝑗 )
)
𝑝

]
+ 𝜈

𝜕2𝑝

𝜕𝑥2
𝑖

. (52)

As the spatial dimension 𝑑 grows, solving the Fokker–Planck equation using conventional discretization methods becomes pro-

hibitive [46–48]. Alternatively, one may seek to approximate the density 𝑝(𝐱, 𝑡) using Monte Carlo simulations of the original 
SDE (51). This also becomes prohibitively expensive in higher dimensions since exceedingly large samples are required. Here, we 
use RONS to directly approximates 𝑝(𝐱, 𝑡), bypassing the need for any Monte Carlo simulations of the SDE or spatial discretization of 
the PDE.

As in [14], we choose the functions 𝑔 and 𝐾 to be

𝑔(𝑡, 𝑥𝑖) = 𝑎(𝑡) − 𝑥𝑖, 𝐾(𝑥𝑖, 𝑥𝑗 ) =
𝛼

𝑑
(𝑥𝑗 − 𝑥𝑖), (53)

which correspond to particles in a harmonic trap centered in each spatial coordinate at 𝑎(𝑡) while the particles also attract each 
other. A significant advantage of this choice is that we can obtain analytical expressions for the mean and covariance of each particle 
to use as a benchmark for our approximate solutions. Taking the expected value of the SDE (51) with our choices of 𝑔 and 𝐾 given 
in (53), we obtain the following expressions for the mean 𝑋̄𝑖 = 𝔼[𝑋𝑖] of each particle

̇̄𝑋𝑖 = 𝑎(𝑡) − 𝑋̄𝑖 +
𝛼

𝑑

𝑑∑
𝑗=1

(𝑋̄𝑗 − 𝑋̄𝑖), 𝑖 = 1,2, ..., 𝑑. (54)

Similarly, we have the following expressions for entries of the matrix Σ𝑖𝑗 = 𝔼[𝑋𝑖𝑋𝑗 ],

̇ ̄ ̄ 𝛼
𝑑∑
12

Σ𝑖𝑗 = 𝑎(𝑡)(𝑋𝑗 +𝑋𝑖) − 2(1 + 𝛼)Σ𝑖𝑗 + 𝑑
𝑙=1

(Σ𝑙𝑗 +Σ𝑙𝑖) + 2𝜈𝛿𝑖𝑗 , 𝑖, 𝑗 ∈ {1,2, ..., 𝑑}, (55)
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Fig. 2. Relative error for mean and covariance of the S-RONS solution applied to the Fokker–Planck equation for the harmonic trap using two Gaussians in the 
approximate solution (𝑟 = 2). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

where 𝛿𝑖𝑗 denotes the Kronecker delta. The covariance matrix Σ𝑖𝑗 − 𝑋̄𝑖𝑋̄𝑗 can then be computed using the solutions to equations (54)

and (55).

We consider the same initial condition and parameter values as in Ref. [14]. More specifically, we take the Gaussian initial 
condition,

𝑝(𝐱,0) = (2𝜋)−𝑑∕2 det(Σ)−1∕2 exp
[
− 1

2
(𝐱 −𝜇𝜇𝜇)⊤Σ−1(𝐱 −𝜇𝜇𝜇)

]
, (56)

where the initial mean 𝜇𝜇𝜇 ∈ ℝ𝑑 is given by 𝜇𝑖 = 0.9 + 2.1(𝑖 − 1)∕(𝑑 − 1) for 𝑖 = 1, ..., 𝑑, and the initial covariance Σ ∈ ℝ𝑑×𝑑 is the 
diagonal matrix Σ = diag(0.1, 0.1, ..., 0.1). The remaining parameters are given by 𝑎(𝑡) = 1.25(sin(𝜋𝑡) + 1.5), 𝛼 = 0.25, 𝑑 = 8, and 
𝜈 = 0.01.

We approximate the solution of the Fokker–Planck equation (52) using symbolic RONS as described in section 3.2. For the 
shape-morphing approximate solution (14), we choose

𝑝̂(𝐱,𝐪(𝑡)) =
𝑟∑
𝑖=1

𝐴2
𝑖 (𝑡) exp

[
−𝑤2

𝑖 (𝑡)|𝐱 − 𝐜𝑖(𝑡)|2] , (57)

where the mode function 𝜙 is a Gaussian, the shape parameters are 𝛽𝛽𝛽𝑖 = (𝑤𝑖, 𝐜𝑖) ∈ℝ9 and the amplitudes are 𝛼𝑖 =𝐴2
𝑖
. We square the 

amplitudes to ensure that the approximate PDF 𝑝̂ is non-negative. The wights 𝑤𝑖(𝑡) control the standard deviation of each Gaussian 
since |𝑤𝑖|−1 is proportional to the standard deviation of the 𝑖-th Gaussian. Finally, the vector 𝐜𝑖(𝑡) ∈ℝ𝑑 determines the 𝑖-th Gaussian’s 
mode. Therefore, the parameters of the approximate solution are 𝐪 = {𝐴𝑖, 𝑤𝑖, 𝐜𝑖}𝑟𝑖=1, resulting in a total of 𝑛 = 𝑟(𝑑 + 2) parameters.

Note that since the solution 𝑝 is a PDF, its integral over the entire domain ℝ𝑑 must be equal to one for all times. This constitutes 
a conserved quantity for the Fokker–Planck equation which can be easily enforced in RONS. We ensure that the total probability of 
the approximate solution 𝑝̂ is unity by enforcing the conserved quantity,

𝐼1(𝐪(𝑡)) ∶= ∫
ℝ𝑑

𝑝̂(𝐱,𝐪(𝑡)) d𝐱 = 𝜋4
𝑟∑
𝑖=1

𝐴2
𝑖
(𝑡)

𝑤8
𝑖
(𝑡)

= 1, (58)

for all 𝑡 ≥ 0.

Assuming that the Hilbert space 𝐻 is the space of square integrable functions over ℝ𝑑 , we use the symbolic RONS with the 
Gaussian approximate solution (57) to form the RONS equation. Since our initial condition 𝑝(𝐱, 0) is a Gaussian and the approximate 
solution is a sum of Gaussians, there are infinitely many choices of parameter 𝐪(0) with which the approximate solution can exactly 
represent the initial condition. We choose to represent the initial condition by giving all Gaussians in the approximate solution 𝑝̂
the same mean and covariance as the initial condition, and then equally distributing the amplitude of the initial condition between 
each of the 𝑟 Gaussians in the approximate solution. More explicitly, we choose initial parameter values 𝐴2

𝑖
(0) = (2𝜋 × 0.1)−4𝑟−1, 

𝑤2
𝑖
(0) = (2 × 0.1)−1, and 𝐜𝑖(0) =𝜇𝜇𝜇. With this choice of initial parameters, the metric tensor 𝑀 is not invertible at the initial time and 

so we use the Moore-Penrose pseudoinverse 𝑀+ when solving the RONS equation (6).

4.1.1. Symbolic RONS without regularization

First, we study solutions to RONS with only two modes (𝑟 = 2) in the Gaussian approximate solution (57). In this case, the 
resulting ODEs are not stiff and therefore regularization is not necessary. We first demonstrate the importance of enforcing conserved 
quantities in the reduced-order model. Fig. 2 shows the results both with and without enforcing that the total probability of the 
13

approximate solution remains constant; see equation (58). When enforcing constant total probability, RONS captures the true mean 
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Table 1

Comparison of computational time and accuracy for harmonic trap example using the adaptive sampling 
approach [14] and S-RONS. Two Gaussians are used in approximate solution for each simulation. Note 
that the symbolic computation only needs to be performed once; changing the initial condition or Fokker–

Planck parameters does not require additional symbolic computation.

Harmonic Trap (𝑟 = 2) Symbolic 
computation

Time 
integration

Relative error 
of mean

Relative error of 
covariance

Adaptive Sampling none 189.1 minutes ≈ 4 × 10−3 ≈ 2
Symbolic RONS 13.7 minutes 0.31 seconds ≈ 3 × 10−7 ≈ 10−2

with a relative error on the order of 10−6 and the covariance is captured with relative error of approximately 10−2 (solid blue curves 
in Fig. 2). In contrast, if the conservation of probability is not enforced, the relative error of the mean increases to about 10−1 and the 
covariance error reaches 102 (dashed red curves in Fig. 2). Therefore, enforcing the conserved quantity (58) results in approximate 
solutions which are 4 to 5 orders of magnitude more accurate.

In addition to providing accurate solutions, the time integration for the RONS simulation takes only 0.31 seconds when using 2 
Gaussians in the approximate solution. If we were to instead simulate many realizations of the SDE to approximate the PDF, the total 
computational time would be significantly higher.

As mentioned earlier, the Fokker–Planck equation (52) was also solved in [14], where they used an adaptive Monte Carlo sampling 
to estimate the inner products in RONS. In Table 1, we compare the computational time and accuracy between the adaptive sampling 
approach of [14] and our symbolic RONS, where both methods use two Gaussians in the approximate solution (57). For the adaptive 
sampling method, we use the code that was made publicly available by Bruna et al. [49]. This code uses a backwards Euler scheme 
for time integration together with stochastic gradient descent to solve the nonlinear system at every timestep, whereas our RONS 
simulations are integrated in time using an explicit scheme. As shown in Table 1, we see that RONS returns significantly faster and 
more accurate solutions than the adaptive sampling approach.

In particular, time integration using adaptive sampling takes approximately 189 minutes (more than 3 hours). The main compu-

tational cost comes from sampling and subsequent evaluation of the inner products, which has to be repeated at each time step. In 
contrast, time integration using symbolic RONS only takes 0.31 seconds since no sampling is required and the symbolic computations 
do not need to be repeated at every time step. There is the one-time cost of computing the integrals symbolically for RONS which 
takes approximately 13.7 minutes. However, the symbolic expressions for the RONS equation are obtained, we can integrate the 
equations from any initial condition without having to recompute the inner products. In other words, the solution from a different 
initial condition 𝑝(𝐱, 0) can be obtained in approximately 0.31 seconds. In contrast, adaptive Monte Carlo simulations need to be 
repeated for every initial condition and therefore the numerical integration would again take hours if we were to change the initial 
condition.

In addition to being faster, symbolic RONS is also more accurate. As shown in Table 1, the mean of the solution is computed 
four orders of magnitude more accurately when using symbolic RONS compared to adaptive sampling. Moreover, the estimated 
covariance is two orders of magnitude more accurate when using symbolic RONS. The higher accuracy of symbolic RONS is not 
surprising since the inner products are computed exactly, whereas relatively large errors are accrued when adaptive Monte Carlo 
sampling is used.

4.1.2. Regularized symbolic RONS

Next we consider the effect of increasing the number of modes 𝑟. In particular, we consider the approximate solution (57) with 
𝑟 = 30 modes. As the number of parameters increase, the RONS equation becomes stiff, due to the fact that the metric tensor has a 
condition number in the order of 1020. To address this issue, Bruna et al. [14] use an implicit time integration scheme. As mentioned 
in section 3.4, an alternative approach is to use regularization. Here, we use regularized symbolic RONS with the regularization 
parameter 𝛼 = 10−3 and compare our results to the adaptive sampling method of [14] with their implicit time integrator [49]. 
Regularization lowers the condition number to around 107, which allows us to use an explicit time integrator and obtain more 
accurate results.

Fig. 3 shows the relative error of the mean and covariance when applying RONS to the Fokker–Planck PDE with 𝑟 = 30 Gaussians 
in the approximate solution. The regularized symbolic RONS approximation matches the analytical solution well. As the solution 
evolves, the relative error of the mean settles around 10−6. We see a similar behavior in the approximate solution’s covariance, 
where the relative error settles around 3 × 10−4 as the solution evolves.

There is a short time period around 𝑡 = 0 where the relative errors increase. This transient increase coincides with the time needed 
for the particles to settle in the harmonic trap. Initially the particles travel from their initial condition, but after a short time they 
settle in the harmonic trap and oscillate there. After this trapping, it becomes easier for the approximate solution to capture the true 
solution and therefore the relative error decreases. Note that this initial growth was absent when using only 𝑟 = 2 modes, where no 
regularization was required. This demonstrates the fact that, although regularized RONS speeds up the time integration, it can lead 
to a deterioration of the accuracy. Nonetheless, the error is relatively small. In fact, as shown in Fig. 3, regularized symbolic RONS 
is about three orders of magnitude more accurate than adaptive sampling with implicit time integration.

In Table 2, we compare the computational time and accuracy of the adaptive sampling approach of [14] and regularized symbolic 
RONS. As in the case of 2 Gaussians, the 30-mode approximation using symbolic RONS significantly outperforms the results from 
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adaptive sampling in both computational speed and accuracy. In particular, time integration using symbolic RONS takes slightly over 
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Fig. 3. Relative error for mean and covariance of the S-RONS solution applied to the Fokker–Planck equation corresponding to the harmonic trap. For comparison, 
the same relative errors are shown for the adaptive sampling method [14]. Thirty Gaussians are used in the approximate solution (𝑟 = 30).

Table 2

Comparison of computational speed and accuracy for the harmonic trap with 𝑟 = 30 modes. We compare 
the adaptive sampling approach [14] to our proposed method of regularized symbolic RONS.

Harmonic Trap (𝑟 = 30) Symbolic 
computation

Time 
integration

Relative error 
of mean

Relative error of 
covariance

Adaptive Sampling none 24.4 hours ≈ 10−2 ≈ 10
Symbolic RONS 0 minutes 64.2 minutes ≈ 10−6 ≈ 3 × 10−4

one hour, whereas adaptive sampling takes over 24 hours and yet yields lower accuracy. The high computational cost of adaptive 
sampling is attributed to the fact that RONS inner products must be reevaluated at every time step. Furthermore, since an implicit 
time integration scheme is used, a nonlinear equation needs to be solved at every time step which adds to the computational cost. In 
contrast, regularized RONS uses an explicit scheme which does not require solving a nonlinear equation.

We emphasize that the computational cost of symbolic integration is independent of the number of modes 𝑟 when using symbolic 
RONS as described in section 3.2. More specifically, the symbolic expressions from 𝑟 = 2 modes can be used to evaluate all RONS 
terms when 𝑟 = 30, without requiring additional symbolic computation, thus the zero symbolic computational time reported in 
Table 2.

We conclude this section by remarking that S-RONS is computationally feasible for this problem because of the method developed 
in section 3.2. The Gaussian approximate solution (57) has 𝑟 = 30 modes with 𝐾 = 10 parameters in each mode, so that a brute force 
approach to RONS would have required symbolic computation of 300(300 + 3)∕2 = 45, 450 integrals. In contrast, S-RONS requires 
symbolic computation of only 10(10 + 3)∕2 = 65 integrals (see Theorem 1).

4.2. Kuramoto–Sivashinsky equation

In this section, we consider the Kuramoto–Sivashinsky (KS) equation and approximate its solution with a shallow neural network 
with hyperbolic tangent activation functions. In this case, obtaining symbolic expressions for the RONS equation is not possible. 
Therefore, we use collocation RONS as described in section 3.3. The KS equation was also solved in [13] using a Monte Carlo method 
to approximate the RONS equations. We compare our results with this Monte Carlo approach.

The Kuramoto–Sivashinsky equation is given by

𝜕𝑢

𝜕𝑡
= −𝑢 𝜕𝑢

𝜕𝑥
− 𝜕2𝑢

𝜕𝑥2
− 𝜕4𝑢

𝜕𝑥4
, 𝑢(𝑥,0) = 𝑢0(𝑥), (59)

where the solution 𝑢(𝑥, 𝑡) is assumed to have periodic boundary conditions over the domain 𝑥 ∈ [−𝓁, 𝓁]. We consider the same set-up 
used in [13]. In particular, we set 𝓁 = 10 and consider the initial condition

𝑢0(𝑥) = −sin
(
𝜋𝑥

𝓁

)
, 𝑥 ∈ [−𝓁,𝓁]. (60)

The corresponding solutions of the KS equation are known to exhibit chaotic behavior [50–53]. As the ground truth, we use direct 
numerical simulations (DNS) using a Fourier pseudo-spectral method with 27 modes. Time integration is carried out using a fourth-

order Runge–Kutta scheme with adaptive time-stepping [44]. Integrating the solution to time 𝑡 = 40 using this DNS method takes 
0.6 seconds. The Fourier pseudo-spectral method in one dimension is extremely efficient. Our objective in this section is not to 
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outperform this method. Instead, our goal is to compare our results against the Monte Carlo method of [13] and show that C-RONS 
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Fig. 4. Simulation of Kuramoto–Sivashinsky equation using direct numerical simulation (left panel), Monte Carlo integration to approximate the RONS equation 
(middle panel), and regularized collocation RONS (right panel).

Table 3

Computational time and accuracy for the Kuramoto–Sivashinsky equation using 
Monte Carlo integration and C-RONS.

Kuramoto–Sivashinsky Monte Carlo Regularized 
Monte Carlo

Regularized 
C-RONS

Computational time 222.3 minutes 118.3 seconds 38.6 seconds

Relative error 1.34 9.3 × 10−2 3.3 × 10−2

together with regularization significantly reduces the computational time and simultaneously increases the accuracy compared to 
the Monte Carlo method.

For the KS equation, the choice of appropriate approximate solution is not as clear as in the Fokker–Planck example. Motivated 
by architectures typically used in neural networks, we choose an approximate solution which is a shallow neural network with 
hyperbolic tangent activation function,

𝑢̂(𝑥,𝐪) =
𝑟∑
𝑖=1

𝐴𝑖(𝑡) tanh
(
𝑤𝑖(𝑡)𝑠𝑖(𝑥) + 𝑑𝑖(𝑡)

)
, (61)

where

𝑠𝑖(𝑥) = sin
(
𝜋𝑥

𝓁
+ 𝑐𝑖(𝑡)

)
, (62)

is a nonlinear coordinate transformation to ensure that the approximate solution 𝑢̂ satisfies the periodic boundary conditions over 
the domain [−𝓁, 𝓁]. This is a common technique discussed further in [54,13,55]. The approximate solution (61) can be thought of 
as a neural network with a single hidden layer and 𝑟 nodes. Each node contains the amplitude 𝐴𝑖(𝑡), the weight 𝑤𝑖(𝑡), and the biases 
𝑐𝑖(𝑡) and 𝑑𝑖(𝑡). These form the parameters of the approximate solution, 𝐪 = {𝐴𝑖, 𝑤𝑖, 𝑐𝑖, 𝑑𝑖}𝑟𝑖=1, where the shape parameters comprise 
𝛽𝛽𝛽𝑖 = (𝑤𝑖, 𝑐𝑖, 𝑑𝑖). Typically these parameters would be obtained by a training process. However, as Du and Zaki [13] observe, no 
training is required; the parameters can be evolved using the RONS equation (12).

There does not exist a choice of parameters such that the sine wave initial condition 𝑢0 can be exactly represented with our choice 
of approximate solution (61). To determine the initial parameter values 𝐪(0), we perform a least-squares fitting of the approximate 
solution to the initial condition, i.e., we set

𝐪(0) = argmin
𝐪∈ℝ𝑛

‖𝑢̂(⋅,𝐪) − 𝑢0‖2𝐿2 . (63)

We solve this optimization problem once at the initial time to obtain the parameters 𝐪(0). The corresponding approximation error is 
less than 2 × 10−7.

We then evolve the approximate solution (61) with 10 modes (𝑟 = 10) using collocation RONS method of section 3.3. We compare 
our results with the Monte Carlo approximation of the inner products as proposed in [13]. For collocation RONS we use 27 equidistant 
collocation points. For the Monte Carlo approach, we use 27 samples uniformly distributed throughout the domain [−𝓁, 𝓁]. When 
applying collocation RONS, we use Tikhonov regularization as described in section 3.4, with a regularization parameter value of 
𝛼 = 10−5. Both methods, collocation RONS and the Monte Carlo approach, use Matlab’s ode45 for time integration.

In Fig. 4, we compare the approximate solutions produced by collocation RONS and the Monte Carlo approach. Collocation RONS 
is in excellent agreement with the DNS solution, whereas the Monte Carlo approach quickly diverges from the DNS solution after 
approximately 10 time units. Table 3 compares the computational time of these two methods. The Monte Carlo approach takes 222.3 
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minutes to run while the regularized collocation RONS takes only 38.6 seconds.
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Fig. 5. Simulation of Kuramoto–Sivashinsky equation using regularized Monte Carlo method (left panel). Error of the regularized Monte Carlo method (middle panel) 
as compared to the DNS solution. Error of regularized C-RONS is shown for comparison (right panel).

Fig. 6. Frobenius error of the Monte Carlo approximation 𝑀̄ to the metric tensor for the Kuramoto–Sivashinsky equation when using increasing number of samples. 
Samples are all uniformly distributed on the domain 𝑥 ∈ [−10, 10] and the true value of 𝑀 is approximated by using trapezoidal rule with 104 samples.

The Monte Carlo method is significantly slower mainly because of the stiffness of the resulting ODEs due to the high condition 
number of the metric tensor 𝑀̄ . Without regularization, the condition number of 𝑀̄ is at least 1016, whereas regularized C-RONS 
lowers this condition number to 108 − 109. To deal with stiffness of the Monte Carlo method, we also regularize the Monte Carlo 
approach by applying Tikhonov regularization to (36). As shown in Table 3, regularization significantly reduces the computational 
time of the Monte Carlo method from 222.3 minutes to 118.3 seconds. Although this is still 3 times slower than regularized C-RONS, 
Tikhonov regularization greatly reduces the computational cost of the Monte Carlo method.

Interestingly, regularization also increases the accuracy of the Monte Carlo method. In Fig. 5, we show the error between regu-

larized Monte Carlo method and the DNS solution. For comparison, we also show the error for regularized C-RONS. The Monte Carlo 
approximation uses the regularization parameter 𝛼 = 10−8 since larger values of 𝛼 led to numerical results which deviated signifi-

cantly from the DNS. Comparing Figs. 4 and 5, we first note that regularization greatly improves the accuracy of the Monte Carlo 
approach. However, the solution obtained by regularized C-RONS still yields lower errors and only takes a third of the computational 
time of regularized Monte Carlo (see Table 3). This is largely due to the poor conditioning of the matrix 𝑀̄ which appears in the 
Monte Carlo approximation (see Remark 2).

The approximation errors for both methods grow over time, which is expected for a chaotic system as any error in approximating 
the initial condition will grow as the solution evolves. Even for short timescales, it is surprising that the Monte Carlo method is able 
to approximate the solution given that only 128 samples are used. In fact, the Monte Carlo integration (35) with 128 samples is quite 
inaccurate. For instance, Fig. 6 shows the Frobenius error between the Monte Carlo approximation 𝑀̄ and the true metric tensor 𝑀 . 
For 128 samples, the error start around 2 and grows to approximately 18 in less than 10 time units. As a result, there is considerable 
error in the Monte Carlo approximation of the RONS equations when only 128 samples are used. Yet, the regularized Monte Carlo 
method returns a rather accurate solution as shown in Fig. 5. Theorem 2 is the key to resolving this seeming paradox. The RONS 
equation approximated by Monte Carlo integration is equivalent to collocation RONS. Therefore, the Monte Carlo approximation 
is in fact minimizing the residual function (24) at the sampled points. This allows the Monte Carlo approach to obtain an accurate 
solution with a small sample size, despite being inaccurate as an integration method.

The choice of hyperbolic tangent as the activation function for the approximate solution (61) is somewhat arbitrary. For example, 
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we can alternatively use the logistic function to define the approximate solution,
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𝑢̂(𝑥,𝐪(𝑡)) =
𝑟∑
𝑖=1

𝐴𝑖(𝑡)
1 + exp[−𝑤𝑖(𝑡)𝑠𝑖(𝑥) + 𝑑𝑖(𝑡)]

. (64)

To evolve the parameters (𝐴𝑖, 𝑤𝑖, 𝑑𝑖), we apply C-RONS using 𝑟 = 10 modes, 𝑁 = 27 collection points uniformly distributed through-

out the domain, and regularization parameter 𝛼 = 10−5. We observe that the logistic activation function performs slightly worse than 
the hyperbolic tangent activation function. Time integration of the ODEs takes 155.2 seconds, whereas with hyperbolic tangent it 
took 38.6 seconds. The relative error over the space-time domain increases to 5.8 × 10−2 from 3.3 × 10−2. Of course, these results 
would change with the regularization parameter. For example, when using 𝛼 = 5 × 10−5 with approximate solution (64), the time 
integration of the ODEs takes 101.6 seconds and the relative error decreases to 2.2 × 10−2.

We conclude this section by noting that Du and Zaki [13] solved the same KS equation using a deep neural network with 4 
layers, 20 nodes per layer, and 103 samples to approximate the RONS integrals. In spite of their network being wider and deeper, the 
accuracy of our shallow neural network is better. For instance, at time 𝑡 = 20, our relative error is approximately 6 × 10−3, whereas 
their relative error is slightly above 10−2 (see figure 10 in [13]). We attribute the poorer performance of the deep neural network to 
the higher condition number of the metric tensor as discussed in section 3.3.1 which makes time integration more challenging.

5. Conclusions

Despite being in its infancy, RONS has already emerged as an effective method both for reduced-order modeling [1,24] and 
for solving PDEs with neural networks without requiring any training [13,14]. However, brute force construction of the RONS 
equations requires the evaluation of (𝑛2) integrals, where 𝑛 denotes the number of time-dependent parameters in the approximate 
solution. Therefore, this approach becomes computationally prohibitive when a large number of parameters are required to accurately 
approximate the solution of the PDE. Making matters worse, the resulting ODEs tend to become stiff as the number of parameters 
grows. Here, we developed three methods to address these computational bottlenecks: symbolic RONS, collocation RONS, and 
regularized RONS.

Using symbolic computing and exploiting the structure of the RONS equations, symbolic RONS (or S-RONS, for short) drastically 
reduces the computational cost from (𝑛2) to (𝐾2) where 𝐾 ≪ 𝑛 is independent of the number of parameters 𝑛. Furthermore, since 
the equations are constructed symbolically, the S-RONS integrals do not need to be recomputed during time stepping; rather they can 
be evaluated by direct substitution of the updated parameters into the symbolic expressions. Applying S-RONS to the Fokker–Planck 
equation, we obtained 14-23 times speedup in comparison to the adaptive sampling method of [14]. In addition, the accuracy of the 
solutions increased by several orders of magnitude.

We also developed collocation RONS (or C-RONS, for short) in case symbolic computation of the integrals are not feasible. Rather 
than minimizing the error between evolution of the approximate solution and dynamics of the governing PDE over the entire spatial 
domain, C-RONS minimizes this error over a set of prescribed collocation points. Since this method does not require any symbolic 
computation, it is applicable to any choice of the approximate solution and any form of the PDE. We also proved that, in exact 
arithmetic, C-RONS is equivalent to the Monte Carlo method proposed in [13]. However, from a numerical standpoint, C-RONS is 
significantly better conditioned than the Monte Carlo approximation and thus numerically more stable. Applying C-RONS to the 
Kuramoto–Sivashinsky PDE, we observed a 300 times speedup in the computation, while simultaneously reducing the error by two 
orders of magnitude. Although here we only considered equidistant collocation points, choosing them on an unstructured grid or 
even an adaptive grid is certainly a possibility.

The RONS equations take the form of a system of nonlinear ODEs which evolve the parameters of the approximate solution. These 
ODEs tend to become stiff as the number of parameters 𝑛 increases. As a result, one either has to take exceedingly small time steps or 
use implicit time integration schemes. To address this issue, we introduced regularized versions of S-RONS and C-RONS that allow 
fast time integration even with explicit schemes. Regularized RONS adds Tikhonov penalization to the underlying minimization 
problem such that the resulting ODEs are not stiff. Applying this regularization to both Fokker–Planck and Kuramoto–Sivashinsky 
equations led to significant speedup without adversely affecting the accuracy of the solutions.

Here we chose the regularization parameter 𝛼 in an ad hoc manner. Our preliminary experimentation (not shown here) indicates 
that commonly used methods for determining a regularization parameter fail when applied to RONS. For instance, generalized cross-

validation [37–39] returned regularization parameters which are too small and consequently led to slow time integration of the RONS 
equations. Conversely, the L-curve method [34,36] and quasi-optimality criterion [40] returned regularization parameters which are 
too large and led to inaccurate approximate solutions. Therefore, tailor-made methods for identifying the optimal regularization 
parameter for RONS are needed.

Another open problem is related to the number of terms 𝑟 in the approximation solution (1). In the present work, we chose the 
number of required terms in an ad hoc manner. A systematic method for choosing 𝑟 requires error estimates for a given PDE. Since 
the approximate solution depends nonlinearly on its parameters, classical error estimates are not immediately applicable. Therefore, 
the derivation of such estimates remains an interesting open problem.

The computational methods developed here pave the way for RONS to be used as a shape-morphing spectral method for efficient 
numerical solution of nonlinear PDEs. In contrast to existing spectral methods where the modes are static in time, the RONS-based 
spectral methods will allow the modes to change shape and adapt to the solution of the PDE. As a result, these methods will be 
specially suitable for solving PDEs with localized features (e.g., sharp gradients or shocks) and for advection-dominated PDEs. Future 
work will explore this avenue by determining the appropriate choice of the shape-morphing modes and carrying out error analysis 
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of the resulting spectral method.
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Appendix A. Proof of Theorem 3

We first note that by taking a time derivative, we can write the constraints in (39) as

d
d𝑡
𝐼𝑘(𝐪(𝑡)) = ⟨∇𝐼𝑘(𝐪), 𝐪̇⟩ = 0, 𝑘 = 1,2, ...,𝑚. (65)

Introducing the Lagrange multipliers 𝜆̂𝜆𝜆 = (𝜆̂1, ..., 𝜆̂𝑚)⊤ ∈ℝ𝑚, we define the augmented cost function

̂𝑐(𝐪, 𝐪̇, 𝜆̂𝜆𝜆) ∶= ̂ (𝐪, 𝐪̇) +
𝑚∑
𝑘=1

𝜆̂𝑘⟨∇𝐼𝑘(𝐪), 𝐪̇⟩. (66)

If a solution to the constrained optimization problem (39) exists, the partial derivatives of ̂𝑐 with respect to 𝑞𝑖 and 𝜆̂𝑘 must vanish 
at the minimizer. This yields

∇𝐪̇̂ +
𝑚∑
𝑘=1

𝜆̂𝑘∇𝐼𝑘 = 0, (67a)

⟨∇𝐼1(𝐪), 𝐪̇⟩ = ⟨∇𝐼2(𝐪), 𝐪̇⟩ = ... = ⟨∇𝐼𝑚(𝐪), 𝐪̇⟩ = 0. (67b)

We already know (see [1], Theorem 1) that our original cost functional satisfies ∇𝐪̇ =𝑀(𝐪)𝐪̇ − 𝐟(𝐪). Similarly, we can calculate 
the gradient of our regularized cost functional to obtain ∇𝐪̇̂ = (𝑀(𝐪) + Γ⊤Γ)𝐪̇− 𝐟(𝐪).

We note that the matrix (𝑀(𝐪) + Γ⊤Γ) is symmetric positive definite. This is because the metric tensor 𝑀 is symmetric positive 
semi-definite, and Γ⊤Γ is symmetric positive definite due to the assumption that Γ is full column rank. Therefore, (𝑀(𝐪) + Γ⊤Γ)
is symmetric positive definite and thus invertible. For notational convenience, we define the regularized metric tensor 𝑀̂(𝐪) ∶=
(𝑀(𝐪) + Γ⊤Γ).

Using the fact that 𝑀̂ is invertible, equation (67a) yields

𝐪̇ = 𝑀̂−1(𝐪)
[
𝐟(𝐪) −

𝑚∑
𝑘=1

𝜆̂𝑘∇𝐼𝑘(𝐪)
]
. (68)

Substituting this expression into (67b), we obtain 𝑚 equations

𝑚∑
𝑘=1

𝜆̂𝑘⟨∇𝐼𝑖, 𝑀̂−1(𝐪)∇𝐼𝑘⟩ = ⟨∇𝐼𝑖, 𝑀̂−1(𝐪)𝐟⟩, 𝑖 = 1,2, ...,𝑚. (69)

Equation (69) can be written as the system of equations 𝐶̂𝜆̂𝜆𝜆 = 𝐛̂, where 𝐶̂ is the regularized constraint matrix with entries given by

𝐶̂𝑖𝑗 = ⟨∇𝐼𝑗 , 𝑀̂−1∇𝐼𝑖⟩, 𝑖, 𝑗 ∈ {1,2,⋯ ,𝑚}, (70)

and the vector ̂𝐛 = (𝑏̂1, ̂𝑏2, ⋯ , ̂𝑏𝑚)⊤ ∈ℝ𝑚 is given by

𝑏̂𝑖 = ⟨∇𝐼𝑖, 𝑀̂−1𝐟⟩, 𝑖 = 1,2,⋯ ,𝑚. (71)

The matrix 𝐶̂ is symmetric positive definite, provided that the constraint gradients ∇𝐼1(𝐪), ∇𝐼2(𝐪), ⋯, ∇𝐼𝑚(𝐪) are linearly inde-

pendent (see [1], Lemma 2). Thus, the Lagrange multipliers 𝜆̂𝜆𝜆 are the uniquely determined by 𝜆̂𝜆𝜆 = 𝐶̂−1𝐛̂. Therefore, 𝐪̇ must satisfy 
19

equation (68) where the Lagrange multipliers are determined by solving the system of equations 𝐶̂𝜆̂𝜆𝜆 = 𝐛̂.
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