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ABSTRACT  

Programmable intercellular signaling using components of naturally-occurring quorum 
sensing can allow for coordinated functions to be engineered in microbial consortia. LuxR-
type transcriptional regulators are widely used for this purpose and are activated by 
homoserine lactone (HSL) signals. However, they often suffer from imperfect molecular 
discrimination of structurally similar HSLs, causing misregulation within engineered consortia 
containing multiple HSL signals. Here, we studied one such example, the regulator LasR 
from Pseudomonas aeruginosa. We elucidated its sequence-function relationship for ligand 
specificity using targeted protein engineering and multiplexed high-throughput biosensor 
screening. A pooled combinatorial saturation mutagenesis library (9,486 LasR DNA 
sequences) was created by mutating six residues in LasR’s β5 sheet with single, double, or 
triple amino acid substitutions. Sort-seq assays were performed in parallel using cognate 
and non-cognate HSLs to quantify each corresponding sensor’s response to each HSL 
signal, which identified hundreds of highly specific variants. Sensor variants identified were 
individually assayed and exhibited up to 60.6-fold (p = 0.0013) improved relative activation 
by the cognate signal compared to the wildtype. Interestingly, we uncovered prevalent 
mutational epistasis and previously unidentified residues contributing to signal specificity. 
The resulting sensors with negligible signal crosstalk could be broadly applied to engineer 
bacteria consortia.  
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INTRODUCTION 

The use of engineered bacterial consortia to distribute tasks among different strains has 
gained great interest in various applications, such as biomanufacturing 1,2, bioremediation 3,4, 
therapeutics 5,6, and agriculture 7,8. This strategy can offer reduced cellular burden of 
microbial members and the ability for specialization that leverages the microorganism’s traits 
9–11. For engineered bacterial consortia to function robustly, programmable cell-cell 
communication is required to coordinate processes in different cells and control their 
spatiotemporal dynamics, which has been achieved via diffusible chemical intercellular 
signaling 12–15, cell-cell adhesion 16,17, and conjugal transfer of DNA 18–20. In nature, bacteria 
commonly communicate via diffusible quorum sensing signals to elicit population-level and 
cell density-dependent responses 21–23. Various quorum sensing signals have been used as 
chemical signals in engineered microbial consortia, including oligopeptides 24,25, γ-
butyrolactone 26, and homoserine lactones 27–37. Among these, homoserine lactones (HSLs) 
have been most widely utilized in synthetic biology due to the relative ease of signal 
production and sensing 38–40. In these systems, the canonical LuxR-type allosteric 
transcription factor binds to its cognate HSL ligand, and after complexation, activates 
transcription from its corresponding quorum sensing promoter 41,42. HSLs for LuxR-type 
regulators contain a lactone ring and commonly an acyl chain that can vary in length (4 to 20 
carbons), degree of saturation, and oxidation state at the third carbon 43,44. Structural 
similarity can cause non-cognate HSL signals to activate LuxR-type quorum sensors 
resulting in signal crosstalk 45–49, which can be problematic for precise control of functions in 
microbial consortia when using multiple quorum sensing systems.  

Various methods have been employed to alter ligand specificity of allosteric transcription 
factors. Directed evolution via random mutagenesis (by error-prone PCR or gene shuffling) 
of the ligand binding domain or protein coding sequence has been widely used to engineer 
ligand specificity, including for improved molecular discrimination and for preferential 
specificity for molecules other than the natural cognate ligand 50–61. While random 
mutagenesis can introduce numerous mutations and generate sequence diversity, it often 
suffers from mutational bias that hinders screening all amino acid substitutions and therefore 
cannot comprehensively determine sequence-function relationships 62–65. Another approach 
is designing transcription factors using rational design that applies structure-based 
computational modeling and has also been used to achieve desired ligand specificity 66–71, 
yet it requires a large amount of prior knowledge and predictions of biophysical interactions 
that are often not known 72. Other studies have chosen the middle ground of semi-rational 
design, which utilizes available structural and functional information of the transcription factor 
to choose the target residues and amino acid diversity for protein engineering 73–76. Semi-
rational design can narrow the designed sequence space to a subset within the limits of what 
can be experimentally tested and predicted to have a greater likelihood for a desired 
functionality 77.  

For LuxR-family regulators, their ligand specificity has been engineered by directed 
evolution or site-directed mutagenesis semi-rational approaches. For example, directed 
evolution was used to tune the specificity of LuxR 50–53. For TraR and LasR, their protein 
structures were used to semi-rationally design mutations to alter their specificity 78,79. 
Alternatively, computational analysis of covariation within naturally occurring protein 
sequences has predicted essential residues for ligand recognition and specificity of LasR80, 
yet residues to distinguish HSL ligands are often not highly conserved in LuxR-family 
regulators 80,81. Despite these insights, how mutations at different residues contribute to 
specificity of quorum sensing regulators and how to optimize the genetic design of a sensor 
for specific HSL ligand recognition remain unknown.   

Here, we investigate the sequence-function relationship of signal specificity for the LasR 
quorum sensing regulator from Pseudomonas aeruginosa. We chose LasR for this study 
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because it is a commonly used quorum sensor and known to have high signal crosstalk with 
the non-cognate signal n-(3-hydroxytetradecanoyl)-HSL (C14-HSL) 46,53. Using combinatorial 
saturation mutagenesis, we created a library of 9,486 LasR DNA designs targeting a region 
in its β5 sheet (L125 – L130) (Figure 1A). We then adapted a pooled high-throughput sort-
seq approach to characterize the response of each corresponding LasR sensor to cognate 
C12-HSL and non-cognate C14-HSL, identifying 559 variants (5.6% of designs) with high 
C12-HSL specificity (>3.7-fold improved compared to the wildtype LasR protein) (Figure 1B). 
Separate individual assays of identified variants exhibited improvement in the ratio of 
response from C12-HSL to C14-HSL. From this dataset, we identified positions and amino 
acids that affect signal specificity and quantified epistatic interactions. We also trained a 
neural network model, which predicted new LasR protein sequences having high specificity. 
Furthermore, we investigated the trade-off between sensitivity and specificity of the LasR 
quorum sensor. This work elucidates the sequence-specificity relationship of LasR in a 6-
amino acid region, thus providing an essential foundation for the engineering of highly 
specific quorum sensors for use in complex microbial consortia.  

 

 

Figure 1. High-throughput engineering of signal specificity of LasR quorum sensor. (A) The 
residues in the β5 sheet (in yellow) of LasR (PBD: 3IX3 82) selected for mutagenesis are shown with 
the cognate signal molecule, n-3-oxododecanoyl homoserine lactone (C12-HSL). S129 forms a 
hydrogen bond with C12-HSL. Image was generated using PyMOL (Version 2.5.2 Schrödinger, LLC). 
Chemical structures of the cognate HSL (C12-HSL), and noncognate HSL, n-(3-hydroxytetradecanoyl)-
homoserine lactone (C14-HSL), are shown. (B) Overview of the multiplexed approach for mapping the 
specificity landscape using combinatorial saturation mutagenesis. The LasR transcription factor library 
was constructed using an oligo pool to introduce single, double, and triple mutations, which was 
designed using a custom Python script (Methods). The oligo pool was amplified and assembled into the 
LasR sensor destination vector in a pooled Type IIS DNA assembly reaction. In the sensor construct, 
LasR is expressed by a constitutive promoter (PCon) and induces the PLas sensor output promoter that 
expresses a yellow fluorescent protein (YFP) reporter in the presence of HSL. The plasmid pool was 
transformed into Escherichia coli for in vivo screening. After induction with the cognate HSL or non-
cognate HSL, cells were sorted using fluorescence activated cell sorting (FACS) into four bins based 
on their fluorescence. The sensor plasmids were then extracted and sequenced by next-generation 
DNA sequencing (NGS) to quantify the frequency of each protein variant in each bin and the unsorted 
library. Examples of data analysis are shown. Enrichment analysis plots compare the output of each 
sensor design (open circle) for the cognate and non-cognate HSLs. Heat map shows an example of the 
saturation mutagenesis data. The sequence-function relationship was mapped by plotting the sensor 
output for each combination of amino acids (aa) at different positions. 

 

RESULTS 
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Design and construction of the LasR sensor library  
In this study, we aimed to assess the protein sequence-function relationship for ligand 

specificity of LasR and to understand how problematic signal crosstalk for this biosensor 
could be mitigated. LasR is among a subset of well-studied LuxR-type quorum sensors that 
have been commonly used in combination to elicit multicellular bacterial responses 12,32,33,83–

85. The LasR symmetrical homodimer binds reversibly to its cognate ligand 3-oxo-C12-HSL 
(C12-HSL). However, ligand promiscuity and spurious activation of LasR by other long-acyl 
chain HSLs are well known and are especially prominent for 3-hydroxy-C14-HSL (C14-HSL), 
the cognate signal of the LuxR-type regulator CinR from Rhizobium etli 46,49,79 
(Supplementary Figure S1). Importantly, the crystal structure of dimerized LasR bound to 
C12-HSL was previously determined 86. One molecule of C12-HSL binds to each LasR 
monomer in a ligand binding pocket comprised of a β-sheet (β5) and several α-helices 
82,86,87. Therefore, we selected to study this system in this work. For the design of the library, 
we hypothesized that we could target mutations to residues in the reported ligand binding 
pocket to affect molecular interactions that would alter ligand discrimination and sensor 
activity.  

For the design of our LasR mutagenesis library, we targeted mutations to six contiguous 
amino acid residues in the β5 sheet (L125 – L130) of LasR and designed 9,486 LasR 
regulator variants. We chose this region of LasR because it contained residues previously 
determined to interact with the acyl chain of HSL ligand (Figure 1A). Residue S129 forms a 
hydrogen bond with the acyl chain of C12-HSL, and residues L125, G126 and A127 have 
hydrophobic interactions with the acyl chain of C12-HSL 87,88. Additionally, A127, S129 and 
L130 have been identified as essential for LasR specificity by covariation analysis 80. A 
central goal in this work was to assess the potential role and ability for mutational 
interactions to alter the differential activation of the sensor by two different HSLs, and 
therefore, we chose to apply combinatorial mutagenesis. With the aim of systematically 
quantifying the sequence-function relationship for the selected protein sequence space, we 
chose to apply saturation mutagenesis and utilized a chemically-synthesized pool of DNA 
oligonucleotides that allowed us to specify each mutation in the library.  

A combinatorial saturation mutagenesis library was designed to contain all single and 
double amino acid substitutions in the LasR L125 – L130 region (Figure 2A). Each residue 
was mutated to one of 20 canonical amino acids, either individually to create 120 single 
mutation designs, or simultaneously pairwise to create 6,000 double mutation designs, 
including the wildtype protein sequence for both sets of designs. With space for additional 
designs on the oligonucleotide chip, we also included a subset of triple mutations. To limit 
the library size, only a small set of 4,000 LasR triple mutation variants were designed by 
mutating two residues simultaneously with the fixed mutation S129N. This S129N mutation 
was shown to improve the specificity of LasR in a previous study 79 and in our initial testing 
(Supplementary Figure S2). We chose this relatively moderate pool size with the aim of 
constructing a pooled library with representation of every design (i.e. the complete designed 
sequence space). 

We wrote and used a custom Python script to automate the design of the set of oligos to 
create these LasR mutations (Methods). This script generates a CSV file of the oligo pool 
using an input configuration file specifying codon usage in the host organism, the number of 
point mutations, the residues to mutate, and specified amino acids at each position for 
mutations. For amino acid substitutions, the codon having the highest genomic codon usage 
frequency in Escherichia coli was selected, except in cases when insertion of that codon 
would introduce a BsaI restriction site. In those cases, codon substitutions were prioritized in 
order of decreasing usage frequency. The script allows the user to specify disallowed DNA 
sequences (e.g. BsaI recognition sequence here) and other common features of the oligo, 
such as the oligo amplification sequences. For this study, each 80 nt single-stranded oligo 
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contained the 18 nt LasR variable region flanked by BsaI recognition sequences along with 
orthogonal DNA linker sequences and outer 20 nt oligo amplification sequences 
(Supplementary Figure S3). In the specified oligo chip design, the number of single mutation 
designs was intentionally enriched 20-fold (2,400 oligo spots on the chip) with the aim of 
ensuring representation of all single mutation designs. To quantify sensor activation relative 
to the wildtype DNA sequence in the pooled assays, the oligo for the wildtype parent 
sequence was also included and designed to have the highest frequency of any oligo in the 
pool (enriched 86-fold on the chip). Overall, the oligo pool contained 12,400 oligos (0.99 Mbp 
total, 9,486 unique DNA sequences, 9,140 unique protein sequences for LasR) and was 
ordered as a 12K oligo chip.  

Using the PCR amplified oligo pool and a multiplexed one-pot Type IIS DNA assembly 
reaction, we constructed the plasmid pool of sensor characterization constructs containing 
the designed LasR variants. The destination vector for the DNA assembly contained 
everything of LasR sensor except the LasR variable region (Supplementary Figure S3). The 
design of the sensor characterization construct used here follows previously established 
standardized genetic architectures for assaying the output of the sensor promoter in relative 
promoter units (RPU), which are relative to the reference plasmid (pAN1717) designated as 
1 RPU 89,90. By doing this, the sensor response measured on different instruments can be 
quantitatively compared. The low-copy (p15A origin) sensor characterization plasmid 
constitutively expressed LasR, and the activity of the PLas sensor output promoter was 
measured using an insulated yellow fluorescent protein reporter (ribozyme, RBS, eYFP 
CDS, and terminator identical to the pAN1717 reference plasmid, Supplementary Figure S3). 
The assembled plasmid pool was electroporated into E. coli NEB 10-beta to screen the LasR 
sensors in vivo.  

We evaluated the composition of the constructed LasR sensor library by sequencing two 
aliquots of the unsorted library after molecular barcoding and next-generation sequencing 
preparation. Given the low nucleotide diversity at unmutated residues of LasR, which can 
largely reduce Illumina sequencing output and read quality 91,92, we designed a set of custom 
primers for each sample to append 3 – 4 nt to increase the nucleotide diversity (Methods). A 
region of LasR containing the 18-bp variable region, was sequenced using 2 x 75 bp paired-
end DNA sequencing. We then determined the number of perfect-match read counts for the 
sequenced LasR region (34 bp), defined as those having the exact sequence for the 
designed variant. At least 6,200 perfect-match read counts were identified for each design of 
the LasR single mutation variants (Supplementary Figure S4A). At least 170 perfect-match 
read counts were identified for 99.98% of the LasR double and triple mutation variants 
(9,367 out of 9,369), except for two LasR designs (G126D-A127G: 44 read counts and 
G126D-A127G-S129N: 39 read counts) (Supplementary Figure S4B). We observed each 
design in the unsorted library with all LasR designs represented in the pool (100% coverage 
for the library). The frequency of each variant was calculated as the ratio of its perfect-match 
read counts to the total number of perfect-match read counts for the sample. The average 
frequency of variants in the constructed pooled library strongly correlated with the frequency 
of the corresponding oligos in the designed oligo chip (R2 = 0.98) (Figure 2B). The frequency 
of variants in two unsorted libraries was highly correlated (R2 = 0.997, Supplementary Figure 
S5). 
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Figure 2. Sort-seq analysis of combinatorial saturation mutagenesis of LasR L125 – L130. (A) 
LasR protein sequences were designed to have each of the 20 natural amino acids (represented by X 
in yellow) at positions 125 to 130. For single amino acid substitution, each residue was mutated to each 
of the 19 other amino acids at each position, and the wildtype was included in pool. Double amino acid 
substitutions were designed by mutating each pair of residues simultaneously to achieve all 
combinations of amino acids. All triple mutants contained the S129N mutation while mutating two other 
residues simultaneously. The number of unique LasR DNA designs in the library is 9,486. (B) The 
measured frequency of each design in the constructed library was compared to the theoretical 
frequency, which was calculated as the frequency of each oligo in the designed oligo pool. Two aliquots 
of the library prior to sorting (unsorted) were sequenced and analyzed (Methods), and the average 
measured frequency of each variant is plotted. All 9,486 variants were identified by NGS in the 
constructed library. (C) Duplicate sort-seq assays with addition of 1 μM 3OC12-HSL (C12-HSL) were 
performed in two identical experiments to screen the pooled LasR sensor library. (D) Duplicate sort-seq 
assays with addition of 2 μM 3OHC14-HSL (C14-HSL) were performed. Cells were sorted into four bins, 
and each bin was sequenced and analyzed (Methods). The frequency of each variant in each 
experiment is plotted (open black circle). For comparison, the frequency of wildtype LasR (open red 
circle) in each bin is shown. The coefficient of determination (R2) was determined by linear least squares 
regression with a zero intercept. Dotted lines indicate the 1:1 relationship. 
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Pooled screening of LasR sensor variants for signal specificity 

Next, we screened the functional activity of the constructed LasR sensor library using a 
high-throughput approach known as sort-seq that utilized fluorescence-activated cell sorting 
(FACS), molecular barcoding, and next-generation sequencing (NGS). The sort-seq 
approach is most commonly used for screening biosensor activation by one ligand. 
However, measuring signal crosstalk and ligand specificity requires quantifying the activation 
of the sensor variants to each of multiple signals. To achieve this, we performed pooled sort-
seq experiments to measure the activity of each LasR variant to cognate and non-cognate 
HSLs in parallel, which circumvents performing two sequential rounds of dual selections in 
directed evolution approaches used for identifying protein variants with improved specificity 
50,52. With the aim of assessing specificity, here we selected one concentration for each 
ligand, which was specified to be the typical concentration for activation of the cognate 
sensor based on previous reports and measurements of the wildtype LasR dose-response 
curves 45,46 (Supplementary Figure S1).  

Pooled sensor characterization was performed for the LasR sensor library in E. coli cells 
with addition of either 1 µM C12-HSL or 2 µM C14-HSL. For each experiment, cells were 
sorted into four bins by FACS based on cell fluorescence from YFP expression, which is the 
fluorescent reporter to measure the PLas sensor promoter output. Subsequently, next-
generation DNA sequencing was used to quantify the frequency of each genetic design (i.e. 
each LasR variant) in each bin and thus the fluorescence output of each genetic design. The 
fluorescence threshold for the first bin was set to the autofluorescence of E. coli 10-beta 
cells (without plasmid). The thresholds for the three remaining bins were specified to split the 
rest of the library into bins of roughly equal proportions of cells. The sort-seq experiments 
were performed in two replicates to assess reproducibility, and at least 3.5 million cells were 
sorted for each sample. Cells containing the RPU standard plasmid (pAN1717) were also 
analyzed on the cell sorter so that the sensor output could be converted to RPU. Cells 
collected in each bin were cultured, and then plasmids were extracted, barcoded, and 
pooled together for next-generation Illumina sequencing (Methods). A total of 102.5 million 
perfect-match reads were obtained (92.4% of all reads), which provided 5.6-fold average 
sequencing coverage for cells in all 16 sorted bins. For the replicate experiments, the 
frequency of the variants in each bin was strongly linearly correlated for both the C12-HSL 
sort-seq (R2 = 0.98 – 0.99, Figure 2C) and C14-HSL sort-seq (R2 = 0.99 – 1.00, Figure 2D) 
experiments. By including the original wildtype LasR sensor in the pool, the frequency of 
each variant can be directly compared to the frequency of the wildtype LasR sensor (red 
markers in Figure 2C, 2D).  

Validation of the pooled sensor screening results by individual assays of 41 LasR 
variants  

Next, we analyzed the enrichment of LasR variants from the sequencing data. Due to 
cell-to-cell variability and imperfect accuracy of cell sorting, not every cell containing an 
identical genetic design is expected to have the exact same fluorescence and be found in 
one single bin. We sought to use the distribution of each sensor variant across the bins to 
infer the sensor output for each ligand assayed (1 µM C12-HSL or 2 µM C14-HSL). To do 
this, the output of the sensor was calculated as the weighted sum of the median cell 
fluorescence in the bin multiplied by the proportion of the adjusted perfect-match read counts 
of each LasR variant in the bin, respectively (Methods). The bin having lowest fluorescence 
(bin 1) contained most of the cells during sorting (67.4 - 84.5% in each sorting experiment), 
and only up to 2 million cells per bin could be collected. Therefore, we applied a scaling 
factor to normalize the read counts for this bin. To be able to quantitatively compare the 
sensor response measured on the cell-sorter to an analytical flow cytometer 93,94, the 
measured cell fluorescence in arbitrary units was converted to relative promoter units (RPU) 
for the PLas sensor output promoter (Methods). To identify variants with high specificity for 
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C12-HSL, we defined limits for the sensor output to C12-HSL and C14-HSL (output with 
C12-HSL > 6.0 RPU and output with C14-HSL output < 0.2 RPU).  

By applying this criterion, sixteen single-mutation variants having high specificity to C12-
HSL were identified from the library (13.8% of single mutant designs) (Figure 3A). This set of 
sensor variants were individually constructed and assayed by flow cytometry (Figure 3B). 
The mutations among this set were at all amino acid positions, except position 126. One 
mutation at positions 125 and 129 were included in the identified variants (L125E and 
S129N), and multiple mutations at positions 127, 128, and 130 were identified (4 mutations 
at 127, 5 mutations at 128, and 5 mutations at 130). The S129N mutation, which was 
previously identified to improve C12-HSL specificity, was among the single mutations 
identified here 79. Among the 16 single-mutation variants, the output to C14-HSL for all 
variants was less than the wildtype LasR sensor (p = 0.0039 – 0.0048), ranging from 14.6-
fold to 65.5-fold lower output. Whereas the wildtype LasR sensor had 422.9-fold induction to 
C12-HSL and 62.9-fold induction to C14-HSL, these 16 sensor variants had 146.7-fold to 
541.9-fold induction to C12-HSL and only 1.1-fold to 4.3-fold induction to C14-HSL. To 
quantify the sensor specificity, we defined specificity as the difference between the natural 
logarithm of the C12-HSL output relative to the C14-HSL output for the variant and wildtype 
LasR (Methods). Therefore, the specificity for the sensor containing wildtype LasR is equal 
to Zero. Variants having a greater ratio of output to C12-HSL relative to C14-HSL have a 
positive specificity score (i.e. improved specificity for C12-HSL). The specificity (S) for these 
16 single-mutation variants ranged between 1.95  0.16 to 3.75  0.26 with highest 
specificity for A127N. Interestingly, four of these mutations at position 128 (hydrophobic 
residues cystine, isoleucine, valine, tryptophan, and tyrosine), which to our knowledge has 
not previously been reported as contributing to C12-HSL molecular recognition.  

Using the same criterion for high C12-HSL specificity, 384 double-mutation LasR variants 
in the library (6.85% of double mutant designs) were found to have high specificity (Figure 
3C). We chose the ten of them having the highest S scores (Figure 3C inset), and these 
variants were individually constructed and assayed (Figure 3D). For these 10 sensor 
variants, the output with 2 µM C14-HSL was less than the wildtype LasR sensor (p = 0.0039 
–  0.0041) and reduced by 35.1-fold to 66.7-fold, while the C12-HSL output remained high 
(7.62  1.83 RPU for these 10 sensors). The specificity (S) of these double-mutation variants 
ranged from 3.14  0.24 up to 4.08  0.20. In some cases, each of the two combinatorial 
mutations in LasR were found to improve C12-HSL specificity in the single-mutation subset 
(e.g. L128I and L130W). In other cases, one mutation that decreased C12-HSL specificity 
when introduced alone augmented signal discrimination in combination with another 
mutation. For example, LasR L125W decreased C12-HSL specificity (S = -0.38  0.12, 
Supplementary Figure S6), yet combined with the mutation A127F (S = 2.89  0.11) or 
A127S (S = 3.27  0.07), specificity increased more than purely additively (L125W-A127F, S 
= 3.85  0.30 or L125W-A127S, S = 3.95  0.19).  

Of the triple-mutation variants, 159 were identified (4.23% of triple mutant designs) that 
have high C12-HSL specificity, again applying the same criterion (Figure 3E). Of these, the 
ten triple-mutation variants having the highest specificity were individually assembled and 
sensor characterization assays were performed (Figure 3F). The specificity (S) of these 
triple-mutation variants ranged from 2.58  0.13 up to 3.90  0.24. The deleterious mutation 
L125W (Supplementary Figure S6) was present in six of the top ten triple-mutation variants. 
Similarly, this mutation was found in three of the top double-mutation variants above. Among 
all individually assayed sensor variants, four LasR double-mutation variants (A127S-L130A, 
L125F-L130T, L125W-A127S, and L125W-A127T) exhibited the highest measured C12-HSL 
specificity (S > 3.9). 
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Figure 3. Validation of sort-seq results by individual assays of biosensors containing LasR 
variants. (A) The average sort-seq output of sensors containing LasR with one amino acid substitution 
is plotted for sort-seq assays with 1 μM 3OC12-HSL (C12-HSL) or 2 μM 3OHC14-HSL (C14-HSL), 
respectively. The wildtype LasR sensor (WT) is plotted in black for comparison. Output for each LasR 
variant was computed from the distribution of read counts in the sorted bins, and fluorescence was 
converted to relative promoter units (RPU) (Methods). Variants with improved C12-HSL specificity were 
determined by specifying average output thresholds of C12-HSL output > 6 RPU and C14-HSL output 
< 0.2 RPU (green box), and 16 single mutations variants met this criterion. (B) Sensors containing each 
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of the 16 LasR single mutations identified were individually constructed. Sensor characterization assays 
using flow cytometry were performed individually for each construct on three separate days. Bars 
indicate the average output for a population of at least 10,000 cells, and error bars are the s.d. (n = 3). 
The specificity (S) of each sensor was calculated for each day as defined in the methods. Bars indicate 
the mean ± s.d. (n = 3). (C) The average sort-seq output of sensors containing LasR with two amino 
acid substitutions is plotted for sort-seq assays with 1 μM C12-HSL or 2 μM C14-HSL, respectively. 
Using the criterion for improved C12-HSL specificity (green box), 384 double mutation variants were 
identified. Of those, 10 top variants having the highest specificity were selected, indicated by a blue line 
in the inset plot. (D) Sensors containing each of those 10 LasR double mutations were individually 
constructed and assayed by flow cytometry on three separate days without inducer or with addition of 
C12-HSL or C14-HSL. The average output and specificity are plotted. Bars indicate the mean ± s.d. (n 
= 3). (E) Average sort-seq output of sensors containing LasR with three amino acid substitutions is 
plotted. Using the criterion for improved C12-HSL specificity (green box), 159 triple mutation variants 
were identified. Of those, 10 top variants were selected, indicated by a blue line in the inset plot. (F) 
Sensors containing each of those 10 LasR triple mutations were individually constructed and assayed 
by flow cytometry on three separate days without inducer or with addition of C12-HSL or C14-HSL. The 
average output and specificity are plotted. Bars indicate the mean ± s.d. (n = 3). (G) From the subset 
of double mutation LasR variants, a few surprisingly displayed preferential activation by C14-HSL. Five 
variants with specificity for C14-HSL were identified by applying thresholds of C12-HSL output < 2 RPU 
and C14-HSL output > 2 RPU (red box). (H) Each of these five LasR sensors were individually 
constructed and assayed without inducer (light grey), with 1 µM C12-HSL (dark blue) or 2 µM C14-HSL 
(magenta). (I) For all 41 sensors individually assayed (panels B, D, F, H), the measured output with 
C12-HSL (top panel) or C14-HSL (bottom panel) is compared to the prediction from the corresponding 
sort-seq dataset in log scale. The coefficient of determination (R2) was determined by least squares 
regression with intercepts. Dotted lines indicate the resulting fit. 

 

Reversing ligand specificity of an allosteric transcriptional factor can require cooperative 
interactions of mutations in different regions of the ligand binding pocket 66,70,73,95, yet here, 
we identified a small subset of designs with engineered preference for C14-HSL. By setting 
thresholds for ligand specificity for C14-HSL (C12-HSL output < 2 RPU and C14-HSL 
output > 2 RPU), we identified 5 variants in the library (0.11% of library) that were inferred to 
maintain high activation by C14-HSL and have a lower activation by C12-HSL (Figure 3G). 
All 5 variants contained double mutations in LasR, and we individually constructed and 
assayed each of them (Figure 3H). All variants have significantly decreased output (p < 
0.001) with C12-HSL (0.60  0.28 RPU) compared to wildtype LasR. Relative to the 
uninduced basal promoter activity, these five sensors have higher induction by C14-HSL 
(78.6  18.6-fold to 142.8  11.6-fold) than C12-HSL (14.3  2.7-fold to 33.7  3.4-fold). 
Indeed, the measured specificity scores (S) of these variants were highly negative, ranging 
from -3.61  0.15 to -3.18  0.22, showing engineered specificity for the C14-HSL ligand 
relative to wildtype LasR. Four of five variants contained S129W (from pooled sort-seq 
assays, S = -1.9), and this mutation was reported to alter specificity and preferentially bind 
HSL ligands having longer acyl chain length 79.  

To further test the inferred sensor performance from the sort-seq assays, we compared 
the measured output from the individual assays to the sort-seq output using linear regression 
analysis for the 41 sensor variants and the wildtype LasR sensor. Overall, they exhibited 
strong linear correlation for both the C12-HSL assays (R2 = 0.91) and C14-HSL assays (R2 = 
0.95) (Figure 3I). These results support that the pooled screening by high-throughput sort-
seq accurately determined the sensor responses. While each design was not individually 
assayed, in total 559 designs (5.7% of the whole library) exhibited comparable C12-HSL 
output with the wildtype LasR sensor and low C14-HSL output (shown as green boxes in 
Figure 3 scatter plots). Next, the sequence-function relationship for this variable region of 
LasR was analyzed to comprehensively understand how protein sequence mutations 
affected ligand specificity 86,87. 
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Sequence-function relationships for LasR specificity and sensor activation  

In our sort-seq experiments, we assayed sensors containing all single and double amino 
acid substitutions in the LasR variable region (positions 125-130) and a subset of triple 
mutations (i.e. all containing S129N). From the sort-seq data, we assessed the sequence-
function relationships for sensor activation by C12-HSL, sensor activation by C14-HSL, and 
ligand specificity (S). We mapped each functional attribute of the sensor against the 
identities of the amino acids at each pair of positions in the protein sequence, and we placed 
amino acids with similar physicochemical properties next to each other in the heat maps 
(Figure 4A, and Supplementary Figure S7 – S9). In the heat maps, we indicate the wildtype 
amino acid (outlined in red) for each position, and therefore, we can analyze the single and 
double mutations from these plots. LasR variants with high activation to either C12-HSL or 
C14-HSL (defined here as  50% output of wildtype LasR, which is  9.85 RPU for C12-HSL 
and  1.22 RPU for C14-HSL) often clustered together around the wildtype amino acid in 
each position, yet the distribution of amino acids in these clusters varied based on the 
position (Figure 4A, and Supplementary Figure S7 – S9). For example, 15 amino acid 
substitutions (all except proline, glycine, aspartic acid, and glutamic acid) at position 125 
resulted in high activation to C12-HSL ( 9.85 RPU) (Figure 4A and Supplementary Figure 
S10A). In contrast, none of the amino acid substitutions at position 126 maintained high 
activation to C12-HSL, and on average, the output decreased 15-fold for any mutation at this 
position (1.34  0.16 RPU for the 19 substitutions) (Supplementary Figure S10A). All amino 
acid substitutions at position 126 also eliminated sensor activation by C14-HSL (4 – 5% of 
wildtype LasR) (Figure 4A and Supplementary Figure S10B). For both C12-HSL and C14-
HSL, we observed that proline substitution at any position decreased sensor activation and 
eliminated activation for most designs (17-fold reduced sensor output on average) (Figure 
4A and Supplementary Figure S10, S11), which is not surprising. Proline substitution 
increases conformational rigidity in a protein’s structure and has inactivated other proteins 
96,97. For all positions, more mutations resulted in high sensor activation by C12-HSL (42.2% 
of single mutation and 12.9% of double mutations on average) than by C14-HSL (17.2% of 
single mutation and 4.2% of double mutations on average) (Supplementary Figure S10, 
S11). In many cases, amino acid residues contributing to specificity resulted from mutation 
of amino acid identities at a position that affected the activation by C12-HSL and C14-HSL 
differently. For example, single substitutions with polar amino acids (glutamine, asparagine, 
threonine, and serine) at position 127 increased LasR specificity (S = 2.54  0.37 for 4 
designs), which resulted from decreasing the sensor activation by C14-HSL 18.5-fold on 
average while only decreasing the sensor activation by C12-HSL 1.4-fold on average (Figure 
4A).  
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Figure 4. Sequence-function relationships for ligand specificity of LasR from combinatorial 
saturation mutagenesis. (A) Single and double mutations LasR sort-seq data depicted in heat maps. 
Each heat map shows the C12-HSL output (left), C14-HSL output (middle) and specificity (right) as 
determined by sort-seq assays for each combination of amino acids (20) at each position 125-130. Heat 
maps are arrayed to show all combinations of amino acid positions 125 – 130. Plots for positions 130 
versus 127 are enlarged as an example. Amino acids with similar physicochemical properties were 
placed together in the heat maps, and identical ordering is used in all heat maps. The wildtype amino 
acid at each position is indicated (red lines). Larger images of each plot are in Supplementary Figure 
S7 – S9. (B) LasR sort-seq data for variants containing three amino acid substitutions depicted in heat 
maps. All LasR designs contained mutation S129N by design, so position 129 is not depicted. The C12-
HSL output (left), C14-HSL output (middle) and specificity (right) of variants with triple mutations are 
shown. Larger versions of each plot are in Supplementary Figure S12 – S14. C12-HSL output and C14-
HSL output were determined by the average of two replicate sort-seq assays using 1 µM 3OC12-HSL 
(C12-HSL) or 2 µM 3OHC14-HSL (C14-HSL), respectively (Methods). Specificity was calculated from 
the average C12-HSL output and average C14-HSL output using the function defined in the Methods. 

 

For the triple-mutation LasR variants, we also mapped the functional attributes of the 
sensor against the identities of the amino acids at each position (Figure 4B and 
Supplementary Figure S12 – S14). Since all triple mutants contained the S129N mutation, it 
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is not shown in the heat maps, and all other pairs of positions were analyzed (Figure 4B). 
Compared to the double-mutation variants, far fewer triple-mutation variants maintained high 
sensor activation by both HSL species. For C12-HSL, only 4.7% of all triple-mutants 
maintained sensor activation ( 9.85 RPU) (Supplementary Figure S15A), compared to 
12.9% of the double-mutation variants (Supplementary Figure S11A). For C14-HSL, only 
0.7% of all triple-mutants maintained sensor activation ( 1.22 RPU) (Supplementary Figure 
S15B), compared to 4.2% of the double-mutation variants (Supplementary Figure S11B). 
However, interestingly, many triple-mutation variants containing L125W maintained high 
sensor activation by C12-HSL (28.6%, 22 out of 77 variants) (Supplementary Figure S15A), 
and these sensors all had low activation by C14-HSL (0.12  0.07 RPU) (Supplementary 
Figure S15B). These sequence-function heat maps present visually how each functional 
attribute of the sensor is affected by the amino acid substitutions in LasR.  

Developing neural network models for the sequence-function relationship for LasR 
specificity 

While combinatorial saturation mutagenesis can exhaustively determine the sequence-
function landscape, relationships can often be determined and modeled using sparser data 
and supervised machine learning. We next wanted to investigate models relating the LasR 
protein sequence to C12-HSL ligand specificity that could be developed from our data. Here, 
we used a supervised deep-learning platform for protein sequence-function mapping 
developed by Gelman, Romero, Gitter, et al 98 to compare linear and nonlinear models to 
predict the specificity of LasR from its protein sequence. First, we reduced our library dataset 
to 9,140 unique protein sequences by removing synonymous codons, and then, randomly 
split the dataset into training (60% library), tuning (20% library), and testing (20% library) 
subsets. The inputs to the software were the whole LasR protein sequence and a file listing 
for each protein variant the number of mutations, identity of the mutations, and the functional 
score, which was here specified to be the calculated specificity (S) (Supplementary 
Spreadsheet, Tab 1). We generated and compared the linear regression, fully connected 
network, and convolutional neural network models. For predicting the specificity of the 
testing set variants, the convolutional neural network model showed a strong correlation 
(Pearson coefficient, ρ = 0.72  0.01, n = 3) and greater agreement than both the linear 
regression model (ρ = 0.45  0.004, n = 3) and the fully connected network model (ρ = 0.58 
 0.005, n = 3) (Supplementary Figure S16). This agrees with previous studies that have 
shown that convolutional neural networks can capture nonlinear interactions of mutations 
and learn weights of amino acids to outperform other models 98–106. To assess the tradeoff 
between accuracy and size of the dataset for generating the convolutional neural network 
model, we next tested the effect of decreasing the size of the training and tuning datasets 
using a 3:1 proportionality for all. With decreasing the size of the training and tuning sets 10-
fold (6% training, 2% tuning), the correlation for the test set was largely reduced (Pearson ρ 
= 0.46  0.01, n = 3), yet a 2-fold decrease in the size of the training and tuning sets (30% 
training, 10% tuning) only reduced the model agreement by 9.7% (ρ = 0.65  0.01, n = 3) 
(Supplementary Figure S17).  

We then used the convolutional neural networks to design new LasR variants predicted to 
have a desired specificity (Figure 5A). A random-restart hill-climbing algorithm in the platform 
was used to search LasR designs with maximal specificity for mutations constrained to 
positions 125 – 130 98. We applied this searching method to identify three LasR variants with 
three, four, or five mutations, respectively, predicted to have the greatest C12-HSL 
specificity (S). Given that we also identified variants with engineered preference for C14-HSL 
in the library, we also constructed a convolutional neural network for the reversed specificity 
(-1  S) output function (Supplementary Figure S18), which corresponds to preferential 
specificity for C14-HSL relative to C12-HSL. Then, we used the same algorithm and 
identified two designs predicted to have maximal reversed specificity. Sensors containing 
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each of the five LasR variants identified by the neural networks were constructed and 
individually assayed. All three variants predicted to have maximum specificity (S) had 
significantly decreased C14-HSL output relative to the wildtype (p = 0.031), showing 59.6 - 
68.5-fold reduction and approaching the uninduced output of each sensor (Figure 5B). 
Among those three, the LasR triple mutation variant L125W-A127T-L128M showed the 
highest specificity (S = 4.16  0.44), yet this was not a significant improvement in specificity 
(p = 0.84) compared to the LasR variant L125W-A127T that demonstrated the highest C12-
HSL specificity in the designed library (S = 4.08  0.20). The sensor output with C12-HSL 
was significantly less for the LasR variants with four or five mutations than the wildtype LasR 
(p < 0.001), which is not surprising given that the neural network used the specificity as the 
functional score and not the promoter activity for each signal. The two LasR variants 
predicted to have the maximum reversed specificity exhibited specificity less than zero 
(Figure 5B). However, while one variant (L125R-L128F-S129W) maintained an equivalent 
promoter response to C14-HSL as the wildtype LasR, the other had 48.3-fold lower promoter 
output. The predictions from the convolutional neural networks had much greater agreement 
with experimental measurements for the triple mutants (root mean square error, RMSE = 
0.12) than variants containing more than three mutations (RMSE = 1.36).    

 

 

 

 

 

Figure 5. Machine learning model for protein sequence-function for LasR ligand specificity. (A) 
Using the sort-seq data for 9,140 protein variants, a machine learning model was developed to predict 
the ligand specificity (S) from the LasR protein sequence input. The convolutional neural network model 
for S was constructed using a published platform that used supervised deep learning 98. The sort-seq 
data was randomly split into a model training set (gray, 60% of variants) and tuning set (blue, 20% of 
variants) to generate the model. The model was evaluated using a testing dataset (orange, 20% of 
variants), and the Pearson correlation coefficient () was determined. Dotted line shows the 1:1 
relationship. Based on this convolutional neural network model, we applied a random-restart hill 
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climbing searching algorithm to design LasR variants with desired specificities. Convolutional neural 
network model for negative of specificity (−1  S) in Supplementary Figure S18 was utilized for 
prediction of LasR designs with reversed specificity using the same searching algorithm. (B) From the 
model, the protein sequences with the maximum S and containing three, four, or five mutations were 
identified. To evaluate whether preferential activation by C14-HSL could be predicted, protein 
sequences with minimum S and containing three or four mutations were also identified. The 
corresponding LasR sensors were constructed and then assayed individually without inducer (light 
grey), with 1 µM 3OC12-HSL (C12-HSL, dark blue) or 2 µM 3OHC14-HSL (C14-HSL, magenta) on 3 
separate days. The cell fluorescence was measured by flow cytometry for a population of at least 10,000 
cells, and output was converted to RPU (Methods). The specificity of each sensor variant in each day’s 
experiment was calculated (Methods) and compared to the model prediction (light blue line). Bars 
indicate the mean ± s.d. (n = 3). 

 

Mapping the landscape for mutational epistasis  

Mutational epistasis, in which the phenotypic effect of a mutation can widely vary 
depending on the genetic background that it is introduced into, can make a protein 
sequence-function landscape rugged 70,107. From our combinatorial saturation mutagenesis 
assays, we next sought to examine epistatic interactions of mutations in LasR for the 
variable region (position 125 –130). Various models can be used to evaluate whether 
mutations display epistasis 108–110. Here, we applied the relative epistasis model of Khan et al 
110. Pairwise epistasis was quantified as the difference between the specificity of a double 
mutation variant and the sum of the specificity of the two corresponding single mutation 
variants (Methods).  

Among the exhaustive set of double mutation variants, both negative and positive 
pairwise epistasis were identified, yet the large majority (83%) had a negative epistatic effect 
(Figure 6 and Supplementary Figure S19). Such pervasive negative epistasis may be due to 
the indirect or direct physical interactions caused by the spatial proximity of the amino acid 
residues in the β sheet 111,112. Prevalent negative epistasis in β sheets has been identified in 
other proteins, such as TEM-1 β-lactamase 113. Notably, eleven mutations (L125R, L125K, 
L125W, A127C, A127V, A127L, A127M, L128F, S129G, S129W, L130F) exhibited positive 
epistasis with many other mutations, yet the specificity score for each individual mutation 
was less than zero (Supplementary Table S1). One of these mutations (L130F) was reported 
to enhance the stability of LasR 79. Some LasR variants with improved specificity emerged 
out of positive epistasis. Among the selected ten LasR double mutation variants with the 
highest specificity from the library, six variants had positive epistasis (Supplementary Table 
S2). From a practical point of view, those variants with improved specificity would not have 
been identified if residues at those positions were fixed during an earlier round of 
mutagenesis, and this supports the use of combinatorial mutagenesis.  
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Figure 6. Pairwise mutational epistasis of LasR signal specificity. Pairwise epistasis scores (ε), 
defined as the non-additive effect of two mutations on sensor specificity (S), were calculated from the 
sort-seq dataset for LasR double mutation variants (Methods). Each heat map shows the epistasis for 
each combination of amino acids mutations (19 with exception of wildtype) at each position 125-130. 
Positive epistasis (purple) and negative epistasis (green) are colored. Heat maps are arrayed to show 
all combinations of amino acid mutations at positions 125 – 130. Amino acids are ordered based on 
their properties, and identical ordering is used in all heat maps after the removal of the wildtype amino 
acid for each position, respectively. 

 

We also quantified the third-order epistasis in the background of S129N for our set of 
LasR triple mutation variants. Again, we used the relative epistasis model and calculated the 
epistasis as the difference between the pairwise epistasis score in the presence of S129N 
background (third mutation) and in its absence (Methods) 110. Pairwise epistasis in the 
S129N genetic background was dominantly positive (Supplementary Figure S20) and led to 
pervasive third-order positive epistasis (83.3% of protein sequences) (Supplementary Figure 
S21). However, those regions with positive epistasis in the third-order epistatic heatmap 
mostly contain variants that have low signal activation to the HSLs (Supplementary Figure 
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S12, S13). Among the selected ten LasR triple mutation variants with greatest specificity in 
the library, all demonstrated positive third-order epistasis in the background of S129N, 
although most were relatively weak (Supplementary Table S3).   

Investigation of proposed trade-off between sensitivity and specificity 

Previous studies have shown that increasing specificity of LuxR-type quorum sensing 
regulators can come at the expense of decreasing its sensitivity, meaning that as the 
regulator better discriminates the cognate ligand, it requires a higher concentration of the 
ligand to reach the same level of activation 79,81. Therefore, we next investigated whether this 
trade-off between sensitivity and specificity was observed for our set of LasR variants with 
increased C12-HSL specificity. Among the sensor variants identified above (Figure 3), we 
selected variants with improved C12-HSL specificity whose output to 2 M C14-HSL was 
less than 0.1 RPU (8 single, 10 double, and 9 triple mutation variants) and characterized the 
sensor response to C12-HSL for each (Figure 7A and Supplementary Figure S22) 
(Methods). The measurements from the dose-response experiments were fit to the Hill 
equation for cooperative ligand binding to determine the sensor response function, and this 
function describes the relationship between the ligand concentration and the sensor 
promoter output (PLas) (Supplementary Table S4). Compared to the wildtype LasR sensor, all 
assayed sensor variants were less sensitive to C12-HSL. The ligand concentration for half-
maximal sensor output (EC50) for the least sensitive variant (1.04  0.08 µM C12-HSL for 
L125E) was 28 times greater than the EC50 of the wildtype LasR sensor (0.037  0.004 µM 
C12-HSL for wildtype). However, two LasR variants had EC50 values less than 2.3-fold 
increase compared to the wildtype (0.086  0.009 µM C12-HSL for L125W-A127T and 0.083 
 0.008 µM C12-HSL for L125F-A127G-S129N). Interestingly, one variant (the L125W-
S129N-L130M) had increased basal promoter activity (p = 0.0093), despite mutations being 
located outside the helix-turn-helix DNA binding domain, yet similar effects have been 
observed for engineered LacI as well 114. Overall, EC50 values showed a strong negative 
correlation with specificity for the characterized set of 28 LasR sensor variants (Pearson 
coefficient, ρ = -0.73) (Figure 7B). More sensitive (i.e. having smaller EC50) engineered LasR 
variants in this set had greater specificity, suggesting that some amount of improved ligand 
discrimination can be afforded without requiring a loss of sensitivity. 
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Figure 7. Response curves of engineered biosensors with LasR variants to investigate the 
relationship between sensitivity and specificity. (A) Twenty-seven LasR variants with single (red), 
double (blue), or triple (yellow) mutations were selected (from variants in Figure 3) to assay their dose-
response curves to 3OC12-HSL (C12-HSL) relative to the sensor containing wildtype (WT) LasR. 
Sensor characterization assays were performed with addition of 0 – 5 M C12-HSL on three separate 
days. The geometric mean fluorescence of at least 10,000 cells was measured by flow cytometry, and 
output was converted to RPU. Markers indicate the mean ± s.d. (n = 3 biological replicates). 
Representative histograms are shown in Supplementary Figure S22. Each solid line indicates the 
sensor response function, which is the Hill equation fitted by least squares regression to the 
experimental measurements. The wildtype LasR sensor (gray line) is shown in each panel for 
comparison. (B) To assess the relationship between sensitivity and ligand specificity for these sensor 
variants, the half maximal effective concentration (EC50) of C12-HSL was determined from the fitted 
response function for each sensor and is plotted as a function of the average specificity S, as measured 
in Figure 3. The Pearson correlation coefficient was determined for all 27 LasR variants and does not 
include the wildtype. The dashed line indicates EC50 of the wildtype LasR sensor. 

 

DISCUSSION 

The specificity of quorum sensing regulators is important for programming intercellular 
signaling in microbial consortia. Here, we demonstrated a pooled sort-seq approach that 
enables the estimation of specificity by quantifying a quorum sensor’s response to cognate 
and non-cognate HSLs for 9,486 variants in parallel. By combining a combinatorial 
saturation mutagenesis library and high-throughput sort-seq assay, we identified engineered 
sensors that eliminated problematic signal crosstalk along with providing insights on the 
sequence-function relationship for ligand specificity of this widely used quorum sensing 
regulator, LasR.  
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The hit rate of LasR variants with high C12-HSL specificity (5.7%, 559 variants) in our 
study indicates the functional plasticity of this protein. Functional plasticity for the specificity 
of LasR homologs has been reported 81, and therefore, it is not entirely surprising that we 
identified remarkable functional plasticity in the short LasR 5 sheet (L125-L130). Notably, 
certain mutations at non-contacting residues (≥ 5 Å) in the vicinity of the ligand binding 
pocket (residue L128 and L130) are beneficial for LasR specificity, expanding the repertoire 
of LasR variants with improved target specificity. Previous studies have highlighted the 
involvement of residue L130 in ligand selection by LasR 79,80. Additionally, residues outside 
of the β5 sheet have been shown to be essential for LasR specificity through covariation 
analysis 80. We conducted site-directed mutagenesis at several of these essential residues 
(i.e. LasR G38, V76, and S91) and identified additional beneficial mutations (Supplementary 
Figure S23). Future studies could further expand the residues to target for improved LasR 
specificity beyond the 5 sheet.   

Typically, evolutionarily conserved residues of LasR homologs are less tolerant to 
mutations as they are essential for function 42,81,87,115. Residue conservation can be assessed 
from sequence alignments of functionally related protein homologs 116–118. Previous studies 
based on a small set of sequence alignments of LasR homologs (≤ 11) revealed that LasR 
G126 has lower evolutionary conservation compared to S129 41,119. To comprehensively 
assess residue conservation within our targeted region, we quantified amino acid 
frequencies at each position from an alignment of over 3,000 LasR homologs 80, uncovering 
lower G126 frequency relative to S129 in this larger set (Figure 25). Nevertheless, in our 
study, all mutations at position 126 abolished sensing of both HSLs (i.e. C12-HSL and C14-
HSL). Conversely, four single amino acid substitutions (asparagine, glycine, cystine, or 
alanine) maintained 50% of the wildtype LasR activation by C12-HSL at position 129. Our 
dataset experimentally validates the importance of G126 for LasR sensing function, 
confirming a previous inference from LasR’s codon usage frequency in clinical isolates of P. 
aeruginosa 120. Other than residue G126, our study corroborates correlations between the 
mutational tolerance of residues within the 5 sheet of LasR and their level of evolutionary 
conservation in LasR homologs 41,119 (Supplementary Figure S24). Notably, position 125, 
exhibiting the highest tolerance for mutations within our dataset, also has the greatest 
diversity of amino acids among natural LasR homologs (Supplementary Figure S24). Similar 
correlations have been observed for a wide range of proteins 121,122 and could be harnessed 
to reduce the size of a designed mutagenesis library for functional screening of a protein, as 
demonstrated in previous studies 76,102.   

The presented pooled sort-seq method offers a promising approach for effectively 
engineering the specificity of LuxR-type quorum sensors. Whereas natural bacterial quorum 
sensing is believed to utilize promiscuity of LuxR-type regulators to mediate interspecies 
interactions via signal crosstalk (e.g. eavesdropping), protein engineering offers the 
opportunity to leverage their mutational tolerance to obtain optimal ligand specificity for a 
given application 49,123–125. We selected the residues for mutagenesis based on the protein 
crystal structure of LasR and known ligand-protein interactions, which likely contributed to 
the success of this approach. For LuxR-type regulators without known crystal structures, the 
mutagenesis sites may be alternatively selected based on covariation analysis of naturally 
evolved protein sequences or perhaps by inference from this LasR library dataset and 
protein sequence homology. Our study’s use of a combinatorial saturation mutagenesis 
library allowed for the identification of many LasR variants with improved C12-HSL 
specificity, while also systematically elucidating the relationship between ligand specificity 
and the sequence of the targeted region of the β5 sheet. Engineering the specificity of 
quorum sensors has the potential to provide a toolset for designing and prescribing cell-cell 
signaling interactions to bring about multicellular bacterial processes and advance the 
applications of engineered bacterial consortia.  



20 

 

Materials and Methods 

Reagents and Strains 

E. coli NEB 10-beta from New England Biolabs (NEB) was used for sensor assays. E. coli 
NEB 5-alpha (NEB) was used for standard cloning of other plasmids. All sort-seq and 
individual assays were performed in M9 minimal media (Sigma-Aldrich; 6.78 g/L Na2HPO4, 
3.0 g/L KH2PO4, 1.0 g/L NH4Cl, 0.5 g/L NaCl final concentration) with 0.34 g/L thiamine 
hydrochloride (Sigma-Aldrich), 0.2% w/v casamino acids (Acros), 2 mM MgSO4 (Sigma-
Aldrich), 0.1 mM CaCl2 (Sigma-Aldrich), and 0.4% w/v D-glucose (Sigma-Aldrich). Luria-
Bertani (LB) Miller media (Fisher BioReagents) was used for cloning and plasmid 
propagation. The antibiotic used for sensor plasmid selection was kanamycin (50 μg/ml, 
GoldBio). The inducers used for sensors were n-(3-oxododecanoyl)-L-homoserine lactone 
(C12-HSL, Sigma-Aldrich, #O9139) and n-(3-hydroxytetradecanoyl)-DL-homoserine lactone 
(C14-HSL, Sigma-Aldrich, #51481). For blue-white screening, 40 μl of 0.1 M isopropyl β-D-1-
thiogalactopyranoside (IPTG, GoldBio) and 120 μl of 20 mg/ml 5-bromo-4-chloro-3-indolyl β-
D-galactopyranoside (X-gal, GoldBio) were overlaid on LB agar plates. All primers and oligos 
were ordered from Integrated DNA Technologies (IDT) dried and resuspended in 10 mM Tris 
buffer (pH=8, Fisher Scientific). 

Design of Oligos for LasR Mutagenesis 

The LasR mutations were encoded in the oligos designed by a customized Python script 
(https://github.com/AndrewsLabSynBio/directed_mutagenesis_library). All oligos in the pool 
have sequences for PCR amplification, flanking BsaI recognition sites and the resulting 
overhangs for one-pot Type IIS DNA assembly surrounding the LasR variable region 
(Supplementary Figure S3A). The orthogonality of the two DNA linker sequences was 
examined by a previously published Python script 126. The LasR variable region contains 18 
nucleotides encoding the codons for residues 125-130 of LasR. Oligo designs were 
generated for saturation mutagenesis of all single and double mutations. A subset of all 
possible triple mutations was designed. The triple mutations were designed by including the 
S129N mutation in all designs and mutating two other residues simultaneously. The Python 
script by default selects codons with the highest usage frequency for the input organism (E. 
coli NEB 10-Beta in this study), unless specified problematic sequences are introduced 
(Supplementary Figure S3B). For example in this work, if a BsaI recognition site would be 
introduced by selecting the highest frequency codon, the codon with the next highest 
frequency was chosen instead. The Python script generates combinatorial saturation 
mutagenesis libraries for up to 3 amino acid mutations. An option to include an oligo 
containing the wildtype DNA sequence and eliminate repeated oligo designs is provided in 
the script. A combinatorial saturation mutagenesis library can be generated for a specified 
protein sequence and input organism. The codon frequency for the organism can be input in 
a CSV file or predicted based on a FASTA file of coding sequences in the organism. The 
positions to be mutated and amino acid preferences can be specified by the user. The 
flowchart of the customed Python script is detailed in Supplementary Figure S25. Our 
12400-member oligo pool contained 20 copies of each single mutation design as an added 
measure to ensure full representation of all single mutation variants. The oligo pool in this 
work was ordered as a 12K chip from GenScript (NJ, USA).  

Library Preparation using One-pot Type IIS Assembly 

The LasR sensor backbone was built by removing the BsaI recognition site on plasmid 
pMZ103-rbs1 (Supplementary Figure S3C) and by inserting the LacZ gene into the LasR 
variation region (Supplementary Figure S3D). The BsaI recognition site on pMZ3-rbs1 was 
removed by introducing a mutation in BsaI recognition site via PCRs. Two purified PCR 
products were joined by BbsI Type IIS Assembly reaction using 5 fmol of each purified PCR 

https://github.com/AndrewsLabSynBio/directed_mutagenesis_library


21 

 

fragments, 0.5 µl of 10X T4 ligase buffer, 250 U T4 ligase (2,000,000 U/ml, NEB, M0202T), 
5 U BbsI (NEB, R0539L) and nuclease-free water for a total of 5 µl reaction mix. The 
reaction mix was incubated in a thermocycler with the following protocol: alternating steps of 
37 oC for 2 min and 16 oC for 2 min for 36 cycles, followed by 50 oC for 30 min and 
deactivation at 80 oC for 20 min. Transformation was performed by adding 2 µl reaction mix 
into 5 µl chemical competent E. coli NEB 5-alpha cells and following the manufactured 
recommended protocols. Transformations were plated on LB agar with kanamycin. A colony 
from the overnight plate was selected for an overnight liquid culture, a plasmid DNA miniprep 
(Qiagen, 27106), and Sanger sequencing (Azenta) to verify the DNA sequence. In the 
subsequent assembly to construct LasR sensor backbone, the LacZ gene was then inserted 
in place of the LasR mutated region (LasR L125 – L130) to evaluate the efficiency of library 
cloning using blue-white screening. The assembly reaction contained 5 fmol of a purified 
PCR fragment of LasR sensor backbone, 10 fmol of a purified PCR product of the LacZ 
gene, 0.5 µl of 10X T4 ligase buffer, 250 U T4 ligase, 5 U BbsI and nuclease-free water for a 
total of 5 µl reaction mix. The reaction mix was incubated in a thermocycler and transformed 
into E. coli NEB 5-alpha using the protocols above. This resulting sensor backbone was 
sequenced by Sanger sequencing.  

The single stranded oligos in the pool were amplified using KAPA HiFi HotStart DNA 
polymerase (KAPA BIOSYSTEMS). The PCR reaction contained 1 µl of oligo pool 
resuspended in TE buffer (20.87 ng/µl), 0.75 µl of 10 µM Amp-Fw primer 
(TCAGTCCATCCCACCTTGCC), 0.75 µl of 10 µM Amp-Rv primer 
(ACCACACAGCCATAGAGTCG), 0.75 µl of 10 mM dNTP, 5 µl of 5X KAPA reaction buffer, 
0.5 U KAPA polymerase and nuclease-free water for a total of 25 µl reaction mix. Two 
reaction mixes were incubated in a thermocycler with the following protocol: 95 oC for 3 min, 
98 oC for 20 s, 68.8 oC for 15 s, 72 oC for 15 s, repeating the last three steps for 6 cycles, 
and 72 oC for 1 min. The amplified oligo pool was then purified using GenCatchTM PCR 
Cleanup Kit (Epoch Life Science) and eluted in Tris buffer (pH = 8).  

The LasR sensor library was constructed using one-pot BsaI Type IIS Assembly 
reactions, containing 50 fmol of LasR sensor backbone, 80 fmol of amplified oligo pool, 0.5 
µl of 10X T4 ligase reaction buffer, 5 U BsaI-HFv2 (NEB, R3733L), 250 U T4-ligase and 
nuclease-free water for a total of 5 µl reaction mix. A negative control with only 50 fmol of 
LasR sensor backbone was set up simultaneously. The reaction mixes were incubated at 37 
oC for 5 h, 30 oC for 30 min and then 80 oC for 20 min. Ultra electrocompetent E. coli NEB10-
beta was prepared as per Supplementary Note S1. Transformations were performed by 
adding 4 µl of reaction mix into 100 µl of electrocompetent E. coli NEB 10-beta in 1 mm 
electroporation cuvettes (Fisherbrand, #FB101) using a BIORAD MicroPulser (Setting: Ec1, 
1.8 kV) and subsequent mixing with 500 µl of prewarmed SOC. Next, 250 µl of the 
resuspended cells were transferred to two aliquots of 750 µl prewarmed SOC and incubated 
at 37 oC, 250 rpm for 1 h. Then 90 µl of the recovered cell media were plated on each LB 
agar plate (2.25% agar) with kanamycin using a cell spreader and an inoculating turn table. 
Additionally, 5 µl of recovered cell media was plated on LB agar plates containing IPTG and 
X-gal for the blue-white screening and coverage estimation. Two transformations were 
carried out to ensure 40X coverage of the library (40 X 12,400 = 480,000 colonies). The 
reaction mix of the negative control was also electroporated to E. coli NEB 10-beta as 
described above and were plated on a LB agar plate containing X-gal and IPTG. 

The agar plates were incubated for 12 h until the formation of singular colonies without 
merging to avoid the competition of colony growth. The total number of colonies was 
estimated to be 1,025,000 (82.7-fold of 12,400 oligo designs). The plate of the negative 
control had 1,103 colonies (769 blue and 334 white). The estimated error rate of the library 
was 0.22%. The colonies were harvested from all plates using a cell lifter, resuspended into 
LB and vortexed vigorously for uniform suspension. The suspension was centrifuged at 
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3,900 rpm for 10 min, the supernatant was discarded, and the cell pellet was resuspended in 
20 ml fresh LB. An equal volume of 50% v/v glycerol was added to make aliquots of glycerol 
stocks and stored at -70 oC freezer. Plasmids and genetic part sequences used in this work 
are listed in Supplementary Table S5 and S6, respectively. 

Pooled Sensor Characterization by FACS 

The entire LasR sensor library was sorted into four bins based on the fluorescence 
response of each variant to cognate HSL (C12-HSL) or non-cognate HSL (C14-HSL) using 
Florescence-Activated Cell Sorting (FACS). Two 1-ml glycerol stocks of library aliquots and 
a 1-ml LasR wild-type (WT) sensor glycerol stock were thawed on ice and inoculated in 29 
ml of M9 supplemented with 50 μg/ml kanamycin in 250-ml flasks. To convert the YFP 
expression to RPU, 0.2-ml glycerol stock of wild-type E.coli NEB10-beta and the RPU 
standard strain (pAN1717) were thawed and added to 5.8 ml of M9 and M9 supplemented 
with 50 μg/ml kanamycin, respectively. After 3 h incubation at 37 oC with shaking at 250 rpm 
(New Brunswick Innova 44 shaker), the OD600 of all library aliquots/strains were measured 
(NanoDrop OneC, Thermo Scientific). The cell media of LasR WT sensor was spiked into 
the library as a reference to 1% OD600 of the LasR sensor library. The LasR sensor library 
was then diluted to an OD600 of 0.05 and induced with either 1 µM 3OC12-HSL or 2 µM 
3OHC14-HSL in a sterile 96-well U bottom plate and incubated for 5 h at 37 oC with shaking 
at 1000 rpm (ELMI TRMS-04 DTS-4 thermostat microplate shaker). Each library sample was 
then diluted using sterilized PBS and sorted by BD FACSAria Fusion Sorter into 4 separate 
bins. Two aliquots of LasR sensor library under two different sorting conditions yielded 16 
total bins. Bin 1 contains sensors with background fluorescence based on the fluorescence 
level of wild-type E. coli NEB 10-Beta. Remaining cells in the library with higher fluorescence 
were separated into bin 2, bin 3 and bin 4 with roughly even proportions (424 V of FSC, 430 
V of SSC, 493 V of FITC, and a threshold of 1500 au for FSC). At least 3.5 million cells were 
sorted per sample (Supplementary Figure S3E). Sorted cells were then cultured in LB 
supplemented with 50 μg/ml kanamycin for 7 h to amplify cells. The LasR sensor plasmids 
from the 16 bins were then extracted. To determine the distribution of designs in the 
constructed LasR sensor library, two unsorted library aliquots were directly miniprepped from 
1ml glycerol stocks. 

Next Generation Sequencing 

Each bin was sequenced to map the fluorescence level to the LasR design. The unsorted 
library was sequenced to determine LasR design distribution within constructed LasR sensor 
library. The LasR variable region for each sample was amplified with a set of custom 
designed primers (Supplementary Table S7) that varied the DNA sequence at the 5’ end of 
the amplicon to increase the nucleotide diversity of amplicons, which aids Illumina 
sequencing of low nucleotide diversity amplicons. PCR reactions were performed using 
KAPA HiFi HotStart DNA polymerase for 22 cycles (98 oC for 20 s, 68 oC for 15 s, and 72 oC 
for 15 s). The PCR products were purified and eluted in 0.1 X TE buffer. The concentration 
of purified PCR products was measured using a Nanodrop for amplicon library preparation. 
The amplicon library, containing adaptor sequences for Illumina NextSeq500, a unique 
barcode for each sample, and the PCR product, was created using the NEBNext Ultra II 
DNA library prep kit for Illumina (NEB #7103S) with index primer set 1 (NEB #7335S) and 
set 2 (NEB #7500S) according to the manufacturer’s protocol with minor modifications as 
noted below. A quantity of 600 ng of PCR product was used as the starting material, and 
clean-up of adaptor-ligated DNA (with 0.8X resuspended beads) instead of size selection 
was performed because the length of the PCR amplicon was uniform (113 bp). Four PCR 
cycles were chosen for PCR enrichment of adaptor-ligated DNA. The resulting amplicon 
libraries were purified using NEBNext® Sample Purification Beads in the kit and a magnetic 
stand (EpiMag HT 96-Well Magnetic Separator, Epigentek). For pooling, the DNA 
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concentration of each sample was measured by Qubit 3.0 fluorometer. The relative amount 
of each barcoded DNA sample was pooled according to the number of cells in the sample 
(i.e. cell number in each bin) with the ratios listed in Supplementary Table S8. The quality of 
the pooled amplicon library was assayed on an Agilent 2100 Bioanalyzer prior to 
sequencing. 

The pooled DNA sequencing library was sequenced on an Illumina NextSeq500 with a 
50% PhiX spike-in to increase the diversity of sequence and sequence quality given the 
regions of low nucleotide diversity for our amplicons. A NextSeq500 Mid-150 cycle kit was 
used for pair-end read (2 X 75 base pairs). A total of 8,500,000,000 bp (8.5 Gbp) of NGS 
data were collected, yielding 5.6X read coverage on average for the cells in each bin.  

Next Generation Sequencing Data Analysis  

The FASTQ file for each sample was demultiplexed on Illumina platform. The perfect-
match read counts for each design in each sample were quantified using a custom Python 
script that counts the reads that perfectly match the reference sequences or reverse 
complement thereof. The reference sequences contain 9-bp constant upstream sequence 
(CGCGGCGAA), 18-bp DNA sequence of LasR designs, and 7-bp constant downstream 
sequence (AGCGTGG).  

The assessment of design y's frequency across various samples served to evaluate the 
agreement among unsorted samples and the reproducibility between two sorted sample 
replicates. The frequency was determined using the following equation:  

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑦 =
𝑐𝑜𝑢𝑛𝑡𝑟𝑎𝑤,𝑦 

∑ 𝑐𝑜𝑢𝑛𝑡𝑟𝑎𝑤,𝑦 9,486
𝑦=1

                                              (1) 

where 𝑐𝑜𝑢𝑛𝑡𝑟𝑎𝑤,𝑦 is the raw count or perfect-match read counts design y, and the 
denominator is the sum of raw counts of all 9,486 LasR designs in a sample.  

Most LasR designs were present in multiple bins. Due to the expansive upper limit of bin 
4, we chose median fluorescence as fluorescence measurement for both bin 4 and the other 
three bins. The inferred fluorescent output of each LasR sensor design (FLy, representing 
the fluorescence of design y in arbitrary units) of each replicate was quantified by assuming 
the median fluorescence of the bin for the proportion of cells contained in the corresponding 
bin, which was calculated by the following equation:  

  

𝐹𝐿𝑦 =  (∑
𝑐𝑜𝑢𝑛𝑡𝑦,𝑏𝑖𝑛 𝑖

∑ 𝑐𝑜𝑢𝑛𝑡𝑦,𝑏𝑖𝑛 𝑖
4
𝑖=1

4
𝑖=1 ∙ 𝑚𝑒𝑑𝑖𝑎𝑛 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒𝑏𝑖𝑛 𝑖)       (2) 

In this equation, 𝑐𝑜𝑢𝑛𝑡𝑦,𝑏𝑖𝑛 𝑖 is the actual read counts of design y in bin i, and the value of 
𝑚𝑒𝑑𝑖𝑎𝑛 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒𝑏𝑖𝑛 𝑖 was determined during FACS.  

Given that bin 1 contained more than 60% of the entire library and was stopped earlier 
during FACS (stopping threshold: 2,000,000 cells), the raw counts in bin 1 are lower than its 
actual counts. To estimate the actual cell counts in bin 1, scaling factor was calculated using 
the following equations: 

𝑁𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑟𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 𝑏𝑖𝑛 𝑖

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑛𝑠𝑜𝑟𝑡𝑒𝑑 𝑏𝑖𝑛 𝑖
     (3) 

𝐹𝑖𝑗 =
𝑁𝑏𝑖𝑛 𝑗

𝑁𝑏𝑖𝑛 𝑖
       (4) 
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𝐹 =
1

3
∑ 𝐹1𝑗

4
𝑗=2 =

1

3
× (𝐹12 + 𝐹13 + 𝐹14)    (5) 

In equation (3), 𝑁𝑖  is estimated total unsorted cell counts from bin i. Both the number of 
sorted cells in bin i and fraction of bin i within unsorted library were obtained through FACS. 
In equation (4), 𝐹𝑖𝑗 is the scaling factor for cell counts in bin i derived from bin j. In equation 
(5), 𝐹 is the average scaling factor for cell counts in bin 1, derived from bin 2, 3, and 4. The 
calculations of 𝐹 for each sorted sample are shown in Supplementary Table S9.   

Additionally, the determination of the pool ratio for each sample was based on sorted 
cells count within each bin and then slightly adjusted to ensure enough sequencing 
coverage of bin 4, which had the lowest cell count. Thus, the actual counts were 
subsequently corrected using the coverage correction factor 𝑓𝑏𝑖𝑛 𝑖 (Supplementary Table 
S8). The actual counts of LasR design y in bin i were calculated using the following equation: 

𝑐𝑜𝑢𝑛𝑡𝑦,𝑏𝑖𝑛 𝑖 = {
𝑐𝑜𝑢𝑛𝑡𝑟𝑎𝑤,𝑦,𝑏𝑖𝑛 𝑖 ∗ 𝐹 ∗ 𝑓𝑏𝑖𝑛 𝑖    (𝑖 = 1)

𝑐𝑜𝑢𝑛𝑡𝑟𝑎𝑤,𝑦,𝑏𝑖𝑛 𝑖 ∗ 𝑓𝑏𝑖𝑛 𝑖    (𝑖 = 2, 3, 𝑜𝑟 4)
  (6) 

In equation (6), 𝑐𝑜𝑢𝑛𝑡𝑟𝑎𝑤,𝑦,𝑏𝑖𝑛 𝑖 is the raw count of design y in bin i, 𝐹 is the average scaling 
factor for the cell counts within bin 1, and 𝑓𝑏𝑖𝑛 𝑖 is the coverage correction factor. Parameters 
for each bin are summarized in Supplementary Table S10. 

Fluorescence in arbitrary units cannot be compared directly for measurements collected 
using different flow cytometers, such as between a cell sorter and analytical cytometer 93,94. 
However, by using an insulated fluorescent reporter and standard reference plasmids 
(ribozyme, RBS, and gene sequence for eYFP are held constant), the cell fluorescence in 
arbitrary units can be converted to relative promoter units 89,90.  Therefore, here we similarly 
converted fluorescence in arbitrary units to relative promoter units (RPU): 

𝑅𝑃𝑈𝑦 =  
𝐹𝐿𝑦−𝐹𝐿10𝐵

𝐹𝐿𝑅𝑃𝑈−𝐹𝐿10𝐵
     (7) 

where 𝐹𝐿𝑅𝑃𝑈 is the median fluorescence of the RPU strain harboring a plasmid (pAN1717) 
with a standard constitutive promoter and sensor characterization cassette, and 𝐹𝐿10𝐵 is the 
median fluorescence of wild-type E. coli NEB 10-Beta (autofluorescence of cells), measured 
on the flow cytometer instrument for a population of at least 10,000 cells. The RPU of each 
variant is provided in Supplementary Spreadsheet, Tab 2. 

Specificity and Epistasis Score Calculation 

Specificity (S), the target function of the LasR protein in this study, was defined as the 
difference between the natural logarithm of C12-HSL output to C14-HSL output for the 
variant and wildtype LasR. 

𝑆y = 𝐼𝑛 (
𝐶12-𝐻𝑆𝐿 𝑜𝑢𝑡𝑝𝑢𝑡𝑦

𝐶14-𝐻𝑆𝐿 𝑜𝑢𝑡𝑝𝑢𝑡𝑦
) − 𝐼𝑛 (

𝐶12-𝐻𝑆𝐿 𝑜𝑢𝑡𝑝𝑢𝑡𝑊𝑇

𝐶14-𝐻𝑆𝐿 𝑜𝑢𝑡𝑝𝑢𝑡𝑊𝑇
)   (8) 

In equation (8), the C12-HSL output and C14-HSL output were the fluorescence outputs of 
LasR sensors containing LasR design y or WT LasR to C12-HSL and C14-HSL in RPU, 
respectively. 

Pairwise mutational epistasis for LasR mutation variants was calculated from the average 
specificity as determined by the sort-seq experiments using the relative epistasis model 110. 
Using this model, the epistasis () for a fitness function (W) for a genotype containing two 
mutations (a and b) is the log ratio of observed and predicted fitness values and applies the 
multiplicative null hypothesis for the predicted fitness [ε = ln(Wab) − ln(Wa) − ln(Wb)]. Our 
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specificity function here serves as the fitness function and includes the log transformation as 
defined above. The wildtype LasR sensor was used as the genetic background reference 
(SWT), where its relative specificity was set to zero by definition of the function (SWT = 0). The 
specificity of LasR containing two amino acid mutations (Sij) at positions i and j (e.g. SAB for 
amino acid A in position i and amino acid B in position j) and the specificity for LasR 
containing each mutation individually (e.g. SA for amino acid A in position i and SB for amino 
acid B in position j) were used. Each pairwise epistasis score (ij) for each combination of 
amino acid mutations in each position (AB for amino acid A in position i and amino acid B in 
position j) from the double mutation variants was calculated as follows using the average 
specificity of the variants 107,127: 

𝜀𝐴𝐵 =  𝑆𝐴𝐵 − 𝑆𝐴 − 𝑆𝐵 + 𝑆𝑊𝑇 = 𝑆𝐴𝐵 − 𝑆𝐴 − 𝑆𝐵                                                        (9) 

Similarly, the third-order epistasis scores were calculated for LasR variants containing 
three mutations using the relative epistasis model. Using this model, the third-order epistasis 
() for a fitness function (W) for a genotype containing three mutations (a, b, and c) is the 
extent to which the pairwise epistasis of any two mutations differs in the background of the 
third mutation 127,128. We only calculate the third-order epistasis in the background of S129N 
as our library only contained a small set of triple mutation variants. In the background of 
mutation C at position k (i.e. S129N), the pairwise epistasis score (ij|k) for each combination 
of amino acid mutations in each position (AB|C for amino acid A in position i and amino acid B 
in position j) from our triple mutation variants. Subsequently, we calculated the third-order 
epistasis score (ABC) as follows: 

𝜀𝐴𝐵|𝐶 = 𝑆𝐴𝐵|𝐶 − 𝑆𝐴|𝐶 − 𝑆𝐵|𝐶 + 𝑆𝐶 =  𝑆𝐴𝐵𝐶 − 𝑆𝐴𝐶 − 𝑆𝐵𝐶 + 𝑆𝐶     (10) 

𝜀𝐴𝐵𝐶 = 𝜀𝐴𝐵|𝐶 − 𝜀𝐴𝐵      (11) 

In equation (10), SAB|C is the specificity of LasR containing amino acid A in position i and 
amino acid B in position j in the presence of S129N, SA|C is the specificity of LasR containing 
amino acid A in position i in the presence of S129N, SB|C is the specificity of LasR containing 
amino acid B in the position j in the presence of S129N, and SC is the specificity of LasR 
containing S129N. In equation (11), AB|C is the pairwise epistasis score in the background of 
S129N, and AB is the pairwise epistasis score without S129N. 

Machine Learning Model Training and Testing 

Machine learning models for protein sequence-function relationships in this work were 
trained using the platform built by Gelman, et al. for supervised deep learning 98. We ran the 
scripts with the default learning rate and batch size. The input to the script contained the 
mutation(s) in each variant and its specificity score (Supplementary Spreadsheet, Tab 1), as 
determined by sort-seq experiments. In the script, the input was transformed to feature 
vectors containing mutation positions and physicochemical and biochemical properties of the 
amino acids. Some LasR designs included in our library had an identical protein sequence 
(such as S129N and S129N-L130L) due to codon degeneracy and the fact that we selected 
the highest frequency codon when designing the pool. To eliminate any overlap between 
different datasets, the 9,486 unique DNA sequences were reduced to 9,140 unique protein 
sequences by removing variants containing L125L and L130L before splitting the dataset. 
The LasR library dataset was randomly divided into a training, tuning, and testing dataset. 
The platform uses the tuning dataset to optimize the hyperparameters of the machine 
learning model during the run. The software can fit the following model types evaluated in 
this work: linear regression, fully connected network, and convolutional neural network 
models. We used Python v3.6 and TensorFlow to run the code in a central processing unit 
(CPU) environment. A script in this platform uses a random-restart hill climbing algorithm to 
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identify variants predicted to have the highest output (function) it can find. For the 
convolutional neural network model, we ran the script with the objective of finding the highest 
specificity score and specified to identify sequences with three, four, and five mutations in 
the LasR L125 – L130 region. To identify variants with reversed specificity for C14-HSL 
(originally the non-cognate signal), we constructed a convolutional neural network model for 
the negative specificity (-1 x S) and otherwise carried out an identical procedure. 

Construction of Individual Sensor Variants 

Variants with improved C12-HSL specificity were selected from the LasR sensor library to 
validate the sort-seq assay. The individual variants were constructed in a similar way to the 
LasR sensor library. The single stranded DNA oligos containing the LasR variable region, 
enzyme recognition sites, and overhangs were ordered from IDT. These oligos were then 
annealed in a reaction mix containing 8.5 µl of the top strand (100 µM), 8.5 µl of the 
complementary bottom strand, and 2 µl of 10X ExoI buffer (NEB, B0293S). The annealing 
was performed in a thermocycler by gradually decreasing the temperature from 98 oC to 60 
oC, with 1 decrease oC every 2 minutes. Unannealed oligos were digested by adding 10 U 
ExoI (NEB, M0293S) to the reaction mix, incubated at 37 oC for 1 h, and then purified using 
a PCR cleanup kit. BsaI Type IIS Assembly reactions were performed in 5 µl total volume 
containing 80 fmol of purified annealed oligos and 50 fmol of LasR sensor backbone, 0.5 µl 
of 10 X T4 ligase buffer, 250 U T4 ligase, 5 U BsaI-HFv2 and nuclease-free water. Next, 2 µl 
of reaction mix was transformed into 5 µl chemical competent E. coli NEB 10-beta. 
Transformed cells were plated on agar plates containing IPTG, X-gal, and kanamycin for 
blue-white screening. White colonies were selected for LB liquid culture, extraction of 
plasmid DNA, and Sanger sequencing to verify the DNA sequence of the construct. 

Sensor Characterization Assay for Individual Designs 

A single colony of individual designs, wild-type E. coli NEB 10-beta, and the RPU strain 
were picked from overnight agar plates and inoculated in a 96-well U-bottom microtiter plate 
with 200 µl M9 with appropriate antibiotics. The plate was sealed with a breathable seal 
(AeraSeal, Sigma-Aldrich) and incubated at 37 oC, 1000 rpm for 16 h in a digital microplate 
shaking incubator (Elmi DTS-4). The cells were then diluted 178-fold through two serial 
dilutions, with 15 µl of cell culture transferred to 185 µl of fresh M9 with appropriate 
antibiotics in each dilution. The resulting plate was incubated at 37 oC, 1000 rpm for 3 h. 
After 3 h, cell culture from each well was diluted 658-fold through two serial dilutions, one 
transferring 15 µl of cell culture into 185 µl fresh M9 with appropriate antibiotics and the next 
transferring 3 µl cell culture to 145 µl M9 with antibiotics and inducers as needed. The 
resulting induction plate was incubated at 37 oC, 1000 rpm for 5 h. Before assaying, 2-5 µl of 
cells were transferred to 200 µl PBS with 2 mg/ml kanamycin (to halt cell growth) and 
incubated at room temperature for 30 min. For experiments assaying specificity, inducer 
conditions were no inducer, 1 µM C12-HSL, and 2 µM C14-HSL. For experiments 
characterizing the response function of LasR sensor variant, initial C12-HSL concentrations 
were 5 µM, and 1 µM, subsequently diluted by 2-fold for each concentration. For 
experiments characterizing the response function of the wildtype LasR sensor, C12-HSL 
concentrations were 5 µM, 1 µM, 0.5 µM, 0.25 µM, 0.125 µM, and 0.0625 µM, subsequently 
diluted by 5-fold for each concentration.  

Flow Cytometry Analysis  

Cell fluorescence was assayed on a BD Accuri C6 flow cytometer equipped with a 20 mW 
480 nm solid state blue laser (BD Biosciences, San Jose, CA) or BD LSR Fortessa flow 
cytometer (BD Biosciences, San Jose, CA) with 340 V of FSC voltage, 700 V of SSC voltage 
and 400 V of blue laser (488 nm) voltage. Different thresholds were applied: for the BD 
Accuri C6 flow cytometer (FSC-H > 25000 and SSC-H > 1000) and for the BD LSR Fortessa 
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flow cytometer (FSC > 5000 and SSC > 2000). At least 10,000 gated events were collected 
for each sample. Samples were analyzed using FlowJo software. A cell gate was applied to 
distinguish E. coli cells from electronic noise or debris. The geometric mean of the 
fluorescence for the gated events was calculated and then converted to relative promoter 
units (RPU) using geometric mean fluorescence instead of median fluorescence as 
described in equation (7).   

To determine the response function for selected sensor variants, the sensor outputs were 
fitted to the Hill equation. The curve fit was performed in Python using the least squares 
method to minimize the sum of the error between the log10-transformed measured outputs 
and the fitted output in RPU. The form of the Hill equation used to fit the data is as follows 
129:   

𝑦 = 𝑦𝑚𝑖𝑛 + (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)
𝑥𝑛

𝑥𝑛+𝐸𝐶50
𝑛     (12) 

In this equation, the sensor output y is a function of the signal concentration (x) and Hill 
parameters are ymin (minimum output), ymax (maximum output), EC50 (signal concentration for 
half maximum output), and n (Hill coefficient). 

Statistical Analysis  

The coefficient of determination (R2) was determined by linear least-squares regression 
using the scikit-learn module in Python 130. Data was analyzed using independent two-tailed 
Student’s t-tests using the SciPy package 131, and results were considered statistically 
significant if the p-value < 0.05. Pearson correlation coefficients were determined using the 
SciPy package. Pearson correlation coefficients for the machine learning models were 
determined by the published scripts that were used for modeling 98.  

 

Data Availability 

The custom Python script that generated oligos designs for combinatorial saturation 
mutagenesis library is available on GitHub at 
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