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ABSTRACT ARTICLE HISTORY
The competitive neighbourhood surrounding an individual tree can Received 29 August 2022
have a significant influence on its diameter at breast height (DBH) Accepted 7 December 2022
and individual tree stem volume (SV). Distance dependent compe-

tition index metrics are rarely recorded in traditional field cam-

paigns because they are laborious to collect and are spatially

limited. Remote sensing data could overcome these limitations

while providing estimation of forest attributes over a large area.

We used unoccupied aerial vehicle laser scanning data to delineate

individual tree crowns (ITCs) and calculated crown size and dis-

tance-dependent competition indices to estimate DBH and SV. We

contrasted two methods: (i) Random Forest (RF) and (ii) backwards-

stepwise, linear multiple regression (LMR). We utilized an existing

experiment in Pinus taeda L. plantations including multiple planting

densities, genotypes and silvicultural levels. While the tree planting

density did affect the correct delineation of ITCs, between 61% and

99% (mean 86%) were correctly linked to the planting location. The

most accurate RF and LMR models all included metrics related to

ITC size and competitive neighbourhood. The DBH estimates from

RF and LMR were similar: RMSE 3.05 and 3.13 cm (R? 0.64 and 0.62),

respectively. Estimates of SV from RF were slightly better than for

LMR: RMSE 0.06 and 0.07 m® (R? 0.77 and 0.70), respectively. Our

results provide evidence that ITC size and competition index

metrics may improve DBH and SV estimation accuracy when analys-

ing laser-scanning data. The ability to provide accurate, and near-

complete, forest inventories holds a great deal of potential for

forest management planning.
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1. Introduction

The United States’ forest products industry is concentrated on the South (Alig and Butler
2004). Forests in the southern U.S. produce most of the nation’s timber, and approxi-
mately one-sixth of the world’s timber, while only being 30% of the nation’s forestland
(Wear and Greis 2002). Loblolly pine (Pinus taeda L.) plantation forests form a significant
proportion of the forested land-cover in the southern U.S. In the early 2000s, there were
over 12 million hectares of pine plantations in this region. Approximately 80% of the
one million hectares of forest established annually is loblolly pine (McKeand et al. 2003).
This land-cover is projected to increase to 22 million hectares by 2040, with associated
increases in timber production (Wear and Greis 2002). Advancements in silvicultural
management, in terms of tree improvement, nursery management, site preparation,
weed control, and fertilization, have contributed significantly to the productivity of
these plantations (Fox, Jokela, and Allen 2007). Detailed information on the structure
and composition of these forests is required for the appropriate deployment of silvicul-
tural inputs from them (Corona 2010; Pond, Froese, and Nagel 2014; Tinkham et al. 2018).
Accurate forest structure quantification is required for several forestry applications,
including management, fire behaviour analysis, and carbon accounting. Forest managers
need information describing tree geometry and spatial distribution, which includes stem
count, diameter at breast height (DBH; 1.37 m), total tree height and merchantable stem
volume at as fine a spatial scale as possible (Hilker, Wulder, and Coops 2008). Generally,
with field measurements, only a subset of total tree heights are measured because these
are time-consuming to acquire (Avery and Burkhart 2001; Kangas and Maltamo 2006).
Forest structure is typically inventoried manually using a random or systematic sampling
approach (Scott and Gove 2002). Logistics, site accessibility, robust measurement techni-
ques, and the cost of labour constrain manual inventories (Randolph 2015). The use of
such approaches represents spatially discontinuous measurements, which cannot capture
the fine-scale variability of attributes, such as biomass, leading to large sources of
uncertainty (Jenkins, Birdsey, and Pan 2001). The adoption of new data acquisition
methods could therefore overcome these limitations while allowing for new information
requirements in the future and in maintaining cost-efficiency (Fridman et al. 2014).
Local environmental conditions between individual trees, including intraspecific com-
petition with a different genotype (e.g. Carter et al. 2020), or any other vegetation may
influence tree growth in loblolly pine. Individual tree growth models can include
a competition index designed to quantify the degree of competitive stress on individual
trees in a stand. These indices represent a neighbourhood of trees that have a positive or
negative effect on the growth of a single subject tree (Radtke, Westfall, and Burkhart 2003;
Burkhart and Tomé 2012). Models using spatially explicit, individual-tree and competition
information to estimate metrics, like basal area and DBH, have increased accuracy in
comparison to models which only used individual tree metrics (e.g. Mailly, Turbis, and
Pothier 2003; von Oheimb et al. 2011; Costa, Finger, and Hess 2018; Premer, Chhin, and
Zhang 2021). Distance-dependent competition indices (Cl), comparing focal tree metrics
like DBH, total height and crown projection area with neighbouring trees, are available
but using these indices requires significant investment in field collection and is compu-
tationally demanding (e.g. Hegyi 1974; Biging and Dobbertin 1992; Castagneri et al. 2008).
Remote sensing data could effectively overcome these field measurement limitations in
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capturing data necessary for the calculation of Cls while providing information for forest
attributes over large spatial extents, which were previously impossible.

The analysis of remote-sensing data has been found to play a key role in many
national forest inventory efforts (Barrett et al. 2016). Airborne laser scanning (ALS) and
approaches integrating these with field measurements have seen operational use in
several jurisdictions (Naesset 2014; White et al. 2017; White, Penner, and Woods 2021).
The point-cloud available from ALS platforms has been used to estimate various forest
inventory metrics in many different contexts (e.g. Hyyppa et al. 2017). ALS measures the
three-dimensional (3D) distribution of vegetation within forest canopies (White et al.
2016). Recent improvements in unoccupied aerial vehicles (UAVs) make drone laser
scanning (DLS) a viable remote sensing platform, which offers a combination of small-
scale multi-temporal high-resolution data at low-cost (Rothmund, Vouillamoz, and
Joswig 2017). Acquiring ALS data from conventional (piloted) aircraft and UAVs is
technically similar but different in terms of operating altitude and spatial extent (Torres-
Sanchez et al. 2015; Messinger, Asner, and Silman 2016; Hardin et al. 2019). Acquiring
ALS data from piloted aircraft can be difficult, however, due to logistics, aviation
regulations, and high costs, which make repeated forest inventories impractical
(Wulder et al. 2012). DLS data can generally provide a greater pulse/return density in
comparison to conventional ALS due to operating altitude (Lin et al., 2011). High
enough point densities with returns from beneath the canopy have allowed for the
classification of tree stems (Neuville, Bates, and Jonard 2021).

Automatic delineation of individual tree crowns (ITCs) is possible from small-footprint
ALS data with a sufficient pulse density. To this end increasingly complex methods have
been developed for this purpose (Kaartinen et al. 2012; Zhen, Quackenbush, and Zhang
2016). ITC delineation allows for direct comparison of ALS and field measurements (e.g.
Popescu, Wynne, and Nelson 2003). Methods used to identify ITCs and their features are
varied. Corte et al. (2020a) and Gyawali et al. (2022) demonstrated methods to estimate
the total tree height either directly from the classified point-cloud or from a canopy
height model. Height to the base of the live crown (HTLC) has been estimated by fitting
a function through the binned return frequencies by height (Dean et al. 2009; Sumnall
et al. 2016), via the application of 3D clustering methods (Arkin et al. 2021) or through
statistical modelling (Liu et al. 2021). Other studies have statistically modelled individual
tree metrics of DBH and/or stem volume using ALS derived ITC return distribution
covariates as predictors (Silva et al. 2017; Corte et al. 2020b). Metrics relating to ITC
size (e.g. HTLC, crown area and 3D crown volume) have also been used for this purpose
(e.g. Yao, Krzystek, and Heurich 2012; Wu et al. 2015; Moe et al. 2020; Corrao, Sparks, and
Smith 2022).

High pulse density ALS may provide spatially explicit and accurate tree metrics as
long as the ITC delineations are accurate. It is unknown if the prediction accuracy of
stem DBH and volume can be improved using DLS derived Cl neighbourhood
metrics. This study explored the feasibility of using DLS data for delineating ITCs
and estimating both DBH and stem volume. The primary purpose of this research
was to develop an approach which initially derives metrics related to the competitive
neighbourhood around each tree and, secondly, to evaluate the impact of this
method on the estimation accuracy if these metrics are used to predict stem DBH
and volume. The objectives were:
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(1) Implement our ITC method and validate it against field stem mapped data in stands
with variable planting densities and crown architectures;

(2) Estimate and validate ITC size metrics (total tree height, HTLC and horizontal crown
area);

(3) Calculate size and CI metrics for each ITC, then use these as model inputs to
estimate DBH and individual tree stem volume; and

(4) Evaluate the accuracy of estimates of DBH and individual tree stem volume.

2. Datasets and methods
2.1. Study sites and field sampling

Our study sites were at Bladen Lakes State Forest (BL), located in the North Carolina
Coastal Plain, USA (34°49'49.63"N, 78°35'18.52"W) and at Reynolds Homestead (RH),
located in the Virginia Piedmont, USA (36°3833.04”N, 80°9'16.77"W). Both sites were
managed plantation forests exclusively containing loblolly pine. Both sites were estab-
lished and maintained in support of research studies investigating the role of intensive
management in optimizing loblolly pine production (Yafnez, Fox, and Seiler 2015; Yaiez,
Seiler, and Fox 2017). The annual average temperature and precipitation for the BL site is
16.9°C and 1170.7 mm, respectively. The annual average temperature and precipitation
for the RH site is 13°C and 1159.3 mm, respectively (Yahez, Fox, and Seiler 2015).

Both sites were established in 2009 with a split-split plot experimental design with
three (BL) or four (RH) replications of six loblolly pine genotypes, two silvicultural inten-
sities (operational and intensive, Yafiez, Fox, and Seiler 2015) and three planting densities
(Table 1; Yanez, Seiler, and Fox 2017). The intensive silvicultural treatments at both sites
consisted of complete weed control and fertilization for the first three growing seasons.
The general layout of field measurement plots is illustrated in Figure S.1. There were 108
and 144 plots at BL and RH, respectively. All plots at BL had 63 trees (7 X 9). At RH, one
block had 63 trees/plot and three blocks had 81 trees/plot (9 X 9). There were 6,804 and
11,016 trees at BL and RH, respectively. The genotypes maximized within group homo-
geneity and ensured different tree crown structures at each site, which consisted of six
genotypes. Genotypes (four clones, one open-pollinated family and one control-mass-
pollinated family, Yaiez, Fox, and Seiler 2015) were the split-split plot treatments.

Two Nelder (NE) trials (Nelder 1962; Namkoong 1965) were installed in 2009 at RH to
evaluate a wide range of planting densities using the same genotypes used in the split—
split plot design. As stem spacing and neighbourhood are critical components of Cls, data
from the Nelder trials were included in the analysis to increase our sample size and
increase variability in our dataset in terms of tree proximity and spatial arrangement
beyond that found in the sample plots, with the ultimate aim of providing training data

Table 1. Field plot attributes for Bladen Lakes and Reynolds Homestead.

Plot size
Stem planting density Trees per hectare Within row spacing (m) (m?
Low 618 4.42 x 3.66 1019
Medium 1,236 2.21 X 3.66 510

High 1,853 1.47 X 3.66 339
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Table 2. Field measurements of survival (percentage of total alive), mortality (number of dead trees)
and total tree height statistics (mean, minimum, maximum and variance) for the sites (Nelder (NE),
Bladen Lakes (BL) and Reynolds Homestead (RH)) and years used as the standard for the individual
tree crown delineation and dimension estimates.

Stem Mortality
survival (number of dead  Height mean  Height minimum Height maximum  Height variance
Site - Year (%) trees) (m) (m) (m) (m)
NE 2017 97.11 25 16.53 332 13.26 6.45
RH 2017 90.36 1062 10.00 1.68 13.90 7.30
BL 2017 84.91 1027 11.00 0.46 15.57 14.82
RH 2021 88.73 1242 10.10 436 2143 16.02

for more robust predictive models. Each NE has 36 circular wedges and each wedge
contained 12 trees, resulting in planting densities from 227 to 7,142 trees ha~' and a total
of 864 trees (2 Nelders x 36 wedges x 12 trees), illustrated in Figure S.2. There were no
Nelder trials located at the BL site.

We acquired the GPS location of each tree in all locations in 2009 immediately after
planting. In January 2017, we measured all trees at BL, RH and NE. In early January 2022,
we measured all the RH trees (RH 2021). For all trees, we measured DBH (at 1.37 m) and
survival. The presence of standing or fallen dead stems was recorded. For all NE trees and
for the 25 (5 x 5) trees in the centre of each plot at BL and RH, we also measured the total
tree height, HTLC and crown diameter. Total tree heights were measured with a Vertex
hypsometer, with a measurement error of 0.2-0.3 m (Vasilescu 2013). Height and stem
survival are summarized in Table 2. HTLC was defined here as the vertical distance
between the ground and the lowest live branch. Two horizontal crown diameter mea-
surements were taken along perpendicular axes centred on the tree stem: (1) within and
(2) across planting rows (Bechtold and Randolph 2018). The crown edge was the peri-
meter of the visible crown from the ground. Measurements were made at ground-level
with a tape measure held from crown edge-to-edge drip lines. We assumed that the
horizontal crown area, or projection area, was approximately elliptical given the rectan-
gular planting densities and high degree of canopy closure in our study sites. Thus, we
approximated this as the area of an ellipse (7 x diameter 1 x diameter 2). Mortality, total
height and DBH measurements were available for 11,628 stems. Merchantable stem
volume was calculated using the unthinned over-the-bark model from Tasissa, Burkhart,
and Amateis (1997).

This model is expressed as:

Voo = 0.21949 + 0.00238 x D? x H 1]

where V,,, is the total outside bark volume (in cubic-feet), D is DBH (in inches) and H is the
total tree height (in feet).

2.2. DLS data acquisition and pre-processing

Discrete return DLS data were acquired in April 2017 for RH and NE and in August 2017 for
BL. The UAV platform was a Vapour-35 helicopter (AeroVironment, Simi Valley, CA, USA)
with a YellowScan Surveyor Core LiDAR unit (Montferrier-sur-Lez, France). The DLS unit
consists of a Velodyne VLP-16 laser scanner (Velodyn, 2019) and a GNSS-inertial Trimble
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APPLANIX APX-15 (Trimble, Richmond Hill, ON, Canada). The DLS system recorded up to
two returns per laser pulse and used a near-infrared (NIR) wavelength of 905 nm, over
approximately 1 km? separately for each site. Pre-processing and strip adjustment was
conducted before DLS data processing in the YellowScan CloudStation software. Data
specifications were:

a laser pulse density of 312 to 498 pulses m™ from combined flight lines;

<60° scan angle on either side of nadir;

A flight altitude of 50 m (RH and NE) and 60 m (BL) - relative to take-off location;
A 50% overlap between flight lines;

300 kHz laser pulse repetition rate;

Ground control for the 2017 DLS acquisitions used a real-time kinematic geographic
positioning system (RTKGPS, Topcon GR-3) with precision <10 cm and positional accuracy
<5acm.

The DLS data were acquired for RH 2021 in July 2021 using the DJI M600 hexacopter
platform (DJI Technology Co. Ltd., Shenzhen, China) with a Riegl MiniVux1 LiDAR scanner
(RIEGL Laser Measurement Systems GmbH) and APPLANIX APX20 GNSS-inertial measure-
ment unit (Trimble, Richmond Hill, ON, Canada). The DLS system recorded up to six
returns per pulse and used a near-infrared (NIR) wavelength of 905 nm, over approxi-
mately 1km? covering the same spatial extent as in 2017. Pre-processing and strip
adjustment were conducted before DLS data processing in the RiPROCESS software
(RIEGL Laser Measurement System GmbH, Horn, Austria). Data specifications were:

a laser pulse density of 700 to 1011 pulses m~2 from combined flight lines;
e <85° scan angle either side of nadir;

¢ A flight altitude of 60 m - relative to take-off location;

e An 80% overlap between flight lines;

e 100 kHz laser pulse repetition rate;

Ground control for the 2020 acquisition used a RTKGPS (Spectra SP80) with a post-
processed positional accuracy <0.3 cm.

DLS data pre-processing and analysis was completed using R software (version 4.1.1.)
(R Core Team 2021). The lidR (version 4.0.0, Roussel et al. 2020; Roussel and Auty 2022) and
data.table (version 1.14.2, Dowle and Srinivasan 2021) packages were used on LAS format
files. The following packages were used for geographic information system functions, sp
(version 1.4-6, Bivand, Pebesma, and Gomez-Rubio 2013), sf (version 1.0-7, Pebesma
2018), rgdal (version 1.5-29, Bivand, Keitt, and Rowlingson 2021) rgeos (version 0.5-9,
Bivand and Rundel 2021), maptools (version 1.1-3, Bivand and Lewin-Koh 2022) and raster
(version 3.5-15, Hijmans 2022). The dbscan package (version 1.1-10, Piekenbrock and
Doran 2019) was used for clustering points based on relative distance to their neighbours
and noise removal. The MASS package (version 7.3-55, Venables and Ripley 2002) was
used for 2D kernel density analysis. The soilphysics package (Silva and Lima 2017) was
used to assess graph-slope curvature. The deldir package (version 1.0-6, Turner 2021) was
used for the creation of Voronoi tessellations. The geometry package (version 0.4.5, Habel
et al. 2019) was used for the calculation of 3D convex-hulls. Statistical analysis was
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conducted using the Boruta (version 7.0.0, Kursa and Rudnicki 2010) and caret (version
6.0-91, Kuhn 2021) packages.

LAS file pre-processing began with noise removal, where return-points were classified
using an isolated voxels filter. The following settings were determined visually as the most
effective after testing a number of permutations. A 3D matrix was created for the extent of
each LAS file, where voxels were cubic and had a side length of 1 m. A search kernel of 3 x
3 x 3 was created. Returns were classified as noise if only one return was located within
the search extent. Ground-returns were classified by the implementation of the Cloth
Simulation Filter (Zhang et al. 2016). Aboveground heights were calculated by first
creating a surface from ground-classified returns, using a triangular irregular network,
and this height was then subtracted from all non-ground returns.

2.3. Individual tree crown delineation

We developed a new method to identify likely tree stem locations, which exploits the high
pulse density, the increased probability of pulses returning from vertical surfaces due to
scan angle, and the penetration of pulses through the canopy. The process is summarized
in Figure 1.

The following approach was inspired by the Height-Scaled Crown Openness Index
(HSCOI), which provides a 2D quantitative measure of ALS pulse penetration through the

High resolution canopy height
model

DLS point-cloud

Voxelized the point
cloud
(0.25 x 0.25 x 0.25m)

Canopy height
model

Classify occupied voxels using 3x3
For each 0.25 vertical layer kernel neighborhood (Occupied

True/False)
Estimate mean top height for each
horizontal cell

Sum vertical voxel columns
(0.25x0.25m)

Calc. vertical occupancy index

Vertical occupancy
index

3 x 3 cell mean kernel smoothing Tessellation
£ Tree buffer polygon
filter polygons

Locate trees: local maxima search

Tree crown polygons
(dynamic kernel size)

Individual tree stem Classified DLS point
locations cloud

Figure 1. Flowchart of the DLS data processing for classifying individual tree crowns.
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canopy (Lee and Lucas 2007). The HSCOI aids in locating tree stems in the overstory and
sub-canopy of multi-layered forests. Our high pulse-density data provided a high prob-
ability of returns coming from stems, and we developed a similar method to represent 3D
space occupancy, which is described in the following.

This process was performed on all four datasets/sites independently. We created a 3D
matrix of 0.25 x 0.25 x 0.25 m voxels from the DLS point-cloud. A voxel was created if
there was at least one return within the 3D extent of the voxel cell (Figure 2a). The voxel
occupancy index (VO qex) Was calculated horizontally across the DLS acquisition extent
and expressed as a proportion (0-1) for each vertical, 0.25 m layer. If an occupied voxel
existed within a 3 x 3 voxel horizontal kernel, then the voxel was considered occupied
(Figure 2b). The number of occupied voxels was summed vertically (VoXpesence), and this
value was multiplied by the voxel vertical extent (Vox;;y, 0.25 m).

The calculation was:

Nyoxel (I) >0
VOX;ize X anes VOoXpresence

VOindex =
naex max htjocal

2]

where max htj,.q) was the maximum DLS return height within a search radius of 10.4 m
(from the voxel horizontal centre). This search radius was determined from the smallest
field plot area (339 m?). We created a raster surface using this approach with a spatial
resolution of 0.25 x 0.25 m.

() Defining an occupied voxel

Occupied
Empty

Occupied voxel

Adjacent occupied voxel

Figure 2. An example determining an occupied voxel (a) — where a voxel cell was considered occupied
if one or more LiDAR returns came from within its extent. Occupancy of the 0.25 m vertical layers (b)
were computed independently. Voxels were considered occupied if they had LiDAR returns in the
voxel (blue), or if that voxel was directly adjacent to an ‘occupied’ voxel (green).
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Prior to the tree delineation, a 3 x 3 cell mean kernel-smoothing filter was applied to
the VO;,qex raster layer to reduce noise and false positives (as in Popescu, Wynne, and
Nelson 2003). Higher VO;,qex values were associated with the locations of tree stems or
dense clumps of vegetation located within large tree crowns. A variable search window
local maxima filter was implemented to locate likely tree centre locations (Roussel et al.
2020), which is determined by the VO;,qex Value. After experimenting with 33% of BL field
measurements, we created a polynomial formula where large windows were created for
small index values, and vice versa for large index values, and is expressed as follows:

windowsj;e = 0.0006 X (VOjndex X 100)2 —0.1075 X (VOjngex x 100) + 6 3]

where window,. is the diameter of a circular search kernel, with units in metres. If maxima
were located within 1 m horizontally, they were merged, keeping the location of the
larger VO, q4ex Value (e.g. Figure 3).

We created a high-spatial-resolution (0.1 x 0.1 m) CHM from the point-cloud using the
digital surface model algorithm (Roussel et al. 2020). The method of delineating ITC
horizontal polygon boundaries was implemented as defined in Silva et al. (2016). The
method delineates ITCs based on a segmentation of the CHM using initial markers (tree
stems derived from the VOj,4ex), and the comparison of two polygon areas is then
completed. Firstly, a variable radius polygon, depending on height, is established around
each tree centre. These polygons were then split using centroidal Voronoi tessellation,
generating polygons of the ITC horizontal extents. The DLS point cloud was then classified
into individual trees using this polygon layer. Any ITC with a top height of <4.7 m was

14
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Figure 3. A VO;,qex raster generated for a single sample plot. Local maxima are illustrated. Stem
spacing was 4.42x3.66 m.
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considered as understory vegetation, given previous research in proximity (Sumnall et al.
2017), and removed.

2.4. Individual tree crown metrics

The DLS point cloud was subset by ITC classification, and each was considered as
independent. Each of the following metrics was indented as model input variables to
predict stem DBH and volume. We determined tree position as a mean of X and
Y coordinates of returns classified to a specific ITC assuming the stem was straight and
vertical. The total tree height was the tallest returned pulse. The crown area was calcu-
lated using a horizontal convex hull derived from all returns >1 m (as in Vauhkonen et al.
2014). ITC crown horizontal diameter was calculated from the largest uninterrupted
distance from one side to the other after converting the convex-hull into a polygon.

We estimated HTLC using a modified version of the Sumnall et al. (2016) method. This
approach was developed using a random 10% of the linked field and DLS ITC dataset for
RH 2017, which was then applied to the remaining dataset. Classified returns for each ITC
were considered independent and processed separately. The ITC subset of returns above-
ground (>0.2 m) were separated into 0.2 m height bins (0.2-0.4 m, 0.4-0.6 m, etc.) and
returns were summed within each bin. A minimum return frequency baseline was
calculated as 30% of the sum of all returns divided by the total number of bins, similarly
to that implemented in Holmgren and Persson (2004). A cubic smoothing spline was then
fit to the distribution of the return frequency by height using a smoothing parameter of
0.5. Local maxima and minima were identified on this line. Maxima were excluded if they
were below the baseline value. The maxima were classified as from the canopy if they
satisfied the following criteria: (i) above one-third tree height and (ii) frequency values
must be larger than 45% of the largest frequency-bin value. The maxima with the lowest
height fulfilling the above criteria were classified as being the lowest maximum which was
part of a pine crown. The minimum directly below this canopy maximum was considered
the initial estimate of the HTLC (Figure 4); however, as in Sumnall et al. (2016), this
minimum could underestimate HTLC. HTLC estimations were refined to address this
underestimation with the following algorithm:

(1) The height-bins corresponding to the lowest-canopy maximum and the minimum
directly beneath it were subset where X was the return frequency, and Y was the
height above ground;

(2) If the frequency-of-returns value corresponding to the canopy minimum was lower
than the baseline value, all of the height-bin values below the lowest-canopy
maximum were subset;

(3) If the vertical distance between the tallest and lowest height-bins was greater than
or equal to 3m, a cubic-spline was fit to these height-bins (using the above
specifications). Then, a new HTLC was calculated as follows:

(@) The point on the curve where the curvature was at its maximum was calculated
using the soilphysics package maxcurv function (Da Silva and De Lima, 2017).
This height was then considered to be the HTLC;

(b) Otherwise, the HTLC was unaltered.
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Figure 4. A profile view of the classified returns for a sample ITC (panel A). The frequency of returns by
height (panel B) and the identification of the lowest canopy feature and estimate of height to the
living crown.

Finally, a 2D kernel density raster was created for the ITC-classified return’s X and
Z coordinates using the kde2d function in the MASS package. All rasters were created with
100 x 100 cells. Local raster maxima were identified using a 5x5 cell kernel moving
window. Raster maxima less than 10% of the largest value were removed. If there were
any raster-maxima below and within 1 m vertically (Z coordinates) of the initial HTLC
estimate, then the height minimum immediately below this raster-maximum was selected
as the new HTLC value.

In order to calculate metrics related to 3D crown volumes (as in Korhonen et al. 2013)
and surface areas, ITC subset returns were further subset to give datasets containing all of
the returns in the top 10%, 20%, 30%, 40% and 50% of tree height. A 3D convex-hull was
fit to each of these point-cloud subsets using the geometry package. A total of 10 3D
crown volume and the surface area of the hull metrics were calculated and used as ITC
model inputs.

In addition, ITC leaf area index (LAI) was calculated using the method documented in
Sumnall et al. (2021). As in the aforementioned study, all returns with scan angles above
30° were discarded. The above below ratio index (ABRI) method was used and can be
expressed as:

> R-1 n

ABRI =
> R<r

Where, R denotes an individual DLS return and T represents a height threshold, of which
returns are excluded if under or over this height, which, in this case, was set to the
estimates of ITC HTLC. Regression model coefficients were the same as those determined
in Sumnall et al. (2021).
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2.5. Calculating individual tree crown competition neighbourhood metrics

Several approaches to define the horizontal or vertical competitive zone for a given tree were
available (Weiskittel et al. 2011). The key in determining tree competitive zones was under-
standing that each tree has an area where it obtains or competes for resources (Bella 1971).
Competition for each tree was assessed by the degree of overlap between competitive zones.
Consequently, here we defined this as trees immediately neighbouring one another and
assumed that the closer trees were to a given focal tree, the greater the competition for
resources. A given ITC/focal tree, and a typical rectangular arrangement, could have up to
eight neighbours; however, we had variations due to differences in tree spacing and missing
stems from mortality. To manage these issues, we needed to classify the neighbours for each
ITC automatically. The competitors for a given ITC/focal tree were the surrounding ITCs, in
terms of proximity and direction. Voronoi polygons were generated from the ITC centre
coordinates such that each polygon defined an area of influence around its centre coordi-
nates, so that any location inside the polygon was closer to that ITC centre than any of the
other ITC centres. Polygons touching the subject polygon were the initial set of competing
neighbours (Figure 5). This process may not account for all competing neighbours, so the
distance and azimuth from the subject ITC to potential neighbour coordinates were calcu-
lated. If there was a gap of over 20° between current neighbours, we searched for and added
additional ITC points within 10 m from within that azimuth angle range (see Figure 5). If there
were multiple potential neighbours within the 20° azimuth, the closest ITC was preserved, and
the others removed. Horizontal distances were calculated for all neighbours to each ITC
coordinate.

We adapted two approaches to calculate Cl from DLS derived ITC data using the
automatically defined neighbourhoods. First, we used Hegyi's distance-dependent com-
petition index (DCl) (Hegyi 1974):

pay =5 (2! 5)
o D; ~ DIST;

J=1

where D;, was DBH of the subject tree i, D; was DBH of competitor tree j and DIST;; was the
distance between trees i and j in metres. Instead of using DBH as the primary variable, we
calculated a Cl using each of the metrics defined in section 2.4: total tree height, HTLC,
horizontal crown area, crown horizontal diameter, five 3D crown volume metrics (for the
top 10, 20, 30, 40 and 50% of the total height), and five 3D crown surface area metrics (for
the top 10, 20, 30, 40 and 50% of height). A total of 14 Cl metrics for each ITC were
calculated. The number of neighbours identified was also recorded.

Second, we used an adapted version of the single tree-based stand simulator (SILVA) to
explicitly identify neighbours relative to the subject tree based on 3D position (Pretzsch,
Biber, and Dursk)’/ 2002). This index calculated a 3D cone where the apex was at the live
crown base, and the cone base faced up. Cone size was calculated where the apex angle
was 30° and cone height was the same as total tree height. Treetop coordinates inter-
secting with this cone were the competitive neighbour crowns, which were summed:

CCA,

CCA| 6]

n
SILVA2; = Zﬁj X
j=1
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Figure 5. Voronoi polygons created for a sample single plot extent, created from ITC center
coordinates. All potential immediate touching neighbor polygons for ITC ID 13 (purple) are indicated
in blue. Additional neighbor IDs of 3 and 11 were identified based on proximity and angle gaps (with
regard to immediate neighbors).

Where, SILVA2; was the Cl for tree j, B; the angle between cone vertex and top of competitor
Jj» CCA;, CCA, the crown cross-sectional area of trees j and J, respectively, and n the number of
competitors of tree i. The original equation included a term for the species-specific light
transmission coefficient for tree j which was not applicable here (Ellenberg 1996). We
calculated the number of neighbouring crowns and the index value for each ITC.

2.6. Linking field and DLS individual tree crown metrics

To determine the tree position, we assumed the stem was straight and used the
centre of gravity coordinates calculated for each ITC. Tree GPS coordinates were
compared directly with DLS delineated ITC objects as follows. A 1 m radius buffer
was applied to the GPS planting location, and we examined ITC coordinates that
intersected this polygon and linked the ITC with the coordinates closest to the GPS
centre. Only one ITC could be linked to a GPS location. Presence, total tree height,
and crown dimensions were compared with field data. If a planting GPS location was
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not linked to an ITC coordinate, it was counted as an omission error, unless it was
recorded as dead in the field data. ITC objects linked to standing dead stems were
considered as correct but were excluded from statistical analysis. Here, we defined an
error of omission as an error in which an ITC cannot be linked to a field tree planting
location. An error of commission was defined as the error in which more ITCs have
been delineated than can be reasonably accounted for using field data.

2.7. Statistical analysis

Our goal was to develop a method for estimating DBH and stem volume. Consequently,
we attempted two approaches: (i) Random Forest (RF) and (ii) backwards-stepwise, linear
multiple regression (LMR). Linear regression methods are inferior to machine learning in
describing structurally complex forests (Chen and Hay 2011); however, machine learning
approaches do not extrapolate well beyond the range of the training dataset. To speci-
fically test if the inclusion of Cl metrics improves prediction accuracy, two additional
permutations of analyses were implemented, where statistical analyses were performed
with (i) only tree size metrics (total height; crown horizontal area; crown horizontal
diameter; HTLC; LAI; five crown volumes; and five crown surface area metrics); and (ii)
including both tree size and Cl metrics.

The RF model (Breiman 2001) uses an ensemble method to perform classification or
regression tasks (e.g. Yu et al. 2011; Wu et al. 2015; Silva et al. 2017). We implemented
this method twice, in the first iteration only ITC size metrics were used (13), whilst
the second used a combination of ITC size and Cl metrics (30) as predictor variables. To
estimate DBH and stem volume, we had 29,700 and 11,628 individual tree field mea-
surements, respectively, between the two sites and measurement years (RH and BL,
2017 and 2021). These datasets were randomly subset into training and validation sets,
accounting for 75% and 25% of the sample size, respectively. The number of DLS ITC
metrics was large; consequently, we implemented a variable selection and reduction
approach to ensure modelling within a parsimonious statistical framework. We used the
Boruta R package, a wrapper built around the RF algorithm (Kursa and Rudnicki 2010), to
assess the relative importance of 30 predictor metrics. This approach duplicates and
reshuffles the training dataset and implements an RF classifier, up to 500 times, and
predictor accuracy/impurity was assessed with a Z-score. The approach compares
Z-scores at each iteration and marks it as important if it outperforms its duplicate. At
the end of this process, the six most important predictor variables (if available) were
used as input into the RF model.

We used the caret R package for RF model tuning and construction. Tuning with a 10-
fold cross-validation control determined the optimal value for the number of variables
randomly sampled as a candidate RF tree branch splits (MTRY). The number of RF trees to
grow was 500, and the number of predictor variables performing the data partitioning at
each node was set to the MTRY value with the lowest out-of-bag error. The RF training
models were validated with the validation dataset.

For LMR, as with the RF model creation procedure, we implemented this method
twice, in the first iteration only ITC size metrics were used (13), whilst the second
used a combination of ITC size and Cl metrics (30) as predictor variables in the
training dataset. We used a 10-fold cross-validation control and allowed a maximum
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of six predictors in the final model. For all models, we verified relationship linearity,
observation independence, constant variance and normal residual distribution. We
used variance inflation factor (VIF) to evaluate models with more than one predictor
for multicollinearity. Any predictor in a model with a VIF greater than four was
removed, and the model was re-run. The linear regression models were validated
with the validation dataset.

The predicted values from the RF and LMR models were evaluated by calculating the
adjusted coefficient of determination (adjusted R?), absolute and normalized root mean
square error (RMSE and NRMSE, respectively), and absolute and normalized bias (Bias and
NBias, respectively) based on the linear relationship between observed and predicted
values using the independent validation datasets (summarized in Table S.1). We defined
acceptable model accuracy as an NRMSE and NBias of <15% based upon the recommen-
dation from Silva et al. (2017; 2018) for industrial loblolly pine sites. We used a two-sided
Kolmogorov-Smirnov (KS) test and a Welch'’s t-test in R (R Core Team 2021) to compare
the field- and DLS ITC-based DBH and stem volume estimates. A p-value of 0.05 or below
was determined as significant. The empirical cumulative distribution function (ECDF) was
calculated for the RF and LMR models of DBH and stem volume to compare distributions
across the range of measurements. We also compared the ITC derived metrics of total tree
height, HTLC, and crown horizontal size with their equivalent field values using equations
7-11 in Table S.1.

3. Results
3.1. Individual tree delineation accuracy

Field mortality (field recorded dead) of trees ranged from 3% of the total population in the
NE to 15% at BL (Table 2). The overall survival rate was above 84% for all sites. The mean field
total tree height ranged from 10 m at RH in 2017 to 16.5 m in the NE. Any field recorded
stems with a total height below 4.7 m were considered as understory and removed.
Overall, our ITC delineation algorithm detected =80% of stems across all sites (Table 3).
The greatest detection rate was recorded for the RH dataset in 2017, where 91% of trees
were identified overall across all stem densities. ITC delineation accuracy varied with stem
density (TPH) where more trees were missed at higher density. At 618 trees ha™' our
method missed 1-3% but at 1,853 trees ha™' it missed 21-38%. We found the highest
omission error at BL and the lowest commission error for the NE and RH in 2017 (Table 4).

3.2. Individual tree metrics

We considered our ITC-derived total tree height and HTLC estimates acceptable
because their NRMSE and NBias were less than 15%. ITC-derived crown area esti-
mates were just above our acceptable threshold, where NRMSE was less than 16%.
ITC total height estimates were generally slightly (0.3 m) biased upwards from field
measurements (i.e. ‘Bias’; Table 5). HTLC estimate uncertainty and ITC estimates were
greater than field measurements. ITC crown area estimates typically underestimated
field measurements.
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Table 3. Omission error for the Nelder (NE), Bladen Lakes (BL) and Reynolds Homestead (RH) sites
among years and planting densities where individual tree crowns were delineated using drone laser
scanning data.

Site Total no. of alive trees Initial trees per hectare No. of trees missed Proportion of total missed alive (%)
NE 2017 839 All plots 135 16.09
RH 2017 9954 All plots 975 9.80
3296 618 52 1.58
3331 1236 222 6.66
3327 1853 701 21.07
BL 2017 5780 All plots 1143 19.77
1913 618 54 2.88
1934 1236 346 17.89
1933 1853 743 38.39
RH 2021 9774 All plots 1177 12.04
3249 618 42 1.32
3284 1236 366 11.11
3241 1853 771 23.73

Table 4. Commission error for the
Nelder (NE), Bladen Lakes (BL) and
Reynolds Homestead (RH) sites and
years where individual tree crowns
were delineated using drone laser
scanning data.

Additional delineations

Site (number of trees)
NE 2017 16
RH 2017 46
BL 2017 112
RH 2021 135

3.3. Predictor variable selection

3.3.1. Models including tree size metrics only

All 17 ITC variables were considered important for both DBH and stem volume predictor
variable selection. Model tuning for DBH determined the optimal MTRY value was 2
(OOBError = 1.82). Model tuning for stem volume determined the optimal MTRY value
was 2 (OOBError = 6.89). The six most important RF model predictors ranked by impor-
tance (percentage increase in mean squared error) for both metrics are summarized in
Table S.2. The predictors selected via the backward-stepwise LMR approach and assess-
ment of VIF are summarized in Table S.3.

3.3.2. Models including tree size and competition index metrics

All 30 ITC variables were considered important for both DBH and stem volume predictor
variable selection. Model tuning for DBH determined the optimal MTRY value was 2
(OOBError = 1.59). Model tuning for stem volume determined the optimal MTRY value
was 2 (OOBError =5.18). The six most important RF model predictors ranked by impor-
tance (percentage increase in mean squared error) for both metrics are summarized in
Table S.4. Likewise, the predictors selected via the backward-stepwise LMR approach and
the assessment of VIF are summarized in Table S.5.
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Table 5. Individual tree metrics derived from DLS data collected from an unoccupied aerial vehicle
compared to field measurements for the sites (Nelder (NE), Bladen Lakes (BL) and Reynolds
Homestead (RH)) and years when measurements were completed. Normalized Bias (NBias) is noted
in the Bias column.

Metric Site Adj. R? RMSE NRMSE (%) Bias
Total tree height (m) Overall 0.87 1.19 6.52 0.28
(1.53%)

NE 2017 0.67 0.98 9.10 0.33

RH 2017 0.82 0.78 6.25 —0.12

BL 2017 0.76 0.65 6.78 0.23

RH 2021 0.70 0.92 8.44 0.31

Height to the live crown (m) Overall 0.74 1.54 12.44 0.73
(5.95%)

NE 2017 0.60 1.67 13.65 1.28

RH 2017 0.53 1.39 11.85 0.85

BL 2017 0.42 1.28 12.16 0.86

RH 2021 0.50 1.98 14.24 0.75

Crown area (m?) Overall 0.33 4.81 15.65 -0.40
(-1.36%)

NE 2017 0.52 5.04 14.91 —1.65

RH 2017 0.27 4.07 14.90 —0.79

BL 2017 0.27 4.87 14.64 1.23

RH 2021 0.31 5.68 14.20 -1.26

3.4. Model validation

3.4.1. Models including tree size metrics only

We evaluated predictions against the validation dataset for models generated using
individual tree size metrics only. The LMR models had a slightly greater adjusted R* and
a slightly lower RMSE than the RF models (Table 6). Bias values were all low (NBias <0.2%)
implying all of the models were unbiased. The predictions are illustrated in Figure S.3 (A
for RF and B for LMR), where more uncertainty is evident at the extremes of DBH range
(<10 or >30 cm).

The values given in Table 6, suggest there was a difference in correlation between RF
and LMR when predicting individual tree stem volume. Stem volume distribution was
evenly distributed for stems <0.3 m3, but uncertainty increases for larger volumes (Figure
S.3). Predicted RF model stem volumes for these stems were distributed evenly around
the 1:1 line. This was true for the LMR predictions only when stem volume was below 0.2
m?>, increased uncertainty is evident for large stem sizes.

3.4.2. Models including tree size and competition index metrics
All models created using tree size and Cl metrics produced higher levels of accuracy in
terms of higher adjusted R® and lower RMSE values. When evaluated against the

Table 6. Individual tree metrics (stem diameter (DBH) and volume) derived from drone laser scanning
data and estimated using the Random Forest model (RF) or linear multiple regression (LMR) compared
to validation data for models including tree size metrics only.

Metric Adj. R? RMSE NRMSE (%) Bias NBias (%)
DBH RF (cm) 0.51 3.96 10.28 -0.07 -0.17
DBH LMR(cm) 0.56 3.79 9.83 -0.07 -0.19

Stem volume RF (m3 0.66 0.08 8.73 0.00 0.03

)
Stem volume LMR (m°) 0.59 0.09 9.14 0.00 0.09
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Table 7. Individual tree metrics (diameter (DBH) and volume) derived from drone laser scanning data
and estimated using the Random Forest model (RF) or linear multiple regression (LMR) compared to
validation data for models including tree size and competition index metrics.

Metric Adj. R? RMSE NRMSE (%) Bias NBias (%)
DBH RF (cm) 0.64 3.05 7.95 -0.09 -0.23
DBH LMR(cm) 0.62 3.13 8.17 —-0.06 -0.22
Stem volume RF (m?) 0.77 0.06 6.70 0.00 -0.01
Stem volume LMR (m?) 0.70 0.07 7.58 0.00 0.03

validation dataset, the RF models had a slightly greater adjusted R? and a slightly lower
RMSE than the LMR models (Table 7). RF and LMR models slightly overestimated the field
measured DBH (0.06 to 0.09 cm bias) (Table 7), particularly for DBH values less than 12 cm
(Figure 6a for RF, Figure 6b for LMR).

Stem volume distribution was uneven where most stems were <0.3 m> (Figure 6c for
RF, Figure 6d for LMR). Predicted RF model stem volumes for these stems were distributed
evenly around the 1:1 line. For the LMR model, the uncertainty increased for stems >0.3
m>. The LMR model exhibited non-linearity between 0.0 and 0.2 m>.

The RF and LMR stem volume and LMR DBH models were not significantly different
from field measurements based on the Welch's paired t-test implying that the two
populations had similar means (Table S.6). All KS tests were significant, indicating that
the predicted and measured datasets do not have the same distribution.

DBH ECDF distributions for RF and LMR models deviated from observed values at the
distribution extremes (Figure S.4A and S.4B, respectively). Predicted values exceeded
observed at high DBH values and underestimated DBH at lower values. The stem volume
RF model ECDF distribution followed the same patterns (Figure S.4C). The stem volume
LMR model ECDF distribution was inconsistent in that the predicted distribution fell
above and below the observed data throughout the distribution (Figure S.4D).

4. Discussion
4.1. Delineation of individual tree crowns

Our method to delineate ITCs from DLS derived VO;,4ex and CHM raster and marker-based
segmentation correctly located 61% to 99% of field-measured trees, depending on stem
planting density. Our commission errors were generally low; however, sites with large
total tree height variance had more commission error. Omission and commission error
with ITC delineation are common, and our results compared favourably with a range of
ITC delineation methods including raster and point-cloud segmentation with reported
detection rates from 25% to 119% of codominant canopy trees (Kaartinen et al. 2012; Yao,
Krzystek, and Heurich 2012; Silva et al. 2016; Wan Mohd Jaafar et al. 2018). Our VO;;4ex Was
inspired by (Lee and Lucas 2007) work with HSCOI, and they reported accuracies of R* =
0.82, with an RMSE = 133 stems ha™ ' at the plot scale.

Planting density (TPH) influenced ITC delineation where high planting density resulted
in lower accuracy. For example, at 1,853 trees ha™", 61% to 79% of stems were correctly
located, whereas at 618 trees ha™' 97% to 99% were correctly located across our study
sites. As stated in Krlicek et al. (2020), errors of omission were more common for smaller
trees than larger ones. We must assume that smaller tree crowns, particularly when
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Figure 6. Models derived from ITC competition index and tree size metrics. DBH predicted using the
Random Forest (RF) method for the validation dataset (a). DBH volume predicted using the LMR
method for the validation dataset (b). Stem volume predicted using the RF method for the validation
dataset (c). Stem volume predicted using the LMR method for the validation dataset (d). The red-line
denotes the potential 1-to-1 line.

planted in high density in the current context, are often indistinguishable from their
neighbours (Zhen, Quackenbush, and Zhang 2016). This implies that changes in acquisi-
tion types or delineation methods would be required under high stem densities to
improve accuracy. While the omission error for large crowns was relatively small, here
we assume omission was likely related to irregular crown DLS return density or over-
topping (potentially caused by ramicorn branching in loblolly pine genotypes, e.g. Xiong
et al. 2014) where an ITC class would represent a cluster of trees. Similarly, ITC delineation
was less accurate at BL likely due to greater height variation resulting in a more variable
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canopy structure compared to our other sites (see Table 2). Kaartinen et al. (2012) noted
that ITC delineation methods were sensitive to forest canopy structural complexity where
there was a reduced likelihood of correctly locating a short tree next to a tall neighbour.
All other metrics (total tree height, HTLC, horizontal crown diameter, DBH and stem
volume) were dependent on accurate ITC delineation, so errors for these variables will
be greater with high density and variable canopies. Stand density and canopy variability
may be better managed by segmenting the point-cloud, and given our high pulse-density
datasets, future modifications to our ITC delineation approach may be warranted. An
alternative approach, proposed by Yao, Krzystek, and Heurich (2012), is to segment the
ALS point-cloud using a modification of a normalized cut segmentation to classify
heterogeneous canopies into ITCs which may improve ITC delineation.

4.2. Individual tree crown metrics

Our ITC total height RMSE results were similar to the greatest accuracies reported (Table 8)
in the literature. Sumnall et al. (2022) found that ITC total height RMSE decreased as pulse
density increased. We used high pulse densities (>300 pulses m™) and overestimated
height for RH and NE 2017 by 0.23 to 0.33 m but underestimated them at BL by 0.12 m.
Assuming there was no field measurement error, this discrepancy may be caused by
incorrectly estimated ground heights. The BL site was bedded, whereas the RH and NE
sites were not. The beds were generally about 30-40 cm high, and these local differences
in elevation may not have been accounted for correctly in ground classification.
Differences in the time of data collection, particularly for RH 2021, may also account for
some errors.

Our approach for estimating ITC HTLC from DLS (Adj. R? 0.74, RMSE 1.54 m) compared
well with other research (Table 8). Our HTLC bias was 0.73 m, implying an overestimation.
Several potential explanations for this exist. First, our method was not sophisticated
enough to discriminate among variable point densities, variably located foliage clusters,
and noise encountered beneath the canopy where understory or crown components
could not be reasonably classified within the point-cloud. Another explanation is that the
number of returns from the lower canopy was not sufficient to describe lower canopy
features, implying that the features we were estimating were not well represented even
with high pulse densities. Finally, our HTLC field protocol entails measuring the height
where the lowest live branch meets the main stem, which was different from our HTLC
estimation method. Our HTLC estimation method identified the foliage associated with
the lowest live branch or the bottom of the crown. Arguably, our HTLC method gives the
height above which most of the foliage was found.

Our crown area estimates (Adj. R* 0.33 and RMSE 4.81 m?) compared poorly with
previous studies that had an approximate (after converting to the area of a circle) RMSE
of 1.18 to 3.39 m? (Table 8). Except for BL, we generally underestimated the crown area.
With reference to Sumnall et al. (2022), we assume that the error was associated with the
planting density. At the same time, crown area and closure varied with the relative effect
of the management treatments, exhibiting differences in crown structural characteristics
(as in Yanez, Seiler, and Fox 2017). These factors may influence ITC delineation as crowns
may be obscured by overlap with neighbouring crowns. This result implies that our
approach based on segmenting features from a CHM may be insufficient to characterize
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Table 8. Statistics (root mean square error (RMSE), coefficient of determination (R?) and correlation
coefficient (r)) from the literature where individual tree crown (ITC) metrics (total height, height to live
crown (HTLC) and horizontal crown area) were estimated using LiDAR data from an airborne (ALS) or
drone (DLS) laser scanner.

Metric Overall accuracy References
ALS ITC total height (m) ® RMSE 1.19 m (R? 0.87); This study;
® RMSE 1.1 m (R? 0.78 to 0.86); (Kwak et al. 2007);
® RMSE 1.3 m; (Vastaranta et al. 2014);
® RMSE 2.64 to 2.81 m (r 0.87); (Falkowski et al. 2006);
® RMSE 1.85 m (R* 0.81); (Lee and Lucas 2007);
® RMSE 4.15 to 4.27 (R? 0.93 t0 0.96); (Jakubowski et al. 2013);
DLS ITC total height (m) ® RMSE 1.19 (R? 0.89); This study;
® RMSE 1.51 m (r 0.91); (Corte et al. 2020a);
® RMSE 1.44 m (R? 0.86); (Gyawali et al. 2022);
ITC HTLC (m) ® RMSE 1.54 to 1.62 m (R? 0.72-0.92); (Kato et al. 2009);
(low point density 4-20 ® RMSE 1.62 m (R? 0.88); (Luo et al. 2018);
points m2) ® RMSE 1.25 m (R? 0.4); (Chamberlain, Meador, and Thode
2021);
ITC HTLC (m) ® RMSE 1.54 m (R? 0.74); This study;
(high point density 150-535m™)  ® RMSE 3.55 to 3.66 m (R? 0.20 to (Arkin et al. 2021);
0.31); (Liu et al. 2021);
® RMSE 1.13 m (R? 0.98);
ITC crown diameter (m) ® RMSE *2.47 m (R? 0.33); This study;
® RMSE 1.29 to 2.02 m (r 0.2 to 0.85); (Falkowski et al. 2008);
® RMSE 1.68 m (R* 0.57); (Popescu and Zhao 2008);
® RMSE 1.23 m (R? 0.87); (Ferraz et al. 2016);
® RMSE 1.4 m (R? 0.84 to 0.86); (Wan Mohd Jaafar et al. 2018).

*Circle area converted to diameter.

crown area given the complex 3D nature of tree crowns (Silva et al. 2016). Finally, field
measurements capturing crown diameter in two directions may not correspond to crown
area estimates calculated as an ellipse.

4.3. Statistical estimates of stem diameter at breast height and volume

For all models, the inclusion of ClI metrics improved the estimation accuracy, where R2
values increased by 0.05 to 0.13 and NRMSE values decreased by 1.6% to 2.3%. The
remainder of this section will discuss only those models that included Cl metrics. The RF
and LMR DBH models shared four predictor variables: (i) the Cl calculated for ITC crown
areq; (i) the Cl calculated for ITC total tree height; (iii) horizontal crown volume for the top
50% of total height; and (iv) ITC total height. Not surprisingly, then, the RF and LMR
models produced very similar results in terms of adj. R?, RMSE and bias with the validation
dataset (Table 7). Cls derived from field data enhanced stem DBH and volume predictive
estimates (e.g. Pretzsch, Biber, and Dursky 2002; Mailly, Turbis, and Pothier 2003; von
Oheimb et al. 2011), it would appear that our ITC-derived metrics also improve estimation
accuracy. Previous estimates of tree DBH have used ITC metrics as inputs to predictive
models (e.g. Popescu 2007) and used ALS covariates summarizing the distribution of
returns within the footprint of that delineated crown as predictor variables (Dalponte,
Bruzzone, and Gianelle 2011). Yao, Krzystek, and Heurich (2012) and Wu et al. (2015)
employed ITC metrics derived from the delineated tree 3D extent similar to our metrics
and reported comparable RMSEs to our study.
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Our estimates of individual tree DBH accuracy were, overall, unbiased and compared
favourably to those found in the surrounding literature (see Table 9). Our field measured
DBH ranged from 5 to 35 cm, which was considerably less than other studies (Yao et al.,
2012, ~10-70 cm; and Wu et al., 2015, ~10-70 cm). We observed our largest deviations
(between predicted and observed) from the validation samples at the distribution
extremes where the training samples were sparse (Figure S.4). An increase in DBH range
would likely improve model fit (da Silva and Seixas, 2017) and improve RF model utility,
which cannot extrapolate beyond the training range. Similarly, sparse training samples
may cause model underperformance (Coulston et al., 2016). Furthermore, the inclusion of
a larger DBH range in our analysis would allow exploration of the non-linear trends
observed in the LMR model.

Our RF and LMR stem volume models produced similar results although the LMR
method exhibited non-linearity for small stem volumes. Both included Cl metrics
and shared two predictors (i) ITC total height and (ii) canopy volume for the top
50% of total height. We had few stem volumes >0.6 m*® which may limit model
predictive capabilities. Similar to our results, Chen et al. (2007) and Rubilar et al.
(2008) found that the basal area was exponentially related to crown geometric
volume and the stem volume was proportional to this. A summary of predictive
accuracy examples within the surrounding literature is presented in Table 9, where
our results compare favourably, and generally have a lower RMSE. Other studies
have used ALS ITC total height (Silva et al. 2017; Corte et al. 2020b), ITC 3D crown
volume, total tree height, and horizontal crown area metrics (Yao, Krzystek, and
Heurich 2012; and Wu et al., 2015) and machine learning techniques (Corte et al.
2020b) to estimate individual tree stem volume. These studies had a much larger
range of stem volume (up to 6 m®) and generally reported higher R?> and RMSE
values. Table 9 summarizes values for both homogenous plantation forest and
(semi-)natural forest ecosystems, in particular for the latter, Yao, Krzystek, and
Heurich (2012) and Wu et al. (2015) include summaries of models generated for
both coniferous and deciduous species. While there is no doubt a need for some

Table 9. Statistics (root mean square error (RMSE), normalized RMSE (NRMSE), mean average error
(MAE) and coefficient of determination (R?) from the literature where individual tree crown (ITC)
metrics (diameter at breast height (DBH) or stem volume) were estimated using LiDAR data from an
airborne (ALS) or drone (DLS) laser scanner.

Metric Overall accuracy

References

DBH RMSE 3.05-3.13 cm (R? 0.62-0.64); This study;
RMSE 8.7 cm (R? 0.84); (Lo and Lin 2012);
RMSE 4.08 to 4.58 cm (R? 0.3); (Corrao, Sparks, and Smith 2022);
RMSE 2.96-6.52 cm (R? 0.66-0.95); (Wu et al. 2015);
RMSE 4.15-5.33 cm (R? 0.65-0.88); (Yao, Krzystek, and Heurich 2012);
RMSE 3.73-4.16 cm (R? 0.28-0.41) (Corte et al. 2020b);

Stem volume RMSE 0.06-0.07 m* (R? 0.7-0.77) This study;

RMSE 0.91 m® (R? 0.9);

RMSE 0.15 m® (R? 0.4);

MAE 0.59-0.65 m> (R* 0.67-0.73);
RMSE 0.31-0.75 m® (R? 0.62-0.96);
RMSE 0.43-0.6 m® (R? 0.66-0.91);
NRMSE 8.48-10.13% (R* 0.97-0.98);
RMSE 0.14-0.15 m® (R? 0.43-0.5)

(Lo and Lin 2012);
(Corrao, Sparks, and Smith 2022);
(Dalponte, Bruzzone, and Gianelle 2011);
(Wu et al. 2015);

(Yao, Krzystek, and Heurich 2012);

(Silva et al. 2017);

(Corte et al. 2020b);
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degree of species specificity, individual tree crown metrics, similar to those used in
this research, can be used in various contexts. The use of ITC derived Cls may be of
potential benefit in these contexts as well.

4.4. Considerations and future work

Our results demonstrated the utility of including ITC dimensions and Cl to improve
estimates of tree DBH and individual tree stem volume. The continuous spatial coverage
of DLS remote sensing data allowed us to identify neighbours automatically in 3D space
to a greater degree than a typical field survey. However, more complicated canopy
structures, like suppressed trees, may be missed with our method using a CHM to
determine the horizontal extent. Yao, Krzystek, and Heurich (2012) proposed a method
to segment the point-cloud directly to classify suppressed and understory coniferous or
deciduous trees, a capability likely needed for operational forests. Non-homogeneous
species forest contexts complicate the application of these approaches; Moe et al. (2020),
however, demonstrated a fusion of UAV colour-imagery and ALS derived metrics to
classify ITCs in mixed forest sites and model DBH for specific species. With improvements
in DLS equipment, sufficient pulse densities and large-scan angle ranges have allowed the
classification of specific tree features, such as the tree stem (Yao, Krzystek, and Heurich
2012; Neuville, Bates, and Jonard 2021). This implies that metrics from these features
could be included in the future modelling in addition to the potential for direct
measurements.

Our ability to delineate ITC objects was influenced by stem density and crown size
(Sumnall et al. 2022). Our relatively small plots, homogeneous genotypes, and spatial
arrangements differ from operational forests although our site conditions covered a wide
range of silvicultural treatments prior to thinning, and our methods should be relatively
robust in similar conditions. Kaartinen et al. (2012) and Zhen et al. (2016) demonstrated
that the effectiveness of different ITC methods was dependent on the applied context.
When used with different management conditions or context, our method’s effectiveness
is unknown.

The different genotypes existing in the current research context have different crown
architectures. The degree to which neighbouring tree crowns overlap can have
a marked impact on tree survival and growth (Zambrano et al. 2019). The degree to
which individual tree crowns vertically overlap, or interlock, was not considered in the
current research. As such, the competition of neighbour trees may not be completely
accounted for. Future work could therefore attempt to estimate these attributes and
evaluate their importance.

Within the context of the current study, we assumed that the metrics produced
from two sensor systems were correct and analogous. Previous research has explored
the issue of differences in acquisition parameters on prediction accuracy (e.g.
Hopkinson 2006; Naesset 2009). Acquisition-specific considerations may be a source
of uncertainty, given our differences in total height estimation between sites.
Acquisitions using DLS and ALS vary in terms of sensor, altitude, laser power and
footprint that may influence a system'’s ability to resolve a return (Goodwin, Coops,
and Culvenor 2006; Shao et al. 2019; Marino et al. 2022). Different sensors can also
have different canopy penetration capabilities, even when applied at the same location
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(Kamoske et al. 2019; Yu et al. 2020). The use of different processing methods can also
lead to differences in predictions (e.g. Van Leeuwen and Nieuwenhuis 2010). We used
ground-based measurements as our reference. We did not address any errors asso-
ciated with those measurements. Likewise, the collection of data at different times -
for example, the difference in field data and DLS acquisition times for RH 2021 - is
a likely source of uncertainty.

With high pulse densities available from ALS or DLS, the identification of individual
stems directly from the point-cloud is possible (Mongus and Zalik 2015; Neuville, Bates,
and Jonard 2021). Returns from 1.3 m above ground (typical DBH measurement height)
are sparse and are dependent upon laser penetration to these features, implying that
dense canopy occlusion would hinder these methods. Estimating these features directly
would benefit forest management. Work to evaluate the inclusion of partial stem metrics —
for example, if return density further up the stem could be consistently achieved - would
improve individual tree size estimates. Lamb et al. (2018) demonstrated the use of ALS
derived inventory metrics as inputs to conventional growth models, which illustrates the
potential of such datasets for prediction.

5. Conclusions

In conclusion, DLS (and ALS) data have great potential to monitor forests because of their
ability to characterize individual tree parameters. We presented a novel method to
identify ITCs and their neighbours and extract dimensional metrics (total tree height,
HTLC, horizontal crown area, DBH and stem volume) in managed loblolly pine stands with
variable planting densities and crown architectures. Our results provide evidence that the
inclusion of ITC size and Cl improves stem-size estimation accuracy, noticeably when
compared to models using tree size metrics alone. The neighbourhood CI metrics can be
computed from any ITC metric and are likely compatible with ALS data acquired over
plantation pine forest. Future research is warranted in further developing these
approaches for other environmental context and ALS datasets. Due to the success of
these ITC metrics, airborne remote sensing’s ability to provide accurate, and near-
complete, inventories of a forest area holds a great deal of potential in terms of forest
management and planning

5.1. Research highlights

e We delineated individual trees from three unoccupied aerial vehicle laser scanner
datasets;

¢ We developed a new method to assess the competitive neighbourhood around each
tree;

e Our models provide LiDAR-derived estimates of individual tree stem diameter and
volume;

e A combination of tree crown size and competition metrics provided the best
predictions of stem diameter and volume;

e Random Forest predictions only slightly outperform those from linear regression.
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