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The Fokker–Planck equation describes the evolution of the probability density associated with 
a stochastic differential equation. As the dimension of the system grows, solving this partial 
differential equation (PDE) using conventional numerical methods becomes computationally 
prohibitive. Here, we introduce a fast, scalable, and interpretable method for solving the 
Fokker–Planck equation which is applicable in higher dimensions. This method approximates 
the solution as a linear combination of shape-morphing Gaussians with time-dependent means 
and covariances. These parameters evolve according to the method of reduced-order nonlinear 
solutions (RONS) which ensures that the approximate solution stays close to the true solution 
of the PDE for all times. As such, the proposed method approximates the transient dynamics as 
well as the equilibrium density, when the latter exists. Our approximate solutions can be viewed 
as an evolution on a finite-dimensional statistical manifold embedded in the space of probability 
densities. We show that the metric tensor in RONS coincides with the Fisher information matrix on 
this manifold. We also discuss the interpretation of our method as a shallow neural network with 
Gaussian activation functions and time-varying parameters. In contrast to existing deep learning 
methods, our method is interpretable, requires no training, and automatically ensures that the 
approximate solution satisfies all properties of a probability density.

1. Introduction

Unlike deterministic dynamical systems, the evolution of stochastic systems cannot be unambiguously described based solely 
on the initial condition. Instead one studies the probability distribution of the state over time [46]. In most problems of practical 
interest, the evolution of the probability distribution cannot be determined analytically and therefore it needs to be approximated 
numerically.

For stochastic differential equations (SDEs), one can run a large ensemble of numerical simulations with different initial conditions 
and different realizations of the noise. Subsequently, the probability distribution of the system state can be estimated using these 
large-scale Monte Carlo simulations [44]. Alternatively, one can numerically solve the Fokker–Planck equation which is a partial 
differential equation (PDE) describing the evolution of the probability density associated with the state of the system [38].

The computational cost associated with both these approaches becomes quickly prohibitive as the dimension 𝑑 of the system 
grows [13,33]. For instance, direct Monte Carlo methods need (𝜖−𝑑 ) samples to reach an error tolerance 0 < 𝜖 ≪ 1 [35,36,49]. On 
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the other hand, discretizing the Fokker–Planck equation requires (𝑁𝑑 ) collocation points, where 𝑁 is the number of points in each 
direction. In either case, the computational cost grows exponentially with the dimension of the system.

We note that, for SDEs with special properties, there exist tailored methods with manageable computational cost in higher 
dimensions. These include SDEs with slow-fast dynamics [31] and Hamiltonian SDEs in equilibrium [47]. We refer to [13] for 
a review of these special cases. Nonetheless, these methods are not applicable to general SDEs and often only approximate the 
equilibrium density, not the transient dynamics.

The excessive computational cost of solving PDEs in higher dimensions is not specific to the Fokker–Planck equation; discretizing 
any PDE in higher dimensions is computationally prohibitive. Only recently, deep learning methods have been able to overcome this 
curse of dimensionality [22,45]. In this approach, the solution of the PDE is approximated by a deep neural network. The parameters 
of the network are trained so that its output solves the PDE approximately. Being mesh-free, deep learning methods are better suited 
for solving PDEs in higher dimensions.

There is a rapidly growing list of such deep learning methods. For instance, physics informed neural networks (PINNs) train a 
deep neural network by minimizing the residual of the error at prescribed collocation points [40]. Deep Galerkin method (DGM) 
takes a similar approach but instead of using collocation points, it minimizes the functional norm of the error [45]. Consequently, 
since DGM does not use collocation points, it is specially suitable for solving PDEs in higher dimensions. Another notable example is 
neural operators [27] which learn maps between infinite-dimensional Banach spaces and can be used to solve PDEs [30]. We refer to 
Beck et al. [7] for a recent review of deep learning methods for solving PDEs. Deep neural networks have already been used to solve 
the Fokker–Planck equation [6,14,50,54]. In spite of their impressive capabilities, these deep learning methods suffer from limited 
interpretability; the neural network is a black box, mapping initial-boundary conditions to the PDE’s solution.

Here, we introduce an alternative method based on reduced-order nonlinear solutions (RONS). RONS approximates the solution 
of a PDE as a linear combination of shape-morphing modes [1–3]. In contrast to existing spectral methods, where the modes are static 
in time, RONS allows the modes to change shape and hence adapt to the solution of the PDE. This is achieved by allowing the modes 
to depend nonlinearly on a set of time-dependent shape parameters. The optimal evolution of the parameters are determined by 
solving a system of ordinary differential equations (ODEs), known as the RONS equation. In the case of the Fokker–Planck equation, 
we choose Gaussians as our shape-morphing modes. The corresponding shape parameters are the mean and covariance of each mode 
which are allowed to change over time in order to better approximate the solution of the PDE.

As we discuss in Section 2.1 below, our method can be interpreted as a shallow neural network. However, it has several advantages 
compared to existing deep learning methods:

1. Interpretability: Our method uses a linear combination of Gaussians with time-varying means and covariances. As such, the 
approximate solution can be easily interpreted in terms of the probability distribution of the system state. Further, a posteriori 
analysis of the solution is straightforward.

2. No training required: The parameters of our solution evolve according to known and computable ODEs. As a result, no training 
(i.e., numerical optimization) and no data are needed for determining the parameters of the network.

3. Conservation of probability: In RONS, it is straightforward to ensure that the approximate solution respects the conserved 
quantities of the PDE. In the case of the Fokker–Planck equation, this conserved quantity is the total probability, i.e., the integral 
of the probability density over the entire state space. As a result, our solutions are guaranteed to satisfy the properties of a 
probability density function.

Our method can easily be extended to be used with deep neural networks [17]. However, we intentionally use its shallow version to 
maintain its interpretability and low computational cost. The universal approximation theorem of Park and Sandberg [37] guarantees 
that probability densities can be approximated with such shallow neural networks to any desirable accuracy.

1.1. Original contributions

We briefly summarize our original theoretical contributions:

1. We develop the theory of shape-morphing modes for application to Fokker–Planck equations. We show that our shape-morphing 
approximate solutions can be interpreted as a shallow neural network with time-varying weights and biases.

2. Connection to Fisher information: We show that the metric tensor in RONS is identical to the Fisher information metric if a 
weighted 𝐿2 metric is used.

3. Computational complexity: We show that symbolic RONS only requires 9 symbolic computations regardless of the dimension of 
the system or the number of modes used in the approximate solution.

4. Collocation RONS: When symbolic computing is not feasible, we develop a collocation point method to accurately evolve the 
shape-morphing solution.

In addition to the above theoretical contributions, we present four numerical examples demonstrating the feasibility, accuracy, 
2

and computational efficiency of our method.
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1.2. Outline

The remainder of this paper is organized as follows. In Section 2, we review the necessary mathematical preliminaries, describe 
the shape-morphing solutions which approximate the Fokker–Planck equation, and discuss their interpretation as a shallow neural 
network. Section 3 reviews RONS for the optimal evolution of the shape parameters. In Section 4, we discuss the relationship between 
our method and the Fisher information metric. The performance of our method is demonstrated on several numerical examples in 
Section 5. Finally, we present our concluding remarks in Section 6.

2. Mathematical preliminaries

Consider the Itô stochastic differential equation,

d𝐗 = 𝐅(𝐗, 𝑡)d𝑡+ 𝜎d𝐖, 𝐗(0) =𝐗0 (1)

where 𝐗(𝑡) ∈ ℝ𝑑 denotes the state vector at time 𝑡 ≥ 0, 𝐅 ∶ ℝ𝑑 → ℝ𝑑 is a sufficiently smooth vector field, and 𝐖(𝑡) is the standard 
Wiener process in ℝ𝑑 with intensity 𝜎 > 0. The initial condition 𝐗0 can itself be uncertain and drawn randomly from a probability 
density 𝑝0(𝐱). Although here we only consider the homogeneous additive noise, the following framework can easily be extended to 
the case of inhomogeneous multiplicative noise where the noise intensity matrix 𝜎(𝐗, 𝑡) ∈ℝ𝑑×𝑑 depends on the state.

The probability density 𝑝(𝐱, 𝑡) corresponding to the SDE (1) satisfies the Fokker–Planck equation,

𝜕𝑝

𝜕𝑡
= 𝑝 ∶= −∇ ⋅ [𝐅𝑝] + 𝜈Δ𝑝, 𝑝(𝐱,0) = 𝑝0(𝐱), (2)

where the diffusion coefficient is given by 𝜈 = 𝜎2∕2 and  is a linear differential operator which depends on the vector field 𝐅(𝐱, 𝑡). 
Being a probability density, the solution 𝑝 is non-negative and belongs to the Lebesgue space 𝐿1(ℝ𝑑 ) [26]. Furthermore, the norm 
of the solution in this space is conserved and equal to unity, i.e.,

‖𝑝(⋅, 𝑡)‖𝐿1 = 1, (3)

for all time 𝑡 ≥ 0.

As discussed in the Introduction, when the dimension 𝑑 is large, discretizing the Fokker–Planck equation becomes computationally 
prohibitive. To overcome this curse of dimensionality, we use a mesh-free method by considering an approximate solution of the 
form,

𝑝̂(𝐱,𝜃𝜃𝜃(𝑡)) =
𝑟∑

𝑖=1
𝐴2
𝑖 (𝑡) exp

[
−
|𝐱 − 𝐜𝑖(𝑡)|2

𝐿2
𝑖
(𝑡)

]
, (4)

which is a sum of Gaussians. Here 𝐴2
𝑖
(𝑡) ∈ℝ+ is the amplitude of the 𝑖-th mode, 𝐿2

𝑖
(𝑡) ∈ℝ+ is its variance, and 𝐜𝑖(𝑡) ∈ℝ𝑑 is its mean. 

The collection of amplitudes, variances and means constitutes the time-dependent shape parameters 𝜃𝜃𝜃 =
{
𝐴𝑖,𝐿𝑖, 𝐜𝑖

}𝑟
𝑖=1. Therefore, 

the approximate solution contains a total of 𝑛 = 𝑟(𝑑 + 2) parameters.

The key to the success of our method is the fact that the parameters 𝜃𝜃𝜃(𝑡) are allowed to change over time. This enables the 
modes in the approximate solution (4) to change their shape and location, hence adapting to the solution of the PDE. Of course, the 
immediate question is how to evolve the parameters 𝜃𝜃𝜃(𝑡). As we review in Section 3, RONS evolves the parameters according to a 
set of ordinary differential equations. These ODEs are designed such that the solution 𝑝̂(𝐱, 𝜃𝜃𝜃(𝑡)) approximates the dynamics of the 
Fokker–Planck equation. But before describing RONS, we first provide the justification for using Gaussian modes in the approximate 
solution (4).

2.1. Choice of the modes

The approximate solution (4) consists of a sum of Gaussians. In general, other nonlinear functions can be used as modes [1]. 
However, the Gaussian seems appropriate for the Fokker–Planck equation. First, note that if the vector field 𝐅(𝐱, 𝑡) is linear in 𝐱, the 
stationary solution to the corresponding Fokker–Planck equation will be a Gaussian [46]. More importantly, the following universal 
approximation theorem guarantees that any function in 𝐿1(ℝ𝑑 ) can be approximated, to any desirable accuracy, with a function of 
the form (4).

Theorem 2.1 (Park and Sandberg [37]). Let 𝐾 ∶ ℝ𝑑 → ℝ be integrable, bounded and continuous almost everywhere. If ∫ℝ𝑑 𝐾(𝐱)d𝐱 ≠ 0, 
then the set{

𝑟∑
𝑖=1

𝐴𝑖𝐾

(
−
|𝐱 − 𝐜𝑖|2

𝐿2
𝑖

)
∶𝐴𝑖 ∈ℝ,𝐿𝑖 ≠ 0, 𝐜𝑖 ∈ℝ𝑑 , 𝑟 ∈ℕ

}
(5)
3

is dense in 𝐿𝑞(ℝ𝑑 ) for all 1 ≤ 𝑞 <∞.
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Fig. 1. Interpretation of the approximate solution (4) as a shallow neural network. Left: Network architecture. Right: Internal structure of each node.

The Gaussian function clearly satisfies all the conditions in Theorem 2.1. Therefore, any probability density function 𝑝 in 𝐿1(ℝ𝑑 )
can be approximated, to arbitrary accuracy, with a function 𝑝̂ of the form (4). More precisely, given 𝑝 ∈𝐿1(ℝ𝑑 ), for any 𝜖 > 0, there 
exist shape parameters 𝜃𝜃𝜃 and 𝑟 ∈ℕ such that ‖𝑝 − 𝑝̂‖𝐿1 < 𝜖. We point out that the amplitudes 𝐴𝑖 in the approximate solution (4) are 
squared to ensure that 𝑝̂ is non-negative as is required for a probability density.

Note that the covariance matrix of each Gaussian in (4) is diagonal. One could alternatively choose a non-diagonal covariance 
matrix Σ𝑖(𝑡) ∈ℝ𝑑×𝑑 and use the modes,

exp
[
−1
2
(𝐱 − 𝐜𝑖)⊤Σ−1

𝑖 (𝑡)(𝐱 − 𝐜𝑖)
]
. (6)

In higher dimensions, this would significantly increase the number of shape parameters per mode since the covariance matrix needs 
to be solved for simultaneously. Fortunately, Theorem 2.1 implies that diagonal covariance matrices are sufficient for approximating 
any probability density as long as the number of modes 𝑟 is large enough.

We point out that the approximate solution (4) can be viewed as a shallow artificial neural network with one hidden layer. As 
depicted in Fig. 1, this network takes the coordinates 𝐱 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑑 ) as inputs and returns 𝑝̂(𝐱, 𝜃𝜃𝜃(𝑡)) as output. The activation 
function of each node is a Gaussian with parameters 𝐿𝑖(𝑡) and 𝐜𝑖(𝑡). The amplitudes 𝐴2

𝑖
(𝑡) are the output weights of the neural 

network. This network differs from conventional neural networks in that its parameters are time-dependent. As such, it is a special 
type of an evolutional neural network first introduced in [17].

Furthermore, in conventional neural networks, the parameters are determined through the so-called training process where 
the parameters are iteratively tuned to match the training data. In contrast, here we use RONS to evolve the parameters so that 
the approximate solution 𝑝̂(𝐱, 𝜃𝜃𝜃(𝑡)) matches the dynamics of Fokker–Planck as closely as possible. This method, which requires no 
training and no data, is described in Section 3 below.

3. Evolution of parameters

RONS evolves the shape parameters 𝜃𝜃𝜃(𝑡) such that the discrepancy between the approximate solution (4) and the dynamics of the 
PDE (2) is instantaneously minimized [1]. Here, we briefly review this method in the context of Fokker–Planck equation and refer 
to Anderson and Farazmand [1,3] for further detail.

Note that since 𝑝̂ is an approximate solution 𝜕𝑡𝑝̂ does not necessarily coincide with the right-hand side 𝑝̂ of the Fokker–Planck 
equation. We define the residual

𝑅(𝐱;𝜃𝜃𝜃, 𝜃̇𝜃𝜃) =
𝑛∑

𝑗=1

𝜕𝑝̂

𝜕𝜃𝑗
(𝐱,𝜃𝜃𝜃)𝜃̇𝑗 −𝑝̂(𝐱,𝜃𝜃𝜃), (7)

where we used the fact that

𝜕

𝜕𝑡
𝑝̂(𝐱,𝜃𝜃𝜃(𝑡)) =

𝑛∑
𝑗=1

𝜕𝑝̂

𝜕𝜃𝑗
(𝐱,𝜃𝜃𝜃)𝜃̇𝑗 . (8)

RONS determines the evolution of the parameters 𝜃𝜃𝜃(𝑡) by minimizing the residual 𝑅 in an appropriate sense. We consider two 
options: 1) Symbolic RONS which minimizes a functional norm of the residual, and 2) Collocation RONS which minimizes the 
4

residual at prescribed collocation points. For completeness, we review each approach in Sections 3.1 and 3.2 below.



Applied Mathematics and Computation 467 (2024) 128489W. Anderson and M. Farazmand

3.1. Symbolic RONS

For a fixed 𝜃𝜃𝜃 and 𝜃̇𝜃𝜃, consider 𝑅(𝐱; 𝜃𝜃𝜃, 𝜃̇𝜃𝜃) as a map from 𝐱 to the real line, i.e., 𝑅(⋅; 𝜃𝜃𝜃, 𝜃̇𝜃𝜃) ∶ℝ𝑑 →ℝ. We assume that this map belongs 
to a Hilbert space 𝐻 with the inner product ⟨⋅, ⋅⟩𝐻 and the induced norm ‖ ⋅ ‖𝐻 . Here, we describe RONS for a general Hilbert space 
and in Section 4 we identify specific choices of the Hilbert space suitable for the Fokker–Planck equation.

In symbolic RONS, we minimize the residual norm ‖𝑅(⋅; 𝜃𝜃𝜃, 𝜃̇𝜃𝜃)‖𝐻 with the constraint that

𝐼(𝜃𝜃𝜃) ∶= ‖𝑝̂(⋅,𝜃𝜃𝜃)‖𝐿1 = 1. (9)

For the approximate solution (4), we have 𝐼(𝜃𝜃𝜃) =
∑𝑟

𝑖=1𝐴
2
𝑖
(𝜋𝐿2

𝑖
)𝑑∕2. This constraint is required to ensure that the approximate solution 

𝑝̂ is a probability density function. The resulting constrained optimization problem reads,

min
𝜃̇𝜃𝜃

‖𝑅(⋅;𝜃𝜃𝜃, 𝜃̇𝜃𝜃)‖2
𝐻
+ 𝛼|𝜃̇𝜃𝜃|2, (10a)

such that 𝐼(𝜃𝜃𝜃) = 1, (10b)

where 𝛼 ≥ 0 is a Tikhonov regularization parameter and | ⋅ | denotes the usual Euclidean norm. In the absence of regularization 
(𝛼 = 0), equation (10a) minimizes the instantaneous discrepancy between the rate of change of the approximate solution 𝜕𝑡𝑝̂ and 
the rate of change 𝑝̂ dictated by the PDE. The motivation for the Tikhonov regularization will become clear in Section 3.1.1. One 
may also formulate a finite-time version of the constrained optimization problem (10). However, this finite-time formulation tends 
to return unstable equations for the evolution of parameters 𝜃𝜃𝜃(𝑡) (cf. Appendix A of [1]).

As shown in [1,3], the solution to the constrained optimization problem (10) satisfies the system of ordinary differential equations,[
𝑀(𝜃𝜃𝜃) + 𝛼𝕀𝑛

]
𝜃̇𝜃𝜃 = 𝐟(𝜃𝜃𝜃) − 𝜆∇𝐼(𝜃𝜃𝜃), (11)

where the gradient is taken with respect to the parameters 𝜃𝜃𝜃, and 𝕀𝑛 denotes the 𝑛 × 𝑛 identity matrix with 𝑛 = 𝑟(𝑑 + 2) being the 
total number of parameters. We refer to equation (11) as symbolic RONS equation, or S-RONS for short. The motivation for the term 
symbolic will become clear at the end of this section.

The metric tensor 𝑀(𝜃𝜃𝜃) is a symmetric positive semi-definite matrix whose entries are given by

𝑀𝑖𝑗 =
⟨
𝜕𝑝̂

𝜕𝜃𝑖
,
𝜕𝑝̂

𝜕𝜃𝑗

⟩
𝐻

, 𝑖, 𝑗 ∈ {1,2,⋯ , 𝑛}. (12)

Note that, since the metric tensor is symmetric positive semi-definite, the matrix 𝑀(𝜃𝜃𝜃) + 𝛼𝕀𝑛 is invertible for all 𝛼 > 0. The vector 
field 𝐟 ∶ℝ𝑛 →ℝ𝑛 is defined by

𝑓𝑖 =
⟨
𝜕𝑝̂

𝜕𝜃𝑖
,𝑝̂

⟩
𝐻

, 𝑖 = 1,2,⋯ , 𝑛. (13)

Finally, 𝜆 ∈ℝ is a Lagrange multiplier defined by

𝜆 =
⟨∇𝐼, (𝑀 + 𝛼𝕀𝑛)−1𝐟⟩⟨∇𝐼, (𝑀 + 𝛼𝕀𝑛)−1∇𝐼⟩ , (14)

where ⟨⋅, ⋅⟩ denotes the usual Euclidean inner product.

As shown in [3], in the absence of regularization (𝛼 = 0), the ODEs (11) become stiff as the number of parameters 𝑛 grows. As a 
result, solving the ODEs using explicit integration schemes requires exceedingly small time steps. However, as we show in Section 5

below, even small values of the regularization parameter 𝛼 > 0 alleviate this stiffness issue.

3.1.1. Symbolic computing for S-RONS

Finally, we comment on the computational cost of the symbolic RONS equation (11). This equation requires computing func-

tional inner products ⟨⋅, ⋅⟩𝐻 over the Hilbert space 𝐻 . When feasible, we use symbolic computing to obtain closed-form symbolic 
expressions for the metric tensor 𝑀𝑖𝑗 and the right-hand side vector field 𝑓𝑖 ; hence the name symbolic RONS. This is desirable 
since symbolic expressions evade quadrature errors. Furthermore, the inner products do not need to be recomputed during time 
integration; the existing symbolic expressions are evaluated by substituting the updated values of the parameters 𝜃𝜃𝜃(𝑡).

However, as the number of parameters 𝑛 = 𝑟(𝑑 + 2) increases, brute-force computation of the inner products becomes expensive. 
Computing the metric tensor, for instance, requires (𝑛2) symbolic computations. Fortunately, as discussed in [3], the special struc-

ture of the metric tensor implies that a far smaller number of symbolic computations are required. More specifically, the entire metric 
tensor 𝑀 ∈ℝ𝑛×𝑛 can be evaluated by computing only 6 symbolic expressions. Similarly, the right-hand side vector field 𝐟 ∈ℝ𝑛 can 
be evaluated by computing only 3 symbolic expressions. Therefore, to form the entire S-RONS equation (11), only 9 symbolic com-

putation of inner products is needed. Note that this number is independent of the number of terms 𝑟 in the approximate solution (4)

and the dimension 𝑑 of the SDE. As such, S-RONS is scalable to higher dimensions and the number of terms can be increased to 
5

achieved a desired accuracy at no significant additional computational cost.
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To better understand this low computational cost, note that the inner products in the metric tensor (12) involve the terms,

𝜕𝑝̂

𝜕𝐴𝑘

= 2𝐴𝑘 exp

[
−
|𝐱 − 𝐜𝑘|2

𝐿2
𝑘

]
, (15a)

𝜕𝑝̂

𝜕𝐿𝑘

=
2𝐴2

𝑘

𝐿3
𝑘

|𝐱 − 𝐜𝑘|2 exp
[
−
|𝐱 − 𝐜𝑘|2

𝐿2
𝑘

]
, (15b)

𝜕𝑝̂

𝜕𝑐𝑘,𝓁
=

2𝐴2
𝑘

𝐿2
𝑘

(
𝑥𝓁 − 𝑐𝑘,𝓁

)
exp

[
−
|𝐱 − 𝐜𝑘|2

𝐿2
𝑘

]
, (15c)

where 1 ≤ 𝑘 ≤ 𝑟, 1 ≤ 𝓁 ≤ 𝑑, and 𝑐𝑘,𝓁 denotes the 𝓁-th component of the vector 𝐜𝑘. Assume that we have computed symbolic 
expressions for the inner products ⟨⋅, ⋅⟩𝐻 between the terms in equation (15) with general indices (𝑘, 𝓁). Then the entire metric tensor 
𝑀 can be evaluated by substituting the numerical values of 𝐴𝑘, 𝐿𝑘, and 𝑐𝑘,𝓁 in the computed symbolic expressions. Therefore, only 
6 symbolic expressions need to be computed to populate the entire matrix 𝑀 .

Similarly, to compute the right-hand side vector (13), we only need to compute symbolic expressions for the inner product of 𝑝̂
with the three terms in equation (15). Therefore, the entire vector 𝐟(𝜃) can be evaluated using 3 symbolic expressions.

This observation leads to enormous computational savings as the number of dimensions and/or the number of terms in the 
approximate solution increase. For instance, in 𝑑 = 5 dimensions and with 𝑟 = 10 terms in the approximate solution, brute-force 
computation of the S-RONS equation would require symbolic computation of 𝑛(𝑛 + 3)∕2 = 2, 555 expressions, taking into account 
that the metric tensor 𝑀 is symmetric. However, as discussed above, in reality only 9 symbolic expressions need to be computed in 
symbolic RONS.

We emphasize that symbolic computing reduces the computational cost of the time integration as well. Since all terms are 
computed symbolically, as time integration progresses, these terms do not need to be recomputed; instead, they will be evaluated by 
substituting the new values of 𝜃𝜃𝜃(𝑡) into existing symbolic expressions.

For certain choices of the Hilbert space 𝐻 , existing symbolic computing software are unable to return a closed-form expression 
for the metric tensor or the right-hand side vector field. Collocation RONS addresses this issue.

3.2. Collocation RONS

Symbolic computation of the RONS terms in (11) may not be straightforward for certain Hilbert spaces 𝐻 and certain vector 
fields 𝐅(𝐱, 𝑡). Collocation RONS, or C-RONS for short, was developed in [3] to address this issue. In this approach, no functional inner 
products need to be computed and therefore the computational cost of forming the RONS equations reduces drastically.

In C-RONS, instead of minimizing the residual 𝑅 over the entire state space ℝ𝑑 , we minimize it over a set of prescribed collocation 
points {𝐱1, 𝐱2, ⋯ , 𝐱𝑁}. More precisely, we solve the constrained optimization problem,

min
𝜃̇𝜃𝜃

𝑁∑
𝑖=1

|𝑅(𝐱𝑖;𝜃𝜃𝜃, 𝜃̇𝜃𝜃)|2 + 𝛼|𝜃̇𝜃𝜃|2, (16a)

such that 𝐼(𝜃𝜃𝜃) = 1. (16b)

In the absence of regularization (𝛼 = 0), this optimization problem minimizes the sum of squares of the residual at the collocation 
points given the constraint that 𝐼(𝜃𝜃𝜃) = ‖𝑝̂(⋅, 𝜃𝜃𝜃)‖𝐿1 = 1. As in S-RONS, the regularization ensures that the resulting ODEs are not stiff 
and therefore can be integrated in time using explicit discretization schemes.

As shown in [3], the solution to the optimization problem (16) satisfies the system of ODEs,[
𝑀(𝜃𝜃𝜃) + 𝛼𝕀𝑛

]
𝜃̇𝜃𝜃 = 𝐟̃ (𝜃𝜃𝜃) − 𝜆∇𝐼(𝜃𝜃𝜃), (17)

where the collocation metric tensor is given by

𝑀(𝜃𝜃𝜃) = 𝐽⊤𝐽 , 𝐽𝑖𝑗 (𝜃𝜃𝜃) =
𝜕𝑝̂

𝜕𝜃𝑗
(𝐱𝑖,𝜃𝜃𝜃), 𝑖 ∈ {1,2,⋯ ,𝑁}, 𝑗 ∈ {1,2,⋯ , 𝑛}. (18)

The right-hand vector field ̃𝐟 ∶ℝ𝑛 →ℝ𝑛 is given by

𝐟̃ (𝜃𝜃𝜃) = 𝐽⊤𝐟(𝜃𝜃𝜃), 𝑓𝑖(𝜃𝜃𝜃) =𝑝̂|||𝐱=𝐱𝑖 , 𝑖 ∈ {1,2,⋯ ,𝑁}, (19)

and the Lagrange multiplier is defined by

𝜆 =
⟨∇𝐼, [𝑀(𝜃𝜃𝜃) + 𝛼𝕀𝑛]−1 𝐟̃⟩⟨∇𝐼, [𝑀(𝜃𝜃𝜃) + 𝛼𝕀𝑛]−1∇𝐼⟩ . (20)

We refer to equation (17) as the C-RONS equation. Note that, unlike S-RONS, forming the C-RONS equation does not require 
computing any functional inner products; it only needs point-wise evaluation at the collocation points 𝐱𝑖. Therefore, the C-RONS 
6

equation can be formed at a lower computational cost. However, this lower computational cost comes at the expense of accuracy 
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Fig. 2. Geometric illustration of the shape-morphing approximate solutions. The image of 𝑝̂ is a statistical manifold  ⊂ 𝐿1(ℝ𝑑 ). Any parameter value 𝜃𝜃𝜃 defines a 
point 𝑝̂(⋅, 𝜃𝜃𝜃) on this manifold, with the corresponding tangent space 𝑇𝑝̂.

since only the residual error at the collocation points is minimized, whereas S-RONS minimizes the error over the entire state space. 
Furthermore, a straightforward implementation of C-RONS is not scalable to higher dimensions. For instance, if the collocation points 
are chosen uniformly with 𝑁 points in each direction, C-RONS would require (𝑁𝑑 ) collocation points. Although this number can be 
reduced by choosing the collocation points adaptively [9], it cannot outperform S-RONS which requires only 9 symbolic computations 
regardless of the spatial dimension.

We conclude this section by commenting on the special case of S-RONS where the Hilbert space 𝐻 is the space of square integrable 
functions 𝐿2(ℝ𝑑 ) and no regularization is used (𝛼 = 0). Assume that we approximate the inner products (12) and (13) using Monte 
Carlo integration instead of symbolic computing, where the Monte Carlo samples 𝐱𝑖 ∈ ℝ𝑑 are drawn at random. In this case, the 
S-RONS equation (11) coincides with the C-RONS equation (17). We refer to [3] for the equivalence proof. Du and Zaki [17] used 
this Monte Carlo approximation with the collocation points distributed according to the uniform Lebesgue measure on ℝ𝑑 . Bruna et 
al. [9] proposed an adaptive sampling method where they draw their collocation points from a distribution which evolves in time. 
We point out that neither [17] nor [9] use regularization or ensure preservation of conserved quantities.

4. Choice of the metric

Recall that in symbolic RONS, the residual error is minimized with respect to the norm ‖ ⋅ ‖𝐻 defined on the Hilbert space 𝐻 . So 
far, we have stated the results for a general Hilbert space. In this section, we determine the specific choice of the Hilbert space for 
the Fokker–Planck equation.

To this end, we first view the approximate solution (4) as a map from the parameters 𝜃𝜃𝜃 ∈ℝ𝑛 to the space of probability densities 
𝐿1(ℝ𝑑 ),

𝑝̂ ∶ Ω→𝐿1(ℝ𝑑 )

𝜃𝜃𝜃↦ 𝑝̂(⋅,𝜃𝜃𝜃), (21)

where Ω ∈ ℝ𝑛 is the set of all admissible parameters 𝜃𝜃𝜃. As illustrated in Fig. 2, the image of the map 𝑝̂ forms an 𝑛-dimensional 
subset of the infinite-dimensional function space 𝐿1(ℝ𝑑 ). In fact, under certain assumptions, the image of 𝑝̂ is an immersed manifold 
 [1]. Note that, although the parameter 𝜃𝜃𝜃 is a finite-dimensional vector, the image 𝑝̂(⋅, 𝜃𝜃𝜃) is a function of 𝐱, belonging to the 
infinite-dimensional space 𝐿1(ℝ𝑑 ).

The set  is a statistical manifold in the sense that every point on it is a probability density function [34]. The intrinsic metric 
associated with a statistical manifold is the so-called Fisher information metric [20]. More specifically, the metric tensor associated 
with the Fisher information metric is given by

𝑔𝑖𝑗 (𝜃𝜃𝜃) = ∫
ℝ𝑑

𝜕 log 𝑝̂
𝜕𝜃𝑖

𝜕 log 𝑝̂
𝜕𝜃𝑗

𝑝̂d𝐱 = ∫
ℝ𝑑

1
𝑝̂(𝐱,𝜃𝜃𝜃)

𝜕𝑝̂

𝜕𝜃𝑖
(𝐱,𝜃𝜃𝜃) 𝜕𝑝̂

𝜕𝜃𝑗
(𝐱,𝜃𝜃𝜃)d𝐱. (22)

Measuring the distance between two probability distributions 𝑝̂(⋅, 𝜃𝜃𝜃1) and 𝑝̂(⋅, 𝜃𝜃𝜃2) according to the metric tensor (22) returns the 
Fisher–Rao distance between parameterized probability distributions [41,10].

Therefore, a suitable metric defined on the statistical manifold  is the Fisher information metric. Next, we return to the 
RONS equation (11). Recall that we stated the results for a general Hilbert space 𝐻 . Now, let us consider the specific Hilbert space 
𝐻 =𝐿2

𝜇(ℝ
𝑑 ), where 𝜇 = 𝑝̂−1d𝐱 is a weighted Lebesgue measure. In this case, the metric tensor (12) can be written explicitly as

𝑀𝑖𝑗 (𝜃𝜃𝜃) =
⟨
𝜕𝑝̂

𝜕𝜃𝑖
,
𝜕𝑝̂

𝜕𝜃𝑗

⟩
𝐿2
𝜇

= ∫
ℝ𝑑

1
𝑝̂

𝜕𝑝̂

𝜕𝜃𝑖

𝜕𝑝̂

𝜕𝜃𝑗
d𝐱. (23)

We notice that using the Hilbert space 𝐻 = 𝐿2
𝜇(ℝ

𝑑 ), the RONS metric tensor 𝑀𝑖𝑗 coincides with Fisher information metric (22). 
In other words, taking 𝐻 = 𝐿2

𝜇(ℝ
𝑑 ) induces the Fisher information matrix on the manifold  defined by the RONS approximate 
7

solution 𝑝̂. Therefore, for the Fokker–Planck equation, a suitable choice of the Hilbert space is the weighted Lebesgue space 𝐿2
𝜇(ℝ

𝑑 ).
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We point out that Bruna et al. [9] had already proposed this weighted Lebesgue space in an ad hoc manner in their adaptive 
Monte Carlo estimation of the integrals (12). It is interesting that this adaptive sampling can be rigorously justified in the case of 
Fokker–Planck equation.

In our experience, using symbolic computation to obtain a closed-form expression for (23) is not always feasible. In such cases, 
we use the Hilbert space 𝐻 = 𝐿2(ℝ𝑑 ) to ensure symbolic computing is feasible at the cost of sacrificing the connection between 
RONS and the Fisher information metric. In Section 5.2, we discuss the ramification of this trade-off on a specific example.

5. Numerical results and discussion

In this section, we assess the accuracy and computational cost of our method on a number of SDEs with progressively higher 
level of complexity. In all cases, we use Mathematica for symbolic computing and Matlab for numerical time integration of the RONS 
equations.

5.1. Benchmark example: Ornstein–Uhlenbeck process

We consider a one-dimensional (1D) Ornstein–Uhlenbeck (OU) process and show that a Gaussian evolved according to RONS 
coincides exactly with the true solution of the Fokker–Planck equation corresponding to the OU process.

The Ornstein-Uhlenbeck process 𝑋(𝑡) satisfies the SDE,

d𝑋 = −𝛾𝑋d𝑡+ 𝜎d𝑊 , 𝑋(0) = 0, (24)

where 𝛾 > 0 is the drift coefficient and 𝜎 > 0 is noise intensity. The Fokker–Planck equation associated with the OU process (24) is

𝜕𝑝

𝜕𝑡
= 𝛾

𝜕

𝜕𝑥

(
𝑥𝑝

)
+ 𝜎2

2
𝜕2𝑝

𝜕𝑥2
, 𝑝 (𝑥,0) = 𝛿 (𝑥) , (25)

where 𝛿(𝑥) is the Dirac delta function centered at the origin. The Fokker–Planck equation (25) admits the exact solution [23],

𝑝(𝑥, 𝑡) =
√

𝛾

𝜋𝜎2(1 − exp[−2𝛾𝑡])
exp

[
− 𝛾𝑥2

𝜎2(1 − exp[−2𝛾𝑡])

]
, (26)

which is a Gaussian whose amplitude decays over time while its variance grows. Also note that 𝑝(𝑥, 𝑡) tends to the Dirac delta function 
𝛿(𝑥) as time 𝑡 tends to zero.

To apply RONS, we consider the Gaussian solution,

𝑝̂(𝑥,𝜃𝜃𝜃(𝑡)) =𝐴(𝑡) exp
[
− (𝑥− 𝑐(𝑡))2

𝐿2(𝑡)

]
, (27)

with the time-dependent parameters 𝜃𝜃𝜃(𝑡) = (𝐴(𝑡), 𝐿(𝑡), 𝑐(𝑡))⊤. Note that this is the Gaussian approximate solution (4) with only one 
mode (𝑟 = 1). Here, we do not square the amplitude to simplify the following analysis.

As mentioned in Section 2, the approximate solution 𝑝̂ is a probability density function (PDF), and so we must ensure that total 
probability of our approximate solution is always equal to one. This is a conserved quantity of the Fokker–Planck equation which we 
enforce when applying RONS by ensuring

𝐼(𝜃𝜃𝜃(𝑡)) = ∫
ℝ

𝑝̂(𝑥,𝜃𝜃𝜃(𝑡)) d𝑥 =
√
𝜋𝐴(𝑡)𝐿(𝑡) = 1, ∀𝑡 ≥ 0. (28)

Applying RONS to the Fokker–Planck equation associated with the OU process, using the Gaussian approximate solution (27) and 
the Hilbert space 𝐻 =𝐿2(ℝ), the corresponding S-RONS equation (11) reads

𝐴̇ =𝐴

(
𝛾 − 𝜎2

𝐿2

)
, 𝐿̇ = 𝜎2

𝐿
− 𝛾𝐿, 𝑐̇ = −𝛾𝑐. (29)

To solve these ODEs, we need to specify the appropriate initial conditions. For the Gaussian (27) to coincide with the initial 
condition of the Fokker–Planck equation (25) at time 𝑡 = 0, we choose the initial parameter values,

𝐴(𝑡0) =
√

𝛾

𝜋𝜎2(1 − exp[−2𝛾𝑡0])
, 𝐿(𝑡0) =

1√
𝜋𝐴(𝑡0)

, 𝑐(𝑡0) = 0. (30)

Note that as 𝑡0 → 0, the initial condition 𝑝̂(𝐱, 𝜃𝜃𝜃(𝑡0)) approaches the Dirac delta function 𝛿(𝑥) as required. The exact solution to the 
S-RONS equation (29), with the initial condition (30), is given by

𝐴(𝑡) =
√

𝛾

𝜋𝜎2(1 − exp[−2𝛾𝑡])
, 𝐿(𝑡) =

(
𝛾

𝜎2(1 − exp[−2𝛾𝑡])

)−1∕2
, 𝑐(𝑡) = 0. (31)

Substituting this solution into 𝑝̂(𝐱, 𝜃𝜃𝜃(𝑡)), we recover the exact solution (26) to the Fokker–Planck equation. This benchmark 
8

example shows that the RONS solution coincides with the exact solution of the Fokker–Planck equation for the OU process.
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5.2. One-dimensional bistable potential

In this section, we consider an SDE where the dynamics are driven by a potential function. Our main focus here is to highlight 
the impact of the choice of the Hilbert space 𝐻 and the regularization parameter 𝛼. We consider the SDE

d𝑋(𝑡) = −𝑉 ′(𝑥) d𝑡+ 𝜎d𝑊 , (32)

where 𝑉 ∶ℝ →ℝ is the potential. The Fokker–Planck equation corresponding to (32) reads

𝜕𝑝

𝜕𝑡
= 𝜕

𝜕𝑥

(
𝑉 ′(𝑥)𝑝

)
+ 𝜈

𝜕2𝑝

𝜕𝑥2
. (33)

In general, the analytical solution for this Fokker-Plank equation for all times is not known. However, the asymptotically stable 
steady state solution is given by

𝑝eq(𝑥) = 𝐶 exp
[
− 𝑉 (𝑥)

𝜈

]
, (34)

where 𝐶 is a normalizing constant.

Here, we consider the potential

𝑉 (𝑥) = 𝑥4

4
− 𝑥2

2
. (35)

This potential is symmetric with two minima at 𝑥 = ±1, and so the equilibrium solution (34) is bimodal with peaks at 𝑥 = ±1. Similar 
bistable potentials have been studied by several other authors [8,19,32,53].

To apply RONS we once again consider the Gaussian ansatz (4), where we will now use sums of Gaussians rather than a single 
Gaussian in our approximation. As before, we also enforce that total probability of the approximate solution is always equal to 1 to 
ensure that 𝑝̂ is in fact a probability density function.

In addition to exploring the effects from changing the number of modes used in our approximate solution, we also study the

choice of Hilbert space 𝐻 for our inner products. In particular, we compare the results for the Hilbert space 𝐻 = 𝐿2(ℝ) and the 
weighted Hilbert space 𝐻 =𝐿2

𝜇(ℝ). As discussed in Section 4, when using the weighted inner product, the metric tensor 𝑀 coincides 
with the Fisher information matrix.

Using the Hilbert space 𝐻 = 𝐿2(ℝ), we are able to symbolically calculate the inner products of the RONS equations and apply 
S-RONS. This approach is scalable and allows for rapid time integration of the ODEs. In contrast, when using the Hilbert space 
𝐻 = 𝐿2

𝜇(ℝ), obtaining closed-form symbolic expressions for the inner products was not possible. Consequently, we resort to using 
C-RONS for the weighted 𝐿2 inner product space. Note that C-RONS requires sampling which can be expensive in higher dimensions, 
but it is not an obstacle in this 1D problem.

For this section, we integrate the RONS equation using Matlab’s ode15s solver [43]. In our numerical experiments, ode15s takes 
large time steps once the approximate solution 𝑝̂ is near its equilibrium solution 𝑝̂eq. This allows for rapid simulations over long time 
scales, which helps us obtain the equilibrium solution predicted by RONS.

We first apply RONS to the Fokker–Planck equation (33) with the bistable potential, using 𝑟 = 2 modes for the Gaussian ap-

proximate solution (4). We use a noise intensity of 𝜎 = 0.5 for all simulations in this section. Fig. 3 compares the evolution of the 
approximate solution 𝑝̂ predicted by S-RONS using the 𝐿2 inner product and C-RONS using the weighted 𝐿2

𝜇 inner product. When 
applying C-RONS we take 100 equidistant collocation points on the interval 𝑥 = [−4, 4].

First we observe that using the Hilbert space 𝐻 =𝐿2
𝜇(ℝ) produces an approximate solution which is a reasonable approximation 

of the equilibrium density by two Gaussians. However, taking 𝐻 = 𝐿2(ℝ) fails in this case as both Gaussians converge to the same 
peak at 𝑥 = −1. We have observed the same behavior for a wide range of initial conditions for the two Gaussians. When using 
𝐻 = 𝐿2

𝜇(ℝ), corresponding to the Fisher information metric, the approximate solution always converges to the true equilibrium 
density, whereas using 𝐻 =𝐿2(ℝ) with two Gaussians leads to the incorrect equilibrium. The only exception to this is when we start 
from initial conditions which are symmetric, with the Gaussians initially placed on the opposite sides of the origin. In this particular 
case, the approximate solution converges to a reasonable approximation of the true equilibrium even when we use 𝐻 = 𝐿2(ℝ) (not 
shown here).

The fact that using the weighted inner product space 𝐻 =𝐿2
𝜇(ℝ) leads to better results is not surprising. As discussed in Section 4, 

this is equivalent to using the Fisher information metric on the manifold of the approximate solution which is the natural metric 
for a statistical manifold. Nonetheless, using the unweighted Hilbert space 𝐿2(ℝ) is still desirable since it allows us to use S-RONS 
which requires no sampling and incurs no numerical error in approximating the inner products. So, can we somehow fix the issue 
of converging to the wrong equilibrium solution using 𝐻 = 𝐿2(ℝ)? The answer is yes as long as the number of terms 𝑟 in the 
approximate solution (4) is large enough.

For instance, let us consider the same initial condition used to produce Fig. 3, but we now use 𝑟 = 10 Gaussians in our approximate 
solution. As discussed in Section 3, when using a large number of parameters in the approximate solution, we must apply Tikhonov 
regularization to alleviate the stiffness of the RONS ODEs. Fig. 4(a) shows the evolution of the approximate solution 𝑝̂ with 𝐻 =𝐿2(ℝ)
and the regularization parameter 𝛼 = 10−4. Unlike the previous case where only two Gaussians were used, the approximate solution 
9

converges to the correct equilibrium density. Of course, one should be cautious not to over-regularize the problem. As shown in 
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Fig. 3. Evolution of 𝑝̂(𝑥, 𝜃𝜃𝜃(𝑡)) from applying RONS using 2 Gaussians in the approximate solution (blue curves). The true equilibrium density 𝑝eq(𝑥) is marked by the 
dashed black curve. The initial condition is 𝐴𝑖(0) = 1∕2, 𝐿𝑖(0) = 2∕

√
𝜋, 𝑐1(0) = −1, 𝑐2(0) = −2. The Hilbert space is (a) 𝐻 =𝐿2

𝜇
(ℝ) and (b) 𝐻 =𝐿2(ℝ).

Fig. 4. Evolution of 𝑝̂(𝑥, 𝜃𝜃𝜃(𝑡)) from applying RONS with the Hilbert space 𝐻 =𝐿2(ℝ) and using 10 Gaussians in the approximate solution (blue curves). We also mark 
the true equilibrium density 𝑝eq(𝑥) with a dashed black curve. The initial condition is 𝐴𝑖(0) = 1∕

√
20, 𝐿𝑖(0) = 2∕

√
𝜋, where the amplitudes are chosen so that total 

probability is 1. Half of the Gaussians are initially placed at 𝑥 =−1, with the other half placed at 𝑥 =−2. Regularization parameter is (a) 𝛼 = 10−4 and (b) 𝛼 = 10−1 .

Fig. 4(b), choosing 𝛼 = 10−1 causes the solution to approach the incorrect equilibrium again. Although here we chose the Tikhonov 
regularization parameter 𝛼 = 10−4 by trial and error, there exist more rigorous methods for choosing this parameter a priori [18,25].

Fig. 5 shows the equilibrium error when using 𝑟 = 10 Gaussians with both the weighted and unweighted inner products. A com-

parison of computation time and errors is also provided in Table 1. Although in both cases the errors are small, using the Hilbert 
space 𝐿2

𝜇(ℝ) provides a more accurate solution than the Hilbert space 𝐿2(ℝ). However, as we noted earlier, using the unweighted 
inner product space 𝐿2(ℝ) is scalable to higher dimensions since it allows the use of symbolic computing instead of collocation points 
10

(cf. Section 5.4 below).
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Fig. 5. Error in approximating the true equilibrium density 𝑝eq using 10 Gaussians in the approximate solution, regularization parameter 𝛼 = 10−4 , and two different 
choices of Hilbert space. The initial conditions are 𝐴𝑖(0) = 1∕

√
20, 𝐿𝑖(0) = 2∕

√
𝜋.

Table 1

Comparison of computational time and errors for the 1D bistable potential using symbolic 
RONS (S-RONS) and collocation RONS (C-RONS).

Bistable Potential (𝑟 = 10) Symbolic 
computation

Time 
integration

Relative error 
of equilibrium

C-RONS (𝐻 =𝐿2
𝜇
(ℝ)) none 2.11 seconds 0.002

S-RONS (𝐻 =𝐿2(ℝ)) 2.78 seconds 1.50 seconds 0.03

5.3. Stochastic Duffing oscillator

In this section, we consider the stochastic Duffing oscillator [28,39,48] excited by white noise,

d𝐗 =
(

𝑦

𝑎1𝑥+ 𝑎2𝑦+ 𝑎3𝑥
3

)
d𝑡+ 𝜎

(
0 0
0 1

)
d𝐖. (36)

Here 𝐗 = (𝑥, 𝑦)⊤ where 𝑥(𝑡) is the displacement and 𝑦(𝑡) = 𝑥̇(𝑡) is the velocity. The vector 𝐖(𝑡) = (𝑊1(𝑡), 𝑊2(𝑡))⊤ represents the 
standard Wiener process in two dimensions. The coefficients 𝑎𝑖 are constants where 𝑎1 controls the stiffness of the oscillator, 𝑎2
controls the damping, and 𝑎3 controls the strength of the nonlinearity in the restoring force of the oscillator. The Fokker–Planck 
equation for the stochastic Duffing oscillator is given by

𝜕𝑝

𝜕𝑡
= −

[
𝑦
𝜕𝑝

𝜕𝑥
+ 𝑎2𝑝+ (𝑎1𝑥+ 𝑎2𝑦+ 𝑎3𝑥

3) 𝜕𝑝
𝜕𝑦

]
+ 𝜎2

2
𝜕2𝑝

𝜕𝑦2
. (37)

An analytic solution to the Fokker–Planck equation (37) is not known for all times. However, the asymptotically stable equilibrium 
solution is given by [39]

𝑝eq(𝐱) = 𝐶 exp
[−𝑎1𝑎2𝑥2 − 1

2𝑎2𝑎3𝑥
4 + 𝑎2𝑦

2

𝜎2

]
, (38)

where 𝐶 is a normalizing constant. Following [39], we use the parameter values (𝑎1, 𝑎2, 𝑎3) = (1, −0.2, −1) and a noise intensity of 
𝜎 = 1∕

√
20. This leads to a bimodal equilibrium distribution, with peaks at (𝑥, 𝑦) = (±1, 0).

To approximate solutions of the Fokker–Planck equation (37), we use the Hilbert space 𝐻 =𝐿2(ℝ2) and the Gaussian approximate 
solution (4). We evolve the parameters using the S-RONS equation (11) with the regularization parameter 𝛼 = 10−3. These ODEs are 
integrated numerically using Matlab’s ode45 [16,43].

Fig. 6 shows the evolution of the approximate solution 𝑝̂(𝐱, 𝜃𝜃𝜃(𝑡)) with 𝑟 = 30 modes. The initial condition is set up so that 15
Gaussians are centered at (𝑥, 𝑦) = (−1, −1) and the other 15 are centered at (𝑥, 𝑦) = (+1, +1), leading to a bimodal initial condition. 
The approximate solution is evolved until it converges to the equilibrium density and virtually no further change is detected.

We compare the S-RONS solution against large-scale Monte Carlo simulations of the Duffing SDE (36). To this end, we evolve 106
particles using the predictor-corrector scheme of Ref. [12]. The particles are drawn at random such that their distribution matches 
that of the S-RONS simulations at the initial time 𝑡 = 0. The evolution of the resulting Monte Carlo PDF is shown in Fig. 7.

Comparing Figs. 6 and 7, we observe that S-RONS, not only returns the correct equilibrium density, but also reproduces the 
transient dynamics very well. RONS does not perfectly capture some of the finer features seen in the Monte Carlo approach, such 
as the tails of the solution at 𝑡 = 5. This is expected due to the fact that we are evolving only 30 Gaussians. In fact, increasing the 
11

number of terms to 𝑟 = 100 allows us to capture these fine features as well (not shown here for brevity).
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Fig. 6. PDF predicted by applying RONS to the Fokker–Planck equation (37) for the Duffing oscillator excited by white noise. We use 30 Gaussians in the approximate 
solution. Initial conditions are 𝐴𝑖(0) = 1, 𝐿𝑖(0) = (30𝜋)−1∕2 , and half the Gaussians are placed at (𝑥, 𝑦) = (−1, −1) with the other half at (𝑥, 𝑦) = (1, 1).

Fig. 7. PDF predicted by direct Monte Carlo simulations of the Duffing oscillator excited by white noise (36). The initial distribution is the sum of 30 Gaussians with 
parameter values 𝐴𝑖(0) = 1, 𝐿𝑖(0) = (30𝜋)−1∕2 , and half the Gaussians are placed at (𝑥, 𝑦) = (−1, −1) with the other half at (𝑥, 𝑦) = (1, 1).

In terms of computational cost, RONS is over 600 times faster than direct Monte Carlo simulations. As reported in Table 2, the 
Monte Carlo simulations take over 2 hours to complete, whereas RONS takes 3.83 seconds for symbolic computing and approximately 
10 seconds for time integration. We emphasize that the symbolic computation for S-RONS only needs to be carried out once; changing 
the initial condition or increasing the number of modes 𝑟 does not require additional symbolic computing.

Finally, Fig. 8 compares the RONS solution at time 𝑡 = 50 with the analytical equilibrium density (38). We can see that RONS 
provides an excellent approximation of the analytical equilibrium position, with an 𝐿2 relative error of 2.2%.

5.4. Harmonic trap

In this section, we study an SDE in eight dimensions driven by a harmonic trap, which was also investigated in [3,9]. More 
12

specifically, we consider a system of 𝑑 interacting particles whose motion is governed by the SDE,
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Fig. 8. Comparing the true equilibrium density 𝑝eq to the approximate density 𝑝̂eq obtained by RONS using 30 Gaussians. Initial conditions are 𝐴𝑖(0) = 1, 𝐿𝑖(0) =
(30𝜋)−1∕2 , with half the Gaussians placed at (𝑥, 𝑦) = (−1, −1) and the other half at (𝑥, 𝑦) = (1, 1).

Table 2

Comparison of computation time for stochastic Duffing oscillator example using 
symbolic RONS and Monte Carlo simulations of the SDE (36).

Stochastic Duffing Oscillator (𝑟 = 30) Symbolic 
computation

Time 
integration

Monte Carlo Simulations none 136.44 minutes

Symbolic RONS 3.83 seconds 9.56 seconds

d𝑋𝑖 = 𝑔(𝑡,𝑋𝑖)d𝑡+
𝑑∑
𝑗=1

𝐾(𝑋𝑖,𝑋𝑗 )d𝑡+ 𝜎d𝑊𝑖, 𝑖 = 1,2, ..., 𝑑, (39)

where 𝑋𝑖(𝑡) denotes the position of the 𝑖-th particle. The function 𝑔 ∶ [0, ∞] ×ℝ →ℝ is a forcing term and 𝐾 ∶ℝ ×ℝ →ℝ describes 
the interaction between particles. The corresponding Fokker–Planck equation is given by

𝜕𝑝

𝜕𝑡
=

𝑑∑
𝑖=1

− 𝜕

𝜕𝑥𝑖

[(
𝑔(𝑡, 𝑥𝑖) +

𝑑∑
𝑗=1

𝐾(𝑥𝑖, 𝑥𝑗 )
)
𝑝

]
+ 𝜈

𝜕2𝑝

𝜕𝑥2
𝑖

, (40)

where 𝜈 = 𝜎2∕2.

As in [9], we set

𝑔(𝑡, 𝑥𝑖) = 𝑎(𝑡) − 𝑥𝑖, 𝐾(𝑥𝑖, 𝑥𝑗 ) =
𝛾

𝑑
(𝑥𝑗 − 𝑥𝑖). (41)

The choice of 𝑔 corresponds to particles in a harmonic trap centered around 𝑎(𝑡) while the particles also attract each other due to 
interaction term 𝐾 . A significant advantage of these choices for 𝑔 and 𝐾 is that we can directly compute the mean and covariance 
of the particles to serve as a benchmark for our RONS results. By taking the expected value of the SDE (39), we obtain an expression 
for the mean of each particle

̇̄𝑋𝑖 = 𝑎(𝑡) − 𝑋̄𝑖 +
𝛾

𝑑

𝑑∑
𝑗=1

(𝑋̄𝑗 − 𝑋̄𝑖), 𝑖 = 1,2, ..., 𝑑, (42)

where 𝑋̄𝑖 = 𝔼[𝑋𝑖]. We can similarly derive an expression for the evolution of the correlation matrix Σ𝑖𝑗 = 𝔼[𝑋𝑖𝑋𝑗 ],

Σ̇𝑖𝑗 = 𝑎(𝑡)(𝑋̄𝑗 + 𝑋̄𝑖) − 2(1 + 𝛾)Σ𝑖𝑗 +
𝛾

𝑑

𝑑∑
𝑙=1

(Σ𝑙𝑗 +Σ𝑙𝑖) + 2𝜈𝛿𝑖𝑗 , 𝑖, 𝑗 ∈ {1,2, ..., 𝑑}, (43)

where 𝛿𝑖𝑗 denotes the Kronecker delta. The covariance matrix, whose entries are given by Σ𝑖𝑗 − 𝑋̄𝑖𝑋̄𝑗 , is then calculated using the 
solutions of (42) and (43).

For the Fokker–Planck equation, we choose the initial condition,

𝑝(𝐱,0) =
(
2𝜋𝜎20

)−𝑑∕2 exp[− |𝐱 −𝜇𝜇𝜇|2
2𝜎20

]
, (44)

where 𝜎20 = 0.1 and 𝜇𝜇𝜇 ∈ ℝ𝑑 is given by 𝜇𝑖 = 𝑖 − 1 for 𝑖 = 1, ..., 𝑑. The remaining parameters are given by 𝑎(𝑡) = 1.25(sin(𝜋𝑡) + 1.5), 
13

𝛾 = 0.25, 𝑑 = 8, and 𝜈 = 0.01.
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Fig. 9. RONS simulation of the harmonic trap using various numbers of modes with regularization parameter 𝛼 = 10−8 .

Table 3

Comparison of computational time and accuracy for harmonic trap example using S-RONS for 
various numbers of modes 𝑟 and regularization parameter values 𝛼.

Harmonic Trap Symbolic 
computation

Time 
integration

Relative error 
of mean

Relative error 
of covariance

𝑟 = 1, 𝛼 = 10−8 13.7 minutes 0.06 seconds ≈ 5 × 10−8 ≈ 8 × 10−2

𝑟 = 2, 𝛼 = 10−8 0 minutes 0.34 seconds ≈ 10−8 − 10−9 ≈ 2 × 10−2

𝑟 = 3, 𝛼 = 10−8 0 minutes 1.32 seconds ≈ 10−8 − 10−9 ≈ 2 × 10−3

𝑟 = 4, 𝛼 = 10−8 0 minutes 16.44 seconds ≈ 10−8 − 10−9 ≈ 2 × 10−4

𝑟 = 5, 𝛼 = 10−8 0 minutes 85.00 seconds ≈ 10−8 − 10−9 ≈ 10−5

𝑟 = 6, 𝛼 = 10−8 0 minutes 470.50 seconds ≈ 10−8 − 10−9 ≈ 10−5

𝑟 = 6, 𝛼 = 10−7 0 minutes 3.26 seconds ≈ 10−6 − 10−7 ≈ 10−4

We use S-RONS with the Hilbert space 𝐻 = 𝐿2(ℝ8) to evolve the approximate solution (4). For this approximate solution to 
coincide with the initial condition (44) at time 𝑡 = 0, we choose the parameter values 𝐴𝑖(0) = (2𝜋 × 0.1)−4𝑟−1, 𝐿2

𝑖
(0) = 0.2, and 

𝑐𝑖(0) =𝜇𝜇𝜇. We again enforce the total probability of the approximate solution 𝑝̂(𝐱, 𝜃𝜃𝜃) to be always equal to one.

We numerically integrate the S-RONS equation (11) with the regularization parameter 𝛼 = 10−8 using Matlab’s ode113s [43]

with a relative and absolute error tolerance of 10−8. Fig. 9 shows the relative error of the mean and covariance when using increasing 
number of modes 𝑟 in the approximate solution. Additionally, we report computational times and errors for each simulation in 
Table 3. We note that the cases with 𝑟 = 1 and 𝑟 = 2 are not stiff and therefore do not require any regularization, but using the 
same regularization parameter for every run allows for a fair comparison between all simulations. The mean is accurately predicted 
by RONS, regardless of how many modes we use in the approximate solution. In this example, the true solution is a Gaussian [9], 
and therefore we expect to capture the true mean within the accuracy of our time integration error tolerances with our approximate 
solution which is a sum of Gaussians. As a result, the mean is predicted quite accurately even when 𝑟 = 1, and we do not observe a 
significant improvement in prediction of the mean as we use more modes.

On the other hand, the behavior of the covariance is more complex. The true solution has a diagonal covariance matrix at 
the initial time. But it develops nonzero entries in the off-diagonal elements after the initial time. The approximate solution 𝑝̂ is 
the sum of Gaussians with diagonal covariance matrices, and therefore using more modes leads to significant improvement in the 
approximation of the covariance matrix. This is demonstrated in Fig. 9, showing that as the number of modes increases from 𝑟 = 1
to 𝑟 = 5 the covariance error decreases monotonically, converging to the tolerance of the numerical time integration. However, 
increasing the number of modes beyond 𝑟 = 5 does not lead to a significant improvement, indicating that 5 modes are adequate to 
capture the dynamics.

This example also demonstrates the scalability advantages of symbolic RONS as discussed in Section 3.1. Namely, the number of 
terms 𝑟 can be increased without incurring additional symbolic computational cost. That is why in Table 3 the symbolic computational 
cost is zero for 𝑟 ≥ 2. As a result, one can easily increase the number of modes until a satisfactory approximation is achieved.

Clearly, the integration time increases as the number of modes 𝑟 increase. However, the integration time can be reduced by 
increasing the regularization parameter 𝛼. For example, when using 6 modes and increasing the regularization parameter value to 
𝛼 = 10−7 from 10−8, time integration takes only 3.26 seconds. With this regularization parameter, the relative error of the mean is 
on the order of 10−6 − 10−7 and relative error of the covariance is on the order of 10−4 (cf. Table 3).

In the above examples, we assumed that the initial condition 𝑝0 lies on the statistical manifold  and therefore it can be exactly 
represented by expansion (4) at time 𝑡 = 0. If the true initial condition 𝑝0 does not initially lie on the statistical manifold, one can 
solve the optimization problem,

2

14

𝜃𝜃𝜃0 = argmin
𝜃𝜃𝜃∈Ω

‖𝑝̂(⋅,𝜃𝜃𝜃) − 𝑝0‖𝐻, (45)
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to find the closest point on the manifold  to the initial condition 𝑝0. The machine learning community has developed efficient 
methods, such as stochastic gradient descent [29,42], for solving such optimization problems. These methods are capable of approxi-

mating the optimizer even when the number of parameters 𝑛 is very large. Given that (45) needs to be solved only once at the initial 
time, this should not present a significant increase in the computational cost of RONS.

6. Conclusions

We showed that the method of reduced-order nonlinear solutions (RONS) leads to a fast and scalable method for approximating 
the solutions of the Fokker–Planck equation. In particular, we considered the approximate solution as the sum of shape-morphing 
modes, where the modes are Gaussians with time-dependent amplitudes, means and covariances. RONS equations provide a system 
of ODEs for optimally evolving the shape parameters such that the approximate solution stays close to a true solution of the PDE. The 
feasibility of approximating the probability density with a sum of Gaussians is guaranteed by the universal approximation theorem 
of Park and Sandberg [37].

We demonstrated the efficacy of RONS on several examples. First, we considered the Ornstein–Uhlenbeck process, where the 
exact solution to the corresponding Fokker–Planck equation is known. In this case, RONS reproduces this exact solution. We also 
considered three more complex examples, showing that RONS returns accurate approximations of the transient dynamics as well as 
the equilibrium density. At the same time, RONS is considerably faster than conventional methods. For instance, in the case of the 
stochastic Duffing oscillator, RONS is 600 times faster than direct Monte Carlo simulations.

We considered two computational methods for forming the RONS equations: symbolic RONS (or S-RONS) and collocation RONS 
(or C-RONS). In symbolic RONS, we use symbolic computing to evaluate the inner products on the underlying Hilbert space 𝐻 . 
This requires only 9 symbolic computation which is independent of the dimension of the system and the number of terms in the 
approximate solution. If the underlying Hilbert space is chosen to be the Lebesgue space 𝐿2, existing symbolic computing packages 
easily return closed-form symbolic expressions for the required inner products. We also showed that, if we use the weighted Lebesgue 
space 𝐻 = 𝐿2

𝜇 where 𝜇 = 𝑝̂−1d𝐱, the metric tensor in RONS coincides with the Fisher information matrix defined on statistical 
manifolds.

Our numerical experiments show that this choice of the underlying Hilbert space (𝐻 =𝐿2
𝜇) leads to a more accurate approxima-

tion of the true solution. However, existing symbolic computing packages did not return a closed-form expression for the required 
inner products on the space 𝐿2

𝜇 . In such cases, where obtaining symbolic expressions is not feasible, we used C-RONS which mini-

mizes the error at prescribed collocation points. Consequently, C-RONS does not require computing any functional inner products 
and therefore is applicable in any function space.

Given its higher accuracy, scalability, and connection to Fisher information, using symbolic computing in the Hilbert space 𝐿2
𝜇

is highly desirable. Future work will explore possible avenues for incorporating symbolic computing with this weighted Lebesgue 
space.

Two open problems remained unanswered in this paper. One concerns the optimal value of the regularization parameter 𝛼. 
Although here we were able to find suitable regularization parameters by trial and error, a systematic method for choosing this 
parameter is desirable. In our experience, standard methods, such as the L-curve method [11,24], generalized cross-validation 
(GCV) [15,21,52], and the quasi-optimality criterion [5,4,51], fail to return a suitable regularization parameter for RONS. More 
specifically, the L-curve method and quasi-optimality criterion significantly over-regularized, which led to inaccurate solutions. On 
the other hand, GCV significantly under-regularized which caused the time integration to be slow.

The other open problem relates to the number of terms 𝑟 in the approximation solution (4). Universal approximation theorems 
guarantee that, for large enough 𝑟, the probability density can be approximated with arbitrary accuracy. But they do not provide 
a rigorous method for choosing 𝑟. To reduce the computational cost, one needs to keep 𝑟 as small as possible, but large enough 
to guarantee accuracy of the corresponding solution. A systematic method for selecting an optimal 𝑟 would require error estimates 
for the shape-morphing solutions of the Fokker–Planck equation. Classical error estimates are not immediately applicable since the 
shape-morphing approximate solution depends nonlinearly on their parameters. As such, the derivation of error estimates remains 
an open problem whose resolution will inform the optimal choice of 𝑟.
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