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Abstract

Recent technological advances have enabled the recording of neurons in intact circuits with a high
spatial and temporal resolution, creating the need for modeling with the same precision. In
particular, the development of ultra-fast two-photon microscopy combined with fluorescence-
based genetically-encoded Ca®'-indicators allows capture of full-dendritic arbor and somatic
responses associated with synaptic input and action potential output. The complexity of dendritic
arbor structures and distributed patterns of activity over time results in the generation of incredibly
rich 4D datasets that are challenging to analyze (Sakaki, 2020). Interpreting neural activity from
fluorescence-based Ca** biosensors is challenging due to non-linear interactions between several
factors influencing intracellular calcium ion concentration and its binding to sensors, including the
ionic dynamics driven by diffusion, electrical gradients and voltage-gated conductance.

To investigate those dynamics, we designed a model based on a Cable-like equation coupled to the
Nernst-Planck equations for ionic fluxes in electrolytes. We employ this model to simulate signal
propagation and ionic electrodiffusion across a dendritic arbor. Using these simulation results, we
then designed an algorithm to detect synapses from Ca”" imaging datasets. We finally apply this
algorithm to experimental Ca®'-indicator datasets from neurons expressing jGCaMP7s (Dana et
al., 2019), using full-dendritic arbor sampling in vivo in the Xenopus laevis optic tectum using fast
random-access two-photon microscopy.

Our model reproduces the dynamics of visual stimulus-evoked jGCaMP7s-mediated calcium
signals observed experimentally, and the resulting algorithm allows prediction of the location of
synapses across the dendritic arbor.

Our study provides a way to predict synaptic activity and location on dendritic arbors, from
fluorescence data in the full dendritic arbor of a neuron recorded in the intact and awake developing
vertebrate brain.
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Background

A leading question in neuroscience is how neurons process synaptic inputs and generate an output
encoded in action potential activity. In particular, it remains unanswered how the geometry of the
dendritic arbor and distribution of the synapses contribute to the integration of synaptic information and
the computation of the spike output. The historical model that dendrites serve to merely connect neurons
and to passively convey information is currently challenged by recent findings demonstrating that the
shape of the dendritic arbor, and by extension, the location of the synaptic inputs is key for non-linear
signal integration (Redmond and Ghosh, 2005; Lavzin et al., 2012; Gonzalez et al., 2022). Indeed,
dendritic patch-clamp electrophysiology and imaging of genetically encoded fluorescent Ca**-indicators
have made recording activity within the dendritic arbor increasingly feasible, highlighting its
involvement in information processing at a cellular level (London and Héusser, 2005; Basak and
Narayanan, 2018). As a result, defining the role of the dendritic arbor and synaptic topography in
information processing and encoding has become a leading area of research in developmental
neuroscience. This field has taken a sizable leap forward by recent advances in ultra-fast multi-photon
calcium imaging that provide unprecedented spatial and temporal resolutions of comprehensive
dendritic calcium dynamics in intact and awake animals, but which also present novel challenges for
their analysis (Sakaki et al., 2020).

Relating the observed calcium dynamics, generated from full-dendritic arbor imaging of neurons
expressing fluorescence-based calcium sensors, to underlying neural activity remains challenging. The
regulation of intracellular calcium concentration by activity is complex, due to multiple sources of
calcium and their nonlinear interactions. Calcium ions can enter neurons through synaptic and
extrasynaptic glutamatergic receptors, and voltage-gated calcium channels, and can be released from
intracellular endoplasmic reticulum stores. For studies focusing on tracking synaptic activity, there is a
need for modeling to differentiate multiple calcium sources in order to determine the location and
amplitude of synaptic responses. Such modeling requires understanding how voltage propagates
throughout the dendritic arbor and its influence on ionic concentrations, especially in small neuronal
compartments such as filopodia and dendritic spines (Holcman and Yuste, 2015; Savtchenko et al.,
2017).

Numerous models have been generated to characterize voltage dynamics in neurons. The standard
approach consists of using Cable theory with Hodgkin-Huxley formalism (Qian and Sejnowski, 1989;
Bower and Beeman, 1998; Carnevale and Hines, 2006), or integrate-and-fire type modeling (Keener et
al., 1981; Brette & Gerstner, 2005, Harkin ef al., 2022). Most of these models are geared toward neuronal
network simulation, and do not include ionic dynamics. Other models are focused on ionic dynamics,
and are based on the Nernst-Planck equation describing ionic fluxes, coupled to the Poisson equation,
or to an electroneutral model (Lopreore et al., 2008; Mory et al., 2008; Xylouris et al., 2010; Lu et al.,
2010; Pods et al., 2013; Solbra et al., 2018; Setra et al., 2020). The high non-linearity of the Poisson-
Nernst Planck system of equations, and the presence of a thin boundary layer at the membrane renders
such simulation and analysis a daunting task, especially when taking the complex geometries of dendritic
arbors into consideration (Cartailler et al., 2017; Savtchenko et al., 2017).



Here, our goal is to realize fast simulations of voltage and ionic dynamics in detailed dendritic arbor
geometries. To achieve this, we developed a model and simulations for voltage propagation and ionic
electrodiffusion in the dendritic arbor. The model is based on a coupling between the Nernst-Planck
equations to represent ionic fluxes due to the electrodiffusion of ions (Kirby, 2010), and a Cable-like
equation representing voltage dynamics. We demonstrate that under specific assumptions, we can reduce
the total ionic flux to a simple resistive flux, and hence decouple the equations, while accurately keeping
track of calcium dynamics. This decoupling simplifies the program and enables faster simulations.
Simulations of the simplified model are performed using the Sinaps Python library the authors developed
previously (Galtier and Guerrier, 2022).

To validate the model, we compared simulation results with data from in vivo two-photon calcium
imaging experiments, using neurons expressing the genetically encoded fluorescent protein jGCaMP7s.
We observed a substantial discrepancy between the temporal scales of the action potential and
JGCaMP7s fluorescence dynamics: from the duration of the action potential, ranging from sub-
millisecond to several milliseconds, to the entry of calcium through voltage-gated channels that takes
several milliseconds and persists for tens of milliseconds, and finally to the fluorescence response of
calcium sensors as observed in the experimental data, that last for multiple seconds. Importantly, we
found that the locations of fluorescence dynamics across the arbor proximate to synapses are different
from the dynamics distant from a synapse. This allows for the discrimination and localization of potential
synaptic activity from fluorescence-based calcium data.

In this paper, we first describe our model coupling the Nernst-Planck equations and a Cable-like equation
in the full dendritic tree, and show that this system can be decoupled, to speed-up simulations. Next,
using the decoupled system, we simulated calcium and jGCaMP7s dynamics in a full neuronal geometry.
From these simulated results, we infer that the calcium dynamics as reported by the fluorescence changes
in genetically encoded calcium sensors differ depending on the distance of the sampled point from an
active synapse. We then propose an algorithm to detect possible synaptic activity in fluorescent datasets
and test it on experimental measurements.

Methods

Experimental protocol

Animal rearing conditions: Albino Xenopus laevis tadpoles were reared in a room temperature
container of 0.1x Steinberg’s solution (Ix Steinberg’s in mM: 10 HEPES, 58NaCl, 0.67KClI,
0.34Ca(N0O3)2, 0.83 MgS0O4, pH 7.4). They were reared in a 12 hour day/night cycle. All experimental
procedures and housing conditions were approved by the University of British Columbia

Animal Care Committee and were in accordance with the Canadian Council on Animal Care (CCAC)
guidelines.

Expression of genetically-encoded fluorophores: Single-cell electroporation (Haas et al., 2001) was
employed to express EGFP in tectal neurons (Dana et al., 2019; Sakaki et al., 2020). Electroporation
parameters were 300ms train duration, -40V, 1ms/pulse, and 200pulses/s. The tadpoles were screened
for expression of EGFP in single neurons after 48 hours, and imaged 72 hours post-electroporation. To
record stimulus-evoked calcium activity, farnesylated (ie. membrane localized) jGCaMP7s was co-



expressed with a farnesylated version of the red fluorophore mCyRFP1 (Laviv et al., 2016) using a
plasmid containing a self-cleaving P2A (Kim et al., 2011). The red fluorophore mCyRFP1 served as a
bright, photostable space-filler for tracking dendritic morphology. Single-cell electroporation parameters
for this plasmid were 1.1s train duration, -40V, 1ms/pulse, and 200pulses/s.

In vivo imaging of single neuron activity: Stage 48 Albino Xenopus laevis tadpoles were bathed for 5
minutes in 4mM pancuronium to temporarily paralyze them immediately prior to imaging. The tadpoles
were then placed in a custom imaging chamber (Sakaki et al., 2020) that was perfused with oxygenated
0.1x Steinberg’s solution for the duration of the experiment. The structure and activity of the single
labeled neurons were imaged at fast rates using a custom designed acousto-optic deflector (AOD)-based
random access multiphoton microscope (Sakaki et al., 2020). Calcium dynamics throughout the
dendritic arbors of individual brain neurons were detected as changes in JGCaMP7s fluorescence. Branch
radii were derived from a 3D image stack of the volume containing the complete neuron prior to the
recording of calcium data.

Visual stimulation protocol: Visual stimuli were presented to the eye contralateral to the imaged tectum
using a projector. Stimuli were composed of full-field brief (50 ms) flashes of OFF or ON stimuli,
presented as a series of 4 pseudo-randomly spaced OFF stimulus (presented between 8-12 seconds apart)
on an ON background, followed by a transition shift from an ON background to an OFF background and
then 4 ON stimulus on an OFF background.

Estimation of proportion of tuned vs untuned synapses in a dendritic arbor: The value was
generated from a dataset of 6 JGCaMP7s expressing Xenopus tectal neurons receiving OFF visual stimuli
that produce stimulus-evoked action potential outputs. The calcium activity of all terminal dendritic
branches was recorded, and the ratio of active branches was estimated by taking the proportion of
branches with localized stimulus-driven branch-tip activity compared to non-responsive branches.

Mathematical modeling

Nernst-Planck equation: Our model for ionic electrodiffusion and voltage dynamics in the dendritic
arbor couples the Nernst-Planck equation with an electrical model describing membrane voltage. The
Nernst-Planck equation describes the motion of ionic species in a fluid driven by both thermal diffusion,
and electrostatic forces. This equation is built from the first principle of mechanics, stating the
conservation of ions (Nernst, 1888):
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A dendritic arbor is a complex tree-like structure where different compartments have various radii (Fig.
1A). We model this neuronal geometry by setting each dendritic segment as a cylinder with a specific
radius (Fig. 1B). We consider the integrated flux along one branch of the tree of radius a, J; = m a’j;
in [mol.s ], which gives a one-dimensional ionic flux in space (Fig. 1B).

To add the contribution of ionic fluxes coming from membrane channels, we consider /™, the flow per
unit surface of species i coming from the channels (in [mol.s*.m ?]). Considering the radius a of the

cylindrical branch, the integrated flux over the membrane becomes ] ml = 2ma j™t (Fig. 1B). Finally,
eq. (1) becomes:

naz%: -V -] + ]m'i forall ionsi. (3)

Chemical reactions: We consider general chemical reactions in the cytosol, taking the form:

iaiAi A iBiBi (4)
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between ionic species Ai, 1= 1, ..., nand B;, 1 =1, .., m, with forward and backward reaction rates kf
and kj respectively. The forward and backward reaction speeds are respectively:
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where X represents the concentration of species K. Hence, the variation of concentration of each species,
due to the reaction at position x and at time ¢ is:

Va, (6, 8) = a;(vP(x,t) — v/ (x,1))
for the reactants A;, and

ve, () = B (x,1) — vP(x, 1))

for the products Bi. The final equation for the variation of concentration of each ionic species is given by:

2%= —V -], + J™+ma’y, forallionsi. (5)
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Voltage dynamics: The electric flux Ji;,. of species i in the Nernst-Planck equation (eq. (1)), requires
the voltage profile along the branches. To build an equation for the voltage, we assume that the neuronal
membrane behaves as a capacitance, i.e. the total charge density ¢ (in [C.m ?]) at the membrane is
proportional to the voltage difference V' (in [V] ) across the membrane, with proportionality coefficient
Ceap (in [F.m?]):



q = CcapV (6).
Integrating over the membrane, we get the lineic charge Q = 2ma q , in [C.m *] (Fig. 1B). Using that
the center of the branch is electroneutral (Stinchcombe et al., 2016), and hence the charges are all located
at the membrane, the charge Q at the membrane is equal to the integrated charge over the section of the
branch: Q = mwa’Y;;ons CiZiNge where Nq is the Avogadro number. Deriving eq. (6) over time, we
obtain using the expression for Q:

v a dc;
Coar e =7 at

iions

ziNge. (7)

The system of equations given by egs. (1,2) and (5) for all ions, coupled to eq. (7) defines our model
for voltage and ionic electrodiffusion in dendritic branches. The equations defining the channels

dynamics /™" are described below.

Membrane channels dynamics: To model the influx of ions through voltage-gated channels, we use a
simplified Hodgkin-Huxley model for the sodium, potassium and leak channels (Hodgkin and Huxley,
1952), to which we add a Hodgkin-Huxley type channel for calcium current (Guerrier and Holcman,
2017). The classical Hodgkin-Huxley dynamics for the sodium, potassium and leak currents is reduced
to a 2-dimensional system, using the approximation 2 = (0.89 — I.In), and m = my,; (Izhikevich,

2007):
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The membrane resting potential of the cell is 0 mV.
The calcium current dynamics is given by (Guerrier and Holcman, 2017):

lcq =gCap3 LV = Ecq)

and for » =p,l:
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The sodium, potassium and calcium currents are ion specific, and thus can be easily converted into ionic
fluxes through the formula J™! = S I;e. To maintain coherence within the Hodgkin-Huxley model,
a“i

we consider that the leak current is only driven by chloride.

We included N-methyl D-aspartate (NMDA) receptors in our simulations, to mimic excitatory
postsynaptic potentials. The mean approximation for the current entering the domain is (Koch, 1999):
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where we use the NMDA receptors conductance gv = 0.2 nS and Nernst potential Ex = 0. To estimate
the total amount of calcium ions entering through the NMDA receptors, we use that the fraction of the
current carried by calcium ions is 15%. All parameters are given in Table 1.

Decoupled model: We decoupled the system of equations (1)-(5) and (7), using two assumptions:
the first assumption is that the total diffusive flux is negligible compared to the total electric flux:

i Zif fiiff << i zi] il oc- The second assumption is that the electric conductivity of the cytoplasm
.7 202 .
0 = Yiions Na % is constant (in [S.m1]). Using these two assumptions combined with eq. (1,2),
b
we recover that the electric current along one branch is proportional to the gradient of the voltage:

Ig = Nge Y ions ZiJi = ma’ aVV. We finally get the standard cable equation for the voltage:
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where 2mal, =N e Y;ionsZi]"™.

Hence, the strategy of the decoupled model is to first compute the voltage using eq. (8), and then plug
these dynamics into the Nernst-Planck equations eq. (1)-(2), and solve the ordinary differential equation
for the ionic species we are interested in. Simulations of this simplified model are realized with the Sinaps
python library the authors developed previously (Galtier and Guerrier, 2022).

Data analysis

Data filtering procedures - data normalization: We observe a substantial variability in the
fluorescence data between different nodes before the visual stimulation, during which the neuron is not
receiving stimulus-evoked synaptic inputs. To explain this variability, we note that the fluorescence data
reflects the number of photons received in a fixed period of time, and hence is representative of the
number of jGCaMP7s-Ca present at the focal point of the laser position. For a given concentration ¢, of
jGCaMP7s-Ca, in a dendrite of radius a, the number of observed photons will be proportional to 7 a’c,.
Hence, the fluorescence can vary with the arbor radii. This explains why the soma in the experimental
data is very bright compared to the rest of the arbor, and why small filopodia are typically dim. To
estimate the concentration of jGCaMP7s-Ca, we normalized each trace so that the mean fluorescences



observed during the time before the first visual stimuli are the same. The fluorescence data were
normalized only at this stage, to maintain a similar level of noise in each trace.

Data filtering procedures - denoising: To remove noise in the fluorescence data, we applied a rolling

window filter to the raw data. We used a gaussian window, defined as w(n) = e~n’/20° , with the
window size n = 50 data points and the standard deviation parameter o = /0.

Synapse localization algorithm: To localize synaptic activity, we designed an algorithm based on the
rising dynamics of jGCaMP7s-Ca. We first applied our filtering procedure to generate a smooth curve
representing the data as described above. At each recorded spatial location, we obtained an estimate of
the rising slope of the time-dependent signal by taking the derivative in time at 60 ms following the
visual stimuli. We then detected local maxima of the rising slope in space, which gave us the potential
active synapses locations. A local maximum is defined as a point at the max over its five neighboring
points.

Results

Simulation of the coupled model: We implemented the coupled model given by eq. (1)-(5) and (7)
(Method section, Fig. 2), in a simple branch attached to a soma. At the soma, we set up a Hodgkin-
Huxley dynamics with sodium, potassium, and leak, as well as voltage-gated calcium channels (Method
section). The soma radius and length are 2.5 and 5 um respectively, and the branch radius and length are
1 and 50 pm. The ion flow throughout the branch is passive. We applied a current of amplitude 7 pA
lasting 0.25 ms at the soma, to trigger an action potential. We plotted the potential and calcium dynamics,
as well as the electrical conductivity, and the calcium diffusive and electric currents (Fig. 2, solid lines).
We observe, as expected, that the action potential propagates very quickly within the branch (Fig. 2A,
solid lines). We also observe a rise in calcium concentration due to the entry of calcium through voltage-
gated calcium channels at the soma. This calcium propagates inside the branch due to the diffusive and
electric fluxes (Fig. 2B, solid lines). To understand the contribution of both fluxes to calcium dynamics,
we plotted JS2. and ]gi‘}f, in the soma and at one position inside the branch (Fig. 2C). The maximum
of the electric calcium flux is around 1.5 103 pmol.pum ?.ms * in both the soma and the branch, whereas
the maximum of the diffusive flux is around 5.7 1075 umol.um_z.ms_l in the soma and drops to 1.7 107
umol.um ?.ms ! in the branch. We also observe that the electric flux is on a faster time scale compared
to the diffusive fluxes. These properties are maintained for sodium, potassium, and chloride ions. This
shows that the 1onic dynamics in this framework are driven by electric fluxes, and support the hypothesis
used in the decoupled model: %; zJy;., << X; zJ,,. We also plotted the variations of the

Diziec; . . . . e
lle - in Fig. 2D. We observed a maximal variation of
b

up to 0.05 % in g, which is coherent with the second assumption of the decoupled model, that o is
constant.

electrical conductivity of the cytosol ¢ = ;5,6
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Figure 1: A one-dimensional model of a three-dimensional dendritic arbor. A: Z-stack of a Xenopus tectal neuron
expressing EGFP, imaged while the animal was awake. Inset image is a 4.0x zoom of a section of dendrite with progressive
thinning modeled in the panel to the right. B: Schematic representation of our modeling approach for two nodes of a dendritic
branch analogous to the inset in A. The entire dendritic arbor is represented as a tree structure containing many nodes, where
each branch of the tree is represented by multiple three-dimensional cylinders. Integrating over the cylindrical geometry, the
model is reduced to a one-dimensional tree structure.

The coupled vs decoupled model: The coupled model can be simplified by decoupling the two
equations which results in faster simulation. Our strategy is to first compute the voltage dynamic inside
the neurons (eq. (8)), and plug this voltage into the calcium concentration equation to recover the
dynamics of calcium (eq. (1,2), see Method section for further details). We show in Fig. 2 the difference
in calcium and voltage dynamics in the coupled model (solid lines) versus decoupled model (dashed
lines). We observe no differences between the two curves in voltage dynamics, and a small difference of
less than 4 % in calcium dynamics. The differences in sodium and potassium dynamics are less than 1
%. To simulate voltage dynamics and ionic electrodiffusion in a full dendritic arbor geometry, we will
utilize the decoupled model.

In both the coupled and decoupled models, we keep track of all the ionic species, using the standard ionic
concentrations as has been previously described (Alberts, 2002). Due to the absence of sodium,
potassium, and calcium reuptake, which all take place at a slower time scale, the concentrations of the
different ions do not return to their resting values after an action potential. Therefore, the change in the
electric conductivity ¢ past 20 ms is due to an imprecision of our model at long time scales. To fully
describe the variation of ionic concentrations in the cytosol in a longer time scale, it is necessary to add
to this framework a model for the Na'/K" ATPase exchanger (Jyehaug et al., 2012), as well as for
calcium extrusion, such as NCX or PMCA.
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Figure 2: Comparison between the coupled and the decoupled model: Simulation of ionic dynamics in an active soma,
connected to a passive branch. An applied current triggers an AP in the soma that propagates to the branch. Comparison
between the coupled (solid lines) and the decoupled (dashed lines) models, at three different sites: the soma, and the base and

tip of the branch. Time dynamics of voltage (all lines overlap) (A), calcium concentration (B) and electrical conductivity ¢
(C) at the soma and along the branch. D: Time dynamics of the currents 5%, = 7 a’ j&%. (blue and red) and jgf}f =

mwa’ jgl-‘}f (purple and pink) at the soma, and in the dendritic branch 5 um from the soma.

Simulation of calcium and jGCaMP7s dynamics in a dendritic arbor: Our goal is to realize numerical
simulations recapitulating the fluorescence recordings obtained in the dendritic arbor of brain neurons
recorded from Xenopus laevis tadpoles in vivo. Awake tadpoles expressing a membrane-localized
jGCaMP7s in individual brain neurons were immobilized and visual stimuli were presented while full-
neuron morphology and fast imaging of calcium dynamics were recorded using a random-access
multiphoton microscope (Sakaki et al., 2020).
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Figure 3: Simulation of voltage, calcium and jGCaMP7s-Ca dynamics in a dendritic arbor. A: Left: Tree-like
representation of a simulated neuron, derived from the morphology of a real neuron expressing jGCaMP7s. Middle and Right:
Comparison between the time scales of voltage, calcium, and jGCaMP7s-Ca concentration dynamics in simulated dataset,
with the position of recorded activity indicated by the colors on the y-axis corresponding to color labels on the neuronal
structure. The blue stars on the y-axis in the jJGCaMP7s-Ca field plot represent synapses locations. B: Time dynamics of
normalized voltage, calcium, and jGCaMP7s-Ca concentration. C: Magnification of the traces in B.

We imported the full dendritic geometry of a neuron using our Python library, Sinaps (Fig. 3A). Our
dataset includes the radii, ranging from 1um (across the dendrites) to 8.5 um (across the soma), with a
mean of 2.8 £ 2.5 um. The dendritic geometry is represented as a tree structure, composed of nodes every
2 um, which gives a total of 268 nodes. The terminal portion of a branch (i.e. not connected to a new
branch) is called a leaf. We then modeled the influx of ions into the dendritic tree through different
channels: to represent active channels, we implemented Hodgkin-Huxley type channels with potassium,
sodium, calcium, and leak. We set Hodgkin-Huxley channels to be distributed everywhere on the surface
of the dendritic arbor. At the soma, we set Hodgkin-Huxley channels with a conductance multiplied by
3. This was informed by previous modeling replicating experimental results that indicate that the soma
has a higher density of voltage gated ionic channels (Bono and Clopath, 2017). To mimic synaptic
activity, we added NMDA receptors to several nodes (see complete description in Method) (Wu et al.,
1996; Li et al., 2011). To determine which node will be given a synapse, we used the results on synaptic
repartition given in (Li et al., 2011). First, Li et al. (2011) observed that 93% of terminal dendritic
branches are receiving synaptic contact. To account for this proportion, we randomly chose 22 leaves
over the 24 of our tree and added a synapse at those leaves. Second, the average synapse density reported
in (Li et al., 2011) is 0.43 synapses.um *. The dendritic arbor we are considering is 534 pm long, which
corresponds to approximately 229 synapses. Considering that we already set 22 synapses, we randomly
distribute the 207 remaining synapses along the tree. Finally, we account for the fact that even in neurons
that produce action potentials in response to a stimulus, only a subset of synapses on that neuron is going



to tuned to be responsive to that particular stimulus by setting, for each synapse, a probability of being
tuned to a stimulus of 0.24 (see Methods).

Calcium dynamics inside the cytosol are then coupled to the jGCaMP7s dynamics through the chemical
reaction:

Ca** + jGCaMP7s & jGCaMP7s —Ca (9)

with association rate kr=21.5 mM *.ms * and dissociation rate ko = 0.00286 ms ™ (Dana ef al., 2019).
We model calcium extrusion from the cell using a simple reaction Ca— > @ with reaction rate kex = 0.03
ms . The initial calcium concentration in the cytosol is ¢“* = 104 mM, and the jGCaMP7s concentration
is ¢JOCaMPTs = 5 1073 mM. We performed simulations for different values of the jGCaMP7s concentration,
ranging from 10~ mM, to 10 mM, and observed no qualitative changes in the results. Simulations with
the jCGaMP7s initial concentration c/“MP7 around 10~ mM and below resulted in buffer saturation
throughout the arbor, which is not consistent with experimental results. In simulations with c/9CaMP7s
above 1072 mM, we observe that jGCaMP7s is in excess, which likewise does not match with
experimental observations. As the jGCaMP7s and jGCaMP7s-Ca employed here are membrane-bound
(see Methods), we assume that their diffusion in the membrane is negligible. We represent the arrival of
an input coming from the visual pathway via retinal ganglion cells (RGC), as a train of 6 synaptic inputs
at 40 Hz (Demas et al., 2011; Honda ef al., 2011). Synaptic inputs are modeled through the opening of
NMDA receptors at synapses.

We perform numerical simulations using the Python library Sinaps (Galtier and Guerrier, 2022), Fig. 3.
From this, we observe a time scale difference between the action potential dynamics, that lasts for a few
ms, to the calcium concentration dynamics, lasting a few hundred milliseconds, to the fluorescence
calcium sensor dynamics lasting several seconds (Fig. 3B-C). Additionally, we observe that the slower
time scale of JGCaMP7s-Ca dynamics ‘filters’ voltage and calcium signals, making it more difficult to
infer calcium and voltage dynamics from jGCaMP7s-Ca data.

jGCaMP7s-Ca rise dynamics are faster when proximate to synaptic activity: The simulations of
jGCaMP7s-Ca dynamics in the full dendritic arbor reveals the filtering effect of the change in time scale
(Fig. 3B). Hence, the detailed dynamics of calcium entry is not easily observable in fluorescence data
(Fig. 4A). We also observe that the region close to the soma has the highest stimulus-evoked fluorescence
amplitude, which is due to the large influx of calcium ions at the soma. This shows that the maximum
intensity of fluorescence over the tree is not a good marker of synaptic activity. We also observe, in the
simulations, that the spread of calcium is contained around its entry points, due to the limited diffusion
of calcium before extrusion. Our algorithm makes use of this local property to discriminate synaptic
activity from other calcium events. Indeed, we observed in simulations typical patterns of synaptic
activity (Fig. 4B), with a conical shape. These diffusion patterns start at synapses and propagate to
neighboring locations. The typical diffusion length of those patterns, ly;rf = 10 um, was estimated
from the simulations. After applying a denoising algorithm to the data (Fig. 4A), we observed these
typical patterns in the experimental data as well (Fig. 4B). We also observed in simulations ‘black
regions’, far from synapses (Fig. 4B). These black regions are also somewhat observed in experimental
data (Fig. 4A-B). They are a result of the limited intracellular diffusion of calcium ions. The diffusion of
calcium ions coupled to the sensor is negligible since jGCaMP7s is anchored to the plasma membrane.
Using these observations, we developed an algorithm to detect synaptic activity in jGCaMP7s-Ca
dynamics. The algorithm is based on identifying local spatial maxima of the rising slopes of jGCaMP7s-



Ca along the dendritic arbor. Indeed, in our simulations, we observed that the closer a location was to a
synapse, the higher the rising slope of the jGCaMP7s-Ca dynamics (Fig. 4C). This result is robust and
was observed for different synapses across multiple locations. Hence, to detect synaptic activity in the
experimental data, we built an algorithm detecting local maxima in space of the rising slopes (Fig. 4D,
see Method). Note that in Fig. 4D, the local maxima need to be considered along the arbor topology, and
not linearly.

In the experimental protocol, four visual stimuli each composed of a 50ms OFF stimulus were applied.
To test the robustness of our algorithm, and to investigate the variations of synaptic activity across
different individual presentations of the visual stimulus, we applied our algorithm after each stimulus,
and compared the localization of synapses (Fig. 4D). We display the result of our algorithm for two
stimuli and observe that some synaptic sites are active in both stimuli, and others are active only for a
single stimulus (Fig. 4D-E).
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Figure 4: The rising slopes of stimulus-evoked calcium transients indicate the location of active synapses in simulation
and experimental data. A: Left: structure of a dendritic arbor generated from in vivo imaging of a jJGCaMP7s-expressing
tectal neuron. Right: visual-evoked Ca responses of this neuron, with the position of recorded activity indicated by the colors
on the y-axis corresponding to color labels on the neuronal structure. Stimulus times are indicated by the colored arrows on
top of the field plot. B: Left: experimental recordings in the branch indicated with a black arrow in the tree structure in panel
A processed through a Bessel filter, demonstrating a typical conical shape of visual-evoked discrete dendritic responses,
consistent with simulations of synapses (Right). C: Rising slopes of the simulated jGCaMP7s-Ca concentration, plotted
according to the distance from the closest synapses labeled with magenta stars. D: Plot of the rising slopes of Ca transients
demonstrating how our algorithm identifies local maxima in space across a dendrite in the filtered and normalized
fluorescence traces, for two visual stimuli (red and blue arrows in panel A). Dots represent the slopes at each point at t=60ms
following visual stimuli, solid lines represent a fit smoothed in space (see Methods). The positions along the tree of the neuron
in A are represented by the color bar in the x-axis. Stars indicate synapses detected by the algorithm. E: Dendritic arbor as in
A, with stars at synaptic locations detected by our algorithm, for the two visual stimuli in D (red and blue, colors correspond).



Identification of active synapses within the dendritic arbor: To validate the algorithm presented
above (Fig. 4), we ran simulations of the full dendritic arbor, with synapses at locations determined by
the algorithm. Note that only a part of the dendritic arbor was imaged (Fig. 4A). For the rest of the tree
with no simulations, we maintained our previous synaptic distribution and organization. As calcium
dynamics at synapses is a local behavior, the position of synapses in the rest of the arbor does not
influence the dynamics at recorded positions. We then compare the rising slopes between experimental
data and simulations (Fig. 5A) and observe a very good agreement between them. We emphasize here
that we normalized fluorescence data to homogenize the noise before the first stimulus (Method), and
this normalization a priori is sufficient to generate a good correspondence between the fluorescence
amplitude and jGCaMP7s-Ca simulated dynamics (Fig. 5). We observe that the decay slope in
experiments is well replicated by our model in a subset of the nodes (Fig. 5B-C, green and red nodes).
We also observe regions with an additional increase in fluorescence-based calcium signal (blue, orange,
and purple nodes), that we hypothesized may be driven by local calcium-evoked release from
intracellular calcium sources within the dendrite.

Discussion

Technological advancements in imaging platforms now allow for recording neurons with unprecedented
spatial and temporal resolution (Kazemipour et al., 2019; Sakaki et al., 2020). When combined with
advances in calcium sensors (Dana et al., 2019), it has become possible to sample across the complete
dendritic arbor and soma of a neuron at rates enabling the detection of fluorescence signals driven by a
wide range of calcium sources including synaptic potentials, back-propagating action potentials,
voltage-gated calcium channels and endoplasmic reticulum-mediated calcium release. These new
datasets raise the challenge of developing methods to segregate these sources for independent analyses.
Here, we have created a model to predict synaptic activity and their locations on dendritic arbors from
these complex datasets.

An accurate model for calcium, jGCaMP7s and jGCaMP7s-Ca dynamics: We generated a model
for voltage propagation and ionic electrodiffusion in the dendritic arbor at the microscale level. This
model is based on the Nernst-Planck equation for ionic electrodiffusion, ensuring the precision necessary
to reproduce microscale level dynamics. We created a decoupled version of our model, allowing fast
simulation in detailed dendritic arbor geometries achieved from in vivo morphometric imaging
experiments. To derive the decoupled version, we show that the longitudinal ionic flux can be well
approximated by a resistive current (j = o E). Our study also emphasizes the role of electrodiffusion in
calcium propagation, versus simple diffusion. Hence, in Fig. 2D, we observe that the major part of the

calcium flux is the electric flux J$2., that is also faster than the diffusive flux ]gi‘}f.
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Figure 5: Comparison between experimental and simulated calcium traces, with synaptic activity determined using
our detection algorithm. A: Comparison between the filtered fluorescence data (dashed lines, normalized) and simulations
of jGCaMP7s-Ca dynamics (solid lines) at several locations in the tree. The gray bar represents the time at which the
algorithm compares the rising slopes. B: Positions on the dendritic arbor of the nodes represented in A and C (colors
correspond). C: Comparison between the raw fluorescence data (points), the filtered data (dashed lines) and the simulated
jGCaMP7s concentration (solid lines) in 5 of the 6 nodes presented in A (colors correspond).

Stimulus-evoked jGCaMP7s-Ca fluorescence rising slopes are a marker for synaptic activity:
Here, we propose an algorithm that uses the rising slope of stimulus-evoked calcium fluorescence
recordings as a marker for synaptic activity. We observe from our simulations that the rising slope of
the stimulus-driven jGCaMP7s-Ca influx is strongly dependent on the distance from active synaptic
sites, and we employ this measure for determining the locations of active synapses in real datasets that



have a high temporal sampling rate (Fig. 4). In our jJGCaMP7s-Ca experimental recordings we were able
to identify predicted active synapse locations by identifying spatial maxima of rising slopes along the
dendritic arbor, and the activity at these sites was consistent with recorded retino-tectal synaptic activity
(Engert et al., Demas et al., 2011; Honda et al., 2011). We observe a strong agreement between our
model’s predictions of jGCaMP7s-Ca dynamics and fluorescence-based experimental measurements
(Fig. 5). Indeed, a peak following the stimulus is observed in both the fluorescence traces and the
jGCaMP7s-Ca concentration dynamics, and the rising slope and peak amplitude correspond in most
nodes (Fig. 5A and C).

The differences in the rising slopes of stimulus-induced calcium signals (Fig. 5) are due to the different
dynamics of the various calcium sources. In our simulations, NMDA receptor channels were added to
model calcium entry at synapses, as well as voltage-gated calcium channels (VGCC), to represent
calcium entry consequent to a sufficiently high membrane depolarization. The simulation yields
stereotypical conical patterns of spatially and temporarily isolated calcium signals (Fig. 4B),
characteristic of synaptic activity. This shape is due to a competition between the diffusion of calcium
ions entering at a synapse, and free calcium removal from the cytoplasm, through binding on various
buffers and extrusion through pumps. This spatial discrimination of the calcium signal is also due to our
fluorescent JGCaMP7s sensor being membrane-bound and exhibiting minimal diffusion. Finally, these
patterns are also easily observable due to the higher calcium current amplitude at active synapses via
NMDA receptors, compared to regions with no active synapses, where the main calcium current is due
to VGCCs in our simulations. In the experimental results, despite the inherent noise and additional
calcium sources, we observe a similar pattern of stimulus-evoked calcium influx that we interpret as
markers of synaptic activity. To detect these conical shapes, our algorithm searches for local maxima in
space of the rising slopes. At other locations in the dendritic arbor we also observe calcium patterns that
do not appear in simulations (Fig. 5, blue, orange and purple nodes). We hypothesize that the observed
prolonged stimulus-evoked calcium transients may result from local calcium-evoked release of calcium
from intracellular stores that is not not currently modeled (Segal and Korkotian, 2014).

Utility of detecting synaptic activity from fluorescence Ca-sensor recordings: Our algorithm detects
and localizes synaptic activity from fluorescence recordings, without the need for synaptic markers such
as fluorescently tagged synaptic proteins or tagged intrabodies that target these proteins (Gross ef al.,
2013). There is substantial utility for a model that can identify active synapses from fluorescence-based
calcium data, since expression of synaptic markers or immunostaining to localize synapses is often not
feasible for in vivo experiments. One challenge arises from the limited number of detection channels
typically available in most multi-photon imaging systems. As a result, only a small number of different
fluorescent markers can be imaged concurrently, such as a calcium sensor reporting activity in one
channel and a neuronal morphology structural marker in the second channel. Furthermore, even in
experiments pairing a synaptic marker with an activity marker, our algorithm would prove useful for
discriminating synaptic responses from signals arising other sources.

Limitations: One limitation of our model for discriminating synaptic activity from fluorescence-based
calcium signals is the requirement that the datasets have a high temporal resolution, since synaptic
activity is discriminated based on the faster rise of the slope compared to other calcium sources. We



estimate that to be able to accurately identify synaptic activity from jGCaMP7s fluorescence, recordings
need to be performed at a rate of approximately 50Hz. Another limitation is the lack of exact
experimental measurements for certain biological variables that by their nature are extremely difficult
to quantify. For example, it would be extremely challenging to obtain the exact concentration of
JGCaMPs7s expressed in neurons in vivo, despite the availability of previous research providing
estimations of plasmid expression based on the promoter (Dou et al., 2020) due to likely variable
amounts of plasmid delivered to each neuron. Consequently, we performed simulations for a range of
different concentrations of jGCaMP7s, which indicate that the results were not significantly impacted.

Future development of the algorithm: The algorithm presented here is a first attempt to localize
synaptic activity from fluorescence data in the full dendritic arbor of a neuron recorded in the intact and
awake developing vertebrate brain. The resultant model successfully localizes suspected synaptic
activity in an in vivo dataset, however there are several potential improvements that can be made. Firstly,
while the signal given by our dendritic recordings is spatio-temporal, we expect some correlation of the
noise at a spatial level as well as at the time level, however our denoising algorithm is currently only
temporal. To address this, we plan to add the spatial component using the model for electrodiffusion.
Secondly, we intend to expand the model to be able to discriminate a wider variety of calcium signals
in a neuron. In addition to stimulus driven synaptic calcium, neurons in a stimulus-response circuit also
have calcium transients from other internal and external sources that have been demonstrated to be
biologically relevant. For example, endoplasmic reticulum-based calcium transients are believed to
potentially play a role in modulating synaptic plasticity (Segal and Korkotian, 2014), as are back-
propagating action potentials (Waters ef al., 2005).

Application of the algorithm to analysis of synaptic inputs: This algorithm allows for the
identification of synaptic inputs in neurons based on evoked calcium. A natural next step is to adapt it
to identify synaptic and extrasynaptic inputs based on neurotransmitter input. This is a new possibility
in the field due to the development of increasingly sophisticated fluorescence-based neurotransmitter
sensors. In particular, the third generation of iGluSnFR sensors has recently been designed specifically
to allow for the temporal discrimination of synaptic glutamate from extrasynaptic glutamate (Aggarwal
etal., 2022).

Building an integrated input-output neural model: Subsequent to the adaptation of the model for the
analysis and discrimination of synaptic glutamate, we intend to apply the model to the analysis of
experiments in which both a glutamate sensor and a calcium sensor are simultaneously expressed in a
single neuron in vivo. Thus, we can build a comprehensive model of both neurotransmitter input and the
resultant calcium output and investigate input-output relationships at synapses.

Conclusion

In this paper, we present a model and algorithm designed to detect possible synaptic activity in in vivo
fluorescence-based calcium recordings. Our model is based on the Nernst-Planck system of equations
for electrodiffusion, coupled to a capacitive equation representing voltage dynamics at the membrane.
We then decoupled our model to allow for fast simulations at the scale of morphometric experiments.
Using a dendritic arbor structure derived from experimental data, we simulated realistic dynamics of



calcium while it is bound to the jJGCaMP7s sensor. Using these simulation results, we identified a typical
conical shape of calcium diffusion following its entry at a synaptic site. This conical shaped calcium
transient was present in experimental calcium imaging datasets, enabling it to be used as a marker for
synaptic activity. We then built an algorithm to automatically detect this marker. Re-running our
decoupled model with the synaptic sites detected by our algorithm, we observed a very good agreement
between our numerical simulations and the experimental dataset. We also observed calcium transient
patterns not yet identified by our algorithm potentially due to variable number and frequency of AP
input at individual synapses, or local release of calcium from intracellular stores, which we intend to
adapt the model to be able to discriminate between their sources. Our model and algorithm are tools
capable of identifying synaptic activity across a dendritic arbor in in vivo fluorescence-based calcium
recordings, at the microscale level.
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Table 1: Simulation parameters for the channels dynamics

Description

conductance of Na'-current

conductance of Na'-current

equilibrium potential of Na**-current
conductance of K*-current

conductance of K'-current

equilibrium potential of K*-current
conductance of leak current
conductance of leak current

equilibrium potential of leak current
conductance of Ca**-current

equilibrium potential of Ca**-current
parameter for Na*-current

parameter for Na'-current

parameter for Na'-current

parameter for Na'-current

parameter for K'-current

parameter for K'-current

parameter for K'-current

parameter for K'-current

parameter for Ca®*-current
parameter for Ca®*-current
parameter for Ca®-current
parameter for Ca®-current

NMDA receptor conductance
NMDA receptor equilibrium potential
NMDA receptor time constant
NMDA receptor time constant
Magnesium block

Value

120 mS.cm™*
3 x 120 mS.cm?

115 mV
36 mS.cm™
3 x 36 mS.cm *

2

-12 mV
0.3 mS.cm ™
3 x 0.3 mS.cm ?

2

10.6 mV
14.5 mS.cm™?
115 mV
10 ms
25 mV
4
18
10 ms
10 mV
0.125
80
1.3 ms
102 mV
10 ms
24 mV
0.15 mS.cm ?
75 mV
11.5 ms
0.67 ms
2 mM

Reference

(Hodgkin and Huxley, 1952)

(Hodgkin and Huxley, 1952;
Bono and Clopath, 2017)
(Hodgkin and Huxley, 1952)
(Hodgkin and Huxley, 1952)
(Hodgkin and Huxley, 1952;
Bono and Clopath, 2017)
(Hodgkin and Huxley, 1952)
(Hodgkin and Huxley, 1952)
(Hodgkin and Huxley, 1952;
Bono and Clopath, 2017)
(Hodgkin and Huxley, 1952)
(Guerrier and Holcman, 2017)

(Guerrier and Holcman, 2017)
(Hodgkin and Huxley, 1952)
(Hodgkin and Huxley, 1952)
(Hodgkin and Huxley, 1952)
(Hodgkin and Huxley, 1952)
(Hodgkin and Huxley, 1952)
(Hodgkin and Huxley, 1952)
(Hodgkin and Huxley, 1952)
(Hodgkin and Huxley, 1952)
(Guerrier and Holcman, 2017)
(Guerrier and Holcman, 2017)
(Guerrier and Holcman, 2017)
(Guerrier and Holcman, 2017)
(Koch, 1999)

(Koch, 1999)

(Koch, 1999)

(Koch, 1999)

(Koch, 1999)
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