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ABSTRACT: The National Weather Service plays a critical role in alerting the public when dangerous weather occurs. Tornado 
warnings are one of the most publicly visible products the NWS issues given the large societal impacts tornadoes can have. 
Understanding the performance of these warnings is crucial for providing adequate warning during tornadic events and improving 
overall warning performance. This study aims to understand warning performance during the lifetimes of individual storms 
(specifically in terms of probability of detection and lead time). For example, does probability of detection vary based on if the 
tornado was the first produced by the storm, or the last? We use tornado outbreak data from 2008 to 2014, archived NEXRAD radar 
data, and the NWS verification database to associate each tornado report with a storm object. This approach allows for an analysis 
of warning performance based on the chronological order of tornado occurrence within each storm. Results show that the probability 
of detection and lead time increase with later tornadoes in the storm; the first tornadoes of each storm are less likely to be warned 
and on average have less lead time. Probability of detection also decreases overnight, especially for first tornadoes and storms that 
only produce one tornado. These results are important for understanding how tornado warning performance varies during individual 
storm life cycles and how upstream forecast products (e.g., Storm Prediction Center tornado watches, mesoscale discussions, etc.) 
may increase warning confidence for the first tornado produced by each storm. 

SIGNIFICANCE STATEMENT: In this study, we focus on better understanding real-time tornado warning performance on a 
storm-by-storm basis. This approach allows us to examine how warning performance can change based on the order of each 
tornado within its parent storm. Using tornado reports, warning products, and radar data during tornado outbreaks from 2008 
to 2014, we find that probability of detection and lead time increase with later tornadoes produced by the same storm. In other 
words, for storms that produce multiple tornadoes, the first tornado is generally the least likely to be warned in advance; when 
it is warned in advance, it generally contains less lead time than subsequent tornadoes. These findings provide important new 
analyses of tornado warning performance, particularly for the first tornado of each storm, and will help inform strategies for 
improving warning performance. 
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events (Andra et al. 2002; Quoetone et al. 2009; Brotzge et al. 
2013; Brotzge and Donner 2013). 

In addition to lower probability of detection (POD), more isolated 
tornadoes also generally have shorter lead time (Brotzge and Erickson 
2009). POD is defined as the ratio of 

the number of tornadoes occurring within the time and space of a 
valid tornado warning to all tornadoes that occurred, and lead time 
is defined as the time interval between tornado warning issuance 
and the initial tornado touchdown. These results are consistent with 
Anderson-Frey et al. (2018), who showed that POD is lower in 
nontornado outbreak events (59%) and greater in tornado outbreak 
events (80%). They also attributed higher POD with tornado 
outbreak events due to atmospheric conditions being more 
favorable for tornado development. This may lead to increased 
warning lead time because the storms are likely stronger and more 
organized with a history of tornadic development (Brotzge and 
Erickson 2009). 

Geographic location also plays an important role in warning 
performance. Areas that experience more tornado activity generally 
have a higher POD than areas that experience less tornado activity 
(Brotzge and Erickson 2010). This is likely due to a combination 
of human and meteorological factors. Higher POD in areas more 
frequented by tornadoes may be partly due to heightened forecaster 
training and education, experience, and situational awareness. 
Lower POD in areas like Florida and the Gulf Coast may be 
partially attributable to a higher frequency of generally brief and 
smaller-scale tornadoes produced by tropical cyclones (Brotzge 
and Erickson 2010) or nonsupercell tornadoes along sea-breeze 
fronts. The physical processes associated with the formation of 
tropical cyclone tornadoes generally remain less understood than 
those of their inland supercellular counterparts and are an active 
area of research (e.g., Edwards 2012; Schenkel et al. 2020, 2021). 
More widespread low-level radar coverage is also generally 
associated with greater POD and lesser false alarm ratios (FAR; 
Brotzge and Erickson 2010; Bentley et al. 2021; Kingfield and 
French 2022; Cho et al. 2022), the fraction of total warnings that 
are unverified. Average lead times also vary by geographic location 
for many of the same reasons, with the central United States 
exhibiting generally greater lead times than other parts of the 
contiguous United States (Brotzge and Erickson 2009, 2010). 

NWS policy and long-term goals can also influence tornado 
warning performance. For example, tornado warning durations 
decreased in 2012, yielding reduced FAR (Brooks and Correia 
2018). However, this was also associated with a substantial 
decrease in POD, which would be expected given decreased FAR 

 
1 “Isolated” tornadoes in this sense refer to events that are the only one within a single NWS county warning area per day.  
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and resulting in negligible change in overall warning skill (Brooks 
and Correia 2018, their Fig. 14). 

This study aims to investigate how tornado warning performance 
varies as a function of chronological tornado occurrence (also 
referred to as “tornado order”) in individual storms. This goal 
extends recent work examining warning performance based on 
tornado order within each convective day (Krocak et al. 2021b), but 
not within each individual storm. We present a novel dataset of 
3991 tornadoes associated with 75 outbreaks from 2008 to 2014, 
with each report assigned to an individual storm. Our research 
questions are as follows: 

1) Does POD vary by tornado order within individual storms? 
2) Does lead time vary by tornado order within individual storms? 
3) Does geographic location or time of day influence POD in 

addition to tornado order? 

In particular, we hypothesize that the POD and lead time 
associated with the first tornadoes of each storm are lower than 
subsequent tornadoes produced by the same storm. The remainder 
of the paper details our exploration of this hypothesis as well as the 
degree to which other factors like geographic location and time of 
day may influence the results. 

2. Methods 

This study analyzes tornado warning performance over the 
lifetime of individual tornado-producing storms from 2008 to 2014. 
Due to the time-intensive methods necessitated by this study, we 
focus on tornado reports that occurred within “tornado outbreaks” 

as defined by Anderson-Frey et al. (2018). This definition included 
applying a kernel-density estimation (KDE) clustering to groups of 
10 or more tornadoes that occurred no more than 6 h apart (there is 
no maximum spatial distance in this technique); these groups were 
then split into outbreaks based on the KDE analysis. The KDE 
technique smooths the tornado-report map by replacing each 
tornado report with a Gaussian kernel (see Anderson-Frey et al. 
2018; Shafer and Doswell 2011 for more details). This yielded a 
total of 4103 tornado reports associated with almost all (n 5 75) 
outbreaks from 2008 to 2014. Missing radar data prohibited the 
analysis of three outbreaks during this time period (see appendix A 
for more details). We analyzed only part of Anderson-Frey et al.’s 
dataset (which contains data from 2003 to 2015) due to the time 
constraints of this study. We also did not filter out EF0 tornadoes 
in order to best preserve the respective orders of each tornado 
within each storm. 

Two different samples of the total tornado report database are 
used in our analysis. First, 112 reports were removed due to 

1. Introduction 

Throughout the United States, tornadoes can form at any given 
time of the year, most frequently during the spring and early 
summer (Krocak and Brooks 2018). They present a hazard to the 
public with deadly outcomes in some cases. It is the responsibility 
of the National Weather Service (NWS) to issue warnings in 
advance of developing or existing tornadoes. 

Unfortunately, isolated1 tornadoes and the first tornado of the day 
are the least likely to be warned in advance (Brotzge and Erickson 
2010; Krocak et al. 2021b). Factors including atmospheric 
conditions, geographical location, radar data interpretation, and 
warning philosophy, among others, may play a role in forecaster 
confidence and the decision whether or not to issue warnings for 
storms during severe weather 
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randomly missing variables (e.g., start and end points, start and end 
times, etc.) which yielded a total of 3991 tornadoes. This is the 
subset that is plotted in Fig. 1 and used in the ensuing analysis 
related to POD. Second, 956 of these 3991 tornadoes featured a 
lead time of “zero” minutes. The actual lead times of these 
tornadoes could have been either zero or negative minutes, but it is 
recorded as zero in the database. Because of this, as well as prior 
work discussing the philosophy of lead-time statistics and the 
removal of zero-minute lead times (e.g., Brooks and Correia 2018), 
our analysis of lead time excludes these reports; thus, the subset 
used to analyze lead-time statistics is comprised of 3035 tornadoes. 

Tornado reports and associated verification data (e.g., warned or 
not warned, lead time, etc.) from 2008 to 2014 were collected from 
the NWS Verification database.2 Archived NEXRAD-88D Level-
II radar data were downloaded from the online NCEI (National 
Centers for Environmental 

and longitude point of each tornado. 

Information) database. 3  GR2-Analyst software 4  was used to 
manually pair radar-based storm objects with 3991 tornado reports. 
The reports were associated with a mix of storm modes, including 
both supercells and QLCSs. This pairing was done by assigning 
each storm object a number (e.g., 1, 2, 3, etc.) that was then 
associated with each tornado that each storm produced. Some 
examples of this process are shown in appendix B. Individual 
storms were numbered based on the order of initial tornadogenesis 
for each storm (e.g., the first tornado in time was paired with Storm 
1 and the second tornado in time associated with a different storm 
was paired with Storm 2). All data for each tornado report were 
paired with the storm objects, including starting and ending 
locations and times, initial lead time, maximum EF-scale intensity, 
etc. In a few cases (6 in total), multiple tornadic storms originated 
from a splitting supercell storm (e.g., Rotunno and Klemp 1985) or 

 
2  The NWS verification database is available at 

https://verification.nws.noaa.gov/services/public/index.aspx. NOAA 
credentials are required for access. 

3 The NCEI radar database is available at https://www.ncei. 

primary updraft. The ensuing tornadic storms in these instances 
were assigned the same storm number as the initial updraft but with 
a decimal also included (e.g., if storm 10 split into two storms, the 
new tornadic storms would be classified as 10.1 and 10.2). In some 
cases, two previously tornadic storms merged into one primary 
storm that subsequently produced more tornadoes. The ensuing 
tornadic storm was assigned the minimum of the two storm 
numbers associated with the two merging storms (e.g., if tornadic 
storms 7 and 8 merged, the resulting tornadic storm would be 
identified as storm 7). We chose to combine the storm numbers in 
this instance because each storm prior to the merger already had a 
history of producing tornadoes, such that subsequent tornadoes 
after the merger should not be considered “first” tornadoes (see 
appendix B for an example). 

This study spans a range of convective storm modes including 
discrete supercells, quasi-linear convective systems (QLCSs), and 

complex mixed modes. Subjectively tracking individual storm 
objects was fairly straightforward for discrete modes and primarily 
relied on reflectivity analysis of the main supercell. Cycling 
mesocyclones within the same discrete storm were not counted as 
different storm objects. In the case of QLCSs or mixed modes (e.g., 
Smith et al. 
2012), we also used radial velocity to identify distinct, quasisteady, 
tornado-producing updrafts and mesocyclones/ mesovortices 
within the broader convective complex. Each of these quasi-steady 
circulations were treated as different storm objects. In some cases, 
cyclic tornadic mesocyclones and mesovortices were treated as the 
same storm object if they occurred in the same storm-relative 
location within the broader QLCS. An example of this is provided 
in appendix B in which two QLCS mesovortices developed and 
became tornadic within ;5–10 km of each other; in many cases, 
these events were located within the same tornado warning (at least 
initially). 

noaa.gov/products/radar. 
4 This software is available for purchase at https://www.grlevelx. 

com/gr2analyst_2/. 

 

FIG. 1. Map of the 3991 “outbreak” tornado reports from 2008 to 2014 that were paired with storm 
objects in this study along with NWS regions. Each marker indicates the starting latitude 
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Most events were analyzed by the lead author; more complex 
cases were reviewed on an individual basis by the rest of the team 
to ensure that our storm-object analyses were consistent across all 
events. While there is inherent subjectivity involved in the manual 
assignment of storm objects to tornado reports, our goal was to 
remain consistent with the research questions, namely, assuming 
that if the environment and radar depiction remained supportive of 
tornado production, a human forecaster would be more likely to 
issue tornado warnings on the resulting storm because the 
environment had already supported tornado formation earlier. 

Once the manual assignment of storm objects to 3991 tornado 
reports was complete, we grouped tornadoes into chronological 
groups, including “First,” “Middle,” “Last,” and “Only” tornadoes. 
Tornadoes in the First and Last groups include the first and last 
tornado of each storm that produced two or more tornadoes. Middle 
tornadoes correspond to tornadoes that 

 

FIG. 2. POD of tornadoes within each tornado chronological group. 
Sample sizes are shown at the bottom of each bar. 

occurred between the first and last tornadoes of each storm (that 
produced three or more tornadoes). This means that for some 
storms, the Middle category by definition contained more tornadoes 
than the First and Last categories. Tornadoes in the Only category 
were the only ones associated with their storm. 

Finally, Fig. 1 shows the start points for all 3991 tornado reports 
overlaid on the four NWS regions. The starting latitude and 
longitude points were used to associate each tornado report with 
one of the four NWS regions (based on the county warning area in 
which each point resided). Any region-crossing tornadoes were 
associated with the region that they started in. It was possible for 
tornadoes from the same storm to be associated with different 
regions (if the storm crossed a regional boundary). These region 
designations are distinct from the chronological groups described 
above. 

3. Results 

The first tornadoes of each storm are less likely to be warned than 
subsequent tornadoes (Fig. 2). Across the outbreaks analyzed here, 
67.7% of First tornadoes were warned in advance, as opposed to 
84.9% of Middle tornadoes and 78.2% of Last tornadoes. Thus, 
POD increases substantially (almost 0.20) after the first tornado of 
a storm that produces three or more tornadoes. POD decreases from 
Middle to Last tornadoes, but not as substantially as the increase in 
POD from First to Middle tornadoes. The Only tornadoes category 
exhibited the lowest POD of all groups, which is consistent with 
the findings of Brotzge and Erickson (2010). 

When they are warned in advance, the first tornadoes of each 
storm contain less lead times than subsequent tornadoes (Fig. 3). 
The median lead time for First tornadoes is 16 min. This increases 
to 19 min for Middle tornadoes and 18 min for Last tornadoes. 
These 2–3-min differences in lead times between First and 
Middle/Last tornadoes are statistically significant at the 99% 
confidence interval based on Monte Carlo testing. The median lead 
time for Only tornadoes (15 min) is similar to that for First 
tornadoes. Comparisons between these 
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FIG. 3. Violin plots of tornado lead times for all tornadoes within each chronological group that are 
warned in advance. The body of each violin consists of KDE-smoothed distributions of data. Sample 
sizes are shown along the bottom of each of the violins. (These sample sizes are different than in Fig. 
2 because only tornadoes warned in advance are included here.) Boxplots of each distribution are 
shown in gray inside each violin. The median lead time is also highlighted with text, and black dots 
indicate statistical outliers (e.g., Q3 1 1.5 3 IQR, where Q3 is the third quartile and IQR is the 
interquartile range). 

 

FIG. 4. As in Fig. 2, but with the tornadoes in each group stratified into the NWS Central, 
Eastern, and Southern geographical regions (see Fig. 1). Sample sizes are shown at the bottom 
of each bar. 

values and the national statistics reported in Brooks and Correia 
(2018) are presented in section 4. 

We then explored if there are any regional differences in tornado 
warning performance relative to tornado order. Figure 4 shows the 
same findings in Fig. 2 but stratified by geographical NWS region 
(Central, Eastern, and Southern). In the case that an ongoing 
tornado crossed regions (likely a very small number in our dataset), 
only the starting region is linked with the tornado in this analysis. 
While tornadoes did occur in the Western Region from 2008 to 
2014, none were associated with outbreaks. Many similarities exist 
when compared to the full dataset, including the fact that in all 
regions, POD increased from First to Middle tornadoes and then 
decreased from Middle to Last tornadoes. In all regions, Only 
tornadoes exhibited lower PODs than any other group. However, 
small geographical distinctions are also evident; in particular, the 
POD of First tornadoes ranged from 0.647 in the Central Region to 
0.750 in the Eastern Region. We speculate that the larger POD for 
First tornadoes in the Eastern Region may be due to the limited 
sample size there and/or differences in forecasting experience and 
philosophy in areas that are less prone to tornado occurrence. The 
increase in POD from First to Middle tornadoes also varied by 
region: 0.176 in the Central Region, 0.066 in the Eastern region, 
and 0.189 in the Southern Region. Thus, roughly two-thirds of First 
tornadoes are warned in advance (particularly in the Central and 

Southern Regions), but this fraction increases substantially with 
subsequent tornadoes. 

Last, we examined if the local diurnal cycle influences tornado 
warning performance relative to tornado order. Figure 5 shows that 
for all tornadoes, particularly First and Middle, POD is lower 
overnight (from local sunset to local sunrise) than during the day 
(from local sunrise to local sunset). The POD of First tornadoes is 
0.087 higher during the day (0.706) than overnight (0.619). The 
increase in POD from First to Middle tornadoes is similar during 
the day and night (0.187 and 0.172, respectively). POD for Last 
and Only tornadoes is slightly more similar when comparing 
daytime and nighttime tornadoes (0.058 and 0.065, respectively), 
but POD is still greater during the day. Finally, the drop in POD 
from Middle to Last tornadoes is twice as much during the day 
(0.086) than overnight (0.042). 

4. Discussion 

This is the first study that we are aware of to examine tornado 
warning performance during the life cycles of individual tornado-
producing storms. It is useful to compare the statistics presented 
here with past similar work on larger spatiotemporal scales. The 
PODs of First and Only tornadoes}0.677 and 0.558, 
respectively}are similar to the range of annual 2008–14 PODs for 
all tornadoes (0.469–0.673; Brooks and Correia 2018). The PODs 
of Middle and Last tornadoes}0.849 and 0.782, respectively}are 
larger. Brooks and Correia (2018) found that the mean lead time 
for tornadoes warned in advance is approximately constant over 
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long periods of time (18.5 min from 1986 to 2011 and around 15 
min since then). The 15–16-min lead time for First and Only 
tornadoes is near the lower end of this range, and the lead times for 
Middle and Only tornadoes}19 and 18 min, respectively}are near 
the upper end. 

Cumulatively, the statistics presented here demonstrate more 
tornado warning skill (i.e., contain greater POD and lead times) 
than the metrics for all tornadoes likely because we focused only 
on tornadoes that occurred during outbreaks. Outbreaks are 
typically supported by more volatile environments, a greater 

of each bar. 

expectation of tornado occurrence, and higher-end tornadowatch 
probabilities, which are all associated with increased warning 
performance (Anderson-Frey et al. 2016; Krocak and Brooks 
2021). In fact, the difference in POD between First (0.677) and 
Middle/Last tornadoes (0.849/0.782, respectively) is similar to the 
difference in POD between tornadoes that occurred inside any type 
of severe thunderstorm or tornado watch (;0.6) and those that 
occurred within Particularly Dangerous Situation tornado watches 
(;0.8) from 2008 to 2014 (Krocak and Brooks 2021, their Fig. 1). 

The POD of First (0.619) and especially Only (0.530) tornadoes 
overnight are among the lowest of any chronological group during 
the day or night. Interactions between a tornadic storm and its local 
environment during and just after the earlyevening transition can 
be complex (e.g., Coffer and Parker 2015) and can yield brief 
periods of increased tornadic activity near the onset of nighttime 
(Anderson-Frey et al. 2016; Krocak and Brooks 2018). On one 

hand, these results might support continuing to issue tornado 
warnings on storms during the afternoon, prior to sunset, until the 
storm sufficiently weakens. However, this mindset is not generally 
supported by our finding that during the day, the POD of Last 
tornadoes (0.807) is less than Middle tornadoes (0.893). This result 
is slightly different for nocturnal tornadoes, in which the PODs of 
Middle (0.791) and Last tornadoes (0.749) are more similar. This 
may suggest that forecasters are more likely to try to anticipate 
tornado demise (or the last tornado of a storm) during the day than 
overnight. 

Diurnal tornado warning skill (in terms of POD and FAR) peaks 
during the early evening transition, but tornadoes later at night after 
the early evening transition are typically characterized by very high 
FAR (Anderson-Frey et al. 2016). This is likely due to a number of 
meteorological as well as human factors as the convective 
environment typically becomes more complex and visual storm-
spotting becomes limited, for example. Nocturnal tornadoes are 
also associated with decreased human response and increased 
human vulnerability and fatalities (Ashley et al. 2008; Krocak et al. 
2021a). In the context of these previous studies, our findings 
suggest that further investigation of tornado warning performance 
on a storm-by-storm basis will continue to shed light on important 
physical and warning processes related to the daytime to nighttime 
transition. 

More generally, why do POD and lead time drop slightly from 
Middle to Last tornadoes, especially during the day? The reason is 
not immediately clear based on our work. While it may seem 
logical to continue issuing a tornado warning for a storm until 

 

FIG. 5. As in Fig. 4, but with the tornadoes in each group stratified by the time of day that they 
occurred. “Daytime” tornadoes started between local sunrise and local sunset, and “nighttime” 

tornadoes started between local sunset and local sunrise. Sample sizes are shown at the bottom 
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confirmation that the tornado threat has ended, this work indicates 
that this is not necessarily happening given the lower POD and lead 
time for Last tornadoes. The slight drop in POD also does not 
appear to be related to the number of storms that each storm 
produces. Future work should examine if other meteorological and 
social differences, such as rotating shifts and different forecasting 
philosophies, may explain why this pattern is observed for warning 
performance for Middle and Last tornadoes. 

These results are consistent with findings of Brotzge and 
Erickson (2009, 2010) and Krocak et al. (2021b): the first tornado 
of each convective day (1200–1159 UTC) during tornado 
outbreaks is more poorly warned than the rest. Furthermore, we 
show that this trend more generally extends to the first tornadoes of 
each storm. This implies that tornado warning skill does not 
necessarily increase after the event has started, at least for 
individual storms. Instead of assuming future storms will follow a 
similar tornado-producing evolutionary path, it appears that 
warning decisions are made on a storm-by-storm basis (Smith et al. 
2015). This is consistent with operational forecaster experience 
(e.g., Smith et al. 2015; Bentley et al. 2021; Bunkers et al. 2022) as 
well as recent observational (e.g., Klees et al. 2016) and modeling 
(Coffer et al. 2017; Flournoy et al. 2020; Markowski 2020) work 
showing that a range of storm- and tornado-scale outcomes are 
possible within a broader, generally homogeneous environment. 
This paper indirectly addresses this topic from the 
human/forecaster perspective and continues to suggest that 
increased quantification of the range of storm-scale outcomes in 
similar (and different) meteorological scenarios would be 
beneficial to the community. 

5. Summary and conclusions 

The goal of this study was to analyze tornado warning 
performance on a storm-by-storm basis during tornado outbreaks. 
This extends prior work examining tornado warning performance 
on the annual (e.g., Brooks and Correia 2018), and daily (e.g., 
Brotzge and Erickson 2009; Krocak et al. 2021b) time scales. To 
do this, we manually paired tornado reports from the NWS 
Verification Database with subjectively defined storm objects 
identified using Level-II NEXRAD 88D radar data. We did this for 
3991 tornado reports that were associated with 75 tornado 
“outbreaks” (as defined in Anderson-Frey et al. 2018) from 2008 to 
2014. This approach allowed us to address questions such as the 
following: is POD lower for the first tornado of each storm (“First”) 
compared to subsequent (e.g., “Middle” and “Last”) tornadoes? Is 
the same true for lead time? Does geographic location or time of 
day influence whether First tornadoes are more or less poorly 
warned than subsequent tornadoes? 

Our main findings are summarized below: 

• The first tornadoes of each storm are less likely to be warned than 
subsequent tornadoes in the same storm. First tornadoes are 
warned in advance 67.7% of the time as opposed to 84.9% and 
78.2% for Middle and Last tornadoes, respectively. 

• When they are warned in advance, the first tornadoes of each 
storm are associated with less lead time than subsequent 
tornadoes produced by the same storm. Warnings for First 

tornadoes have a median lead time of 16 min as opposed to 19 
and 18 min for Middle and Last tornadoes, respectively. 

• Storms that only produce one tornado are the most poorly 
warned. “Only” tornadoes are warned in advance just over half 

of the time (POD 5 0.568) with a median lead time of 15 min. 

• POD decreases overnight for tornadoes in all chronological 

groups. The PODs for First, Middle, and Last tornadoes decrease 

by roughly 0.06–0.10 for all groups. 

• Tornado timing within the day or night does not strongly 
influence relationships between warning characteristics of 
different chronological groups. POD decreases overnight for all 
tornadoes, but the POD for First tornadoes (0.619) is still 
substantially lower than Middle (0.791) and Last tornadoes 
(0.749). Just over one-half of nocturnal Only tornadoes (53.0%) 
are warned in advance. 

• Geographic location does not strongly influence the general 
relationships between warning characteristics of different 
chronological groups. PODs of First and Only tornadoes are 
lower than Middle and Last tornadoes in the NWS Central, 
Southern, and Eastern Regions. 

These findings are drawn from the first examination of tornado 
warning performance during individual storm life cycles within 
tornado outbreaks. They highlight some of the strengths, 
weaknesses, and limits of practical predictability in the current 
tornado-warning paradigm. Even in volatile environments 
supportive of tornado outbreaks, the first tornadoes of each storm 
(not just the first of each outbreak) are more poorly warned than 
subsequent tornadoes from the same storm. This has important 
implications as the severe weather community continues to 
experiment with new probabilistic formats and warn-on-forecast 
systems (e.g., Skinner et al. 2018; Calhoun et al. 2021; Wilson et 
al. 2021; Trujillo-Falcon´ et al. 2022; Gallo et al. 2022). 

We also believe these findings motivate continued study of the 
evolution of tornadic storms, particularly in their early stages of 
development. Our study shows that initial tornado occurrence 
improves downstream predictability. Thus, increased investigation 
of the initiation and early evolution of potentially tornadic storms 
might also improve downstream understanding and predictability. 
Planned future work in this area will analyze tornado warning 
performance before and after each storm produces tornadoes (i.e., 
to investigate FAR), including a focus on how this performance 
may vary based on tornado damage ratings (e.g., comparing weak 
EF0–1, strong EF2–3, and violent EF4–5 tornadoes). We also look 
forward to results from ongoing modeling efforts (e.g., LeBel and 
Markowski 2023; Flournoy and Rasmussen 2022, manuscript 
submitted to Mon. Wea. Rev.; Peters et al. 2022a,b) and field 
observing campaigns that will further our understanding of 
processes influencing convection initiation and early evolution. 
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TABLE A1. List of the 112 “outbreak” tornado reports that were omitted from this study due to spatiotemporal errors. 
Outbreak ID 

WFO Start time State 

EF 
rating 

Start latitude 
(8) 

Start longitude 
(8) 

End latitude 
(8) 

End longitude 
(8) 

1 LSX 0150 UTC 8 Jan 2008 MO 0 38.39 291.64 38.39 291.64 

2 OHX 0210 UTC 6 Feb 2008 TN 1 35.38 288.02 35.46 287.9 
2 OHX 0220 UTC 6 Feb 2008 TN 1 35.46 287.9 35.48 287.89 
2 PAH 0224 UTC 6 Feb 2008 MO 1 36.7 290.14 36.73 289.97 
2 LMK 0527 UTC 6 Feb 2008 KY 2 37.7 285.78 37.7 285.76 
2 LMK 0538 UTC 6 Feb 2008 KY 0 37.99 285.42 38 285.41 
2 LMK 0552 UTC 6 Feb 2008 KY 0 38.12 285.05 38.12 285.05 
2 OHX 0632 UTC 6 Feb 2008 TN 0 36.01 287.32 36.01 287.32 
2 OHX 0712 UTC 6 Feb 2008 TN 0 36.35 286.67 36.37 286.62 
2 OHX 0722 UTC 6 Feb 2008 TN 1 36.4 286.54 36.5 286.37 
3 BMX 2217 UTC 17 Feb 2008 AL 1 31.71 285.67 31.87 285.36 
3 BMX 2238 UTC 17 Feb 2008 AL 0 31.74 285.29 31.75 285.29 
4 CAE 2252 UTC 15 Mar 2008 SC 2 34.13 280.32 34.08 280.08 
5 DVN 2330 UTC 10 Apr 2008 IL 1 40.28 291.31 40.3 291.28 
5 DVN 2333 UTC 10 Apr 2008 IL 0 40.33 291.28 40.33 291.28 
5 DVN 2335 UTC 10 Apr 2008 IL 0 40.4 291.24 40.4 291.23 
6 FSD 0042 UTC 2 May 2008 IA 0 43.14 295.87 43.14 295.87 
6 MEG 2125 UTC 2 May 2008 TN 2 35.96 289.67 35.97 289.65 
6 OHX 0457 UTC 3 May 2008 TN 1 36.38 287.54 36.38 287.53 
6 OHX 0500 UTC 3 May 2008 TN 1 36.39 287.53 36.39 287.53 
6 OHX 0505 UTC 3 May 2008 TN 1 36.42 287.51 36.43 287.51 
6 OHX 0510 UTC 3 May 2008 TN 1 36.5 287.38 36.51 287.37 
8 TSA 2219 UTC 10 May 2008 OK 0 35.46 295.48 35.46 295.48 
8 FFC 1011 UTC 11 May 2008 GA 0 32.75 283.63 32.75 283.62 

10 DDC 2147 UTC 25 May 2008 KS 0 38.55 299.06 38.56 299.05 
10 DDC 2149 UTC 25 May 2008 KS 0 38.5 299.22 38.5 299.2 
11 GID 2302 UTC 29 May 2008 KS 1 39.21 299.61 39.21 299.56 
11 DMX 0223 UTC 30 May 2008 IA 1 42.4 294.45 42.4 294.4 
11 DMX 0225 UTC 30 May 2008 IA 0 42.28 294.43 42.28 294.39 
12 LBF 0010 UTC 6 Jun 2008 NE 0 40.43 2101.16 40.43 2101.16 
17 FFC 2245 UTC 18 Feb 2009 GA 0 32.49 284.15 32.49 284.08 
17 TAE 0550 UTC 19 Feb 2009 GA 2 30.8 284.18 30.81 284.08 
17 TAE 0555 UTC 19 Feb 2009 GA 2 30.81 284.08 30.81 283.91 
17 TAE 0620 UTC 19 Feb 2009 GA 3 30.82 283.8 30.82 283.77 
18 IWX 2115 UTC 8 Mar 2009 IN 1 41.17 285.48 41.17 285.48 
20 OHX 1719 UTC 10 Apr 2009 TN 4 35.76 286.85 35.91 286.28 
20 CAE 0153 UTC 11 Apr 2009 GA 0 33.46 282.44 33.46 282.43 
23 LSX 1705 UTC 8 May 2009 MO 0 37.62 290.28 37.62 290.28 
23 LSX 1710 UTC 8 May 2009 MO 1 37.52 290.24 37.52 290.23 
23 PAH 1818 UTC 8 May 2009 IL 0 37.89 289.12 37.89 289.12 
23 PAH 1845 UTC 8 May 2009 IL 1 37.9 288.78 37.86 288.76 
23 PAH 1848 UTC 8 May 2009 IL 1 37.86 288.76 37.83 288.73 
23 MRX 2240 UTC 8 May 2009 TN 0 36.36 283.8 36.37 283.79 
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23 MRX 2336 UTC 8 May 2009 TN 0 36.36 283.42 36.41 283.34 
23 RLX 0100 UTC 9 May 2009 VA 0 37.19 282.48 37.19 282.47 
26 OHX 2315 UTC 24 Apr 2010 TN 1 35.65 287.52 35.67 287.5 
29 GLD 1827 UTC 10 May 2010 KS 1 38.49 2101.21 38.49 2101.19 
29 GLD 1831 UTC 10 May 2010 KS 0 38.56 2101.2 38.57 2101.18 
29 GLD 1850 UTC 10 May 2010 KS 0 38.82 2101.24 38.83 2101.22 
29 DDC 1900 UTC 10 May 2010 KS 0 38.5 2100.7 38.5 2100.7 
29 DDC 2008 UTC 10 May 2010 KS 0 38.58 2100.08 38.58 2100.07 
29 OUN 2146 UTC 10 May 2010 OK 0 35.72 297.75 35.72 297.75 
29 OUN 2146 UTC 10 May 2010 OK 0 35.73 297.74 35.8 297.67 
29 OUN 2154 UTC 10 May 2010 OK 0 35.8 297.67 35.8 297.67 
29 ICT 2208 UTC 10 May 2010 KS 1 37.1 296.97 37.1 296.96 
29 OUN 2244 UTC 10 May 2010 OK 0 34.11 297.75 34.12 297.72 
32 FGF 2038 UTC 17 Jun 2010 ND 0 47.58 297.8 47.64 297.78 
32 FGF 2235 UTC 17 Jun 2010 ND 1 48.09 297.69 48.15 297.72 
33 IWX 1421 UTC 26 Oct 2010 IN 0 41 285.6 41 285.6 

TABLE A1. (Continued) 
Outbreak ID 

WFO Start time State 

EF 
rating 

Start latitude 
(8) 

Start longitude 
(8) 

End latitude 
(8) 

End longitude 
(8) 

33 IWX 1422 UTC 26 Oct 2010 IN 0 41 285.6 41.02 285.58 

33 LMK 1635 UTC 26 Oct 2010 KY 0 38.7 285.4 38.72 285.39 
35 PAH 2025 UTC 31 Dec 2010 MO 2 36.82 290.52 36.82 290.52 
36 HUN 1818 UTC 28 Feb 2011 TN 2 35.31 286.11 35.28 286.28 
36 MRX 1930 UTC 28 Feb 2011 TN 1 35.18 285.28 35.18 285.28 
36 CAE 0024 UTC 1 Mar 2011 SC 1 34.25 281.73 34.24 281.67 
38 RNK 0525 UTC 5 Apr 2011 NC 1 36.4 280.57 36.41 280.53 
40 ICT 2311 UTC 14 Apr 2011 KS 0 37.44 296.55 37.44 296.55 
40 OUN 0136 UTC 15 Apr 2011 OK 1 34.34 296.08 34.36 296.07 
42 IND 0254 UTC 20 Apr 2011 IN 1 38.53 287.53 38.48 287.72 
44 SHV 1405 UTC 25 Apr 2011 AR 0 33.63 293.8 33.7 293.69 
45 OHX 1050 UTC 27 Apr 2011 TN 1 35.41 287.32 35.43 287.28 
45 MRX 1245 UTC 27 Apr 2011 TN 2 35.3 284.96 35.32 284.92 
45 MRX 1926 UTC 27 Apr 2011 TN 1 35.4 285.37 35.43 285.32 
45 MRX 1930 UTC 27 Apr 2011 TN 1 35.43 285.32 35.44 285.3 
45 MRX 2335 UTC 27 Apr 2011 TN 0 35.18 284.87 35.19 284.86 
45 MRX 0228 UTC 28 Apr 2011 TN 2 35.36 285.39 35.4 285.33 
46 BIS 0141 UTC 23 May 2011 ND 0 48.73 2101.71 48.73 2101.71 
48 EAX 1635 UTC 23 May 2011 MO 0 38.62 294.3 38.62 294.3 
48 EAX 1638 UTC 23 May 2011 KS 0 38.96 294.73 38.96 294.73 
48 IWX 1926 UTC 23 May 2011 OH 0 40.88 284.6 40.88 284.6 
48 PAH 2151 UTC 23 May 2011 MO 0 37.64 290.1 37.64 290.09 
48 PAH 2158 UTC 23 May 2011 MO 0 36.53 290.71 36.54 290.7 
48 CLE 2330 UTC 23 May 2011 OH 0 41.1 281.55 41.13 281.48 
49 GLD 2325 UTC 20 Jun 2011 KS 0 39.88 2100.25 39.88 2100.25 
49 GLD 2344 UTC 20 Jun 2011 KS 0 39.84 2100.15 39.84 2100.15 
49 GLD 2345 UTC 20 Jun 2011 KS 0 39.84 2100.18 39.84 2100.18 
52 PAH 1157 UTC 29 Feb 2012 KY 1 37.91 287.55 37.91 287.52 
52 LMK 1605 UTC 29 Feb 2012 KY 2 37.56 285.77 37.56 285.72 
53 HUN 2045 UTC 2 Mar 2012 TN 0 35.21 286.74 35.21 286.73 
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54 OAX 1928 UTC 14 Apr 2012 IA 0 42.14 296.01 42.15 296.01 
54 DMX 2352 UTC 14 Apr 2012 IA 1 41.03 294.48 41.03 294.47 
54 DMX 2353 UTC 14 Apr 2012 IA 2 41.03 294.47 41.14 294.2 
54 DMX 0054 UTC 15 Apr 2012 IA 1 41.19 293.67 41.19 293.65 
54 DMX 0222 UTC 15 Apr 2012 IA 1 41.25 292.51 41.25 292.48 
54 DVN 0235 UTC 15 Apr 2012 IA 1 41.17 292.34 41.18 292.26 
54 LBF 1805 UTC 15 Apr 2012 NE 0 41.83 298.6 41.83 298.61 
54 LBF 1855 UTC 15 Apr 2012 NE 0 42 298.48 42 298.48 
57 PAH 0736 UTC 30 Jan 2013 KY 2 36.68 287.56 36.7 287.53 
59 ICT 2259 UTC 19 May 2013 KS 0 37.09 297.06 37.1 297.05 
60 DDC 2150 UTC 20 May 2013 KS 0 37.47 2101.94 37.46 2101.94 
60 EAX 2157 UTC 20 May 2013 MO 1 38.71 293.39 38.86 293.3 
60 DDC 2205 UTC 20 May 2013 KS 0 37.51 2101.88 37.5 2101.88 
60 SGF 2237 UTC 20 May 2013 MO 0 37.65 293.83 37.66 293.77 
60 PUB 2253 UTC 20 May 2013 CO 0 37.68 2106.01 37.68 2106.01 
60 SGF 0146 UTC 21 May 2013 MO 0 38.33 292.87 38.34 292.86 
60 IND 0629 UTC 21 May 2013 IN 0 39.85 286.73 39.85 286.71 
60 IND 0634 UTC 21 May 2013 IN 0 39.87 286.67 39.87 286.66 
65 ILX 1825 UTC 17 Nov 2013 IL 1 38.85 288.09 38.87 288.02 
65 IWX 2054 UTC 17 Nov 2013 IN 1 41.3 285.8 41.32 285.78 
67 HUN 0245 UTC 21 Feb 2014 AL 1 34.69 287.26 34.77 287.23 
72 JKL 2053 UTC 7 Oct 2014 KY 1 38.07 283.66 38.07 283.66 
72 RNK 0339 UTC 8 Oct 2014 WV 1 37.45 281.22 37.43 281.12 
three anonymous reviewers for their helpful comments. We also Data availability statement. The tornado outbreak dataset thank Dr. 
Alison Bridger for her guidance and support of this (Anderson-Frey et al. 2018) is available from the authors upon project and Dr. Michael 
Coniglio for providing an initial review request. Archived Level-II NEXRAD 88-D radar data are of this manuscript. publicly available 
online (https://www.ncdc.noaa.gov/nexradinv/). 

https://www.ncdc.noaa.gov/nexradinv/
https://www.ncdc.noaa.gov/nexradinv/
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FIG. B1. An example of discrete storm identification}including storm mergers}and pairing with tornado reports during the 10 May 2010 tornado 
outbreak. (a)–(f) Base reflectivity from KTLX (Oklahoma City, OK) is shown, along with NWS severe thunderstorm warning (red) and tornado 
warning (pink) polygons. Purple squares indicate tornado reports, red and orange squares indicate hail reports, and green squares indicate wind 
reports. Green triangles indicate automated maximum estimated hail sizes, and upside-down triangles indicate automated tornado vortex 
signatures. Storms of interest are outlined in black, blue, and white, and are labeled in (a). 
The NCEI tornado verification dataset is available online with 
NOAA credentials. 

APPENDIX A 

Excluded Tornado Outbreaks and Reports 

The Anderson-Frey et al. (2018) dataset includes 78 tornado 
outbreaks from 2008 to 2014. Three of these outbreaks were not 
analyzed in this study due to missing radar data in the NCEI archive 
(10 January 2008, 19 August 2009, and 30 June 2014) that 
precluded identification of tornado-producing storms. This yielded 
a total of 75 outbreaks analyzed in this study. 

Matching archived NEXRAD radar data with the NWS tornado 
verification database was straightforward in the overwhelming 
majority of cases; however, 112 tornado reports (2.7%) from the 
75 outbreaks were omitted from our analysis due to spatiotemporal 
errors resulting in our inability to determine which storm produced 
the tornado. In these cases, the time and location of the tornado 
reports did not coincide with any storms in the radar reflectivity 
presentation. These reports are provided in Table A1. We do not 

anticipate meaningful changes in our results due to this small 
number of erroneous tornado reports. 

APPENDIX B 

Examples of Storm Object Classification 

This section shows examples of how we identified distinct storm 
objects and paired them with tornado reports. This includes 
examples of discrete supercells as well as a QLCS with multiple 
tornadic mesovortices. 

a. Discrete supercell identification and tracking 
(10 May 2010) 

A regional supercell-tornado outbreak occurred on 10–11 May 
2010 and provides an example of how we identified and tracked 
several tornadic supercells simultaneously, including supercell 
mergers. Figure B1 shows the evolution of several tornadic storms 
in central Oklahoma from 2218 to 2317 UTC. 
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panels and are labeled in (d). 

In this case, two storms that had a history of producing tornadoes 
(Storm 10 circled in black, and Storm 8 circled in blue in Fig. B1a) 
merged around 2250–2259 UTC (Figs. B1c,d). Storm 10 
previously produced tornadoes at 2220, 2222, 2227, and 2235 
UTC; Storm 8 previously produced tornadoes at 2250 and 2251 

UTC. The resulting storm at 2259 UTC and onward was classified 
as Storm 10 because the “previous” storm associated with this 
number produced a tornado prior to the other storm in the merger. 

Later, a third tornadic supercell (Storm 9, white) moved 
northeastward toward Storm 10. It had a history of producing 
tornadoes at 2020, 2222, 2236, and 2237 UTC and merged with 
Storm 10 between 2308 and 2317 UTC (Figs. B1e,f). The resulting 
storm was classified as Storm 9; it produced an EF3 tornado at 2311 

 

FIG. B2. As in Fig. B1, but for a mixed-mode event on 29–30 Jan 2013. (a)–(f) Base reflectivity and (g)–(i) velocity from KOHX (Old Hickory, 
TN) is shown at three times. A zoomed-out view is shown in (a)–(c); the black box in (a) indicates the zoomed-in region shown in (d)–(i). Three 
tornadic mesovortices, each associated with their own storm ID, are outlined in white, blue, and black in the zoomed-in 
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UTC (very close to the time of the merger) and 18 tornadoes 
afterward. 

b. QLCS mesovortex identification and tracking 
(29 January 2013) 

A widespread tornado outbreak occurred on 29–30 January 2013 
across the NWS Central and Southern Regions. Many of these 
tornadoes were associated with a QLCS (Figs. B2a–c), particularly 
in Tennessee (Figs. B2d–i). Due to the continuous linear nature of 
the reflectivity presentation, radial velocity observations were used 
to diagnose individual tornadic mesovortices}each with their own 
storm ID}within the QLCS. 

As an example, Figs. B2d–f shows three of these mesovortices. 
Of the three mesovortices, the southernmost (Storm 20, circled in 
black) produced a tornado first at 0901 UTC and produced another 
tornado near Franklin, Tennessee, at 0918 UTC (Figs. B2d,e,g,h). 
The circulation present in the radial velocity field, as well as the 
small “hook” in the reflectivity presentation, helped us track this 
mesovortex. A second mesovortex (Storm 19, circled in blue) 
produced a tornado at 0912 UTC near Nashville, Tennessee (Fig. 
B2d). Storm 19 was tracked by following the small reflectivity 
notch (Figs. B2d–f) and enhanced circulation in radial velocity 
(Figs. B2g–i), and it produced another tornado at 0925 UTC very 
close to the Old Hickory, Tennessee (KOHX), radar site. Both of 
these tornadoes, and four more that occurred after 0933 UTC, were 
associated with Storm 19. Last, a third mesovortex (also labeled 
Storm 19, circled in white) produced tornadoes at 0910 and 0912 
UTC and was located near Millersville, Tennessee, at 0914 UTC 
(Figs. B2d,g). We tracked Storm 19 using both reflectivity and 
radial velocity as it produced another tornado at 0923 UTC and an 
additional three tornadoes after 0933 UTC. This particular event is 
an example of the complexities of pairing tornado reports with 
QLCS circulations; in this case, both circulations identified as 
Storm 19 originated very close to each other (within a few 
kilometers) around 0845–0900 UTC (not shown). Afterward, they 
were sometimes included in the same tornado warning (Figs. 
B2f,i). For both of these reasons, these two mesovortices were 
identified using the same storm number. 
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