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Offshore wind energy is playing an increasingly vital role in the clean energy transition around the world, and
improved reliability of wind turbine structures is necessary for the long-term success and efficiency of renewable
energy. Increased reliability would reduce costs associated with maintenance due to breakages and in turn
reduce the levelized cost of energy for offshore wind energy sources. Structural health monitoring methods can
be used to predict breakages and extend lifetimes by continuously monitoring instrumented structures. This
paper presents system identification and model updating of a 6 MW offshore wind turbine using vibration
measurements under varying operational conditions. The turbine is monopile-supported and instrumented with
strain gauges and accelerometers at several elevations along the tower and monopile. Effective stiffness of soil
springs in the model are updated to match modal-predicted natural frequencies and mode shapes of the first two
modes with those identified from measurements at different operating conditions. A deterministic and proba-
bilistic (Bayesian) approach to model updating are compared. The sensitivity of identified modal parameters and
the updated model parameters are investigated with respect to operational and environmental conditions such as
wind speed. Results show that deterministic model updating can match modal parameters with high accuracy
across datasets and environmental conditions. Bayesian model updating results successfully estimate the pos-

terior distribution of updating model parameters with an increasing degree of certainty as more data is used.

1. Introduction

Offshore wind (OSW) is poised to play an important role in the
renewable energy portfolio of the United States, with procurement goals
totaling over 39 GW by 2040 [1]. To reach state and federal OSW goals,
the US will need to deploy thousands of new offshore wind turbines
(OWTs) by the end of this decade [2]. While both the number and size of
OWTs to be installed in US waters continue to grow, the reliability and
longevity of OWT structures is increasingly crucial for the success and
affordability of the clean energy transition. This reliability and longevity
can be assured by effective monitoring of OWTs. This paper explores the
importance of condition monitoring (CM) of OWTs in increasing its
reliability through structural health monitoring (SHM) and finite
element (FE) model updating.

CM offers a range of substantial benefits that directly impact the
performance and longevity of these turbines. By continuously assessing
the health of OWT components, CM has the potential to prevent
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breakages, reduce unscheduled downtime, and significantly extend their
operational lifetimes [3]. As a result, CM not only safeguards the
structural integrity of OWTs but also plays a role in reducing the overall
levelized cost of energy [3,4]. These methods have most commonly been
deployed on gearboxes, drivetrains, and blades, with less focus on the
tower and substructure (foundation) [4,5]. However, the reliability of
the entire OWT structure, including the tower and substructure, is
critical for the long-term viability of wind energy systems [6]. This is
where SHM, a field specializing in the instrumentation and continuous
monitoring of civil infrastructure, comes into play. SHM can be har-
nessed to comprehensively analyze OWTs, tracking the behavior of both
towers and substructures. Furthermore, the instrumentation used in
SHM can be strategically optimized to provide cost-effective and infor-
mative measurements, as demonstrated in prior work focused on
offshore wind turbines [7,8].

Vibration-based SHM involves the collection of dynamic measure-
ments using specialized sensors such as accelerometers or strain gauges
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[6,7,9]. These sensors are installed on parts of the structure to record
vibrations in real time. In the process of system identification of an
instrumented structure, the extraction of modal parameters—natural
frequencies, damping ratios, and mode shapes—from vibrational
response readings can be used for condition assessment or damage
detection [10]. Extracted modal parameters are invaluable for condition
assessment and damage detection. By comparing current modal pa-
rameters with baseline values, anomalies or deviations can be identified.
Any significant changes in these parameters, such as shifts in natural
frequencies or alterations in mode shapes, can signal the presence of
damage within the structure [10]. Further, system identification can
identify relationships between environmental conditions and the struc-
tural behavior, which must be considered in order to accurately predict
damage with modal properties [11]. System identification methods are
classified by three different metrics: 1) input-output (e.g. ARX) vs output
only (e.g. SSI-COV and SSI-DATA); 2) parametric (e.g. ERA, NEXT-ERA)
vs nonparametric (e.g. peak picking); 3) frequency domain (e.g. peak
picking, frequency domain decomposition) vs time domain (e.g. autor-
egressive methods). In the present study, the SSI-DATA method is
employed, which falls under the category of output-only, parametric,
and time domain techniques. The SSI-DATA [12,13] method has been
explored by researchers for the continuous monitoring of structures [11]
as well as offshore wind turbines [14,15].

Measurements and extracted modal parameters can then be used in
the development of a digital twin (DT)—a virtual representation closely
mirroring the physical structure. A digital twin functions as a dynamic,
data-driven counterpart to the physical wind turbine which can be used
to predict the structural response of the structure due to loading con-
ditions, to predict breakages, or to estimate the remaining useful life-
time. DT integrates real-time data from sensors and measurements,
enabling continuous monitoring and analysis of the turbine’s condition
and performance. This virtual model allows for the simulation of the
wind turbine’s behavior under varying loading conditions, providing
valuable insights into its structural health. A DT can be developed
through a process known as model updating. This process aims to
minimize the disparity between an initial mathematical model (often a
finite element model) and the actual measurements obtained from the
physical turbine. Model updating involves adjusting specific model pa-
rameters, typically by matching the modal properties of the virtual
model with those of the real structure [16]. Model updating is essential
for offshore wind turbines to ensure accurate predictions and reliable
structural assessments, as the environmental conditions and operational
parameters experienced by these turbines can vary significantly [15],
requiring the model to be regularly adjusted to capture these changes
and improve its predictive capabilities. Model updating can be
approached in two ways: deterministically [17-24], by minimizing an
objective function that measures the residuals between model pre-
dictions and measurements, or through Bayesian inference [25-33],
which allows for the estimation of a posterior distribution of uncertain
model parameters combining prior knowledge with likelihood of
observed data. These two complementary approaches offer valuable
tools for maintaining the accuracy and reliability of the DT in the
environmentally changing conditions of offshore wind energy systems
which is aligned with the purpose of CM.

In model updating, an initial FE model is built using known prop-
erties of the OWT. In the case of monopile-supported OWTs, the soil-
structure interaction at the mudline can be modeled with a variety of
methods [34] which can have important effects on modeling accuracy
[35,36]. The industry standard approach recommended by Det Norske
Veritas - Germanischer Lloyd (DNV-GL) was originally developed using
piles up to 1 m in diameter and is now considered outdated due to the
growing size and increased rigidity of modern OWT monopile diameters
with lower length to diameter ratios [34,37]. A more recent approach
known as ‘PISA’ focused on large diameter monopiles with lower length
to diameter ratios. The PISA approach models a macro-element at the
mudline [38], and [37] showed that the macro-element can be
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decomposed into equivalent lateral and rotational stiffness terms.

Many numerical studies have been done on model updating of OWT
towers and foundations [39-42], however, a notable gap exists when it
comes to the practical applications on operating OWTs. Previous
research primarily focused on theoretical or simulated scenarios. In
contrast, this study delves into the practical implementation of model
updating techniques for a real 6 MW monopile-supported OWT oper-
ating in a field environment. In the literature there are a couple studies
on real OWT: Nabiyan et al. [43] conducted FE model updating of a 2
MW OWT for virtual sensing of fatigue-sensitive hotspots, [44] used an
extended Kalman filter to estimate input loads and FE model parameters
on a jacket-supported OWT, and [45] carried out deterministic model
updating on the jacket foundation of a 5 MW OWT. Most model updating
of OWTs has been deterministic, and limited research has utilized batch
Bayesian inference for a probabilistic approach. Recently [46], showed
the value of Bayesian model updating in a numerical study of a
monopile-supported OWT.

This paper conducts a two-step digital twinning of monopile-
supported OWTs: system identification and FE model updating. The
initial step utilizes operational measured data from a 6 MW monopile-
supported OWT, instrumented with a series of accelerometers and
strain gauges, in conjunction with data collected from the Supervisory
Control and Data Acquisition (SCADA) system. This rich dataset,
sampled at a frequency of 25 Hz over a two-week operational period, is
used in the system identification process where the natural frequencies
and mode shapes of the OWT are estimated. Then, a FE model is built
using a simplified model for soil-structure interaction. Using the infor-
mation from the first step, model updating is conducted to estimate soil-
structure interaction springs. Model updating is done both determinis-
tically and through Bayesian inference and results are compared. The
operational modal analysis and deterministic model updating is per-
formed for every 10-min window of data over the available period. The
results show how the effective stiffness at the mudline changes accord-
ing to environmental and operational conditions. This research distin-
guishes itself by addressing practical challenges in model updating for
monopile-supported OWTs, incorporating probabilistic methods,
considering soil-structure interaction, and utilizing real operational
data. These novel elements contribute to a more comprehensive and
relevant understanding of OWT structural health and behavior.

2. Dataset
2.1. Measurement channels

This paper utilizes data collected from a 6 MW monopile-supported
offshore wind turbine which is owned and operated by @rsted energy
company [47]. The turbine is instrumented with a series of strain gauges
and accelerometers, as well as a supervisory control and data acquisition
(SCADA) system, summarized in Table 1.

Accelerometers are installed to monitor the vibration of the turbine
in response to operational and environmental forces. Accelerometers are
placed at 4 elevations along the height of the tower and monopile

Table 1
Measurement channels of instrumented 6 MW offshore wind turbine.

Available Data Sampling Rate

Accelerometers (12 channels) 25 Hz
3 sensors at 4 elevations along structure

Strain Gauges (16 channels) 25 Hz
4 sensors at 4 elevations along structure

SCADA System (5 channels) 10 Hz

Wind Speed [m/s]
Power Output [kW]
Rotor Speed [rpm]
Pitch Angle [deg]
Yaw Angle [deg]




B. Moynihan et al.

structure where installation at each elevation consists of 2 orthogonal
sensors placed 135° from global North. A third accelerometer is located
45° from North. Fig. 1 shows the orientation of the 3 accelerometers per
elevation of installation. Only accelerometers 1 and 2 from each eleva-
tion are utilized in this work.

The SCADA system collects data on turbine operation, controller
settings, and environmental conditions. These readings are important
for pairing the behavior of the turbine to its operational status such as
level of power production or the speed of incident wind flow. The yaw
angle describes the orientation of the rotor relative to global North, as
seen in Fig. 1. The controllers of the turbine automatically adjust the
yaw angle so that the rotor and blades face towards the incoming wind.

2.2. Selected time-period of analysis

A time-period of 12 days is selected for analysis in which all mea-
surement channels are continuously available, and the turbine is in
normal operating conditions. Fig. 2 shows the operational conditions as
measured by 3 SCADA channels (normalized between 0 and 1) for the
selected time-period.

2.3. Data preprocessing

Prior to conducting system identification, the acceleration data
readings are cleaned and preprocessed. The data is first cleaned for
outliers which are removed and replaced via linear interpolation. The
signals are then bandpass filtered between 0.1 and 4 Hz, which is the
frequency range that includes the first few most important modes of the
structure. The measurements are kept at the original sampling rate of 25
Hz.

3. Methods
The methods performed in this paper are organized in Fig. 3. Section
3.1 describes the automated system identification process which was

performed on 10-min periods of data. Finite element (FE) modeling and
model updating approaches are described in Section 3.2. For each set of

A

Accel. #3
"X / 1350
y = Yaw®
Yaw,
Accel. #2
Accel. #1
Yaw,

y

Turbine cross section — Top-down view

Fig. 1. Orientation of accelerometers at installed elevations on a cross sectional
view of tower/monopile.

Renewable Energy 219 (2023) 119430

modal parameters obtained from system ID, an FE model of the wind
turbine is updated to find an optimal set of model parameters.

3.1. System identification

An automated system ID is performed on accelerometer readings
from 4 elevations of the OWT to obtain modal parameters for the 1st and
2nd modes of the structure, as initial results showed that these modes
contain most of the energy of the system dynamic response. This section
describes the system ID methodology and the post-processing of iden-
tified modal parameters for use in model updating.

3.1.1. Automated stochastic subspace identification

The SSI-DATA [48] method for automated system identification is
used for this analysis. This methodology provides estimates for the state
space formulation of the system, from which the natural frequencies,
damping ratios and mode shapes can be obtained [48,49].

The equation of motion of a discrete linear dynamic system can be
written in first-order state space equation as follows:

X1 = Ax, + Bu, + wy o)
Y. = Cx +Duy + v,
where x; is the state vector, y, is the measurement vector, A, B, C,D are
system, input, output and feedthrough matrices respectively. w; and
vi11 are modeling error and measurement noise respectively. In the case
the inputs are unmeasurable, effects of the inputs are included in the wy
and vi,; terms and therefore, input and feedthrough matrices are
removed from the equations. SSI-DATA is applied on output only mea-
surements to estimate A and C matrices.

The estimation process of A and C matrices starts with forming a
Hankel matrix from the measured data. By choosing a set of sensors as
the reference, the reference measured data is loaded into the Hankel
matrix in a block rows and b columns as the past Hankel matrix H, and
the rest is loaded as the future Hankel matrix Hy. The line divides the
Hankel matrix into past and future parts.

ref ref ref
Yo M Y
vilowh oy
1 Vol ¥ y:i{/;fz H,
H-— @
VB Yo Yau Yaip-1 H,
Yor1 Yar2 Yoip
Yoa-1 You Yaatp-2

where ref denoted the reference sensor. Least square method can be used
to predict Hy using H,, The least square error solution of the predicted
‘future’ Hankel matrix P, is [12]:

.
P, —HH] (H,H]) H, ®)

where the superscript ‘i° denotes pseudo-inverse operation. It was
shown in Ref. [12] that P, can be written using the observability matrix

0, and estimated state from Kalman filter )A(a.
Pa = Oaia (4)

Using Singular Value Decomposition (SVD) on P, from Equation (3),
)A((, and O, can be estimated.
P,

=(U.Z)(Z.V,) ®)

Oa Xe
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SCADA measurements (normalized) for analysis period
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Fig. 2. SCADA system readings for 12-day period, all channels normalized.
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Fig. 3. Workflow, conducted on a 12-day period of operational conditions.

where n is the system order which is selected by the user. By moving the
division between the past and future Hankel matrices one block row
downward, Hy and H; are formed. Applying the same process on these

new matrices, gives an estimation for the shifted state )A(.Hl.

(6)

This way, the estimate of the system and output matrices can be
given as:

(%o =[5+ [ 1] - [Re] = [Rova]:

ill+l :Olfll)a—l

)

Vi

where A and C denote the estimated system matrices and Yy, is the

measured output at the same time step as X, which is the first block row
of Hy. Eigen value analysis is then applied on the estimated matrices to
calculate the modal parameters.

In the context of continuous monitoring of structures, selecting the
system order n can be challenging due to the presence of noise [50,51].
To address this, an automated process is employed, where the system
order is determined based on the identification of stable modes in a
stabilization diagram. In this strategy, the modal analysis is performed
using different orders sequentially. In this study, a mode is considered
stable if it is identified in 3 consecutive orders with less than 2% relative
difference in frequencies, less than 30% relative difference in damping
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ratios, and greater than 0.95 Modal Assurance Criterion (MAC) value
between mode shapes. Modes with damping ratios smaller than 0 or
larger than 20% are determined to be spurious and are disregarded.
Finally, the smallest order which provides the maximum number of
physical modes of interest is selected as the optimal order of the state
space model. SSI is carried out on each 10-min set of data, providing a
single set of modal parameters per dataset.

3.1.2. Rotation of modes

The dynamics of an OWT are generally related to the local axis of the
turbine, which constantly changes as the controllers rotate the rotor to
face incoming wind. Known as fore-aft (FA) and side-side (SS), these
describe the coordinate directions of the structure in the local axis of an
OWT. The FA direction goes through the nacelle, in line with the
orientation of the rotor, while the SS direction runs orthogonal to the FA
direction. As long as the controller is operating properly, the FA axis is
assumed to be aligned with incoming wind.

For these reasons, we often wish to analyze modal properties of an
OWT in its local axis. Mode shapes obtained from system ID describe
deformation in the fixed global axis according to accelerometer instal-
lation. Thus, mode shapes are rotated into the FA and SS directions of the
turbine according to its yaw angle (see Fig. 1). This allows for consistent
comparison across datasets and informative insight into the behavior of
the OWT.

The locations of the accelerometers are fixed on the tower at 135 deg
from global North, while the yaw angle can change to any direction
between 0 and 360 deg from global North. Each mode shape has com-
ponents ¢ 5 and @35 which define relative deflection in the global axes
45 and 135 deg from North. These components are rotated according to
the difference between the yaw angle’s position and the fixed location of
these axes, according to Equation (5). This provides ¢, and ¢,, which
describe the components of modes in the local x and y axes of the OWT.

51z 28l

cos () Pus
where 6 =y — 135, and y is the yaw angle measured from global North,
obtained from SCADA data. The rotation of modes is described in Fig. 4.

* 0°

45°

135°

Yyaw
Turbine cross section — Top-down view

Fig. 4. Rotation of mode shapes from global orientation into local axis of
turbine rotor.
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The results are structured as one set of modal parameters for the first
two identified modes of the structure for each 10-min dataset. Mode
shapes have been rotated into the local axis of the turbine such that the x
component of each mode shape defines deflection in the FA direction,
while the y component exists in the SS direction.

3.1.3. Mode identification

With all mode shapes rotated into the local axes of the turbine rotor,
modes are designated as either a FA mode or a SS mode. 1st and 2nd
modes of structures like an OWT typically have natural frequencies very
close to each other, so modes can be identified as a FA or SS mode ac-
cording to the deflected shape. Thus, modes are designated according to
their MAC value with a fixed set of mode shapes used for comparison,
known as reference modes. The reference mode shapes were obtained by
surveying a sample of datasets for best results. The reference modes
selected, seen in Fig. 5, were found to provide the clearest distinction
between FA and SS deformation in the first two identified modes.

For each set of identified modal parameters, all modes in the range of
the 1st and 2nd natural frequencies are isolated and then compared to
the reference mode shapes. Mode shape designation is based on MAC
values between identified modes and the reference mode shapes ac-
cording to Equation (9). The modes with the best fit according to MAC
value with each reference mode are selected as the 1st and 2nd modes of
the structure, or the 1st FA and 1st SS modes.

T 2
|01 s
MAC(@,, ¢,) = ———a0— 9
(@1.22) PLO P3P,

3.2. Finite element modeling and model updating

System ID results can be used to characterize the behavior of the
structure under different environmental and operational conditions.
One way to leverage this information is by informing digital models of
the OWT in order to improve the model’s performance. In model
updating, parameters of an FE model developed in OpenSees [52] are
varied to find the optimal model parameters which match the modal
parameters from system ID at different operating conditions.

This section describes the FE model built based on the OWT and the
model updating approaches used. Deterministic model updating is car-
ried out on each dataset of identified modal parameters and statistics of
updated model parameters are studied over the entire dataset. A
Bayesian approach is also used in order obtain uncertainty estimates on
updated model parameters.

3.2.1. Initial model

The 6-MW OWT is modeled in OpenSees [52], an FE modeling
software which can simulate the response of structures subjected to
external loading conditions and determine modal parameters. The initial
model is built using the structural design details of the tower and
monopile which provide the diameter and thickness of each section, as
well as the elevation and mass of platforms and other equipment in the
structure. The tower and foundation are modeled as a series of
linear-elastic beam column elements, each with a constant diameter and
thickness. Elements vary in dimensions according to design details.
Coordinate axes of the FE model are defined in Fig. 6, which shows the
base of the foundation where it meets the seabed. The tower and
monopile extend upwards in the positive Z direction.

In this analysis, the only soil-structure interaction information
available is the macro-element stiffness matrix, composed of a lateral
stiffness, K11, a rotational stiffness, K53, and coupled stiffness terms Kj
and Kj; [38]. While the soil reactions of a monopile vary with depth, at
very small strains the response at the mudline can be entirely captured
using the coupled macro element representation, which is shown in
equation (10). The coupling of this macro element captures the influence
of varying load eccentricity at the mudline level, which is the result of
the depthwise varying soil subgrade moduli. The macro-element is
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Fig. 5. Reference channel modal parameters for 1st and 2nd identified modes.

z
()
W

Fig. 6. Global coordinate axes of finite element model of OWT.

intended to match the soil-structure interaction while improving
computational efficiency.

In our FE model, the macro-element is decomposed into equivalent
lateral and rotational stiffnesses, removing the coupled terms, K;, and
Ka;. This is done following [37] which showed that this decomposition
still produces a good match in modal parameters. The first tower mode
shape corresponds to a single effective load eccentricity at the mudline,
and this paper assumes that the first tower mode dominates the response
and therefore simplifies the foundation model to an uncoupled
representation.

Kll KIZ
K= 10
|:K21 K22:| ( )
KKy — Kpp?
Ka=—"—"2=__=° —K,=K 11
0 K — hK, oo an

2

Ky = h(lillll(lizi KII(ZL ) =Kxx =Kyy 12)
where h is the load eccentricity and depends on the mode considered.
Since we are only performing model updating for the 1st FA and SS
modes, a value for h is assumed to be h = 0.6H where H is the distance
from the hub to the mudline of the OWT. The proportion 0.6 is chosen
based on the results in Ref. [37], in which the load eccentricity for the
1st FA and SS modes was equal to approximately 60% the distance from
the hub to the mudline.

Following Equations (10)-(12), the original macro-element stiffness
matrix is decomposed into single lateral and rotational stiffnesses, K&t
and K{** which are each applied in the X and Y directions at the mudline:
Kx, Ky = Kt and Kxx,Kyy= K. Fig. 7 depicts the decomposition of the
macro-element to equivalent lateral and rotational stiffnesses applied in
each direction.

A ratio, denoted R, is defined as the ratio between lateral and rota-
tional stiffnesses affecting each direction of motion (FA and SS),
computed according to K and KX from the decomposed macro-
element:

Kx Ky

= =R 13)
KYY KXX

The blades, hub, and nacelle are altogether referred to as the rotor-
nacelle assembly (RNA). The mass of the RNA, its mass moment of
inertia, and the location of its center of mass (CMS) are known for this
OWT. The CMS is offset from the top of the tower in the vertical (Z axis)
direction and in the horizontal X (FA) direction. There is no offset in the
Y (SS) direction. In the FE model, the RNA is modeled as a singular
lumped mass with a matrix of mass moments of inertia which is located
at the CMS of the RNA and rigidly connected to the top of the tower.
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Fig. 7. Macro-element stiffness matrix decomposition into equivalent lateral and rotational stiffnesses for FE model.

3.2.2. Deterministic model updating

In the model updating process, optimal parameters, 6, of the FE
model are found which reduce the difference between the modal pa-
rameters identified from data and by the FE model. This is accomplished
through minimization of an objective function which measures the
current FE modeling error in modal parameters [39], as a function of FE
model parameters, 0. Update parameters, 0, are selected to be the lateral
stiffnesses, Kx and Ky. While these parameters vary in the optimization
process, Kyy and Kxx vary accordingly following Equations (15) and
(16). By keeping the ratio, R, constant, the lateral and rotational stiff-
nesses are always tuned by the same proportion during model updating.

0= {ix} = updating parameters (14)
Y
K

Ky =" (15)
K,

Kyy = Fy 1e)

The objective function for minimization is computed as a function of
mode shape and natural frequency residuals between the model-
predicted and data-identified modal parameters. The objective func-
tion used in this work is:

J(0) =r(0)"W,r(0) + |0 — 0| W,|0 — 6, a7
Where r(0), represents the residuals between the data-identified and FE
model-predicted modal parameters given the current FE model param-
eters, 0. 0 are the initial points of model parameters, and W, and W are
matrices which weight different components of r(6) and 8 — 6.

The residuals term, r(8), is a function of both natural frequency and
mode shape residuals, or errors, and is built according to Equations
(18)-(23).

o[

Ty

(18)

where r; and r,, are defined as vectors of natural frequency and mode
shape residuals for each mode considered:

ry= 19)

1

_ €
ryo = ez
»

Where the error functions, e; and e, for a given mode, m, are given by:

(20)

g _Jal0) (@)

?,(d) @n(0)
= —a (22)
¢ len@l e, @)
where a is a scaling factor given by:
 0u)0,(0) ©3)

- lew@ll @)l

where f(0) and ¢(0) denotes the FE model-predicted frequencies and
mode shapes, f(d) and @(d) represent the frequencies and mode shapes
obtained from system ID for the given dataset, d, and m represents mode
number (i.e. the FA or SS modes).

The first weight term, W,, placed on the vector of residuals, r(0), is a
diagonal matrix which weights the importance of each element in r(6)
based on the accuracy of different measurements/residuals or engi-
neering judgement. The diagonal terms of this weight matrix can be
selected as the inverse variance of corresponding residuals as shown in
Equation (29). Weights of 5 for the frequency residuals, r;, and 1 for the
mode shape residuals, r,, are used following [43]. This makes the
objective function more sensitive to changes in frequency error terms
during optimization.

In the second weight term, Wy, a regularization is placed on the
absolute difference between the current model parameters, 0, and the
starting point, 6y. This places a different regularization strength on each
model parameter in 6, and allows us to introduce our prior knowledge of
the system into the model updating framework. System ID results
(Section 4.1) show high variation in natural frequency in the FA direc-
tion which increases with wind speed, meanwhile, there is compara-
tively small spread in the SS frequencies. Therefore, the spring in the X
(FA) direction is given a lower regularization to allow the parameter to
vary more than the spring in the SS direction, reflecting the higher
variation in FA frequencies intrinsic in the system. Wy is a 2 x 2 diagonal
matrix with the regularization weights set to 0.0005 for the spring in X
and 0.005 for the spring in Y. This weight matrix is the same as the
inverse covariance of prior distribution in the Bayesian framework as
shown in Equation (33).

The update parameter initial points, 6y, are chosen using a sensitivity
analysis of the FE model; they are selected as the parameter values
which produce a natural frequency equal to the average frequency
identified from system ID, for each direction, X (FA) and Y (SS). This is
done with the aim of helping the optimization find the minimum points
efficiently, by placing the starting point in the middle of the range of
identified frequencies. However, the sensitivity of frequencies to
changes in soil stiffness at higher frequencies (above 0.25 Hz) is very
low, meaning that larger changes in stiffness are required to see changes
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in the natural frequencies (Fig. 8). For this reason, when the frequency
identified from system ID is above 0.25 Hz, a higher starting point is
used to assist the optimization in arriving at the optimal frequency.

Before model updating is conducted, the effective young’s modulus
of steel, E, for the tower and monopile was changed to 220 GPa, over its
original value of 200 GPa in the FE model. Fig. 8 shows the sensitivity of
the first natural frequencies in the FA and SS directions with varying
lateral stiffnesses, Kx and Ky, for 3 different values of E. The bounds
shown on the plots represent the upper and lower bounds of the FA and
SS frequencies obtained in system ID. As seen in Fig. 8, an increased
young’s modulus of steel shifts the sensitivity plot of frequencies against
soil stiffness up, resulting in higher frequencies at all stiffnesses. A shift
to 220 GPa is chosen because this number allows the FE model to reach
natural frequencies high enough to match the range seen in frequencies
identified in the data. The larger young’s modulus of steel can
compensate for modeling errors such as inaccurate mass. Without this
adjustment, the FE model would be unable to match the data at a certain
range of frequencies. A value of 220 GPa for E also removes the need for
E as its own update parameter.

The deterministic model updating framework is carried out on modal
parameters obtained from each 10-min dataset in the 12-day period of
analysis. This provides a single realization of optimal model parameters
corresponding to each 10-min period of time. The Matlab optimization
function, fminsearch, is used to perform the optimization of the objec-
tive function for each dataset. To ensure global optima are found, the
objective function in the region of realistic values for 0 is investigated for
a few datasets. Results show the objective function as convex in this
region, with only a single minimum at the identified optimum. Opti-
mization results are paired with corresponding 10-min average readings
from the SCADA system on environmental and operational conditions.
Results are shared in Section 4.2.1.

3.2.3. Bayesian model updating

FE model updating can also be carried out in a probabilistic manner,
through Bayesian model updating. This section describes the Bayesian
model updating formulation, and additional details can be found at [28,
31,53]. Let 0 represent a vector of model update parameters and let d
represent a vector of data-identified modal parameters, including nat-
ural frequencies and mode shapes. Under this framework, the posterior
probability distribution p(d|6) of model parameters, 6, is estimated by
invoking Bayes rule.

_p(d|0)p(0)

where p(0) is the prior distribution of FE model parameters, p(d|0)—the
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likelihood—is the probability distribution of the observed data given
model parameters 0, and p(d) is known as the evidence, or the marginal
probability of the observed data, d. The evidence, p(d), is constant so we
often simplify the above equation for the posterior probability:

p(0|d) = Cp(d|0)p(0)xp(d|0)p(0) (25)

Thus, we can estimate the distribution of the term p(d|0)p(0) to
obtain the location of ideal FE model parameters, 6. The likelihood term
assumes independent measurements and is formulated with the inde-
pendent probabilities of modal parameters (natural frequencies and
mode shapes) for some selected number of modes, M. As in the deter-
ministic approach, the first 2 modes are selected for use in this frame-
work, M = 2.

M
p(d|0) = [ [ p(fn(dn)10) p(@,,(dn)|0) (26)
m=1
To further develop the likelihood term, the errors between mode
shapes and natural frequencies are modeled as a zero-mean gaussian
distribution and the likelihood distribution is taken to be equal to the
error distribution (with a shifted mean value). The natural frequency
and mode shape errors are defined in the same way as in the deter-
ministic approach, given in Equations (21)-(23). These terms measure
the misfit between model-predicted modal parameters and those ob-
tained from system identification, and this embeds the level of error in
modal parameters into the likelihood function. By assuming these error
terms follow a zero-mean Gaussian, the distribution of identified eigen
frequencies and mode shapes become:

) e~ 57 @)
i
ota)o)sen( - 5% ) (28)

Substituting these terms into Equation (26), the likelihood term
becomes:

p(d, |0)c<exp< - %J(O,d)) 29

where the term J(0,d) is given as:

2
M (e”’) M mT ,m
' e;’e
70,d)=" g + "’62“’
m=1 Of

m=1 @

(30)

where the terms afz and ai are selected to be aligned with the weighting
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terms from the deterministic approach such that 61—2 =5 and 61_2 = 1.
f P

When N independent data sets exist, the likelihood and posterior
become:

N
p(dl:Nlo)KHexp( - %J(ovdn)) (31)

n=1

N
1
0d —--J(0.d, 0 32

o[ ( ~570.0.) ) 32)

The prior, p(0), is built based off the regularization terms used in the
deterministic objective function. The prior on update parameters is
assumed to be Gaussian with mean value located at the initial point, ,,
used in deterministic updating, and a covariance matrix equal to X, =
w,'.

1
p(ﬂ)cxexp( —5l0 70.,|Tzl;1\9700|) (33)
With this prior, the posterior from Equation (32) becomes:
u 1 1 r
~1
p(owd)ocnljlexp( =57(0.d) =50 - 60|, |0—00|) 34

The posterior distribution of model parameters is estimated through
Laplace approximation [54]. This method models the posterior as a
Gaussian distribution centered at the location of the maximum a pos-
teriori (MAP) estimate—found by minimizing the negative logarithm of
the posterior given by Equation (34). This posterior distribution com-
bines information from the likelihood and the prior distributions. By
comparing the minimization objective function in Equation (35) and
deterministic objective function in Equation (17), we can see that the
optimal model parameters, Oyap, should fall on the mode of model pa-
rameters obtained from deterministic model updating. The location the
mean of the posterior is given by:

N
1
Opar = arg;nin > 3 (J(0,d) +10 — y|"Wy|0 — 6,)) (35)
n=1

Then, the covariance matrix on the posterior distribution is computed
from the Hessian, H; of the negative log likelihood evaluated at the mean
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update value, J(Opyap,d) as [54]:

1
It = E—ZHS (Omar) + 2;‘ (36)
where, 62 = J(Oyap,d)/[M(Ny + 1)}, and Ny = 2 which is the number of
update parameters [54]. Using this approach, the mean and variance of
parameters @ is estimated using all of the identified modal parameters
from the 2-week period of time.

4. Results
4.1. System identification results

System ID results for the entire period of analysis is presented in this
section. Results obtained from each 10-min dataset in the entire period
include the modal parameters for the first 2 modes of the system, the 1st
FA and 1st SS modes. Fig. 9 shows the 1st FA and SS natural frequencies
and damping ratio of the system plotted with time, while Fig. 10 shows
the same values plotted against wind speed. Wind speed is obtained by
taking a 10-min average of SCADA measurements for the same time-
period. Results show a correlation between the FA frequencies and
damping ratios with wind speed, while the SS modal properties remain
steady with increasing wind speeds or changing operational conditions.
The increase in FA damping is due to aerodynamic damping [15,55],
while the increase in FA frequencies is attributed to gyroscopic stiffening
due to the operation of the turbine and rotation of blades.

Mode shapes for each dataset are represented in the local axis of the
turbine according to the 10-min average yaw angle. Fig. 11 plots the
angle that each mode makes with global North, with the yaw angle (also
measured from North) overlayed for reference. Results show that the
mode identified as FA is typically in very close alignment with the di-
rection of the yaw angle, while the SS mode is oriented approximately
90° from this. These results indicate that the mode shape matching for
FA/SS designation is appropriate, as it is expected that the FA mode lies
in the direction of the yaw. The spread of mode shape angles could be
explained by a rotor-wind misalignment in which the incident wind
speed is not perfectly aligned with the FA axis of the turbine. This is due
to the controller system, as the yaw angle does not begin to rotate until a
large enough misalignment is measured by the SCADA system. Further,
the spread is likely due in part to the 10-min window length selected in
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Fig. 9. First FA and SS natural frequencies (upper) and damping ratios (lower) by dataset date.
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this work. During some 10-min periods, the yaw angle may be varying in
a way which affects identified modes but cannot be captured by the 10-
min average value.

MAC values of FA and SS identified modes with the corresponding
reference mode are plotted against date in Fig. 12 which designates each
dataset by its power output. Results show that modes typically match
very well with more than 70% of FA MAC values and more than 60% of
SS MAC values falling above 0.9, but there are some discrepancies
during certain power conditions. Most of the lower MAC values in the FA
direction occur at low power conditions. This could be explained by a
lack of dynamic behavior at low wind and power conditions in which the
ambient environmental conditions are not enough to excite the turbine
as drastically as during operation. In the SS direction, lower MAC values
are found at the max levels of power production. During the highest
power conditions, the generator torque causes the strongest bending
moment in the SS direction. By contrast, during lower and medium
power conditions, the SS bending moments have a magnitude centered
at 0. This behavior could explain the lower MAC values, as the increased
torque could be changing the SS mode shapes or directions.

These patterns are further explored in Fig. 13, which shows the FA
and SS MAC values plotted against the corresponding wind speed for the
dataset. This figure shows that at low wind speeds, there is a consistent
scatter in the FA MAC value, while at higher wind speeds, the FA MACs
are concentrated at high values (with a few outliers). In the SS direction,
Fig. 13 shows how the MACs at low to medium wind speeds are well
concentrated at high values, but the MACs altogether drop as higher
wind speeds are reached. The outliers and other inconsistencies could be
due to imperfections in reference mode shapes, rotor-wind misalign-
ment, or errors in system ID.

4.2. Model updating results

4.2.1. Deterministic model updating

Results from the deterministic model updating approach are pro-
vided in this section. For each 10-min dataset, 1 set of optimal modal
parameters (lateral stiffnesses in X and Y: Kx,Ky) which minimize the FE
model residuals with the data are obtained. Fig. 14 shows the resulting
natural frequencies of the updated models against wind speed, plotted
next to the system ID obtained frequencies for comparison. Overall
trends with wind speed match well. Fig. 15 shows the fit between model
updated frequencies and their corresponding frequencies identified in
system ID for each dataset in the time period of analysis.

FA Mode Shape MAC with Reference Mode
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Fig. 16 shows the absolute error in FA and SS frequencies between
updated models and data. The mean absolute error in both the FA and SS
are below 0.01 Hz, and the distribution of errors is approximately nor-
mally distributed around 0, indicating no consistent over- or under-
estimation of natural frequencies.

Fig. 17 shows the optimal lateral soil stiffnesses in the X (FA) and Y
(SS) directions after model updating, plotted against the corresponding
wind speed from SCADA data for each dataset. Due to increasing fre-
quencies in the FA direction, the effective FA lateral stiffness at the
mudline increases with wind speed, while the effective SS lateral stiff-
ness remains constant with changing operational conditions. While the
soil stiffnesses themselves do not change, our model updating frame-
work is intended to capture the effective changes in stiffness as a func-
tion of operational conditions. The FA lateral stiffness increase is due to
an unmodeled effect (gyroscopic stiffening) causing an increase in nat-
ural frequencies with higher wind speeds.

4.2.2. Bayesian model updating

Fig. 18 shows the posterior probability distribution of update pa-
rameters based on the estimates of the mean and covariance of update
parameters, 0. Posterior estimates are shown considering 100 datasets,
500 datasets, and all (1384) datasets. The underlying histogram repre-
sents the update values obtained from deterministic model updating, a
frequentist counterpart of model parameter probability distributions.
The goal in Bayesian updating was to obtain a mean estimate for a single
set of optimal model parameters—which would fall at the mode of the
frequentist results—and a variance which represents the uncertainty in
the estimation.

Results show that the location of optimal parameters falls close to the
mode of the histogram of results obtained in the frequentist approach. As
more datasets of modal parameters are considered, the variance of the
marginal posterior distributions decrease, showing how the information
gained by the inclusion of more datasets increases the certainty in this
estimation. This is expected as shown in previous studies by Ref. [31].
The Bayesian approach to model updating successfully identifies the
location of optimal model parameters with high certainty, however, this
method does not consider the inherent variability that modal parameters
have with environmental conditions like wind speed.

5. Conclusions

This paper carried out automated system identification and model
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Fig. 13. FA (upper) and SS (lower) MAC values with reference mode shapes, plotted against wind speed.
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updating of an operational 6 MW OWT. Automated SSI-DATA was used
to extract modal parameters for the first 2 modes—the 1st FA and 1st SS
mode—from instrumented accelerometers over two weeks of operation.
Modal properties are paired with corresponding SCADA data which
tracks wind speed and power output. Results show an increase in the 1st
FA natural frequency and damping ratio with increasing wind speed,
attributed to gyroscopic stiffening due to the operation of the OWT.
An FE model of the OWT was built in OpenSees based on design
information for the monopile and tower with a lumped mass at the
tower-top to represent the RNA. The macro-element for soil-structure
interaction at the mudline was decomposed into equivalent lateral and
rotational stiffnesses which are each applied in the X (FA) and Y (SS)
directions of the FE model. Extracted modal parameters were used in 2
methods for FE model updating in which the lateral stiffnesses in X and Y
are used as update parameters while the rotational stiffnesses vary ac-
cording to a fixed ratio. The deterministic update resulted in 1 realiza-
tion of optimal model parameters per dataset (each representing 10 min
of data), which were assessed against wind speed. Results showed a
small mean absolute error (MAE) between updated model and identified

12

natural frequencies. Gyroscopic effects which cause an increase in the
FA frequencies with wind speed were captured in the updated effective
soil spring stiffnesses at the mudline, reflected by an increase in soil
stiffness in the FA direction with wind speed.

The Bayesian model updating approach provides a posterior proba-
bility distribution for the model parameters given the datasets provided.
The optimal model parameters and their estimation uncertainty can be
obtained as the mode and standard deviation of marginal parameter
distributions. Posterior distribution estimations are compared for a
varying number of datasets used to inform the likelihood distribution.
Results show that the posterior distribution becomes narrower with
smaller standard deviation on parameter estimates as more data is
considered.

Given the intrinsic variation with environmental conditions
observed in system identification results, the next step of this work will
be to conduct a Hierarchical Bayesian model updating which would
allow us to consider an underlying variability in model parameters [56].
This variability can be estimated as hyperparameter and is expected to
match the shape of the frequentist approach. Future modeling will also
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need to directly model the effect of gyroscopic stiffening at the hub level
so that soil springs values are not required to compensate for the gyro-
scopic stiffening.

6 Data Accessibility
Data used in this work is under NDA and is not available to be shared.
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