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A B S T R A C T   

Offshore wind energy is playing an increasingly vital role in the clean energy transition around the world, and 
improved reliability of wind turbine structures is necessary for the long-term success and efficiency of renewable 
energy. Increased reliability would reduce costs associated with maintenance due to breakages and in turn 
reduce the levelized cost of energy for offshore wind energy sources. Structural health monitoring methods can 
be used to predict breakages and extend lifetimes by continuously monitoring instrumented structures. This 
paper presents system identification and model updating of a 6 MW offshore wind turbine using vibration 
measurements under varying operational conditions. The turbine is monopile-supported and instrumented with 
strain gauges and accelerometers at several elevations along the tower and monopile. Effective stiffness of soil 
springs in the model are updated to match modal-predicted natural frequencies and mode shapes of the first two 
modes with those identified from measurements at different operating conditions. A deterministic and proba
bilistic (Bayesian) approach to model updating are compared. The sensitivity of identified modal parameters and 
the updated model parameters are investigated with respect to operational and environmental conditions such as 
wind speed. Results show that deterministic model updating can match modal parameters with high accuracy 
across datasets and environmental conditions. Bayesian model updating results successfully estimate the pos
terior distribution of updating model parameters with an increasing degree of certainty as more data is used.   

1. Introduction 

Offshore wind (OSW) is poised to play an important role in the 
renewable energy portfolio of the United States, with procurement goals 
totaling over 39 GW by 2040 [1]. To reach state and federal OSW goals, 
the US will need to deploy thousands of new offshore wind turbines 
(OWTs) by the end of this decade [2]. While both the number and size of 
OWTs to be installed in US waters continue to grow, the reliability and 
longevity of OWT structures is increasingly crucial for the success and 
affordability of the clean energy transition. This reliability and longevity 
can be assured by effective monitoring of OWTs. This paper explores the 
importance of condition monitoring (CM) of OWTs in increasing its 
reliability through structural health monitoring (SHM) and finite 
element (FE) model updating. 

CM offers a range of substantial benefits that directly impact the 
performance and longevity of these turbines. By continuously assessing 
the health of OWT components, CM has the potential to prevent 

breakages, reduce unscheduled downtime, and significantly extend their 
operational lifetimes [3]. As a result, CM not only safeguards the 
structural integrity of OWTs but also plays a role in reducing the overall 
levelized cost of energy [3,4]. These methods have most commonly been 
deployed on gearboxes, drivetrains, and blades, with less focus on the 
tower and substructure (foundation) [4,5]. However, the reliability of 
the entire OWT structure, including the tower and substructure, is 
critical for the long-term viability of wind energy systems [6]. This is 
where SHM, a field specializing in the instrumentation and continuous 
monitoring of civil infrastructure, comes into play. SHM can be har
nessed to comprehensively analyze OWTs, tracking the behavior of both 
towers and substructures. Furthermore, the instrumentation used in 
SHM can be strategically optimized to provide cost-effective and infor
mative measurements, as demonstrated in prior work focused on 
offshore wind turbines [7,8]. 

Vibration-based SHM involves the collection of dynamic measure
ments using specialized sensors such as accelerometers or strain gauges 
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[6,7,9]. These sensors are installed on parts of the structure to record 
vibrations in real time. In the process of system identification of an 
instrumented structure, the extraction of modal parameters—natural 
frequencies, damping ratios, and mode shapes—from vibrational 
response readings can be used for condition assessment or damage 
detection [10]. Extracted modal parameters are invaluable for condition 
assessment and damage detection. By comparing current modal pa
rameters with baseline values, anomalies or deviations can be identified. 
Any significant changes in these parameters, such as shifts in natural 
frequencies or alterations in mode shapes, can signal the presence of 
damage within the structure [10]. Further, system identification can 
identify relationships between environmental conditions and the struc
tural behavior, which must be considered in order to accurately predict 
damage with modal properties [11]. System identification methods are 
classified by three different metrics: 1) input-output (e.g. ARX) vs output 
only (e.g. SSI–COV and SSI-DATA); 2) parametric (e.g. ERA, NExT-ERA) 
vs nonparametric (e.g. peak picking); 3) frequency domain (e.g. peak 
picking, frequency domain decomposition) vs time domain (e.g. autor
egressive methods). In the present study, the SSI-DATA method is 
employed, which falls under the category of output-only, parametric, 
and time domain techniques. The SSI-DATA [12,13] method has been 
explored by researchers for the continuous monitoring of structures [11] 
as well as offshore wind turbines [14,15]. 

Measurements and extracted modal parameters can then be used in 
the development of a digital twin (DT)—a virtual representation closely 
mirroring the physical structure. A digital twin functions as a dynamic, 
data-driven counterpart to the physical wind turbine which can be used 
to predict the structural response of the structure due to loading con
ditions, to predict breakages, or to estimate the remaining useful life
time. DT integrates real-time data from sensors and measurements, 
enabling continuous monitoring and analysis of the turbine’s condition 
and performance. This virtual model allows for the simulation of the 
wind turbine’s behavior under varying loading conditions, providing 
valuable insights into its structural health. A DT can be developed 
through a process known as model updating. This process aims to 
minimize the disparity between an initial mathematical model (often a 
finite element model) and the actual measurements obtained from the 
physical turbine. Model updating involves adjusting specific model pa
rameters, typically by matching the modal properties of the virtual 
model with those of the real structure [16]. Model updating is essential 
for offshore wind turbines to ensure accurate predictions and reliable 
structural assessments, as the environmental conditions and operational 
parameters experienced by these turbines can vary significantly [15], 
requiring the model to be regularly adjusted to capture these changes 
and improve its predictive capabilities. Model updating can be 
approached in two ways: deterministically [17–24], by minimizing an 
objective function that measures the residuals between model pre
dictions and measurements, or through Bayesian inference [25–33], 
which allows for the estimation of a posterior distribution of uncertain 
model parameters combining prior knowledge with likelihood of 
observed data. These two complementary approaches offer valuable 
tools for maintaining the accuracy and reliability of the DT in the 
environmentally changing conditions of offshore wind energy systems 
which is aligned with the purpose of CM. 

In model updating, an initial FE model is built using known prop
erties of the OWT. In the case of monopile-supported OWTs, the soil- 
structure interaction at the mudline can be modeled with a variety of 
methods [34] which can have important effects on modeling accuracy 
[35,36]. The industry standard approach recommended by Det Norske 
Veritas - Germanischer Lloyd (DNV-GL) was originally developed using 
piles up to 1 m in diameter and is now considered outdated due to the 
growing size and increased rigidity of modern OWT monopile diameters 
with lower length to diameter ratios [34,37]. A more recent approach 
known as ‘PISA’ focused on large diameter monopiles with lower length 
to diameter ratios. The PISA approach models a macro-element at the 
mudline [38], and [37] showed that the macro-element can be 

decomposed into equivalent lateral and rotational stiffness terms. 
Many numerical studies have been done on model updating of OWT 

towers and foundations [39–42], however, a notable gap exists when it 
comes to the practical applications on operating OWTs. Previous 
research primarily focused on theoretical or simulated scenarios. In 
contrast, this study delves into the practical implementation of model 
updating techniques for a real 6 MW monopile-supported OWT oper
ating in a field environment. In the literature there are a couple studies 
on real OWT: Nabiyan et al. [43] conducted FE model updating of a 2 
MW OWT for virtual sensing of fatigue-sensitive hotspots, [44] used an 
extended Kalman filter to estimate input loads and FE model parameters 
on a jacket-supported OWT, and [45] carried out deterministic model 
updating on the jacket foundation of a 5 MW OWT. Most model updating 
of OWTs has been deterministic, and limited research has utilized batch 
Bayesian inference for a probabilistic approach. Recently [46], showed 
the value of Bayesian model updating in a numerical study of a 
monopile-supported OWT. 

This paper conducts a two-step digital twinning of monopile- 
supported OWTs: system identification and FE model updating. The 
initial step utilizes operational measured data from a 6 MW monopile- 
supported OWT, instrumented with a series of accelerometers and 
strain gauges, in conjunction with data collected from the Supervisory 
Control and Data Acquisition (SCADA) system. This rich dataset, 
sampled at a frequency of 25 Hz over a two-week operational period, is 
used in the system identification process where the natural frequencies 
and mode shapes of the OWT are estimated. Then, a FE model is built 
using a simplified model for soil-structure interaction. Using the infor
mation from the first step, model updating is conducted to estimate soil- 
structure interaction springs. Model updating is done both determinis
tically and through Bayesian inference and results are compared. The 
operational modal analysis and deterministic model updating is per
formed for every 10-min window of data over the available period. The 
results show how the effective stiffness at the mudline changes accord
ing to environmental and operational conditions. This research distin
guishes itself by addressing practical challenges in model updating for 
monopile-supported OWTs, incorporating probabilistic methods, 
considering soil-structure interaction, and utilizing real operational 
data. These novel elements contribute to a more comprehensive and 
relevant understanding of OWT structural health and behavior. 

2. Dataset 

2.1. Measurement channels 

This paper utilizes data collected from a 6 MW monopile-supported 
offshore wind turbine which is owned and operated by Ørsted energy 
company [47]. The turbine is instrumented with a series of strain gauges 
and accelerometers, as well as a supervisory control and data acquisition 
(SCADA) system, summarized in Table 1. 

Accelerometers are installed to monitor the vibration of the turbine 
in response to operational and environmental forces. Accelerometers are 
placed at 4 elevations along the height of the tower and monopile 

Table 1 
Measurement channels of instrumented 6 MW offshore wind turbine.  

Available Data Sampling Rate 

Accelerometers (12 channels) 
3 sensors at 4 elevations along structure 

25 Hz 

Strain Gauges (16 channels) 
4 sensors at 4 elevations along structure 

25 Hz 

SCADA System (5 channels) 10 Hz 
Wind Speed [m/s] 
Power Output [kW] 
Rotor Speed [rpm] 
Pitch Angle [deg] 
Yaw Angle [deg]  
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structure where installation at each elevation consists of 2 orthogonal 
sensors placed 135◦ from global North. A third accelerometer is located 
45◦ from North. Fig. 1 shows the orientation of the 3 accelerometers per 
elevation of installation. Only accelerometers 1 and 2 from each eleva
tion are utilized in this work. 

The SCADA system collects data on turbine operation, controller 
settings, and environmental conditions. These readings are important 
for pairing the behavior of the turbine to its operational status such as 
level of power production or the speed of incident wind flow. The yaw 
angle describes the orientation of the rotor relative to global North, as 
seen in Fig. 1. The controllers of the turbine automatically adjust the 
yaw angle so that the rotor and blades face towards the incoming wind. 

2.2. Selected time-period of analysis 

A time-period of 12 days is selected for analysis in which all mea
surement channels are continuously available, and the turbine is in 
normal operating conditions. Fig. 2 shows the operational conditions as 
measured by 3 SCADA channels (normalized between 0 and 1) for the 
selected time-period. 

2.3. Data preprocessing 

Prior to conducting system identification, the acceleration data 
readings are cleaned and preprocessed. The data is first cleaned for 
outliers which are removed and replaced via linear interpolation. The 
signals are then bandpass filtered between 0.1 and 4 Hz, which is the 
frequency range that includes the first few most important modes of the 
structure. The measurements are kept at the original sampling rate of 25 
Hz. 

3. Methods 

The methods performed in this paper are organized in Fig. 3. Section 
3.1 describes the automated system identification process which was 
performed on 10-min periods of data. Finite element (FE) modeling and 
model updating approaches are described in Section 3.2. For each set of 

modal parameters obtained from system ID, an FE model of the wind 
turbine is updated to find an optimal set of model parameters. 

3.1. System identification 

An automated system ID is performed on accelerometer readings 
from 4 elevations of the OWT to obtain modal parameters for the 1st and 
2nd modes of the structure, as initial results showed that these modes 
contain most of the energy of the system dynamic response. This section 
describes the system ID methodology and the post-processing of iden
tified modal parameters for use in model updating. 

3.1.1. Automated stochastic subspace identification 
The SSI-DATA [48] method for automated system identification is 

used for this analysis. This methodology provides estimates for the state 
space formulation of the system, from which the natural frequencies, 
damping ratios and mode shapes can be obtained [48,49]. 

The equation of motion of a discrete linear dynamic system can be 
written in first-order state space equation as follows: 

xk+1 = Axk + Buk + wk
yk = Cxk + Duk + vk

(1)  

where xk is the state vector, yk is the measurement vector, A, B, C, D are 
system, input, output and feedthrough matrices respectively. wk and 
vk+1 are modeling error and measurement noise respectively. In the case 
the inputs are unmeasurable, effects of the inputs are included in the wk 
and vk+1 terms and therefore, input and feedthrough matrices are 
removed from the equations. SSI-DATA is applied on output only mea
surements to estimate A and C matrices. 

The estimation process of A and C matrices starts with forming a 
Hankel matrix from the measured data. By choosing a set of sensors as 
the reference, the reference measured data is loaded into the Hankel 
matrix in a block rows and b columns as the past Hankel matrix Hp and 
the rest is loaded as the future Hankel matrix Hf . The line divides the 
Hankel matrix into past and future parts. 

H =
1̅

̅̅
β

√

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

yref
0 yref

1 ⋯ yref
β−1

yref
1 yref

2 ⋯ yref
β

⋮ ⋮ ⋱ ⋮
yref

α−1 yref
α ⋯ yref

α+β−2

yα yα+1 ⋯ yα+β−1
yα+1 yα+2 ⋯ yα+β

⋮ ⋮ ⋱ ⋮
y2α−1 y2α ⋯ y2α+β−2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

}
Hp}
Hf

(2)  

where ref denoted the reference sensor. Least square method can be used 
to predict Hf using Hp The least square error solution of the predicted 
‘future’ Hankel matrix Pα is [12]: 

Pα = Hf HT
p

(
HpHT

p

)†

Hp (3)  

where the superscript ‘†’ denotes pseudo-inverse operation. It was 
shown in Ref. [12] that Pα can be written using the observability matrix 
Oα and estimated state from Kalman filter X̂α. 

Pα = Oα X̂α (4) 

Using Singular Value Decomposition (SVD) on Pα from Equation (3), 
X̂α and Oα can be estimated. 

Pα = (UnΣn)
⏟̅̅̅ ⏞⏞̅̅̅ ⏟

Oα

(
ΣnVT

n

)

⏟̅̅̅̅⏞⏞̅̅̅̅⏟
X̂α

(5) 
Fig. 1. Orientation of accelerometers at installed elevations on a cross sectional 
view of tower/monopile. 
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where n is the system order which is selected by the user. By moving the 
division between the past and future Hankel matrices one block row 
downward, H−

f and H+
p are formed. Applying the same process on these 

new matrices, gives an estimation for the shifted state X̂α+1. 

X̂α+1 = O†

α−1Pα−1 (6) 

This way, the estimate of the system and output matrices can be 
given as: 
[

X̂α+1Yα|α

]

=

[
A
C

]

X̂α +

[
wk
vk

]

→
[

ÂĈ
]

=

[

X̂α+1Yα|α

]

X̂†
α (7)  

where Â and Ĉ denote the estimated system matrices and Yα|α is the 
measured output at the same time step as X̂α which is the first block row 
of Hf . Eigen value analysis is then applied on the estimated matrices to 
calculate the modal parameters. 

In the context of continuous monitoring of structures, selecting the 
system order n can be challenging due to the presence of noise [50,51]. 
To address this, an automated process is employed, where the system 
order is determined based on the identification of stable modes in a 
stabilization diagram. In this strategy, the modal analysis is performed 
using different orders sequentially. In this study, a mode is considered 
stable if it is identified in 3 consecutive orders with less than 2% relative 
difference in frequencies, less than 30% relative difference in damping 

Fig. 2. SCADA system readings for 12-day period, all channels normalized.  

Fig. 3. Workflow, conducted on a 12-day period of operational conditions.  
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ratios, and greater than 0.95 Modal Assurance Criterion (MAC) value 
between mode shapes. Modes with damping ratios smaller than 0 or 
larger than 20% are determined to be spurious and are disregarded. 
Finally, the smallest order which provides the maximum number of 
physical modes of interest is selected as the optimal order of the state 
space model. SSI is carried out on each 10-min set of data, providing a 
single set of modal parameters per dataset. 

3.1.2. Rotation of modes 
The dynamics of an OWT are generally related to the local axis of the 

turbine, which constantly changes as the controllers rotate the rotor to 
face incoming wind. Known as fore-aft (FA) and side-side (SS), these 
describe the coordinate directions of the structure in the local axis of an 
OWT. The FA direction goes through the nacelle, in line with the 
orientation of the rotor, while the SS direction runs orthogonal to the FA 
direction. As long as the controller is operating properly, the FA axis is 
assumed to be aligned with incoming wind. 

For these reasons, we often wish to analyze modal properties of an 
OWT in its local axis. Mode shapes obtained from system ID describe 
deformation in the fixed global axis according to accelerometer instal
lation. Thus, mode shapes are rotated into the FA and SS directions of the 
turbine according to its yaw angle (see Fig. 1). This allows for consistent 
comparison across datasets and informative insight into the behavior of 
the OWT. 

The locations of the accelerometers are fixed on the tower at 135 deg 
from global North, while the yaw angle can change to any direction 
between 0 and 360 deg from global North. Each mode shape has com
ponents φ45 and φ135 which define relative deflection in the global axes 
45 and 135 deg from North. These components are rotated according to 
the difference between the yaw angle’s position and the fixed location of 
these axes, according to Equation (5). This provides φx and φy, which 
describe the components of modes in the local x and y axes of the OWT. 
[

φx
φy

]

=

[
cos (θ) −sin (θ)

sin(θ) cos (θ)

][
φ135
φ45

]

(8)  

where θ = γ − 135, and γ is the yaw angle measured from global North, 
obtained from SCADA data. The rotation of modes is described in Fig. 4. 

The results are structured as one set of modal parameters for the first 
two identified modes of the structure for each 10-min dataset. Mode 
shapes have been rotated into the local axis of the turbine such that the x 
component of each mode shape defines deflection in the FA direction, 
while the y component exists in the SS direction. 

3.1.3. Mode identification 
With all mode shapes rotated into the local axes of the turbine rotor, 

modes are designated as either a FA mode or a SS mode. 1st and 2nd 
modes of structures like an OWT typically have natural frequencies very 
close to each other, so modes can be identified as a FA or SS mode ac
cording to the deflected shape. Thus, modes are designated according to 
their MAC value with a fixed set of mode shapes used for comparison, 
known as reference modes. The reference mode shapes were obtained by 
surveying a sample of datasets for best results. The reference modes 
selected, seen in Fig. 5, were found to provide the clearest distinction 
between FA and SS deformation in the first two identified modes. 

For each set of identified modal parameters, all modes in the range of 
the 1st and 2nd natural frequencies are isolated and then compared to 
the reference mode shapes. Mode shape designation is based on MAC 
values between identified modes and the reference mode shapes ac
cording to Equation (9). The modes with the best fit according to MAC 
value with each reference mode are selected as the 1st and 2nd modes of 
the structure, or the 1st FA and 1st SS modes. 

MAC(φ1, φ2) =

⃒
⃒φT

1 φ2

⃒
⃒2

φT
1 φ1φT

2 φ2
(9)  

3.2. Finite element modeling and model updating 

System ID results can be used to characterize the behavior of the 
structure under different environmental and operational conditions. 
One way to leverage this information is by informing digital models of 
the OWT in order to improve the model’s performance. In model 
updating, parameters of an FE model developed in OpenSees [52] are 
varied to find the optimal model parameters which match the modal 
parameters from system ID at different operating conditions. 

This section describes the FE model built based on the OWT and the 
model updating approaches used. Deterministic model updating is car
ried out on each dataset of identified modal parameters and statistics of 
updated model parameters are studied over the entire dataset. A 
Bayesian approach is also used in order obtain uncertainty estimates on 
updated model parameters. 

3.2.1. Initial model 
The 6-MW OWT is modeled in OpenSees [52], an FE modeling 

software which can simulate the response of structures subjected to 
external loading conditions and determine modal parameters. The initial 
model is built using the structural design details of the tower and 
monopile which provide the diameter and thickness of each section, as 
well as the elevation and mass of platforms and other equipment in the 
structure. The tower and foundation are modeled as a series of 
linear-elastic beam column elements, each with a constant diameter and 
thickness. Elements vary in dimensions according to design details. 
Coordinate axes of the FE model are defined in Fig. 6, which shows the 
base of the foundation where it meets the seabed. The tower and 
monopile extend upwards in the positive Z direction. 

In this analysis, the only soil-structure interaction information 
available is the macro-element stiffness matrix, composed of a lateral 
stiffness, K11, a rotational stiffness, K22, and coupled stiffness terms K12 
and K21 [38]. While the soil reactions of a monopile vary with depth, at 
very small strains the response at the mudline can be entirely captured 
using the coupled macro element representation, which is shown in 
equation (10). The coupling of this macro element captures the influence 
of varying load eccentricity at the mudline level, which is the result of 
the depthwise varying soil subgrade moduli. The macro-element is 

Fig. 4. Rotation of mode shapes from global orientation into local axis of 
turbine rotor. 
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intended to match the soil-structure interaction while improving 
computational efficiency. 

In our FE model, the macro-element is decomposed into equivalent 
lateral and rotational stiffnesses, removing the coupled terms, K12 and 
K21. This is done following [37] which showed that this decomposition 
still produces a good match in modal parameters. The first tower mode 
shape corresponds to a single effective load eccentricity at the mudline, 
and this paper assumes that the first tower mode dominates the response 
and therefore simplifies the foundation model to an uncoupled 
representation. 

K =

[
K11 K12
K21 K22

]

(10)  

Klat
0 =

K11K22 − K12
2

K − hK12
= KX = KY (11)  

Krot
0 =

h
(
K11K22 − K12

2)

hK11 − K12
= KXX = KYY (12)  

where h is the load eccentricity and depends on the mode considered. 
Since we are only performing model updating for the 1st FA and SS 
modes, a value for h is assumed to be h = 0.6H where H is the distance 
from the hub to the mudline of the OWT. The proportion 0.6 is chosen 
based on the results in Ref. [37], in which the load eccentricity for the 
1st FA and SS modes was equal to approximately 60% the distance from 
the hub to the mudline. 

Following Equations (10)–(12), the original macro-element stiffness 
matrix is decomposed into single lateral and rotational stiffnesses, Klat

0 
and Krot

0 which are each applied in the X and Y directions at the mudline: 
KX, KY = Klat

0 and KXX,KYY= Krot
0 . Fig. 7 depicts the decomposition of the 

macro-element to equivalent lateral and rotational stiffnesses applied in 
each direction. 

A ratio, denoted R, is defined as the ratio between lateral and rota
tional stiffnesses affecting each direction of motion (FA and SS), 
computed according to Klat

0 and Krot
0 from the decomposed macro- 

element: 

KX

KYY
=

KY

KXX
= R (13) 

The blades, hub, and nacelle are altogether referred to as the rotor- 
nacelle assembly (RNA). The mass of the RNA, its mass moment of 
inertia, and the location of its center of mass (CMS) are known for this 
OWT. The CMS is offset from the top of the tower in the vertical (Z axis) 
direction and in the horizontal X (FA) direction. There is no offset in the 
Y (SS) direction. In the FE model, the RNA is modeled as a singular 
lumped mass with a matrix of mass moments of inertia which is located 
at the CMS of the RNA and rigidly connected to the top of the tower. 

Fig. 5. Reference channel modal parameters for 1st and 2nd identified modes.  

Fig. 6. Global coordinate axes of finite element model of OWT.  
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3.2.2. Deterministic model updating 
In the model updating process, optimal parameters, θ, of the FE 

model are found which reduce the difference between the modal pa
rameters identified from data and by the FE model. This is accomplished 
through minimization of an objective function which measures the 
current FE modeling error in modal parameters [39], as a function of FE 
model parameters, θ. Update parameters, θ, are selected to be the lateral 
stiffnesses, KX and KY. While these parameters vary in the optimization 
process, KYY and KXX vary accordingly following Equations (15) and 
(16). By keeping the ratio, R, constant, the lateral and rotational stiff
nesses are always tuned by the same proportion during model updating. 

θ =

[
KX
KY

]

= updating parameters (14)  

KYY =
KX

R
(15)  

KXX =
KY

R
(16) 

The objective function for minimization is computed as a function of 
mode shape and natural frequency residuals between the model- 
predicted and data-identified modal parameters. The objective func
tion used in this work is: 

J(θ) = r(θ)
TWrr(θ) + |θ − θ0|

TWθ|θ − θ0| (17)  

Where r(θ), represents the residuals between the data-identified and FE 
model-predicted modal parameters given the current FE model param
eters, θ. θ0 are the initial points of model parameters, and Wr and Wθ are 
matrices which weight different components of r(θ) and θ − θ0. 

The residuals term, r(θ), is a function of both natural frequency and 
mode shape residuals, or errors, and is built according to Equations 
(18)–(23). 

r(θ) =

[
rf
rφ

]

(18)  

where rf and rφ are defined as vectors of natural frequency and mode 
shape residuals for each mode considered: 

rf =

⎡

⎣
e1

f

e2
f

⎤

⎦ (19)  

rφ =

[
e1

φ

e2
φ

]

(20)  

Where the error functions, ef and eφ, for a given mode, m, are given by: 

em
f =

fm(θ) − fm(d)

fm(d)
(21)  

em
φ =

φm(d)

‖φm(d)‖
− a

φm(θ)

||φm(θ)||
(22)  

where a is a scaling factor given by: 

a =
φm(d)φm(θ)

||φm(d)|| ||φm(θ)||
(23)  

where f(θ) and φ(θ) denotes the FE model-predicted frequencies and 
mode shapes, f(d) and φ(d) represent the frequencies and mode shapes 
obtained from system ID for the given dataset, d, and m represents mode 
number (i.e. the FA or SS modes). 

The first weight term, Wr, placed on the vector of residuals, r(θ), is a 
diagonal matrix which weights the importance of each element in r(θ)

based on the accuracy of different measurements/residuals or engi
neering judgement. The diagonal terms of this weight matrix can be 
selected as the inverse variance of corresponding residuals as shown in 
Equation (29). Weights of 5 for the frequency residuals, rf , and 1 for the 
mode shape residuals, rφ, are used following [43]. This makes the 
objective function more sensitive to changes in frequency error terms 
during optimization. 

In the second weight term, Wθ, a regularization is placed on the 
absolute difference between the current model parameters, θ, and the 
starting point, θ0. This places a different regularization strength on each 
model parameter in θ, and allows us to introduce our prior knowledge of 
the system into the model updating framework. System ID results 
(Section 4.1) show high variation in natural frequency in the FA direc
tion which increases with wind speed, meanwhile, there is compara
tively small spread in the SS frequencies. Therefore, the spring in the X 
(FA) direction is given a lower regularization to allow the parameter to 
vary more than the spring in the SS direction, reflecting the higher 
variation in FA frequencies intrinsic in the system. Wθ is a 2 × 2 diagonal 
matrix with the regularization weights set to 0.0005 for the spring in X 
and 0.005 for the spring in Y. This weight matrix is the same as the 
inverse covariance of prior distribution in the Bayesian framework as 
shown in Equation (33). 

The update parameter initial points, θ0, are chosen using a sensitivity 
analysis of the FE model; they are selected as the parameter values 
which produce a natural frequency equal to the average frequency 
identified from system ID, for each direction, X (FA) and Y (SS). This is 
done with the aim of helping the optimization find the minimum points 
efficiently, by placing the starting point in the middle of the range of 
identified frequencies. However, the sensitivity of frequencies to 
changes in soil stiffness at higher frequencies (above 0.25 Hz) is very 
low, meaning that larger changes in stiffness are required to see changes 

Fig. 7. Macro-element stiffness matrix decomposition into equivalent lateral and rotational stiffnesses for FE model.  
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in the natural frequencies (Fig. 8). For this reason, when the frequency 
identified from system ID is above 0.25 Hz, a higher starting point is 
used to assist the optimization in arriving at the optimal frequency. 

Before model updating is conducted, the effective young’s modulus 
of steel, E, for the tower and monopile was changed to 220 GPa, over its 
original value of 200 GPa in the FE model. Fig. 8 shows the sensitivity of 
the first natural frequencies in the FA and SS directions with varying 
lateral stiffnesses, KX and KY, for 3 different values of E. The bounds 
shown on the plots represent the upper and lower bounds of the FA and 
SS frequencies obtained in system ID. As seen in Fig. 8, an increased 
young’s modulus of steel shifts the sensitivity plot of frequencies against 
soil stiffness up, resulting in higher frequencies at all stiffnesses. A shift 
to 220 GPa is chosen because this number allows the FE model to reach 
natural frequencies high enough to match the range seen in frequencies 
identified in the data. The larger young’s modulus of steel can 
compensate for modeling errors such as inaccurate mass. Without this 
adjustment, the FE model would be unable to match the data at a certain 
range of frequencies. A value of 220 GPa for E also removes the need for 
E as its own update parameter. 

The deterministic model updating framework is carried out on modal 
parameters obtained from each 10-min dataset in the 12-day period of 
analysis. This provides a single realization of optimal model parameters 
corresponding to each 10-min period of time. The Matlab optimization 
function, fminsearch, is used to perform the optimization of the objec
tive function for each dataset. To ensure global optima are found, the 
objective function in the region of realistic values for θ is investigated for 
a few datasets. Results show the objective function as convex in this 
region, with only a single minimum at the identified optimum. Opti
mization results are paired with corresponding 10-min average readings 
from the SCADA system on environmental and operational conditions. 
Results are shared in Section 4.2.1. 

3.2.3. Bayesian model updating 
FE model updating can also be carried out in a probabilistic manner, 

through Bayesian model updating. This section describes the Bayesian 
model updating formulation, and additional details can be found at [28, 
31,53]. Let θ represent a vector of model update parameters and let d 
represent a vector of data-identified modal parameters, including nat
ural frequencies and mode shapes. Under this framework, the posterior 
probability distribution p(d|θ) of model parameters, θ, is estimated by 
invoking Bayes rule. 

p(θ|d) =
p(d|θ)p(θ)

p(d)
(24)  

where p(θ) is the prior distribution of FE model parameters, p(d|θ)—the 

likelihood—is the probability distribution of the observed data given 
model parameters θ, and p(d) is known as the evidence, or the marginal 
probability of the observed data, d. The evidence, p(d), is constant so we 
often simplify the above equation for the posterior probability: 

p(θ|d) = Cp(d|θ)p(θ)∝p(d|θ)p(θ) (25) 

Thus, we can estimate the distribution of the term p(d|θ)p(θ) to 
obtain the location of ideal FE model parameters, θ. The likelihood term 
assumes independent measurements and is formulated with the inde
pendent probabilities of modal parameters (natural frequencies and 
mode shapes) for some selected number of modes, M. As in the deter
ministic approach, the first 2 modes are selected for use in this frame
work, M = 2. 

p(dn|θ) =
∏M

m=1
p(fm(dn)|θ) p(φm(dn)|θ) (26) 

To further develop the likelihood term, the errors between mode 
shapes and natural frequencies are modeled as a zero-mean gaussian 
distribution and the likelihood distribution is taken to be equal to the 
error distribution (with a shifted mean value). The natural frequency 
and mode shape errors are defined in the same way as in the deter
ministic approach, given in Equations (21)–(23). These terms measure 
the misfit between model-predicted modal parameters and those ob
tained from system identification, and this embeds the level of error in 
modal parameters into the likelihood function. By assuming these error 
terms follow a zero-mean Gaussian, the distribution of identified eigen 
frequencies and mode shapes become: 

p(fm(dn)|θ)∝exp
(

−
ef

2σ2
λ

)

(27)  

p(φ(dn)|θ)∝exp
(

−
eφ

2σ2
φ

)

(28) 

Substituting these terms into Equation (26), the likelihood term 
becomes: 

p(dn|θ)∝exp
(

−
1
2

J(θ, d)

)

(29)  

where the term J(θ, d) is given as: 

J(θ, d) =
∑M

m=1

(em
f

)2

σ2
f

+
∑M

m=1

em
φ

Tem
φ

σ2
φ

(30)  

where the terms σ2
f and σ2

φ are selected to be aligned with the weighting 

Fig. 8. FE model natural frequency sensitivity to varying soil stiffnesses for 3 values of the young’s modulus of steel.  
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terms from the deterministic approach such that 1
σ2

f
= 5 and 1

σ2
φ

= 1. 

When N independent data sets exist, the likelihood and posterior 
become: 

p(d1:N|θ)∝
∏N

n=1
exp

(

−
1
2

J(θ, dn)

)

(31)  

p(θ|d)∝
∏N

n=1
exp

(

−
1
2

J(θ, dn)

)

p(θ) (32) 

The prior, p(θ), is built based off the regularization terms used in the 
deterministic objective function. The prior on update parameters is 
assumed to be Gaussian with mean value located at the initial point, θ0, 
used in deterministic updating, and a covariance matrix equal to Σp =

W−1
θ . 

p(θ)∝exp
(

−
1
2
|θ − θ0|

TΣ−1
p |θ − θ0|

)

(33)  

With this prior, the posterior from Equation (32) becomes: 

p(θ|d)∝
∏N

n=1
exp

(

−
1
2

J(θ, dn) −
1
2

|θ − θ0|
TΣ−1

p |θ − θ0|

)

(34) 

The posterior distribution of model parameters is estimated through 
Laplace approximation [54]. This method models the posterior as a 
Gaussian distribution centered at the location of the maximum a pos
teriori (MAP) estimate—found by minimizing the negative logarithm of 
the posterior given by Equation (34). This posterior distribution com
bines information from the likelihood and the prior distributions. By 
comparing the minimization objective function in Equation (35) and 
deterministic objective function in Equation (17), we can see that the 
optimal model parameters, θMAP, should fall on the mode of model pa
rameters obtained from deterministic model updating. The location the 
mean of the posterior is given by: 

θMAP = argmin
θ

∑N

n=1

1
2

(
J(θ, d) + |θ − θ0|

TWθ|θ − θ0|
)

(35)  

Then, the covariance matrix on the posterior distribution is computed 
from the Hessian, Hs of the negative log likelihood evaluated at the mean 

update value, J(θMAP, d) as [54]: 

Σ−1
θ =

1
σ2Hs(θMAP) + Σ−1

p (36)  

where, σ2 = J(θMAP,d)/[M(Nθ + 1)], and Nθ = 2 which is the number of 
update parameters [54]. Using this approach, the mean and variance of 
parameters θ is estimated using all of the identified modal parameters 
from the 2-week period of time. 

4. Results 

4.1. System identification results 

System ID results for the entire period of analysis is presented in this 
section. Results obtained from each 10-min dataset in the entire period 
include the modal parameters for the first 2 modes of the system, the 1st 
FA and 1st SS modes. Fig. 9 shows the 1st FA and SS natural frequencies 
and damping ratio of the system plotted with time, while Fig. 10 shows 
the same values plotted against wind speed. Wind speed is obtained by 
taking a 10-min average of SCADA measurements for the same time- 
period. Results show a correlation between the FA frequencies and 
damping ratios with wind speed, while the SS modal properties remain 
steady with increasing wind speeds or changing operational conditions. 
The increase in FA damping is due to aerodynamic damping [15,55], 
while the increase in FA frequencies is attributed to gyroscopic stiffening 
due to the operation of the turbine and rotation of blades. 

Mode shapes for each dataset are represented in the local axis of the 
turbine according to the 10-min average yaw angle. Fig. 11 plots the 
angle that each mode makes with global North, with the yaw angle (also 
measured from North) overlayed for reference. Results show that the 
mode identified as FA is typically in very close alignment with the di
rection of the yaw angle, while the SS mode is oriented approximately 
90◦ from this. These results indicate that the mode shape matching for 
FA/SS designation is appropriate, as it is expected that the FA mode lies 
in the direction of the yaw. The spread of mode shape angles could be 
explained by a rotor-wind misalignment in which the incident wind 
speed is not perfectly aligned with the FA axis of the turbine. This is due 
to the controller system, as the yaw angle does not begin to rotate until a 
large enough misalignment is measured by the SCADA system. Further, 
the spread is likely due in part to the 10-min window length selected in 

Fig. 9. First FA and SS natural frequencies (upper) and damping ratios (lower) by dataset date.  
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Fig. 10. First FA and SS natural frequencies (upper) and damping ratios (lower) against wind speed.  

Fig. 11. FA and SS mode shape angle with global North by dataset date.  

Fig. 12. FA (upper) and SS (lower) MAC value of identified modes with reference mode shape, color-coded by power output.  

B. Moynihan et al.                                                                                                                                                                                                                              



Renewable Energy 219 (2023) 119430

11

this work. During some 10-min periods, the yaw angle may be varying in 
a way which affects identified modes but cannot be captured by the 10- 
min average value. 

MAC values of FA and SS identified modes with the corresponding 
reference mode are plotted against date in Fig. 12 which designates each 
dataset by its power output. Results show that modes typically match 
very well with more than 70% of FA MAC values and more than 60% of 
SS MAC values falling above 0.9, but there are some discrepancies 
during certain power conditions. Most of the lower MAC values in the FA 
direction occur at low power conditions. This could be explained by a 
lack of dynamic behavior at low wind and power conditions in which the 
ambient environmental conditions are not enough to excite the turbine 
as drastically as during operation. In the SS direction, lower MAC values 
are found at the max levels of power production. During the highest 
power conditions, the generator torque causes the strongest bending 
moment in the SS direction. By contrast, during lower and medium 
power conditions, the SS bending moments have a magnitude centered 
at 0. This behavior could explain the lower MAC values, as the increased 
torque could be changing the SS mode shapes or directions. 

These patterns are further explored in Fig. 13, which shows the FA 
and SS MAC values plotted against the corresponding wind speed for the 
dataset. This figure shows that at low wind speeds, there is a consistent 
scatter in the FA MAC value, while at higher wind speeds, the FA MACs 
are concentrated at high values (with a few outliers). In the SS direction, 
Fig. 13 shows how the MACs at low to medium wind speeds are well 
concentrated at high values, but the MACs altogether drop as higher 
wind speeds are reached. The outliers and other inconsistencies could be 
due to imperfections in reference mode shapes, rotor-wind misalign
ment, or errors in system ID. 

4.2. Model updating results 

4.2.1. Deterministic model updating 
Results from the deterministic model updating approach are pro

vided in this section. For each 10-min dataset, 1 set of optimal modal 
parameters (lateral stiffnesses in X and Y: KX,KY) which minimize the FE 
model residuals with the data are obtained. Fig. 14 shows the resulting 
natural frequencies of the updated models against wind speed, plotted 
next to the system ID obtained frequencies for comparison. Overall 
trends with wind speed match well. Fig. 15 shows the fit between model 
updated frequencies and their corresponding frequencies identified in 
system ID for each dataset in the time period of analysis. 

Fig. 16 shows the absolute error in FA and SS frequencies between 
updated models and data. The mean absolute error in both the FA and SS 
are below 0.01 Hz, and the distribution of errors is approximately nor
mally distributed around 0, indicating no consistent over- or under- 
estimation of natural frequencies. 

Fig. 17 shows the optimal lateral soil stiffnesses in the X (FA) and Y 
(SS) directions after model updating, plotted against the corresponding 
wind speed from SCADA data for each dataset. Due to increasing fre
quencies in the FA direction, the effective FA lateral stiffness at the 
mudline increases with wind speed, while the effective SS lateral stiff
ness remains constant with changing operational conditions. While the 
soil stiffnesses themselves do not change, our model updating frame
work is intended to capture the effective changes in stiffness as a func
tion of operational conditions. The FA lateral stiffness increase is due to 
an unmodeled effect (gyroscopic stiffening) causing an increase in nat
ural frequencies with higher wind speeds. 

4.2.2. Bayesian model updating 
Fig. 18 shows the posterior probability distribution of update pa

rameters based on the estimates of the mean and covariance of update 
parameters, θ. Posterior estimates are shown considering 100 datasets, 
500 datasets, and all (1384) datasets. The underlying histogram repre
sents the update values obtained from deterministic model updating, a 
frequentist counterpart of model parameter probability distributions. 
The goal in Bayesian updating was to obtain a mean estimate for a single 
set of optimal model parameters—which would fall at the mode of the 
frequentist results—and a variance which represents the uncertainty in 
the estimation. 

Results show that the location of optimal parameters falls close to the 
mode of the histogram of results obtained in the frequentist approach. As 
more datasets of modal parameters are considered, the variance of the 
marginal posterior distributions decrease, showing how the information 
gained by the inclusion of more datasets increases the certainty in this 
estimation. This is expected as shown in previous studies by Ref. [31]. 
The Bayesian approach to model updating successfully identifies the 
location of optimal model parameters with high certainty, however, this 
method does not consider the inherent variability that modal parameters 
have with environmental conditions like wind speed. 

5. Conclusions 

This paper carried out automated system identification and model 

Fig. 13. FA (upper) and SS (lower) MAC values with reference mode shapes, plotted against wind speed.  
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updating of an operational 6 MW OWT. Automated SSI-DATA was used 
to extract modal parameters for the first 2 modes—the 1st FA and 1st SS 
mode—from instrumented accelerometers over two weeks of operation. 
Modal properties are paired with corresponding SCADA data which 
tracks wind speed and power output. Results show an increase in the 1st 
FA natural frequency and damping ratio with increasing wind speed, 
attributed to gyroscopic stiffening due to the operation of the OWT. 

An FE model of the OWT was built in OpenSees based on design 
information for the monopile and tower with a lumped mass at the 
tower-top to represent the RNA. The macro-element for soil-structure 
interaction at the mudline was decomposed into equivalent lateral and 
rotational stiffnesses which are each applied in the X (FA) and Y (SS) 
directions of the FE model. Extracted modal parameters were used in 2 
methods for FE model updating in which the lateral stiffnesses in X and Y 
are used as update parameters while the rotational stiffnesses vary ac
cording to a fixed ratio. The deterministic update resulted in 1 realiza
tion of optimal model parameters per dataset (each representing 10 min 
of data), which were assessed against wind speed. Results showed a 
small mean absolute error (MAE) between updated model and identified 

natural frequencies. Gyroscopic effects which cause an increase in the 
FA frequencies with wind speed were captured in the updated effective 
soil spring stiffnesses at the mudline, reflected by an increase in soil 
stiffness in the FA direction with wind speed. 

The Bayesian model updating approach provides a posterior proba
bility distribution for the model parameters given the datasets provided. 
The optimal model parameters and their estimation uncertainty can be 
obtained as the mode and standard deviation of marginal parameter 
distributions. Posterior distribution estimations are compared for a 
varying number of datasets used to inform the likelihood distribution. 
Results show that the posterior distribution becomes narrower with 
smaller standard deviation on parameter estimates as more data is 
considered. 

Given the intrinsic variation with environmental conditions 
observed in system identification results, the next step of this work will 
be to conduct a Hierarchical Bayesian model updating which would 
allow us to consider an underlying variability in model parameters [56]. 
This variability can be estimated as hyperparameter and is expected to 
match the shape of the frequentist approach. Future modeling will also 

Fig. 14. System ID (left) and updated model (right) natural frequencies (FA on top, SS on bottom) compared against wind speed.  

Fig. 15. Fit between updated model 1st FA (left) and SS (right) natural frequencies and identified frequencies from system ID.  
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Fig. 16. Absolute error in updated model 1st FA (upper) and SS (lower) natural frequencies.  

Fig. 17. Updated model effective lateral soil stiffness in FA (left) and SS (right) directions against wind speed.  

Fig. 18. Bayesian model update posterior distribution of update parameters.  
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need to directly model the effect of gyroscopic stiffening at the hub level 
so that soil springs values are not required to compensate for the gyro
scopic stiffening.  
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