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1. Introduction

After the discovery by Ribe [56] of a striking rigidity phenomenon regarding local 
properties of Banach spaces, the search for metric characterizations of local properties 
of Banach spaces has been a main research avenue for what would become known as the 
Ribe program. The Ribe program has grown into an extensive and tentacular research 
program with far reaching ramifications, in particular in theoretical computer science 
and geometric group theory. We refer the interested reader to [3] and [48] for more 
information about this program.

The foundational result of the Ribe program is a 1986 theorem of Bourgain.

Theorem 1. [14] A Banach space Y is super-reflexive if and only if supk∈N cY(Bk) = ∞.

In Bourgain’s metric characterization of super-reflexivity, {Bk}k!1 is the sequence of 
binary trees, and the parameter cY(X) denotes the Y-distortion of X for two metric spaces 
(Y, dY) and (X, dX), i.e., the least constant D such that there exist s > 0 and a map 
f : X → Y satisfying for all x, y ∈ X

s · dX(x, y) ! dY(f(x), f(y)) ! sD · dX(x, y).

An important renorming result of Enflo [23] states that super-reflexivity can be charac-
terized in terms of uniformly smooth or uniformly convex renormings. Moreover thanks 
to Asplund’s averaging technique [2], we can equivalently consider in Bourgain’s met-
ric characterization the class of Banach spaces that admit an equivalent norm that is 
uniformly convex and uniformly smooth. From this perspective, an asymptotic analogue 
of Bourgain’s metric characterization was obtained by Baudier, Kalton and Lancien in 
2009.
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Theorem 2. [9] Let Y be a reflexive Banach space. Then,
Y admits an equivalent norm that is asymptotically uniformly convex and asymptoti-

cally uniformly smooth if and only if supk∈N cY(Tω
k ) = ∞.

The tree Tω
k in Theorem 2 is the countably branching version of the binary tree Bk. 

The discovery of Theorem 2 launched the quest for metric characterizations of asymptotic 
properties of Banach spaces. It is worth pointing out that Ribe’s rigidity theorem [56]
provides a theoretical motivation to metrically characterize local properties of Banach 
spaces, but no such rigidity result is known in the asymptotic setting. Nevertheless, 
the asymptotic declination of Ribe program has seen some steady progress in the past 
decade (see for instance [41], [19], [21], [15], [8], [17], [20], [11], [64]) with some interesting 
applications to coarse geometry such as in [12] and [10].

Pisier’s influential quantitative refinement [55] of Enflo’s renorming states that a 
super-reflexive Banach space X admits an equivalent norm whose modulus of uniform 
convexity is of power type p for some p " 2, or equivalently as shown in [4], satisfies the 
following inequality for all x, y ∈ X and some constant K " 1.

∥x + y∥p + ∥x− y∥p

2 " ∥x∥p + 1
Kp

∥y∥p. (1)

A Banach space whose norm satisfies (1) is said to be p-uniformly convex. The following 
quantification of Bourgain’s metric characterization was obtained by Mendel and Naor 
[45] building upon previous work of Lee, Naor, and Peres [38,39].

Theorem 3. [45,39] A Banach space X admits an equivalent norm that is p-uniformly 
convex if and only if X is Markov p-convex.

On the metric side of the equivalence in Theorem 3 is a complex inequality that 
captures the geometry of trees with bounded degree. According to [39] and given p > 0, 
a metric space (X, dX) is Markov p-convex if there exists a constant Π > 0 such that for 
every Markov chain {Wt}t∈Z on a state space Ω and every f : Ω → X,

∞∑

s=0

∑

t∈Z

E
[
dX

(
f(Wt), f(W̃t(t− 2s))

)p]

2sp ! Πp
∑

t∈Z

E
[
dX

(
f(Wt), f(Wt−1)

)p]
, (2)

where given an integer τ , {W̃t(τ)}t∈Z is the stochastic process which equals Wt for time 
t ! τ and evolves independently, with respect to the same transition probabilities, for 
time t > τ . The smallest constant Π such that (2) holds will be denoted by ΠM

p (X).
Markov p-convexity is easily seen to be a bi-Lipschitz invariant, and quantitatively 

ΠM
p (X) ! cY(X)ΠM

p (Y). The discovery of the Markov convexity inequality was partially 
inspired by the non-embeddability argument in Bourgain’s characterization, and it thus 
naturally provides restrictions on the faithful embeddability of binary trees. Considering 
the regular random walk on the binary tree B2k , it is easy to check that ΠM

p (B2k) "
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21−2/pk1/p and hence any bi-Lipschitz embedding of Bk into a Markov p-convex metric 
space incurs distortion at least Ω

(
(log k)1/p

)
. This lower bound extends to the purely 

metric setting the lower bound obtained for p-uniformly convex spaces in [14]. Note also 
that Markov p-convexity is stable under taking ℓp-sums of metric spaces and is preserved 
under Lipschitz quotient mappings [45, Prop. 4.1].

Recall that a map f : (X, dX) → (Y, dY) is a coarse embedding if there are non-
decreasing maps ρ, ω : [0, ∞) → [0, ∞) and limt→∞ ρ(t) = ∞ and for all x, y ∈ X,

ρ(dX(x, y)) ! dY(f(x), f(y)) ! ω(dX(x, y)).

The function ρ (resp. ω) is usually called the compression (resp. expansion) control 
function. We talk about equi-coarse embedding of a sequence of metric spaces if there is 
a sequence of coarse embeddings that are controlled uniformly by given compression and 
expansion functions. For graphs the expansion control function can always be assumed 
to be linear and the compression rate is the best compression control function that 
can be achieved. In his investigation of the compression rate of coarse embeddings of 
groups, Tessera established the following restriction on the compression rate for equi-
coarse embeddings of binary trees.

Theorem 4. [62] The compression rate of any equi-coarse embedding of {Bk}k!1 into a 
p-uniformly convex Banach space satisfies

∞∫

1

(ρ(t)
t

)p dt

t
< ∞.

The proof of Theorem 4 is another variation of Bourgain’s non-embeddability argu-
ment and relies on the fact that for any p-uniformly convex Banach space X there exists 
a constant C > 0 such that for all k " 1 and f : B2k → X, the following refinement of an 
inequality implicit in [14] holds

k−1∑

s=0
min

2s<ℓ"2k−2s
Eε∈{−1,1}ℓEδ∈{−1,1}2sEδ′∈{−1,1}2s

∥f(ε, δ) − f(ε, δ′)∥pX
2sp ! CpLip(f)p.

(3)
Here, Lip(f) is the Lipschitz constant of f and {−1, 1}h is the set of vertices of B2k

whose height is exactly h, or in other words, the vertex set of the binary tree is B2k :=
∪2k

h=0{−1, 1}h and the edge set consists of pairs of the form {ε, (ε, δ)} where ε ∈ {−1, 1}h
for some 0 ! h < 2k and δ ∈ {−1, 1}. In the Banach space setting and thanks to 
Theorem 3, Tessera’s inequality (3) is implied by Markov p-convexity. Even though 
not readily apparent, inequality (3) also follows from Markov p-convexity in the purely 
metric setting, and in turn the compression rate for the binary trees is also valid when the 
embedding takes values into a Markov p-convex metric space. We suspect this observation 
is known to experts and it is best seen when considering a deterministic inequality implied 
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by Markov convexity. This fact will be properly justified in Section 7 (cf. Remark 45) 
where we study certain relaxations of the Markov convexity inequality.

In this article we introduce new metric invariants, which are inspired by Markov 
convexity and inequality (3), and that are crucial in resolving some problems regarding 
the asymptotic geometry of Banach spaces. These new inequalities share many features 
with their local cousins and capture the geometry of countably branching trees. The 
difficulty in obtaining non-trivial inequalities for countably branching trees lies in the 
fact that it is not clear how to make sense of the various averages over vertices when 
there are infinitely many of them. The strongest asymptotic metric invariant that we 
introduce in this article is the notion of umbel convexity. In the definition below, [N]"h

(resp. [N]h) denotes the set of all subsets2 of size at most h (resp. exactly h) which is 
commonly used to code the vertex set of Tω

h , the countably branching tree of height h. 
Recall that two vertices m̄ = (m1, m2, . . . , mi) and n̄ = (n1, n2, . . . , nj) in Tω

h belong to 
an edge if and only if j = i + 1 and m1 = n1, m2 = n2, . . . , mi = ni.

Definition 5. Let p ∈ (0, ∞). A metric space (X, dX) is umbel p-convex if there exists a 
constant Π > 0 such that for all k " 1 and all f : [N]"2k → X,

k−1∑

s=1

1
2k−1−s

2k−1−s∑

t=1
inf

n̄∈[N]t2s+1−2s
inf

δ̄∈[N]2s :
(n̄,δ̄)∈[N]!2k

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

dX
(
f(n̄, δ̄), f(n̄, j, η̄)

)p

2sp

! Πp 1
2k

2k∑

ℓ=1
sup

n̄∈[N]ℓ
dX

(
f(n1, . . . , nℓ−1), f(n1, . . . , nℓ)

)p
.

(4)

The smallest constant Π such that (4) holds for all k " 1 and all maps f : [N]"2k → X
will be denoted by Πu

p(X) and called the umbel p-convexity constant of X.

Umbel convexity behaves in many respects as Markov convexity does, albeit with 
some significant and at times unavoidable discrepancies. This will be explained at length 
throughout the sections. Our approach to obtain the umbel convexity inequality is rem-
iniscent of how Markov convexity can be derived from a certain 4-point inequality. The 
terminology “umbel convexity” reflects the fact that the umbel p-convexity inequality 
follows from a certain inequality for the complete bipartite graph K1,ω which we view 
pictorially as an umbel. See Fig. 1.

Umbel convexity plays a central role in the problem of characterizing metrically the 
class of Banach spaces admitting an equivalent norm with property (β). The definition 
below, due to Kutzarova [32], is equivalent to Rolewicz’s original definition [57]. A Banach 

2 We will slightly abuse notation and write an element n̄ ∈ [N]!h as n̄ = (n1, n2, . . . , nℓ) where n1 <
n2 < · · · < nℓ and write concisely f(n̄, ̄δ) instead of the more formal expression f((n1, . . . , nℓ, δ1, . . . , δℓ′ ))
whenever the last expression makes sense.
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Fig. 1. K1,ω in the umbel position.

space (X, ∥ · ∥) has Rolewicz’s property (β) if for all t > 0 there exists β̄(t) > 0 such that 
for all z ∈ BX and {xn}n∈N ⊆ BX with inf i̸=j ∥xi − xj∥ " t, there exists i0 ∈ N so that

∥∥∥
z − xi0

2
∥∥∥ ! 1 − β̄(t).

Moreover, X is said to have property (β) with power type p > 0 and constant c > 0
(shortened to property (βp)) if β̄(t) " tp

c .
Property (β) is an asymptotic generalization of uniform convexity, but it is much 

more than that. We denote by cof(X) the set of all the finite co-dimensional subspaces 
of X. Recall that a Banach space X is asymptotically uniformly convex if δ̄X(t) > 0 for 
all t > 0, and asymptotically uniformly smooth if limt→0 ρ̄X(t)/t = 0, where

δ̄X(t) def= inf
x∈X

∥x∥=1
sup

Y ∈cof(X)
inf
y∈Y

∥y∥=1
∥x + ty∥ − 1, (5)

and

ρ̄X(t) def= sup
x∈X

∥x∥=1

inf
Y ∈cof(X)

sup
y∈Y

∥y∥=1

∥x + ty∥ − 1. (6)

The following theorem follows from several important renorming results (in particular 
from [31] and [30]) and we refer to [20] for a thorough discussion.

Theorem 6. The following classes of Banach spaces coincide:

(i) The class ⟨(β)⟩ of Banach spaces admitting an equivalent norm with Rolewicz’s 
property (β).

(ii) The class ⟨(βp)⟩ of Banach spaces admitting an equivalent norm with property (βp)
for some p ∈ (1, ∞).

(iii) The class of reflexive Banach spaces admitting an equivalent norm that is asymp-
totically uniformly convex and asymptotically uniformly smooth.
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We want to emphasize a subtle point here. Theorem 2, in combination with Theorem 6
(iii), provides a metric characterization of the class ⟨(β)⟩ within the class of reflexive 
Banach spaces. However, Perreau [53] recently showed that supk!1 cJ(Tω

k ) = ∞ where 
J is James (non-reflexive) space [28]. Therefore, the condition supk!1 cX(Tω

k ) = ∞, does 
not necessarily force X to be reflexive, and consequently it does not characterize the class 
⟨(β)⟩. This reflexivity issue, which does not arise in the local setting, is resolved with the 
help of umbel convexity.

Banach spaces with property (βp) are the prototypical spaces that are umbel p-convex 
(see Corollary 13 in Section 2). The following theorem is a metric characterization of the 
class ⟨(β)⟩ in terms of the existence of a certain Poincaré-type inequality.

Theorem A. Let X be a Banach space. Then, X admits an equivalent norm with property 
(β) if and only if X is umbel p-convex for some p ∈ (1, ∞).

While writing this article, we learned from Sheng Zhang [64] that he had discovered 
independently a metric characterization of the class ⟨(β)⟩ in terms of a submetric test-
space in the sense of Ostrovskii [51]. A similar submetric test-space characterization can 
be extracted with some care from the work of Dilworth, Kutzarova, and Randrianarivony 
in [21] and is also a direct consequence of our work (see Corollary 19 in Section 2).

The delicate question of renorming a Banach space that is umbel p-convex will be 
discussed in Section 9. Let us just mention here that there exists an example of a Banach 
space constructed by Kalton in [29] that is umbel p-convex and does not admit an 
equivalent norm with property (βp), but for every ε > 0 admits an equivalent norm with 
property (βp+ε).

The question of estimating from above compression rates for equi-coarse embeddings 
of the countably branching trees has remained open for a while, even for simple target 
spaces such as (

∑∞
n=1 ℓ

n
∞)2 for which the geometry of binary trees does not provide 

any obstruction. The techniques in [9] and [15] provide quantitative information about 
the faithful embeddability of the countably branching trees that are inherently of a 
bi-Lipschitz nature, and do not provide any estimates on compression rates of coarse 
embeddings. Umbel convexity can be used to resolve this problem. In fact, a significant 
relaxation of the umbel convexity inequality is sufficient for this purpose.

Definition 7. Let p ∈ (0, ∞). A metric space (X, dX) is said to be infrasup-umbel p-convex
if there exists a constant C > 0 such that for all k " 1 and all f : Tω

2k → X,

k−1∑

s=1
inf

n̄∈[N]!2k−2s
inf

i̸=j∈N
inf

m̄,m̄′∈[N]2s−1 :
(n̄,i,m̄),(n̄,j,m̄′)∈[N]!2k

d(f(n̄, i, m̄), f(n̄, j, m̄′))p
2sp ! CpLip(f)p.

It is plain that umbel p-convexity implies infrasup-umbel p-convexity. Compression 
rate estimates can be obtained using the notion of infrasup-umbel convexity in the same 
way Tessera derived Theorem 4 from inequality (3).
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Theorem B. Let p ∈ (0, ∞). The compression rate of any equi-coarse embedding of 
{Tω

k }k!1 into a metric space that is infrasup-umbel p-convex satisfies

∞∫

1

(ρ(t)
t

)p dt

t
< ∞.

The true gist of Theorem B lies in the large class of spaces it covers, since the infrasup-
umbel p-convexity inequality follows from a significant relaxation of the inequality that 
was needed to prove umbel p-convexity. Moreover, the geometry of countably branching 
trees provides embeddability obstructions for spaces such as infinite-dimensional hyper-
bolic spaces (see Corollary 23) which cannot be achieved by merely resorting to the 
geometry of locally finite trees. More examples supporting these claims can be found in 
Section 5. A particularly interesting class of examples are Heisenberg groups over cer-
tain infinite-dimensional Banach spaces. We refer to Section 5 for the definition of the 
Heisenberg group (H(ωX), dcc), where dcc denotes the Carnot-Carathéodory metric, and 
the important fact that (H(ωX), dcc) does not embed bi-Lipschitzly into a Banach space 
with property (βp).

Theorem C. For every non-null, antisymmetric, and bounded bilinear form ωX on X and 
every p " 2, the infinite-dimensional Heisenberg group (H(ωX), dcc) is infrasup-umbel 
p-convex whenever X has property (βp).

It is natural to ask if a stronger conclusion can be achieved in Theorem C, namely if 
infrasup-umbel p-convexity can be upgraded to umbel p-convexity. We do not know if 
this stronger conclusion holds, and we discuss the issue further following Problem 5.

Theorem C is in stark contrast with the situation in the local theory, as it was shown 
by S. Li in [34] that the Heisenberg group (H(ωR2), dcc) is not Markov p-convex for 
p < 4, where ωR2 is the scalar cross product on R2. The reason that we can achieve 
better convexity properties in the asymptotic setting is, loosely speaking, due to the 
fact that the twisting factor ωX(xi, xj) in the last coordinate always tends to 0 along a 
subsequence (the importance of this fact is apparent in the proof of Theorem 32, from 
which Theorem C follows). Therefore, as far as infrasup-umbel convexity is concerned, 
the Heisenberg group H(ωX) behaves the same as the abelian group X ⊕ R (where the 
second factor is equipped with a snowflaked metric 

√
| · |), and thus one would expect it 

to be infrasup-umbel p-convex whenever X has property (βp). Of course, for fixed vectors 
x, y, the twisting factor ωX(x, y) in the last coordinate cannot be ignored, resulting in a 
more complex local geometry, as evidenced by the aforementioned result of Li. In fact, 
as an application of his methods, it was also shown in [34] that the ball of radius n in the 
integer lattice of H(ωR2) has ℓ2-distortion at least a constant multiple of3 (logn) 1

4−o(1). 

3 The sharp bound Ω((logn)
1
2 ) was proved by Lafforgue-Naor in [33].
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Our Theorem C shows that an analogous argument with infrasup-umbel convexity in 
place of Markov convexity cannot be used to derive a nontrivial lower bound for the 
distortion of the integer lattice of H(ωℓ2) (where ωℓ2 is the form on ℓ2 ⊕ ℓ2 given by 
ωℓ2((x, y), (x′, y′)) := 1

2 ⟨x, y
′⟩ − 1

2 ⟨x
′, y⟩) into a Banach space with property (β2) (such 

as ℓ2). As far as we can tell, it is plausible that the integer lattice of H(ωℓ2) does 
admit a bi-Lipschitz embedding into some Banach space with property (β2). On the 
other hand, Theorem C gives sharp distortion bounds of countably branching trees into 
H(ωℓ2), while in [34] it is shown that Markov convexity does not give sharp distortion 
bounds of the binary trees into H(ωℓ2). Later, we will introduce a local analogue of 
infrasup-umbel p-convexity, called infrasup-fork p-convexity. If we had a local analogue 
of Theorem C stating that H(ωℓ2) is infrasup-fork 2-convex, then this would recover the 
sharp distortion bounds of the binary trees into H(ωℓ2). However, we do not know if this 
is true (see Problem 7 and the discussion surrounding it).

Infrasup-umbel convexity can also be used to provide alternate and unified proofs 
of generalizations of a number of results that can be found in [41], [19], [21], and [15]. 
These applications can mostly be found in Section 3 and 4 where a quantitative analysis 
of embeddings of countably branching trees and the stability of umbel convexity and 
infrasup umbel convexity under nonlinear quotients are carried out.

As already alluded to, the Markov p-convexity inequality is elegantly shown in [45] to 
follow from a certain iteration of the following inequality:

2−pdX(w, x)p
2 + 2−pdX(w, y)p

2 + dX(x, y)p
(4K)p ! 1

2dX(z, w)p + 1
4dX(z, x)p + 1

4dX(z, y)p. (7)

A metric space (X, dX) is said to satisfy the p-fork inequality with constant K > 0 if 
(7) holds for all w, x, y, z ∈ X.

In Section 6, we prove a parallelogram 2p-convexity inequality for Heisenberg groups 
over p-uniformly convex Banach spaces. This useful inequality - first investigated for 
finite-dimensional Carnot groups by the second author ([26, Lemma 4.17]) - is shown to 
imply the 2p-fork inequality (7) and 2p-short diagonals inequality (49).

In light of our work on metric invariants related to countably branching trees, we study 
in Section 7 certain relaxations of the p-fork inequality (7) and the related full-blown 
deterministic metric invariants that can be derived from those. As previously mentioned, 
we introduce the metric invariant infrasup-fork p-convexity - a natural local analogue 
to infrasup-umbel p-convexity - that is sufficient to derive the conclusion of Theorem 4. 
The advantage to work with this invariant, which is a significant relaxation of Tessera’s 
inequality (3), is that it covers a large class of examples.

Finally, in Section 8, we borrow an idea from Lebedeva and Petrunin [40] to show that 
the 2-fork inequality with constant K = 1 implies non-positive curvature. Interestingly, 
it was shown by Austin and Naor in [1] that non-negative curvature implies the 2-fork 
inequality with constant K = 1. The following characterization of non-negative curvature 
follows by combining these two observations.
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Theorem D. Let (X, dX) be a geodesic metric space. Then X has non-negative curvature 
if and only if X satisfies the 2-fork inequality with constant K = 1.

For the convenience of the reader, we also include in Appendix A a table summarizing 
the main inequalities introduced or recalled in the paper.
Acknowledgments. We would like to thank Alexandros Eskenazis, Manor Mendel, and 
Assaf Naor for sharing with us their forthcoming work [22], and Manor Mendel for his 
generous and enlightening feedback on a first draft of this work that in particular led to 
Proposition 21.

2. Property (β) with power type p implies umbel p-convexity

The main goal of this section is to provide a proof of Theorem A. This will be done 
via several steps interesting in their own right. First we prove some preparatory lemmas 
that will be used to derive a homogeneous inequality that is valid in any Banach space 
with property (βp). The first lemma is essentially technical.

Lemma 8. Let (X, ∥ · ∥) be a Banach space. For all δ, ε > 0, v, w ∈ X, and V, W " ε with 
∥v∥ ! V , ∥w∥ ! W , and 1

2V + 1
2W ! 1, if 

∥∥∥ v
2V + w

2W

∥∥∥ ! 1 −δ, then ∥1
2v+ 1

2w∥ ! 1 −εδ.

Proof. Rescaling if needed, we may assume that V +W = 2 and without loss of generality 
that W " 1. By assumption we have 

∥∥∥ v
2V + w

2W

∥∥∥ ! 1 − δ. Multiplying each side by VW

yields 
∥∥∥W

2 v + V
2 w

∥∥∥ ! (1 − δ)VW . Then we have

∥∥∥
v

2 + w

2
∥∥∥ =

∥∥∥
(
1 − 1

W

)
w + 1

W

(W
2 v + V

2 w
)∥∥∥

!
(

1 − 1
W

)
W + 1

W

∥∥∥
W

2 v + V

2 w
∥∥∥

! W − 1 + (1 − δ)V
= (V + W ) − 1 − V δ

! 1 − εδ. !

The second lemma is a simple, but crucial, refinement of property (βp).

Lemma 9. If (X, ∥ ·∥) has property (βp) with p > 0 and constant c > 0 then for all x ∈ BX
and {zn}n∈N ⊆ BX,

inf
n∈N

∥∥∥
x− zn

2
∥∥∥ ! 1 − 1

c
inf
i∈N

lim inf
j→∞

∥zi − zj∥p. (8)

Proof. Assume, as we may, that infi∈N lim infj∈N ∥zi − zj∥ = t > 0 and hence for all 
i ∈ N we have lim infj→∞ ∥zi − zj∥ " t. Let ε > 0 be arbitrary. A diagonal extraction 
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argument gives a subsequence {znj}j!1 such that for all i, j ∈ N it holds ∥zi − znj∥ "
(1 − ε)t. Therefore, there exists an infinite subset M def= {n1, n2, . . . } of N such that 
inf i̸=j∈M ∥zi−zj∥ " (1 −ε)t. Since by assumption β̄(t) " tp

c , it follows from the definition 
of the (β)-modulus that there exists m ∈ M such that

∥∥∥
x− zm

2
∥∥∥ ! 1 − (1 − ε)ptp

c
= 1 − (1 − ε)p

c
inf
i∈N

lim inf
j→∞

∥zi − zj∥p.

Since ε > 0 was arbitrary, the conclusion holds. !

Lemma 8 and Lemma 9 are now used to prove a homogeneous inequality in Banach 
spaces with property (βp) for p > 1.

Lemma 10. If p ∈ (1, ∞) and (X, ∥ · ∥) has property (βp) with constant c, then for all 
w, z ∈ X and {xn}n∈N ⊆ X

1
2p inf

n∈N
∥w − xn∥p + 1

K
inf
i∈N

lim inf
j∈N

∥xi − xj∥p ! 1
2∥w − z∥p + 1

2 sup
n∈N

∥xn − z∥p (9)

where K is the least solution in [2c, ∞) to the inequality

1
2p

(
2c
K

+
(

2 −
(2c
K

)p)1/p)p

+ 2p+1

K
! 1. (10)

Proof. Before we begin the proof, note that inequality (10) has a solution K ∈ [2c, ∞)
because p > 1.

Let w, z ∈ X and {xn}n∈N ⊂ X. Since the distance induced by the norm of X
is translation invariant, we may assume z = 0. We may also assume without loss of 
generality that supn∈N ∥xn∥ < ∞, and by scale invariance of (9) we can assume that 
1
2∥w∥

p + 1
2 supn∈N ∥xn∥p ! 1. Thus equation (9) reduces to

inf
n∈N

∥∥∥∥
w − xn

2

∥∥∥∥
p

+ 1
K

inf
i∈N

lim inf
j→∞

∥xi − xj∥p ! 1.

If infi∈N lim infj→∞ ∥xi − xj∥ = 0, the above inequality holds trivially by the triangle 
inequality and convexity, so we may assume infi∈N lim infj→∞ ∥xi − xj∥ > 0.

Set W def= ∥w∥ and X def= supn∈N ∥xn∥, so that

1
2W + 1

2X !
(1

2W
p + 1

2X
p

)1/p
! 1.

In particular remember that max{W p, Xp} ! 2. Set ε def= 2c
K , and note that ε ∈ (0, 1]. 

We consider separately the two cases min{W, X} " ε and min{W, X} ! ε.
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Assume first that min{W, X} " ε holds. Lemma 9 implies

inf
n∈N

∥∥∥
w

2W − xn

2X
∥∥∥ ! 1 − 1

c
inf
i∈N

lim inf
j→∞

∥∥∥
xi

X
− xj

X

∥∥∥
p

! 1 − 1
cXp

inf
i∈N

lim inf
j→∞

∥xi − xj∥p

! 1 − 1
2c inf

i∈N
lim inf
j→∞

∥xi − xj∥p .

Let η ∈ (0, 1) be arbitrary. Then by the above inequality and our assumption that 
infi∈N lim infj→∞ ∥xi − xj∥ > 0, we may choose m ∈ N such that

∥∥∥
w

2W − xm

2X
∥∥∥ ! 1 − 1 − η

2c inf
i∈N

lim inf
j→∞

∥xi − xj∥p .

This inequality shows that the hypotheses of Lemma 8 are fulfilled, and thus by the 
definition of ε, the fact that 

∥∥w−xm
2

∥∥ ! 1, and Lemma 8 we get

inf
n∈N

∥∥∥∥
w − xn

2

∥∥∥∥
p

+ 1 − η

K
inf
i∈N

lim inf
j→∞

∥xi − xj∥p

!
∥∥∥∥
w − xm

2

∥∥∥∥ + (1 − η)ε
2c inf

i∈N
lim inf
j→∞

∥xi − xj∥p ! 1.

Since η ∈ (0, 1) was arbitrary, we achieve the required inequality.
Now assume we are in the second case min{W, X} ! ε. We just treat the subcase 

W ! ε; the other subcase follows from nearly the same argument. We have

inf
n∈N

∥∥∥∥
w − xn

2

∥∥∥∥
p

+ 1
K

inf
i∈N

lim inf
j→∞

∥xi − xj∥p !
(
W + X

2

)p

+ 1
K

(2X)p

!
(
W + (2 −W p)1/p

2

)p

+ 1
K

(2X)p

!
(
ε + (2 − εp)1/p

2

)p

+ 1
K

2p+1

= 1
2p

(
2c
K

+
(

2 −
(2c
K

)p)1/p)p

+ 2p+1

K

! 1

where the last inequality is the definition of K, and the second-to-last inequality follows 
from the fact that Xp ! 2, W ! ε, and the fact that t ,→ t + (2 − tp)1/p is increasing on 
[0, 1]. !
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Since inequality (9) only involves the norm of differences of vectors, it will be conve-
nient to introduce the following definition and terminology.

Definition 11. A metric space (X, dX) is said to satisfy the p-umbel inequality with con-
stant K ∈ (0, ∞) if for all w, z ∈ X and {xi}i∈N ⊆ X we have

1
2p inf

i∈N
dX(w, xi)p + 1

Kp
inf
i∈N

lim inf
j→∞

dX(xi, xj)p ! 1
2dX(z, w)p + 1

2 sup
i∈N

dX(z, xi)p (11)

The p-umbel inequality is a strengthening of the triangle inequality for sequences 
{xi}i∈N that do not admit any Cauchy subsequence. The next theorem is the main 
result of this section.

Theorem 12. Let p ∈ (0, ∞). If (X, dX) satisfies the p-umbel inequality with constant 
K > 0, then (X, dX) is umbel p-convex. Moreover, Πu

p(X) ! max{1, 2 1
p−1} ·K.

Proof. We will show a bit more than what is needed for Theorem 12, and in this proof we 
allow dX to be a quasi-metric and not necessarily a genuine metric, i.e., that instead of 
the triangle inequality we assume that there exists a constant c " 1 such that dX(x, y) !
c(dX(x, z) +dX(z, y)) for all x, y, z ∈ X. We will show by induction on k that for all maps 
f : [N]"2k → X and all r ∈ N,

1
Kp

k−1∑

s=1

1
2k−1−s

2k−1−s∑

t=1
inf

n̄∈[N]t2s+1−2s
inf

ε̄∈[N]2s :
(n̄,ε̄)∈[N]!2k

lim inf
j→∞

inf
δ̄∈[N]2s−1:

(n̄,j,δ̄)∈[N]!2k

dX
(
f(n̄, ε̄), f(n̄, j, δ̄)

)p

2sp

+ inf
n̄∈[N]2k−1:

(r,n̄)∈[N]2k

dX(f(∅), f(r, n̄))p
2kp

! max{1, 21−p} · cp 1
2k

2k∑

ℓ=1
sup

n̄∈[N]ℓ
dX

(
f(n1, . . . , nℓ−1), f(n1, . . . , nℓ)

)p
.

The conclusion of the theorem follows by discarding the additional non-negative term 
which is solely needed for the induction proof.

For the base case k = 1, the inequality reduces to

inf
n∈N
n>r

dX(f(∅), f(r, n))p
2p

! max{1, 21−p}c
p

2

(
sup
n∈N

dX(f(∅), f(n))p + sup
(n1,n2)∈[N]2

dX(f(n1), f(n1, n2))p
)
.

Observing that this inequality is an immediate consequence of the quasi-triangle and 
Hölder inequalities, the base case is settled. For convenience, we assume throughout the 
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remainder of the proof that p " 1, so that max{1, 21−p} = 1. The proof carries through 
line-by-line in the case p ! 1, but with an additional factor of 21−p on the right-hand 
side.

We now proceed with the inductive step and fix i ∈ N and f : [N]"2k+1 → X. Given 
ε > 0, we pick m̄ ∈ [N]"2k−1 such that

dX(f(∅), f(i, m̄))p
2kp ! inf

n̄∈[N]2k−1

dX(f(∅), f(i, n̄))p
2kp + ε,

and for each r ∈ N, choose ū(r) ∈ [N]2k−1 so that

dX(f(i, m̄), f(i, m̄, r, ū(r)))p
2kp ! inf

n̄∈[N]2k−1

dX(f(i, m̄), f(i, m̄, r, n̄))p
2kp + ε.

In order to simplify the (otherwise awkward and tedious) notation we have implicitly 
assumed above that m̄, r, and ū(r) are such that i < m1 < · · · < ml < r < u1(r) < · · · <
ul′(r), or in other words that (i, m̄, r, ̄u(r)) truly belongs to [N]"2k+1 . We will follow this 
notational convention here and in the ensuing proofs.

By the induction hypothesis applied to the restriction of f to [N]"2k (and with r = i) 
we get

1
Kp

k−1∑

s=1

1
2k−1−s

2k−1−s∑

t=1
inf

n̄∈[N]t2s+1−2s
inf

ε̄∈[N]2s
lim inf
j→∞

inf
δ̄∈[N]2s−1

dX(f(n̄, ε̄), f(n̄, j, δ̄))p
2sp

+ inf
n̄∈[N]2k−1

dX(f(∅), f(i, n̄))p
2kp ! cp

2k
2k∑

ℓ=1
sup

n̄∈[N]ℓ
dX(f(n1, . . . , nℓ−1), f(n1, . . . , nℓ))p.

(12)

On the other hand, the induction hypothesis applied to g(n̄) def= f((i, m̄), ̄n) where n̄ ∈
[N]"2k gives

1
Kp

k−1∑

s=1

1
2k−1−s

2k−1−s∑

t=1
inf

n̄∈[N]t2s+1−2s
inf

ε̄∈[N]2s
lim inf
j→∞

inf
δ̄∈[N]2s−1

dX(g(n̄, ε̄), g(n̄, j, δ̄))p
2sp

+ inf
n̄∈[N]2k−1

dX(g(∅), g(n̄))p
2kp ! cp

2k
2k∑

ℓ=1
sup

n̄∈[N]ℓ
dX(g(n1, . . . , nℓ−1), g(n1, . . . , nℓ))p.

Observe first that, for any 1 ! ℓ ! 2k,

sup
n̄∈[N]ℓ

dX(g(n1, . . . , nℓ−1), g(n1, . . . , nℓ))p

= sup
n̄∈[N]ℓ

dX(f(i, m̄, n1, . . . , nℓ−1), f(i, m̄, n1, . . . , nℓ))p
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! sup
n̄∈[N]2k+ℓ

dX(f(n1, . . . , n2k+ℓ−1), f(n1, . . . , n2k+ℓ))p,

since we are taking the supremum over the set of all edges between level 2k + ℓ − 1 and 
level 2k + ℓ instead of a subset of it. Also, for each s = 1, . . . , k − 1,

1
2k−1−s

2k−1−s∑

t=1
inf

n̄∈[N]t2s+1−2s
inf

ε̄∈[N]2s
lim inf
j→∞

inf
δ̄∈[N]2s−1

dX(g(n̄, ε̄), g(n̄, j, δ̄))p
2sp

= 1
2k−1−s

2k−1−s∑

t=1
inf

n̄∈[N]t2s+1−2s
inf

ε̄∈[N]2s
lim inf
j→∞

inf
δ̄∈[N]2s−1

dX(f(i, m̄, n̄, ε̄), f(i, m̄, n̄, j, δ̄))p
2sp

" 1
2k−1−s

2k−1−s∑

t=1
inf

n̄∈[N]2k+t2s+1−2s
inf

ε̄∈[N]2s
lim inf
j→∞

inf
δ̄∈[N]2s−1

dX(f(n̄, ε̄), f(n̄, j, δ̄))p
2sp ,

since (i, m̄, ̄n) ∈ [N]2k+t2s+1−2s for all n̄ ∈ [N]t2s+1−2s .
Therefore, it follows from the two relaxations above (and a reindexing) that

1
Kp

k−1∑

s=1

1
2k−1−s

2k−s∑

t=2k−1−s+1
inf

n̄∈[N]t2s+1−2s
inf

ε̄∈[N]2s
lim inf
j→∞

inf
δ̄∈[N]2s−1

dX(f(n̄, ε̄), f(n̄, j, δ̄))p
2sp

+ inf
n̄∈[N]2k−1

dX(f(i, m̄), f(i, m̄, r, n̄))p
2kp ! cp

2k
2k+1∑

ℓ=2k+1
dX(f(n1, . . . , nℓ−1), f(n1, . . . , nℓ))p.

(13)

Taking the supremum over r in (13) and then averaging the resulting inequality with 
(12) yields

1
2kp

(
1
2 inf

n̄∈[N]2k−1
dX(f(∅), f(i, n̄))p + 1

2 sup
r∈N

inf
n̄∈[N]2k−1

dX(f(i, m̄), f(i, m̄, r, n̄))p
)

+ 1
Kp

k−1∑

s=1

1
2k−s

2k−s∑

t=1
inf

n̄∈[N]t2s+1−2s
inf

ε̄∈[N]2s
lim inf
j→∞

inf
δ̄∈[N]2s−1

dX(f(n̄, ε̄), f(n̄, j, δ̄))p
2sp (14)

! cp

2k+1

2k+1∑

ℓ=1
sup

n̄∈[N]ℓ
dX(f(n1, . . . , nℓ−1), f(n1, . . . , nℓ))p.

If we let w def= f(∅), z def= f(i, m̄), and xr
def= f(i, m̄, r, ̄u(r)), it follows from how m̄ and 

ū(r) were chosen, that

1
2kp

(1
2dX(w, z)p + 1

2 sup
r∈N

dX(z, xr)p}
)
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! 1
2kp

(
1
2 inf

n̄∈[N]2k−1
dX(f(∅), f(i, n̄))p + 1

2 sup
r∈N

inf
n̄∈[N]2k−1

dX(f(i, m̄), f(i, m̄, r, n̄))p
)

+ ε

(15)

The p-umbel inequality combined with (14) and (15) gives

1
2(k+1)p inf

r∈N
dX(w, xr)p + 1

Kp

1
2kp inf

r∈N
lim inf
q→∞

dX(xr, xq)p

+ 1
Kp

k−1∑

s=1

1
2k−s

2k−s∑

t=1
inf

n̄∈[N]t2s+1−2s
inf

ε̄∈[N]2s
lim inf
j→∞

inf
δ̄∈[N]2s−1

dX(f(n̄, ε̄), f(n̄, j, δ̄))p
2sp

(16)

! cp

2k+1

2k+1∑

ℓ=1
sup

n̄∈[N]ℓ
dX(f(n1, . . . , nℓ−1), f(n1, . . . , nℓ))p + ε.

Now observe that

inf
r∈N

dX(w, xr)p = inf
r∈N

dX(f(∅), f(i, m̄, r, ū(r)))p " inf
n̄∈[N]2k+1−1

dX(f(∅), f(i, n̄))p,

and

inf
r∈N

lim inf
q→∞

dX(xr, xq)p = inf
r∈N

lim inf
q→∞

dX(f(i, m̄, r, ū(r)), f(i, m̄, q, ū(q)))p

" inf
r∈N

lim inf
q→∞

inf
δ̄∈[N]2k−1

dX(f(i, m̄, r, ū(r)), f(i, m̄, q, δ̄))p

" inf
ε̄∈[N]2k

lim inf
q→∞

inf
δ̄∈[N]2k−1

dX(f(i, m̄, ε̄), f(i, m̄, q, δ̄))p

" inf
n̄∈[N]2k

inf
ε̄∈[N]2k

lim inf
q→∞

inf
δ̄∈[N]2k−1

dX(f(n̄, ε̄), f(n̄, q, δ̄))p.

Plugging in the two relaxed inequalities above in (16) we obtain

inf
n̄∈[N]2k+1

dX(f(∅), f(i, n̄))p
2(k+1)p + 1

Kp
inf

n̄∈[N]2k
inf

ε̄∈[N]2k
lim inf
q→∞

inf
δ̄∈[N]2k−1

dX(f(n̄, ε̄), f(n̄, q, δ̄))p
2kp

+ 1
Kp

k−1∑

s=1

1
2k−s

2k−s∑

t=1
inf

n̄∈[N]t2s+1−2s
inf

ε̄∈[N]2s
lim inf
j→∞

inf
δ̄∈[N]2s−1

dX(f(n̄, ε̄), f(n̄, j, δ̄))p
2sp

! cp

2k+1

2k+1∑

ℓ=1
sup

n̄∈[N]ℓ
dX(f(n1, . . . , nℓ−1), f(n1, . . . , nℓ))p + ε,

and hence
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1
Kp

k∑

s=1

1
2k−s

2k−s∑

t=1
inf

n̄∈[N]t2s+1−2s
inf

ε̄∈[N]2s
lim inf
j→∞

inf
δ̄∈[N]2s−1

dX(f(n̄, ε̄), f(n̄, j, δ̄))p
2sp

+ inf
n̄∈[N]2k+1

dX(f(∅), f(i, n̄))p
2(k+1)p ! cp

2k+1

2k+1∑

ℓ=1
sup

n̄∈[N]ℓ
dX(f(n1, . . . , nℓ−1), f(n1, . . . , nℓ))p + ε.

Since ε is arbitrary the induction step is completed. !

The next corollary is an immediate consequence of Lemma 10 and Theorem 12.

Corollary 13. A Banach space with property (βp) for some p ∈ (1, ∞) is umbel p-convex.

Recall that it follows from [9] that if a Banach space X is reflexive and does not contain 
equi-bi-Lipschitz copies of the countably branching trees, then X admits an equivalent 
norm with property (β). Therefore, to complete the proof of Theorem A, it remains to 
show that a Banach space that is umbel p-convex for some p ∈ (1, ∞) satisfies those 
requirements.

We will first show that reflexivity is implied by umbel p-convexity. The umbel p-
convexity inequality (4) is rather complex, and for many applications, such as the 
reflexivity problem at stake, certain simpler relaxed inequalities will suffice. For example, 
the following relaxation of the umbel p-convexity inequality will be sufficient to ensure 
reflexivity:

There exists C > 0 such that for all k " 1 and all f : Tω
2k = ([N]"2k

, dT) → X,

k−1∑

s=1
inf

n̄∈[N]!2k−2s
inf

δ̄∈[N]2s :
(n̄,δ̄)∈[N]!2k

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

d(f(n̄, δ̄), f(n̄, j, η̄))p
2sp ! CpLip(f)p.

(17)

Remark 14. Consider the following relaxation of the p-umbel inequality:
For all w, z ∈ X and {xn}n∈N ⊆ X

1
2p inf

n∈N
dX(w, xn)p + 1

Kp
inf
i∈N

lim inf
j∈N

dX(xi, xj)p ! max{dX(w, z)p, sup
n∈N

dX(xn, z)p}. (18)

Using similar and slightly simpler arguments to those in the proof of Lemma 9, we could 
show that if p ∈ (0, ∞) and (X, ∥ · ∥) has property (βp), then the metric induced by the 
norm on X satisfies inequality (18). Moreover, the relaxation of the umbel p-convexity 
inequality (17) can then be derived from the relaxation of the p-umbel inequality in a 
similar way umbel p-convexity was derived from the p-umbel inequality (and the proof 
also works for quasi-metrics).

The following lemma can be deduced from one of James’ characterization of reflexivity, 
and we refer to [21, Lemma 3.0.1] for its proof. Recall that [N]<ω denotes the set of all 
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finite subset of N, and ([N]<ω, dT) is the countably branching tree of infinite height 
equipped with the tree metric.

Lemma 15. If X is non-reflexive, then for every θ ∈ (0, 1), there exists a 1-Lipschitz 
map g : ([N]<ω, dT) → X such that for all ū = (n1, . . . , ns, ns+1, . . . , ns+k) and v̄ =
(n1, . . . , ns, m1, . . . , mk) where n1 < · · · < ns < ns+1 < · · · < ns+k < m1 < · · · < mk,

∥g(ū) − g(v̄)∥X " θ

3dT(ū, v̄) (19)

Remark 16. In fact, the conclusion of Lemma 15 holds under the weaker assumption that 
the Banach space does not have the alternating Banach-Saks property (cf. [5]).

Proposition 17. Let (X, ∥ · ∥) be a Banach space. If X supports the inequality (17) for 
some p ∈ (0, ∞), then X is reflexive. In particular, if X is umbel p-convex for some 
p ∈ (0, ∞), then X is reflexive.

Proof. Assume that X supports the inequality (17) for some p ∈ (0, ∞) but is not 
reflexive. Consider the restriction to [N]"2k of the map g from Lemma 15. Then, for 
all n̄ ∈ [N]"2k−2s , δ̄ = (δ1, . . . , δ2s) ∈ [N]2s , j ∈ N and η̄ ∈ [N]2s−1 such that 
(n̄, ̄δ), (n̄, j, η̄) ∈ [N]"2k , it follows from (19) that if j > δ2s , then ∥g(n̄, ̄δ) −g(n̄, j, η̄)∥pX "
θp

3p 2(s+1)p. Therefore,

k−1∑

s=1
inf

n̄∈[N]!2k−2s
inf

δ̄∈[N]2s :
(n̄,δ̄)∈[N]!2k

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

∥g(n̄, δ̄) − g(n̄, j, η̄)∥pX
2sp " (k − 1)

(2θ
3
)p

,

and since g is 1-Lipschitz, inequality (17) gives Cp " (k − 1)
(

2θ
3

)p
for all k " 1; a 

contradiction. !

An argument similar to the proof of Proposition 17 show that there is no equi-bi-
Lipschitz embeddings of the countably branching trees of finite but arbitrarily large 
height, into a metric space that supports the inequality (17) for some p ∈ (0, ∞). The 
simple argument is deferred to Proposition 20 in the next section. Theorem A can be 
derived from Theorem 6 and the following corollary which follows from the above dis-
cussion.

Corollary 18. Let X be a Banach space. The following assertions are equivalent.

(1) X admits an equivalent norm with property (βp) for some p ∈ (1, ∞).
(2) X is umbel p-convex for some p ∈ (1, ∞).
(3) X supports the relaxation of the umbel p-convexity inequality (17) for some p ∈

(1, ∞).
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Following Ostrovskii [51], we say that a class C of Banach spaces admits a submetric 
test-space characterization if there exists a metric space X and a marked subset S ⊂ X×X
such that Y /∈ C if and only if X admits a partial bi-Lipschitz embedding into Y, i.e. 
there exists a constant D " 1 such that for all (x, y) ∈ S, dX(x, y) ! ∥f(x) − f(y)∥Y !
DdX(x, y).

Below is the submetric test-space characterization of the class ⟨(β)⟩ mentioned in the 
introduction.

Corollary 19. A Banach space X does not admit an equivalent norm with property (β)
if and only if there exist a constant A > 0 and a 1-Lipschitz map g : ([N]<ω, dT) → X
such that for all ū = (n1, . . . , ns, ns+1, . . . , ns+k) and v̄ = (n1, . . . , ns, m1, . . . , mk) where 
n1 < · · · < ns < ns+1 < · · · < ns+k < m1 < · · · < mk,

∥g(ū) − g(v̄)∥X " 1
A

dT(ū, v̄).

Proof. Assume that X does not admit an equivalent norm with property (β). If X is 
reflexive, then by [9] it contains a bi-Lipschitz embedding of ([N]<ω, dT), the countably 
branching tree of infinite height, and the condition is clearly satisfied. If X is not reflexive, 
then we can take the map from Lemma 15. Assuming now that X admits an equivalent 
norm with property (β), then we can assume that X supports the inequality (17) for 
some p ∈ (1, ∞). It remains to observe that the proof of Proposition 17 shows that 
there cannot exist an X-valued map satisfying the conditions listed in the statement of 
Corollary 19. !

3. Distortion and compression rate of embeddings of countably branching trees

As we hinted at in the previous section, umbel convexity and its relaxation (17) are 
obstructions to the faithful embeddability of the countably branching tree. In fact, if we 
are only concerned with embeddability obstructions, a further relaxation of (17), namely 
the infrasup-umbel p-convexity inequality as defined in Definition 7, is sufficient. Recall 
that (X, dX) is infrasup-umbel p-convex if there exists a constant C > 0 such that for all 
k " 1 and all f : Tω

2k → X,

⎛

⎜⎝
k−1∑

s=1
inf

n̄∈[N]!2k−2s
inf

i̸=j∈N
inf

m̄,m̄′∈[N]2s−1 :
(n̄,i,m̄),(n̄,j,m̄′)∈[N]!2k

dX(f(n̄, i, m̄), f(n̄, j, m̄′))p
2sp

⎞

⎟⎠

1
p

! CLip(f).

(20)

We will denote by Πisu
p (X) the least constant for which (20) holds for all k " 1 and all 

maps f : Tω
2k → X.

Consider the following further relaxation of the p-umbel inequality, which we will refer 
to as the infrasup p-umbel inequality. For all w, z ∈ X and {xn}n∈N ⊆ X,
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1
2p inf

n∈N
dX(w, xn)p + 1

Kp
inf

i̸=j∈N
dX(xi, xj)p ! max{dX(w, z)p, sup

n∈N
dX(xn, z)p}. (21)

If p ∈ [1, ∞) and (X, ∥ · ∥) has property (βp), then the metric induced by the norm on X
satisfies inequality (21). Moreover, infrasup-umbel p-convexity can be derived from the 
infrasup p-umbel inequality (here as well the proof works for quasi-metrics).

It is easily verified that the inequalities (4), (17), and (20) generate metric invariants, 
in the sense that Πp(X) ! cY(X)Πp(Y) (and similarly for the other two inequalities). Note 
also that Πisu

p (X) ! Πu
p(X). The terminology “infrasup-umbel convexity” is reminiscent 

of the terminology infratype and sup-cotype (see [54], [60], [61]). The notion of infratype 
is obtained by relaxing the Rademacher type inequality by taking a minimum (instead 
of an average) over sign choices. Similarly for the notion of sup-cotype a maximum over 
sign choices replaces the traditional average. In our case, we replace the averages over 
levels by an infimum on the left-hand side and by a supremum on the right-hand side of 
(4). First of all, it is obvious that infrasup-umbel p-convexity p implies infrasup-umbel q-
convexity for every q > p. Also, if the ℓp-sum in (21) is replaced with an ℓ∞-sum then the 
resulting inequality follows from the triangle inequality and holds in any metric space. 
We will then say that X has non-trivial infrasup-umbel convexity if it has infrasup-umbel 
convexity p for some p < ∞.

We now record a lower bound on the infrasup-umbel convexity p constant and on the 
distortion of countably branching trees.

Proposition 20. For all p ∈ (0, ∞), Πisu
p

(
T2k

)
" 2(k − 1)1/p, and hence cY

(
Tk

)
=

Ω
(
(log k)1/p

)
for every infrasup-umbel p-convex metric space (Y, dY).

Proof. It suffices to consider f to be the identity map on the tree. For all n̄ ∈ [N]"2k−2s , 
i ̸= j ∈ N, and δ̄, η̄ ∈ [N]2s−1, it holds that dT((n̄, i, ̄δ), (n̄, j, η̄))p " 2(s+1)p, and thus

k−1∑

s=1
inf

n̄∈[N]!2k−2s
inf

i̸=j∈N
inf

δ̄,η̄∈[N]2s−1 :
(n̄,i,δ̄),(n̄,j,η̄)∈[N]!2k

dY(f(n̄, i, δ̄), f(n̄, j, η̄))p
2sp " (k − 1)2p,

which in turn implies that Πisu
p (T2k) " 2(k − 1)1/p since obviously Lip(f) ! 1. !

The lower bound above is known to be tight since ℓp has infrasup-umbel p-convex (it 
has property (βp)) and it follows from Bourgain’s tree embedding [14] (see also [42] or 
[15]) that cℓp

(
Tω
k

)
= O

(
(log k)1/p

)
.

There are several instances where the saturation of a Poincaré-type inequality asso-
ciated with the geometry of a graph implies the containment of a hardly distorted copy 
of the graph, most notably in the metric dichotomies regarding [BMW-metric type |
Hamming cubes] in [13], [metric cotype | ℓ∞-discrete tori] in [44], and [diamond convex-
ity | diamond graphs] in [22]. We refer to [43] for a discussion of metric dichotomies. 
Even though in general there is no metric dichotomy (see [45]) for tree metrics, it is 



F.P. Baudier, C. Gartland / Advances in Mathematics 438 (2024) 109461 21

likely possible that the saturation of deterministic Poincaré-type inequalities associated 
to binary trees (e.g. the binary tree convexity inequality in [35, page 382]) induces em-
beddings with small distortion. In the setting of min/max Poincaré-type inequalities (as 
opposed to standard Poincaré-type inequalities which typically involve averages), the 
saturation argument is rather elementary to implement. For this purpose, observe that 
if we denote by Πisu

p,k(X) the least constant C with which the infrasup-umbel p inequality 
(20) holds for all maps f : Tω

2k → X, then it follows from the triangle inequality that 
Πisu

p,k(X) ! 2(k − 1)1/p. If for some map f : Tω
2k → X, the infrasup-umbel p inequality is 

saturated, then X will contain a barely distorted copy of Tω
2k .

Proposition 21. Let p ∈ (0, ∞). If Πisu
p,k(X) = 2(k − 1)1/p then cX

(
Tω

2k

)
= 1.

Proof. Since we are assuming that Πisu
p,k(X) = 2(k − 1)1/p, given any ν > 0 there is a 

map f : Tω
2k → X, such that

k−1∑

s=1
inf

n̄∈[N]!2k−2s
inf

i̸=j∈N
inf

δ̄,η̄∈[N]2s−1 :
(n̄,i,δ̄),(n̄,j,η̄)∈[N]!2k

dX(f(n̄, i, δ̄), f(n̄, j, η̄))p
2sp

" (1 − ν)(k − 1)2pLip(f)p. (22)

For s ∈ {1, . . . , k − 1}, i ̸= j ∈ N, n̄ ∈ [N]"2k−2s , and δ̄, η̄ ∈ [N]2s−1 such that 
(n̄, i, ̄δ), (n̄, j, η̄) ∈ [N]"2k , it follows from the triangle inequality that

dX(f(n̄, i, δ̄), f(n̄, j, η̄))p
2sp ! 2pLip(f)p. (23)

Therefore,

dX(f(n̄, i, δ̄), f(n̄, j, η̄))p
2sp " (1 − ν(k − 1))2pLip(f)p. (24)

Since (1 −x)1/p " 1 −cx when x ∈ (0, 1) (take c = 1/p if 1/p > 1 and c = 1 if 1/p ∈ (0, 1]), 
we have

dX(f(n̄, i, δ̄), f(n̄, j, η̄)) " (1 − cν(k − 1))2s+1Lip(f). (25)

The combination of (23) and (25) gives that f is a scaled-isometry (up to some small 
error) for pairs of vertices with equal height, i.e. of the form (n̄, i, ̄δ), (n̄, j, η̄) ∈ [N]"2k

where i ̸= j. n̄ ∈ [N]"2k−2s , and δ̄, η̄ ∈ [N]2s−1 for some s ∈ {1, . . . , k − 1}. More 
precisely, for such pairs of vertices we have dT((n̄, i, ̄δ), (n̄, j, η̄)) = 2s+1 and

2s+1Lip(f) − cν(k − 1)2kLip(f) ! dX(f(n̄, i, δ̄), f(n̄, j, η̄)) ! 2s+1Lip(f). (26)
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Fig. 2. Fork configuration.

It remains to estimate from below the distances between the images of an arbitrary pair 
of vertices. Let ū ̸= v̄ ∈ Tω

2k and assume without loss of generality that we are in the 
following fork configuration given in Fig. 2.

In the figure, ȳ is the highest common ancestor of ū, ̄v, and w̄, ̄x are chosen so that 
dT(w̄, ȳ) = dT(x̄, ȳ) and both are even. We allow the possibility that ȳ is the root, ȳ = v̄, 
or w̄ = ū. We have

dX(f(ū), f(v̄))
" dX(f(w̄), f(x̄)) − dX(f(w̄), f(ū)) − dX(f(v̄), f(x̄))
(26)
" dT(w̄, x̄)Lip(f) − cν(k − 1)2kLip(f) − dT(w̄, ū)Lip(f) − dT(v̄, x̄)Lip(f)
= dT(ū, v̄)Lip(f) − cν(k − 1)2kLip(f)
" dT(ū, v̄)Lip(f)(1 − cν(k − 1)2k).

Consequently, the distortion of f is at most 1
1−cν(k−1)2k which can be made as close to 

1 as we wished by choosing ν sufficiently small. !

The notion of infrasup-umbel convexity is not a coarse invariant, e.g. it was shown 
in [12] that the countably branching tree of infinite height embeds coarsely into every 
infinite-dimensional Banach space. However, it is a strong enough strengthening of the 
triangle inequality which provides estimates on the compression rate of coarse embed-
dings of countably branching trees. Having established that there are spaces which have 
non-trivial infrasup-umbel convexity, we can now derive Theorem 22 essentially in the 
same way Tessera derived Theorem 4 from inequality (3).

Theorem 22. Let p ∈ (0, ∞) and assume that there are non-decreasing maps
ρ, ω : [0, ∞) → [0, ∞) and for all k " 1 a map fk : T2k → Y such that for all x, y ∈ T2k ,

ρ(dT(x, y)) ! dY(fk(x), fk(y)) ! ω(dT(x, y)).

Then,
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∞∫

1

(ρ(t)
t

)p dt

t
! 2p − 1

p
Πisu

p (Y)pω(1)p.

In particular, the compression rate of any equi-coarse embedding of {Tm}m!1 into an 
infrasup-umbel p-convex metric space satisfies

∞∫

1

(ρ(t)
t

)p dt

t
< ∞. (27)

Proof. Assume that (Y, dY) infrasup-umbel p-convex and let C = Πisu
p (Y). Then,

k−1∑

s=1
inf

n̄∈[N]!2k−2s
inf

i̸=j∈N
inf

δ̄,η̄∈[N]2s−1 :
(n̄,i,δ̄),(n̄,j,η̄)∈[N]!2k

dY(fk(n̄, i, δ̄), fk(n̄, j, η̄))p
2sp "

k−1∑

s=1
inf

n̄∈[N]!2k−2s
inf

i̸=j∈N
inf

δ̄,η̄∈[N]2s−1 :
(n̄,i,δ̄),(n̄,j,η̄)∈[N]!2k

ρ(dT((n̄, i, δ̄), (n̄, j, η̄)))p
2sp "

k−1∑

s=1

ρ(2(s+1))p
2sp ,

and hence it follows from (20) and the upper coarse inequality that

k−1∑

s=1

ρ(2s)p
2sp ! Cpω(1)p.

But,

2s∫

2s−1

ρ(t)p
tp

dt

t
! ρ(2s)p

2s∫

2s−1

dt

tp+1 = ρ(2s)p 2−(s−1)p − 2−sp

p
= 2p − 1

p

ρ(2s)p
2sp ,

and hence

2k−1∫

1

ρ(t)p
tp+1 dt =

k−1∑

s=1

2s∫

2s−1

ρ(t)p
tp

dt

t
! 2p − 1

p

k−1∑

s=1

ρ(2s)p
2sp ! 2p − 1

p
Cpω(1)p < ∞. !

It is well known that Banach spaces of the form (
∑∞

n=1 Fn)ℓp , where p ∈ (1, ∞)
and {Fn}n!1 is a sequence of finite-dimensional spaces, have property (βp) (see [19, 
Proposition 5.1]), and thus they are infrasup-umbel p-convex and Theorem 22 applies. 
No bounds such as (27) were previously known for the countably branching trees, even 
for those simple Banach spaces.

An interesting application to hyperbolic geometry is the following. It is well known 
that the infinite binary tree admits a bi-Lipschitz embedding into the hyperbolic plane 
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H2 (an almost isometric embedding of every finite weighted tree can be found in [58]). 
It follows from [6, Theorem 1.1 (ii)] that Tω

∞ admits a bi-Lipschitz embedding into 
the hyperbolic space H∞ of countably infinite dimension. The importance of studying 
infinite-dimensional hyperbolic spaces was put forth by Gromov in [27, Section 6]. The 
geometry of binary trees, via either Markov convexity or Bourgain’s metric characteriza-
tion, can be used to show that cℓ2

(
H∞)

" cℓ2
(
H2) = ∞. Since (

∑∞
n=1 ℓ

n
∞)2 contains a 

bi-Lipschitz copy of B∞, the geometry of binary trees does not provide any obstruction 
in such spaces. Nevertheless, resorting to the geometry of countably branching trees we 
can conclude that cY

(
H∞)

= ∞ when Y is any Banach space of the form (
∑∞

n=1 Fn)ℓp , 
where p ∈ (1, ∞). Similar arguments give restrictions on the coarse compression rate for 
the infinite-dimensional hyperbolic space.

Corollary 23. Let H∞ be the infinite-dimensional hyperbolic space and Y be an infrasup-
umbel p-convex metric space with p ∈ (0, ∞). Then, the compression rate of any coarse 
embedding of H∞ into Y satisfies

∞∫

1

(ρ(t)
t

)p dt

t
< ∞.

In particular, cY
(
H∞)

= ∞.

The tightness of Theorem 22 follows from [62, Theorem 7.3]. It turns out that Bour-
gain’s tree embedding, which takes value into ℓp-spaces, can be extended to target 
spaces containing ℓp in some asymptotic fashion. It is rather straightforward to show 
that cY(Tω

k ) = O((log k)1/p) if Y has an ℓp-spreading model generated by a weakly-null 
sequence. To show that the same bound holds for the larger class of Banach spaces ad-
mitting an ℓp-asymptotic model generated by a weakly-null array requires a bit more care 
and a recent observation from [11]. Our embedding is an adjustment of Bourgain’s tree 
embedding, but in this context new complications arise when estimating the co-Lipschitz 
constant.

We refer to [10] for a discussion of the relationship between spreading models, 
asymptotic models, and asymptotic structure. Here it suffices to say that Y has an 
ℓp-asymptotic model generated by a weakly-null array if there exists a normalized weakly-
null array 

(
y(i)
j : i, j∈N

)
in Y such that for all k ∈ N and δ > 0, we may pass to 

appropriate subsequences of the array so that for any k ! j1 < · · · < jk and any 
a1, . . . , ak in [−1, 1] we have

∣∣∣∣∣

∥∥∥
k∑

i=1
aix

(i)
ji

∥∥∥−
( k∑

i=1
|ai|p

) 1
p

∣∣∣∣∣ < δ. (28)

The extreme cases in the proposition below extend prior results obtained in [12] for 
spreading models.
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Proposition 24. If Y has an ℓp-asymptotic model generated by a weakly-null array for 
some p ∈ (1, ∞), then

cY(Tω
k ) = O

(
(log k) 1

p

)
.

If Y has an ℓ1-asymptotic model or a c0-asymptotic model generated by a weakly-null 
array then supk∈N cY

(
Tω
k

)
< ∞.

Proof. Let k " 1 and fix a compatible bijection Φ : [N]"k → {2k, 2k + 1, . . . }, meaning 
Φ((n1, n2, . . . , nℓ)) ! Φ((n1, n2, . . . , nℓ, nℓ+1)) for all (n1, n2, . . . , nℓ, nℓ+1) ∈ [N]"k. In 
addition to (28) and by applying [11, Lemma 3.8], we may also assume that for any 
i1, . . . , i2k in {1, . . . , k} and any pairwise different l1, . . . , l2k in N, the sequence (y(ij)

lj
)2kj=1

is (1 + δ)-suppression unconditional for δ > 0 arbitrarily small. Define a Bourgain-style 
map f : ([N]"k, dT) → Y by

f(n1, . . . , nj) =
j∑

i=0
(j − i + 1) 1

q y(i)
Φ(n1,...,ni),

where 1
q + 1

p = 1, and where it is understood that for i = 0, y(i)
Φ(n1,...,ni) = y(i)

Φ(∅). Consider 
n̄, m̄ ∈ [N]"k such that n̄ = (ū, n1, . . . , nj) and m̄ = (ū, m1, . . . , mh) for some ū ∈ [N]s
with s ! k − j and j " h. Then,

∥f(n̄) − f(m̄)∥Y

=
∥∥∥

s∑

i=0

(
(s + j − i + 1) 1

q − (s + h− i + 1) 1
q

)

︸ ︷︷ ︸
αi

y(i)
Φ(u1,...,ui)+

j∑

i=1

(
s + j − (s + i) + 1

) 1
q

︸ ︷︷ ︸
βi

y(s+i)
Φ(ū,n1,...,ni) −

h∑

i=1

(
s + h− (s + i) + 1

) 1
q

︸ ︷︷ ︸
γi

y(s+i)
Φ(ū,m1,...,mi)

∥∥∥
Y

!
∥∥∥

s∑

i=0
αiy

(i)
Φ(u1,...,ui)

∥∥∥
Y

+
∥∥∥

j∑

i=1
βiy

(s+i)
Φ(ū,n1,...,ni)

∥∥∥
Y

+
∥∥∥

h∑

i=1
γiy

(s+i)
Φ(ū,m1,...,mi)

∥∥∥
Y
.

Recall that for all y > x > 0 and a ∈ (0, 1),

ya − xa ! y − x

y1−a
. (29)

Observe now that max{s, s + j, s + h} ! k and since Φ is a compatible bijection taking 
values into {2k, 2k + 1, . . . } it follows from (28) that
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∥∥∥
s∑

i=0
αiy

(i)
Φ(u1,...,ui)

∥∥∥
Y
!

( s∑

i=1
αp
i

) 1
p + δ

!
( s∑

i=0

(
(s + j − i + 1) 1

q − (s + h− i + 1) 1
q

)p) 1
p + δ

(29)
!

( s∑

i=0

(s + j − i + 1 − (s + h− i + 1)
(s + j − i + 1)1− 1

q

)p) 1
p + δ

!
( s∑

i=0

(j − h)p
s + j − i + 1

) 1
p + δ = (j − h)

( s+j+1∑

i=j+1

1
i

) 1
p + δ

= Oδ((j − h)(log k) 1
p ).

Also,

∥∥∥
j∑

i=0
βiy

(i)
Φ(u,n1,...,ni)

∥∥∥
Y
!

( j∑

i=1
βp
i

) 1
p + δ !

( j∑

i=1
(j − i + 1)

p
q

) 1
p + δ

=
( j∑

i=1
i
p
q

) 1
p + δ = O(j) + δ ! Oδ(j)

and a similar computation gives

∥∥∥
h∑

i=1
γiy

(s+i)
Φ(ū,m1,...,mi)

∥∥∥
Y

= Oδ(h).

Therefore,

∥f(n̄) − f(m̄)∥Y ! Oδ((j + h)(log k) 1
p ) = Oδ((log k) 1

p )dT(n̄, m̄).

For the lower bound, it follows from the suppression unconditionally condition that

∥f(n̄) − f(m̄)∥Y " 1
1 + δ

∥∥∥
j∑

i=1
βiy

(s+i)
Φ(ū,n1,...,ni)

∥∥∥
Y
" 1

1 + δ

( j∑

i=1
βp
i

) 1
p − δ

1 + δ

" 1
1 + δ

( j∑

i=1
(j − i + 1)

p
q

) 1
p − δ

1 + δ

= 1
1 + δ

( j∑

i=1
i
p
q

) 1
p − δ

1 + δ
= 1

1 + δ
Ω(j) − δ

1 + δ
" Ωδ(j),

and similarly

∥f(n̄) − f(m̄)∥Y " Ωδ(h).
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Therefore,

∥f(n̄) − f(m̄)∥Y " Ωδ((j + h)) = Ωδ(dT(n̄, m̄))

and the conclusion follows.
For the case p = ∞ the map f takes the form f(n1, . . . , nj) =

∑j
i=0(j−i +1)y(i)

Φ(n1,...,ni)
and the argument above gives a bounded distortion. In the case p = 1, it can easily be 
verified that the map f : ([N]"k, dT) → Y given by

f(n1, . . . , nj) =
j∑

i=0
y(i)
Φ(n1,...,ni),

is a bi-Lipschitz embedding. !

Corollary 25. If X is infrasup-umbel p-convex for some p ∈ (1, ∞), then X does not have 
any ℓq-asymptotic model generated by a weakly-null array for any q > p.

Proof. By Proposition 24, Tω
k embeds into X with distortion at most O((log k)1/q), but 

this impossible by Proposition 20. !

4. Stability under nonlinear quotients

Recall that a map f : (X, dX) → (Y, dY) between metric spaces is called a Lipschitz 
quotient map, and Y is simply said to be a Lipschitz quotient of X, if there exist constants 
L, C > 0 such that for all x ∈ X and r ∈ (0, ∞) one has

BY
(
f(x), r

C

)
⊂ f(BX(x, r)) ⊂ BY(f(x), Lr). (30)

Note that the right inclusion in (30) is equivalent to f being Lipschitz with Lip(f) ! L. 
If the left inclusion in (30) is satisfied, then f is said to be co-Lipschitz, and the infimum 
of all such C’s, denoted by coLip(f), is called the co-Lipschitz constant of f . We define 
the codistortion of a Lipschitz quotient map f as codist(f) def= Lip(f) ·coLip(f). A metric 
space Y is said to be a Lipschitz subquotient of X with codistortion α ∈ [1, ∞) (or simply 
Y is an α-Lipschitz subquotient of X) if there is a subset Z ⊂ X and a Lipschitz quotient 
map f : Z → Y such that codist(f) ! α. We define the X-quotient codistortion of Y as

qcX(Y) def= inf{α : Y is an α-Lipschitz subquotient of X}.

We set qcX(Y) = ∞ if Y is not a Lipschitz quotient of any subset of X.
As is the case for Markov p-convexity, umbel p-convexity and its relaxations are also 

stable under taking Lipschitz quotients.
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Proposition 26. Let p ∈ (0, ∞) and (X, dX) be a metric space that is umbel p-convex. 
If Y is a Lipschitz subquotient of X then Y is umbel p-convex. Moreover, Πu

p(X) !
qcX(Y )Πu

p(X).

We omit the proof of Proposition 26 as it can be extracted from the more delicate 
argument given in Proposition 28 below.

In the Banach space setting, umbel p-convexity is also stable under more general 
notions of nonlinear quotients, most notably uniform quotients or coarse quotients, as 
defined in [7] and [63] respectively. We will treat these nonlinear quotients all at once, and 
we need to introduce some more notation. The K-neighborhood of a set A in a metric 
space (X, dX), denoted AK , is the set AK

def= {z ∈ X : ∃a ∈ A such that dX(z, a) ! K}. 
The following simple general lifting lemma will be crucial in the ensuing arguments about 
nonlinear quotients.

Lemma 27. Let f : Z ⊆ X → Y and g : [N]"m → Y, where g is any map and f is a map 
such that there exist constant C > 0 and K " 0 with Y = f(Z)K , and for all x ∈ Z and 
r > 0,

BY
(
f(x), r

C

)
⊂ f(BX(x, r) ∩ Z)K .

Then, there is a map h : [N]"m → Z such that for all n̄ ∈ [N]"m,

dX(h(n1, . . . , nk), h(n1, . . . , nk−1) ! C · dY(g(n1, . . . , nk), g(n1, . . . , nk−1)) + CK (31)

and

dY(f(h(n̄)), g(n̄)) ! K. (32)

Proof. The proof is a simple induction on m. If m = 0, let y ∈ f(Z) such that 
dY(g(∅), y) ! K, pick an arbitrary z ∈ Z such that f(z) = y, and then let h(∅) def= z. 
Obviously, dY(f(h(∅)), g(∅)) ! K and the other condition is vacuously true. Assume that 
the map h has been constructed on [N]"m. We extend h to [N]"m+1 as follows. Given 
n̄ ∈ [N]m and nm+1 ∈ N, let r def= dY(g(n̄), g(n̄, nm+1)). Since dY(f(h(n̄)), g(n̄)) ! K we 
have

g(n̄, nm+1) ∈ BY(f(h(n̄)), r + K) ⊆ f(BX(h(n̄), C(r + K)) ∩ Z)K .

Let y ∈ f(BX(h(n̄), C(r + K)) ∩ Z) ⊆ Y such that dY(y, g(n̄, nm+1)) ! K, then pick 
arbitrarily z ∈ BX(h(n̄), C(r+K)) ∩Z such that f(z) = y, and finally set h(n̄, nm+1) def= z

from which it immediately follows that

dY(f(h(n̄, nm+1)), g(n̄, nm+1)) ! K.
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Finally, observe that by definition

dX(h(n̄), h(n̄, nm+1) ! C(r + K) = CdY(g(n̄), g(n̄, nm+1)) + CK. !

Proposition 28. Let (Y, dY) be a self-similar4 metric space. Assume that there is a map 
f : Z ⊆ (X, dX) → Y, that is coarse Lipschitz, i.e., there exist L > 0 and A " 0 such that 
for all x, y ∈ Z

dY(f(x), f(y)) ! LdX(x, y) + A. (33)

Assume also that there are constant C > 0 and K " 0 with Y = f(Z)K , such that for 
all x ∈ Z and r > 0,

BY
(
f(x), r

C

)
⊂ f(BX(x, r) ∩ Z)K . (34)

If X is umbel p-convex for some p ∈ (0, ∞), then Y is umbel p-convex.

Proof. Let f : Z ⊆ X → Y be a map as above. We need to show that there exists a 
constant Π > 0 such that for every map g : [N]"2k → Y,

k−1∑

s=1

1
2k−1−s

2k−1−s∑

t=1
inf

n̄∈[N]t2s+1−2s
inf

δ̄∈[N]2s :
(n̄,δ̄)∈[N]!2k

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

dY(g(n̄, δ̄), g(n̄, j, η̄))p
2sp

! Πp 1
2k

2k∑

ℓ=1
sup

n̄∈[N]ℓ
dY(g(n1, . . . , nℓ−1), g(n1, . . . , nℓ))p.

Observe that if the right-hand side vanishes, then the left-hand side vanishes as well and 
there is nothing to prove. Then by scale-invariance of the inequality and the self-similarity 
of Y, we may assume

1
2k

2k∑

ℓ=1
sup

n̄∈[N]ℓ
dY(g(n1, . . . , nℓ−1), g(n1, . . . , nℓ))p = 1.

Let Π = Πβ
p (X). Then by umbel p-convexity of X applied to h : [N]"2k → Z ⊂ X, where 

h is the lifting of g as defined in Lemma 27, we have

k−1∑

s=1

1
2k−1−s

2k−1−s∑

t=1
inf

n̄∈[N]t2s+1−2s
inf

δ̄∈[N]2s :
(n̄,δ̄)∈[N]!2k

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

dX(h(n̄, δ̄), h(n̄, j, η̄))p
2sp

4 A metric space (X, dX) is self-similar if for every t > 0, there exists a bijection δt : X → X with 
dX(δt(x), δt(y)) = t · dX(x, y) for every x, y ∈ X.
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! Πp 1
2k

2k∑

ℓ=1
sup

n̄∈[N]ℓ
dX(h(n1, . . . , nℓ−1), h(n1, . . . , nℓ))p.

(35)

It follows from (31) that

Πp 1
2k

2k∑

ℓ=1
sup

n̄∈[N]ℓ
dX(h(n1, . . . , nℓ−1), h(n1, . . . , nℓ))p

! Πp 1
2k

2k∑

ℓ=1
sup

n̄∈[N]ℓ
(CdY(g(n1, . . . , nℓ−1), g(n1, . . . , nℓ)) + CK)p

! Πp max{1, 2p−1}(Cp + (CK)p). (36)

Let 1 ! s ! k − 1 and 1 ! t ! 2k−1−s. Then either

inf
n̄∈[N]t2s+1−2s

inf
δ̄∈[N]2s :

(n̄,δ̄)∈[N]!2k

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

dY(g(n̄, δ̄), g(n̄, j, η̄))p
2sp ! (L + A + 2K)p

2sp

(37)
or

inf
n̄∈[N]!t2s+1−2s

inf
δ̄∈[N]2s :

(n̄,δ̄)∈[N]!2k

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

dY(g(n̄, δ̄), g(n̄, j, η̄))p
2sp >

(L + A + 2K)p
2sp .

(38)
If (38) holds, then for all n̄ ∈ [N]t2s+1−2s and δ̄ ∈ [N]2s , we have

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

dY(g(n̄, δ̄), g(n̄, j, η̄)) > L + A + 2K,

and thus there exists j0 such that for all j " j0 and all η̄ ∈ [N]2s−1 we have

dY(g(n̄, δ̄), g(n̄, j, η̄)) > L + A + 2K.

It follows from triangle inequality and (32) that

dY(f(h(n̄, δ̄)), f(h(n̄, j, η̄))) " dY(g(n̄, δ̄), g(n̄, j, η̄)) − dY(f(h(n̄, δ̄)), g(n̄, δ̄)))

− dY(g(n̄, j, η̄)), f(h(n̄, j, η̄)))

" L + A + 2K −K −K

= L + A.
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Observe now that dY(f(x), f(y)) < L + A whenever dX(x, y) < 1 and based on the 
inequality above, necessarily dX(h(n̄, ̄δ)), h(n̄, j, η̄))) " 1. Thus in this case, it follows 
from (32) and (33) that

dY(g(n̄, δ̄), g(n̄, j, η̄)) ! dY(f(h(n̄, δ̄)), f(h(n̄, j, η̄))) + 2K

! LdX(h(n̄, δ̄), h(n̄, j, η̄)) + A + 2K

! (L + A + 2K)dX(h(n̄, δ̄), h(n̄, j, η̄)).

Then, letting γ def= (L + A + 2K) for simplicity,

inf
n̄∈[N]t2s+1−2s

inf
δ̄∈[N]2s :

(n̄,δ̄)∈[N]!2k

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

dY(g(n̄, δ̄), g(n̄, j, η̄))p
2sp

! γp inf
n̄∈[N]t2s+1−2s

inf
δ̄∈[N]2s :

(n̄,δ̄)∈[N]!2k

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

dX(h(n̄, δ̄), h(n̄, j, η̄))p
2sp .

(39)

Consequently,

k−1∑

s=1

1
2k−1−s

2k−1−s∑

t=1
inf

n̄∈[N]t2s+1−2s
inf

δ̄∈[N]2s :
(n̄,δ̄)∈[N]!2k

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

dY(g(n̄, δ̄), g(n̄, j, η̄))p
2sp

(37)∧(39)
!

k−1∑

s=1

1
2k−1−s

2k−1−s∑

t=1
max

{ γp

2sp ,

γp inf
n̄∈[N]t2s+1−2s

inf
δ̄∈[N]2s :

(n̄,δ̄)∈[N]!2k

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

dX(h(n̄, δ̄), h(n̄, j, η̄))p
2sp

}

! γp
k−1∑

s=1

1
2k−1−s

2k−1−s∑

t=1
inf

n̄∈[N]t2s+1−2s
inf

δ̄∈[N]2s :
(n̄,δ̄)∈[N]!2k

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

dX(h(n̄, δ̄), h(n̄, j, η̄))p
2sp +

k−1∑

s=1

γp

2sp

(35)∧(36)
! γpΠp max{1, 2p−1}(Cp + (CK)p) +

∞∑

s=1

γp

2sp < ∞,

which concludes the proof since 1
2k

∑2k

ℓ=1 supn̄∈[N]ℓ ∥g(n1, . . . , nℓ−1) − g(n1, . . . , nℓ)∥pY =
1, and the constant
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(L + A + 2K)p
(

Πp max{1, 2p−1}(Cp + (CK)p) +
∞∑

s=1

1
2sp

)

is independent of k and g. !

Note that a Lipschitz subquotient map satisfies the assumptions of Proposition 28
with L = Lip(f), A = 0, C = coLip(f), K = 0, and the proof of Proposition 26 can 
be simplified and carried over for arbitrary metric spaces (without the self-similarity 
assumption). The more general notions of nonlinear quotients which we will consider 
satisfy the hypotheses of Proposition 28 under further assumptions on the metric spaces.

A map f : (X, dX) → (Y, dY) between metric spaces is called a uniform quotient map, 
and Y is simply said to be a uniform quotient of X, if f is surjective, uniformly continuous 
and co-uniformly continuous, i.e., for every r > 0 there exists δ(r) > 0 such that for all 
x ∈ X, one has

BY (f(x), δ(r)) ⊂ f(BX(x, r)).

It is a standard fact that a co-uniformly continuous map into a connected space is 
surjective.

The more recent notion of coarse quotient introduced in [63] is the following. A map 
f : (X, dX) → (Y, dY) between metric spaces is called a coarse quotient map, and Y is 
simply said to be a coarse quotient of X, if f is coarsely continuous and co-coarsely 
continuous with constant K for some K " 0, i.e. for every r > 0 there exists δ(r) > 0
such that for all x ∈ X, one has

BY (f(x), r)) ⊂ f(BX(x, δ(r)))K .

A co-coarsely continuous map may not be surjective, but nevertheless it is easily seen to 
be K-dense in the sense that Y = f(X)K . In fact, it can be shown, using a very clever 
argument due to Bill Johnson (see [63]), that if a Banach space Y is a coarse quotient of 
a Banach space X, then there exists a coarse quotient mapping with vanishing constant 
K = 0 from X onto Y.

It is a standard fact that a map on a metrically convex space that is either uniformly 
continuous or coarsely continuous, is automatically coarse Lipschitz (one can take for 
instance L = max{1, 2ωf (1)} and c = ωf (1) where ωf is the expansion modulus). Also, 
every co-uniformly continuous, or co-coarsely continuous, map taking values into metri-
cally convex spaces satisfies (34) for some C > 0 and K " 0 (see [64, Corollary 4.3]).

The following corollary follows from the discussion above and Proposition 28.

Corollary 29. Let (X, dX) be a metrically convex space that is umbel p-convex. If a self-
similar metrically convex metric space (Y, dY) is a uniform or coarse quotient of X, then 
Y is umbel p-convex.
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Remark 30. Straightforward modifications of the proofs of Proposition 26 and Proposi-
tion 28 give that infrasup-umbel p-convexity is stable under Lipschitz subquotients and 
by taking uniform or coarse quotient maps from metrically convex spaces into self-similar 
metrically convex metric space.

Corollary 31 below, which is an immediate consequence of the stability of umbel 
convexity under nonlinear quotients and Corollary 18, was proved for the first time in [21, 
Theorem 2.0.1] (for uniform quotients)5 using the delicate “fork argument” and in [64]
(for uniform or coarse quotients) using a more elementary self-improvement argument.

Corollary 31. Let X be a Banach space that has an equivalent norm with property (β). If 
a Banach space Y is a uniform or coarse quotient of X, then Y has an equivalent norm 
with property (β).

Equipped with the stability under nonlinear quotients of umbel convexity and 
infrasup-umbel convexity, and the fact that countably branching trees are neither umbel 
p-convex for any p nor have non-trivial infrasup-umbel convexity, we are now in position 
to prove, via a metric invariant approach, generalized versions of a number of known 
results pertaining to the nonlinear geometry of Banach spaces with property (β) (e.g. 
[41, Theorem 4.1, Theorem 4.2, Theorem 4.3], [19, Corollary 4.3, Corollary 4.5, Corollary 
5.2, Corollary 5.3], [21, Theorem 3.0.2], and [15, Theorem 2.1, Theorem 4.6, Theorem 
4.7]). We will just give one example here illustrating the flexibility of the metric invariant 
approach.

Corollary 4.5 in [19] states that the space (
∑∞

i=1 ℓpi)ℓ2 , where {pi}i!1 is a decreasing 
sequence such that limi→∞ pi = 1, is not a uniform quotient of a Banach space that 
admits an equivalent norm with property (β). The original proof uses a combination of 
substantial results from the nonlinear geometry of Banach spaces which are interesting 
in their own rights:

• Ribe’s result that (
∑∞

i=1 ℓpi)ℓ2 is uniformly homeomorphic to ℓ1 ⊕ (
∑∞

i=1 ℓpi)ℓ2 ,
• the fact that c0 is a linear quotient of ℓ1 ⊕ (

∑∞
i=1 ℓpi)ℓ2 ,

• a quantitative comparison of the (β)-modulus with the modulus of asymptotic uni-
form smoothness under uniform quotients (or the qualitative Lima-Randrianarivony 
theorem [41] which states that c0 is not a uniform quotient of a Banach space that 
admits an equivalent norm with property (β)).

Alternatively, using the main result of [21], one could argue that the assumption implies 
that (

∑∞
i=1 ℓpi)ℓ2 admits an equivalent norm with property (β), hence an equivalent norm 

that is asymptotically uniformly smooth with power type p for some p > 1 = limi→∞ pi, 

5 Under a separability assumption which was later lifted in [20].
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and derive a contradiction using linear arguments pertaining to upper and lower tree 
estimates, which can be found in [30] or [49] for instance.

The metric invariant approach helps streamline and extend the argument as follows. 
It is easy to verify that the map Tω

k ∋ n̄ ,→
∑l

i=1 e(n1,...,ni) where l is the length of n̄
and {en̄}n̄∈Tω

k
is the canonical basis of ℓpi is a bi-Lipschitz embedding of Tω

k into ℓpi

with distortion at most 2, say, if pi is chosen small enough. Therefore, (
∑∞

i=1 ℓpi)ℓ2 does 
not have non-trivial infrasup-umbel convexity by Proposition 20, and (

∑∞
i=1 ℓpi)ℓ2 is not 

a uniform quotient of a metrically convex metric space with non-trivial infrasup-umbel 
convexity by Remark 30.

5. More examples of metric spaces with non-trivial infrasup-umbel convexity

In this section, we give more examples of metric spaces which are umbel convex or 
have non-trivial infrasup-umbel convexity. We begin with the simple observation that 
umbel convexity is trivial for proper6 metric spaces in the same way that property (β)
is trivial for finite-dimensional normed spaces.

Example 1. A proper metric space (X, dX) satisfies the p-umbel inequality (11) for every 
p ∈ [1, ∞) and every K > 0, i.e., for all w, z ∈ X and {xi}i∈N ⊆ X we have

(9) 1
2p inf

i∈N
dX(w, xi)p + 1

Kp
inf
i∈N

lim inf
j→∞

dX(xi, xj)p ! 1
2dX(z, w)p + 1

2 sup
i∈N

dX(z, xi)p.

Consequently, Πu
p(X) = 0.

Proof. Obviously, if the right hand side of (11) is infinite, there is nothing to prove, so 
assume it is finite. This implies that {xi}i∈N is contained in a bounded, and hence a 
compact, set. Then {xi}i∈N has a convergent subsequence, from which it follows that

1
Kp

inf
i∈N

lim inf
j→∞

dX(xi, xj)p = 0.

This fact together with a convexity argument easily imply (11). !

It is not difficult to see that the p-fork inequality (7), or in fact a natural relaxation of 
it, implies the p-umbel inequality (11). Thus by the implication of Theorem D that was 
proved in [1], it follows that the class of metric spaces that are umbel 2-convex contains 
all non-negatively curved spaces. This observation is reminiscent of the fact that local 
properties of Banach spaces imply their asymptotic counterparts. To our knowledge, all 
known examples of metric spaces that are Markov p-convex satisfy the p-fork inequality 
and thus they are all umbel p-convex. However, it seems unclear whether Markov p-
convexity implies umbel p-convexity; the converse is obviously false. An interesting class 

6 A metric space is proper if all its closed balls are compact.
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of examples comes from Banach Lie groups. Let X be a Banach space and ωX an anti-
symmetric, bounded bilinear form on X. The Heisenberg group over ωX, denoted H(ωX), 
is the set X ×R equipped with the product

x ∗ y = (x, s) ∗ (y, t) def= (x + y, s + t + ω(x, y)).

In the sequel we will sometimes abbreviate x ∗ y by xy. If ωX ≡ 0, then H(ωX) is 
simply the abelian direct sum X ⊕ R, but otherwise H(ωX) is nonabelian. The identity 
element is 0 = (0, 0), and inverses are given by (x, s)−1 = (−x, −s). We always equip 
a Heisenberg group with the product topology on X × R, and under this topology it 
becomes a topological group.

There is a natural automorphic action of (0, ∞) on H(ωX) given by t ,→ δt where

δt((x, s)) def= (tx, t2s).

The maps {δt}t>0 are called dilations. A function d : H(ωX) ×H(ωX) → [0, ∞) with the 
topological compatibility property d(xn, 0) →n→∞ 0 ⇔ xn →n→∞ 0 is called

• left-invariant if d(g ∗ x, g ∗ y) = d(x, y) for all g, x, y ∈ H(ωX) and
• homogeneous if d(δt(x), δt(y)) = t · d(x, y) for all x, y ∈ H(ωX) and t > 0.

If d1 and d2 are two left-invariant, homogeneous functions, then the formal identity from 
(H(ωX), d1) onto (H(ωX), d2) is a bi-Lipschitz equivalence. Indeed, by symmetry it suffices 
to show that the map is Lipschitz. By left-invariance this reduces to d1(x, 0) # d2(x, 0), 
and by homogeneity this further reduces to the existence of a constant c > 0 such that 
d1(x, 0) ! 1 whenever d2(x, 0) ! c. This claim is true by the topological compatibilities 
of d1, d2.

When ωX ̸≡ 0, there is a canonical left-invariant, homogeneous metric on H(ωX)
called the Carnot-Carathéodory metric, denoted dcc. A pair (γ, z) of Lipschitz curves 
γ : [0, 1] → X, z : [0, 1] → R is called a horizontal curve if γ is differentiable almost 
everywhere and z′(t) = ω(γ(t), γ′(t)) for almost every t ∈ [0, 1]. The horizontal length of 
a horizontal curve (γ, z) is defined to be the length of γ. Then the Carnot-Carathéodory 
distance between x and y is defined to be the infimum of horizontal lengths of horizontal 
curves joining x and y. It is exactly the assumption ωX ̸≡ 0 that ensures that any 
two points in H(ωX) can be joined by a horizontal curve. Obviously, dcc satisfies the 
triangle inequality and is a length metric. Any left-invariant, homogeneous, symmetric 
function on H(ωX) is a quasi-metric since it is bi-Lipschitz equivalent to the metric 
dcc. A particularly handy way to obtain such functions is via Koranyi-type norms. For 
p ∈ [1, ∞] and a given λ > 0, define a function Np,λ : H(ωX) → [0, ∞) by

Np,λ((x, s)) def=
{

(∥x∥2p
X + λ2p|s|p) 1

2p , if p ∈ [1,∞)
max{∥x∥X,λ

√
|s|} if p = ∞.
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Then we define the function dp,λ(x, y) def= Np,λ(y−1 ∗ x). Clearly, dp,λ is a symmetric, 
left-invariant, homogeneous function, and hence is a quasi-metric equivalent to dcc.

Banach Lie groups constructed this way have been investigated in [47] under the name 
Banach homogeneous groups. When X = Rn ⊕Rn and

ωX((x1, x2), (y1, y2)) = 1
2 ⟨x1, y2⟩ −

1
2 ⟨x2, y1⟩,

H(ωX) is a (finite-dimensional) Lie group called the nth Heisenberg group, and simply 
denoted H(Rn). The space H(Rn) is very well-studied by metric space geometers, see 
[16] for an introduction. We will denote by H(ℓ2) the infinite-dimensional Heisenberg 
group H(ωℓ2) where ωℓ2((x1, y1), (x2, y2)) = 1

2 ⟨x1, y2⟩ − 1
2 ⟨y1, x2⟩. Note that ωℓ2 ̸≡ 0. 

It was shown by Li in [34] that the set of p’s for which H(ℓ2) is Markov p-convex is 
exactly [4, ∞). We believe that Li’s proof can be adjusted to show that H(ωX) is Markov 
2p-convex whenever X is p-uniformly convex. In Section 6, we will provide a more direct 
argument - based on that found in [26, Section 4.2] - to prove this result (cf. Theorem 36).

The next theorem shows that a Heisenberg group over a Banach space with property 
(βp) is infrasup-umbel p-convex. These examples are interesting since these Heisenberg 
groups do not admit bi-Lipschitz embeddings into any Banach space with an equivalent 
norm with property (β), and thus are genuine metric examples. Indeed, an infinite-
dimensional Heisenberg group contains H(R) bi-Lipschitzly, and it was crucially observed 
by Semmes [59] that H(R) does not embed bi-Lipschitzly into any Banach space with the 
Radon-Nikodým property (in particular a reflexive one) since Pansu’s differentiability 
theorem [52] extends to RNP-target spaces (cf. [36] and [18] for more details).

Theorem 32. Let p ∈ [2, ∞) and ωX be any bounded antisymmetric bilinear form on a Ba-
nach space X that satisfies the relaxation of the p-umbel inequality (18) with constant C. 
Then (H(ωX), d∞,1) satisfies the relaxation of the p-umbel inequality (18) with constant 
max{C, 2 · 81/p}.

Consequently, for any p ∈ [2, ∞) and any non-zero, antisymmetric, bounded bilinear 
form ωX on a Banach space X with property (βp), (H(ωX), dcc) is infrasup-umbel p-
convex.

Proof. Assume that we have shown that the quasi-metric d∞,1 satisfies the relaxation 
of the p-umbel inequality (18), then by Remark 14 and that fact d∞,1 is equivalent to 
dcc, it will follow that (H(ωX), dcc) satisfies inequality (17) and hence is infrasup-umbel 
p-convex.

Assume that X satisfies the relaxation of the p-umbel inequality (18) with constant 
C. Set K def= max{C, 2 · 81/p}, and simply write d = d∞,1 and N = N∞,1 in this proof. 
By left-invariance, we may assume z = 0. There is nothing to prove if the right hand 
side of (18) is infinite, so assume it is finite. This implies {xi}i∈N = {(xi, si)}i∈N is a 
bounded subset of H(ωX), and hence {xi}i∈N and {si}i∈N are bounded subsets of X and 
R, respectively. By Proposition 17 and Remark 14, X is reflexive, and there is M ∈ [N]ω
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such that weak-limi∈M xi = x and limi∈M si = s for some x ∈ X and s ∈ R. Then 
(denoting w = (w, t))

inf
i∈N

d(xi,w)p
2p + inf

i∈N
lim inf
j∈N

d(xi,xj)p
Kp

= inf
i∈N

N(x−1
i w)p
2p + inf

i∈N
lim inf
j∈N

N(x−1
i xj)p
Kp

= inf
i∈N

max
{∥w − xi∥pX

2p ,
|t− si − ω(w, xi)|

p
2

2p
}

+ inf
i∈N

lim inf
j∈N

max
{∥xi − xj∥pX

Kp
,
|si − sj − ω(xi, xj)|

p
2

Kp

}

! lim inf
i∈M

max
{∥w − xi∥pX

2p ,
|t− si − ω(w, xi)|

p
2

2p
}

+ lim inf
i∈M

lim inf
j∈M

max
{∥xi − xj∥pX

Kp
,
|si − sj − ω(xi, xj)|

p
2

Kp

}

= max
{

lim inf
i∈M

∥w − xi∥pX
2p ,

|t− s− ω(w, x)| p2
2p

}

+ max
{

lim inf
i∈M

lim inf
j∈M

∥xi − xj∥pX
Kp

,
|s− s− ω(x, x)| p2

Kp

}
.

Since ωX is antisymmetric, ωX(x, x) = 0 and hence

inf
i∈N

d(xi,w)p
2p + inf

i∈N
lim inf
j∈N

d(xi,xj)p
(2K)p

! max
{

lim inf
i∈M

∥w − xi∥pX
2p ,

|t− s− ω(w, x)| p2
2p

}
+ lim inf

i∈M
lim inf
j∈M

∥xi − xj∥pX
Kp

︸ ︷︷ ︸
(∗)

.

Assume the first term in the maximum is larger. Then

(∗) = lim inf
i∈M

∥w − xi∥pX
2p + lim inf

i∈M
lim inf
j∈M

∥xi − xj∥pX
Kp

(18)
! max

{
∥w∥pX, sup

i∈M
∥xi∥pX

}

! max
{
N(w)p, sup

i∈N
N(xi)p

}
= max

{
d(0,w)p, sup

i∈N
d(0,xi)p

}

so (18) holds in this case. Now assume the second term in the maximum is larger. Then

(∗) = |t− s− ω(w, x)| p2
2p + lim inf

i∈M
lim inf
j∈M

∥xi − xj∥pX
Kp

! 3 p
2−1 |t|

p
2 + |s| p2 + |ω(w, x)| p2

2p + 2p
Kp

sup
i∈N

∥xi∥pX

! 1
4(|t| p2 + |s|

p
2 + ∥w∥

p
2
X∥x∥

p
2
X ) + 2p

Kp
sup
i∈N

∥xi∥pX
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! 1
4(|t| p2 + |s|

p
2 + 1

2(∥w∥pX + ∥x∥pX)) + 2p
Kp

sup
i∈N

∥xi∥pX

= 1
4 |t|

p
2 + 1

4 |s|
p
2 + 1

8∥w∥
p
X +

(1
8 + 2p

Kp

)
sup
i∈N

∥xi∥pX

! 1
4 |t|

p
2 + 1

4 |s|
p
2 + 1

4∥w∥
p
X + 1

4 sup
i∈N

∥xi∥pX

! max
{
|t|

p
2 , |s|

p
2 , ∥w∥pX, sup

i∈N
∥xi∥pX

}

= max
{
N(w)p, sup

i∈N
N(xi)p

}
= max

{
d(0,w)p, sup

i∈N
d(0,xi)p

}
. !

In general, the value of p for which H(ωX) is infrasup-umbel p-convex cannot 
be taken smaller. When p ∈ [2, ∞), X = ℓp ⊕p (ℓp)∗ has property (βp) and take 
ωX((x1, y∗1), (x2, y∗2)) = y∗2(x1) − y∗1(x2) (which is obviously nonzero). The map from 
ℓp to H(ωX) defined by x ,→ ((x, 0), 0) is an isometric embedding, but Corollary 25
implies that ℓp is not infrasup-umbel q-convex for any q < p.

Finally, we explain how we can construct more spaces that are umbel p-convex by 
taking finite ℓp-sums of spaces satisfying the p-umbel inequality. The next lemma, which 
is a simple consequence of Ramsey’s theorem, will be crucial to achieve this goal.

Lemma 33. Every metric space (X, dX) satisfying the p-umbel inequality (11) satisfies the 
following formally stronger property:
For any w, z, xi ∈ X with supi∈N dX(z, xi) < ∞ and ε > 0, there exists an infinite subset 
M of N such that

1
2p sup

i∈M
dX(w, xi)p + 1

Kp
sup

i̸=j∈M
dX(xi, xj)p ! 1

2dX(z, w)p + 1
2 inf

i∈M
dX(z, xi)p + ε. (40)

Proof. Choose N ∈ N large enough so that 3
N < ε and let

B
def= max

{
1
2p sup

i∈N
dX(w, xi)p,

1
Kp

sup
i̸=j∈N

dX(xi, xj)p,
1
2 sup

i∈N
dX(z, xi)p

}
.

Consider the finite cover [0, B] ⊂
⋃⌈NB⌉

k=1 [k−1
N , kN ]. Since

1
2p dX(w, xi)p,

1
Kp

dX(xi, xj)p,
1
2dX(z, xi)p ∈ [0, B]

for every i ̸= j ∈ N, the pigeonhole principle and Ramsey’s theorem gives us an infinite 
subset M ⊂ N and natural numbers k1, k2, k3 ! ⌈NB⌉ such that, for every i ̸= j ∈ M,

1
2p dX(w, xi)p ∈

[
k1 − 1
N

,
k1
N

]
,

1
2dX(z, xi)p ∈

[
k2 − 1
N

,
k2
N

]
,
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and

1
Kp

dX(xi, xj)p ∈
[
k3 − 1
N

,
k3
N

]
.

Therefore,

1
2p (sup

i∈M
dX(w, xi)p − inf

i∈M
dX(w, xi)p) !

1
N

,
1
2(sup

i∈M
dX(z, xi)p − inf

i∈M
dX(z, xi)p) !

1
N

,

and

1
Kp

( sup
i̸=j∈M

dX(xi, xj)p − inf
i̸=j∈M

dX(xi, xj)p) !
1
N

.

Then we apply (11) to w, z, {xi}i∈M together with the inequalities above and get

1
2p sup

i∈M
dX(w, xi)p + 1

Kp
sup

i̸=j∈M
dX(xi, xj)p

! 1
2p inf

i∈M
dX(w, xi)p + 1

N
+ 1

Kp
inf

i̸=j∈M
dX(xi, xj)p + 1

N

(11)
! 2

N
+ 1

2dX(z, w)p + 1
2 sup

i∈M
dX(z, xi)p

! 3
N

+ 1
2dX(z, w)p + 1

2 inf
i∈M

dX(z, xi)p

! ε + 1
2dX(z, w)p + 1

2 inf
i∈M

dX(z, xi)p. !

A consequence of the theorem below, whose proof requires Ramsey’s theorem via 
Lemma 33, is that a finite ℓp-sum (

∑j
i=1 Xi)ℓp is umbel p-convex whenever {Xi}ji=1 are 

metric spaces satisfying the p-umbel inequality for some universal constant K > 0. It is 
worth pointing out that an arbitrary ℓp-sum of metric spaces which are Markov p-convex 
(with some universal Markov convexity constant) is Markov p-convex.

Theorem 34. Let p ∈ [1, ∞) and let (X, dX), (Y, dY) be metric spaces satisfying the p-umbel 
inequality (11) for some constant K > 0. Then X ⊕p Y satisfies the p-umbel inequality 
(11) with constant K.

Proof. Let (w1, w2), (z1, z2) ∈ X⊕p Y and {(x1
i , x

2
i )}i∈N ⊆ X⊕p Y. If the right hand side 

of (11) is infinite, there is nothing to prove, so assume it is finite. Let ε > 0 be arbitrary. 
Then by Lemma 33, we can find M ∈ [N]ω such that

1
2p sup

i∈M
dX(w1, x1

i )p + 1
Kp

sup
i̸=j∈M

dX(x1
i , x

1
j)p ! 1

2dX(z1, w1)p + 1
2 inf

i∈M
dX(z1, x1

i )p + ε
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and

1
2p sup

i∈M
dY(w2, x2

i )p + 1
Kp

sup
i̸=j∈M

dY(x2
i , x

2
j)p ! 1

2dY(z2, w2)p + 1
2 inf

i∈M
dY(z2, x2

i )p + ε.

Adding these two equations yields

1
2p

(
sup
i∈M

dX(w1, x1
i )p + sup

i∈M
dY(w2, x2

i )p
)

+ 1
Kp

(
sup

i̸=j∈M
dX(x1

i , x
1
j )p + sup

i̸=j∈M
dY(x2

i , x
2
j )p

)

! 1
2(dX(z1, w1)p + dY(z2, w2)p) + 1

2

(
inf
i∈M

dX(z1, x1
i )p + inf

i∈M
dY(z2, x2

i )p
)

+ 2ε. (41)

Then using the definition of the metric dX ⊕p dY, we get

1
2p inf

i∈N
dX ⊕p dY((w1, w2), (x1

i , x
2
i ))p + 1

Kp
inf
i∈N

lim inf
j→∞

dX ⊕p dY((x1
i , x

2
i ), (x1

j , x
2
j ))p

! 1
2p sup

i∈M
(dX(w1, x1

i )p + dY(w2, x2
i )p) + 1

Kp
sup

i̸=j∈M
(dX(x1

i , x
1
j )p + dY(x2

i , x
2
j)p)

! 1
2p

(
sup
i∈M

dX(w1, x1
i )p + sup

i∈M
dY(w2, x2

i )p
)

+ 1
Kp

(
sup

i̸=j∈M
dX(x1

i , x
1
j )p + sup

i̸=j∈M
dY(x2

i , x
2
j )p

)

(41)
! 1

2(dX(z1, w1)p + dY(z2, w2)p) + 1
2

(
inf
i∈M

dX(z1, x1
i )p + inf

i∈M
dY(z2, x2

i )p
)

+ 2ε

!1
2(dX(z1, w1)p + dY(z2, w2)p) + 1

2 inf
i∈M

(dX(z1, x1
i )p + dY(z2, x2

i )p) + 2ε

!1
2dX ⊕p dY((z1, x2), (w1, w2))p + 1

2 sup
i∈N

dX ⊕p dY((z1, z2), (x2
i , x

1
i ))p + 2ε.

Since ε > 0 was arbitrary, inequality (11) follows. !

6. Markov and diamond convexity of Heisenberg groups

In this section we fulfill our promise from Section 5 and show that Heisenberg groups 
over p-uniformly convex Banach spaces are Markov 2p-convex. This fact will follow from a 
“parallelogram convexity inequality” analogous to the following parallelogram inequality 
holding in a Banach space X that is p-uniformly convex with constant K: for all x, y ∈ X

∥x∥pX + ∥x− y∥pX
2 "

∥∥∥
y

2
∥∥∥
p

X
+ 1

Kp

∥∥∥x− y

2
∥∥∥
p

X
. (42)

Inequality (42) can be derived easily from inequality (1) (and vice versa).
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Proposition 35. Let p ∈ [2, ∞) and ωX be any non-zero, antisymmetric, bounded bilin-
ear form on a p-uniformly convex Banach space X. Then, there is a constant C :=
C(X, ωX) > 0 and a Koranyi-type norm Np,λ for some λ := λ(X, ωX) > 0 such that for 
every a = (a, s), b = (b, t) ∈ H(ωX),

1
2Np,λ(a)2p + 1

2Np,λ(b−1a)2p " Np,λ(δ1/2(b))2p + 1
C2pNp,λ(δ1/2(b)−1a)2p. (43)

Proof. Assume that X is p-uniformly convex with constant K. Let ω def= ωX and N def=
Np,λ, where λ2p def=

( 1
3 + 1

3p·6
)−1 21−p

Kp∥ω∥p and ∥ω∥ < ∞ is the least constant B satisfying 
|ω(a, b)| ! B∥a∥X∥b∥X. We have

1
2N(a)2p + 1

2N(b−1a)2p = 1
2 ∥a∥2p

X + λ2p

2 |s|p + 1
2 ∥a− b∥2p

X + λ2p

2 |s− t + ω(a, b)|p

"
(1

2 ∥a∥pX + 1
2 ∥a− b∥pX

)2
+ λ2p

2 |s|p + λ2p

2 |s− t + ω(a, b)|p (convexity)

(42)
"

(∥∥∥∥
b

2

∥∥∥∥
p

X
+ 1

Kp

∥∥∥∥a− b

2

∥∥∥∥
p

X

)2

︸ ︷︷ ︸
α

+λ2p

2 |s|p + λ2p

2 |s− t + ω(a, b)|p. (44)

Since ω is antisymmetric and bounded,

α =
∥∥∥∥
b

2

∥∥∥∥
2p

X
+ 1

K2p

∥∥∥∥a− b

2

∥∥∥∥
2p

X
+ 2

Kp

(∥∥∥∥
b

2

∥∥∥∥
X

∥∥∥∥a− b

2

∥∥∥∥
X

)p

"
∥∥∥∥
b

2

∥∥∥∥
2p

X
+ 1

K2p

∥∥∥∥a− b

2

∥∥∥∥
2p

X
+ 2

Kp∥ω∥p

∣∣∣∣ω
(
b

2 , a− b

2

)∣∣∣∣
p

=
∥∥∥∥
b

2

∥∥∥∥
2p

X
+ 1

K2p

∥∥∥∥a− b

2

∥∥∥∥
2p

X
+ 21−p

Kp∥ω∥p |ω(a, b)|p

=
∥∥∥∥
b

2

∥∥∥∥
2p

X
+ 1

K2p

∥∥∥∥a− b

2

∥∥∥∥
2p

X
+ λ2p(1

3 + 1
3p · 6

)
|ω(a, b)|p (45)

where we have used the definition of λ in the last equality. Incorporating (45) into (44)
we thus have,

1
2N(a)2p + 1

2N(b−1a)2p "
∥∥∥∥
b

2

∥∥∥∥
2p

X
+ 1

K2p

∥∥∥∥a− b

2

∥∥∥∥
2p

X

+ λ2p
( |ω(a, b)|p + |s|p + |s− t + ω(a, b)|p

3 + |ω(a, b)|p
3p · 6 + |s|p

6 + |s− t + ω(a, b)|p
6

)

︸ ︷︷ ︸
β

.

(46)

We now proceed to estimate β as follows,
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β "
∣∣∣∣
t

3

∣∣∣∣
p

+ |ω(a, b)|p
3p · 6 + |s|p

6 + |s− t + ω(a, b)|p
6 (convexity and triangle inequality)

"
∣∣∣∣
t

3

∣∣∣∣
p

+ 4p
3p · 6

(∣∣∣∣
ω(a, b)

4

∣∣∣∣
p

+
∣∣∣∣
3s
4

∣∣∣∣
p

+
∣∣∣∣
s

4 − t

4 + ω(a, b)
4

∣∣∣∣
p)

"
∣∣∣∣
t

4

∣∣∣∣
p

+ 4p
32p−1 · 6

∣∣∣∣s−
t

4 + ω(a, b)
2

∣∣∣∣
p

(convexity and triangle inequality). (47)

If we let C def= max
{
K,

(
32p−1·6

4p

) 1
2p
}

, combining (47) with (46), we have

1
2N(a)2p + 1

2N(b−1a)2p "
∥∥∥∥
b

2

∥∥∥∥
2p

X
+ 1

C2p

∥∥∥∥a− b

2

∥∥∥∥
2p

X
+ λ2p

∣∣∣∣
t

4

∣∣∣∣
p

+ λ2p

C2p

∣∣∣∣s−
t

4 + ω(a, b)
2

∣∣∣∣
p

" N(δ1/2(b))2p + 1
C2pN(δ1/2(b)−1a)2p.

This completes the proof of (43). !

The following theorem follows from the fact that the 2p-fork inequality is valid for the 
quasi-metric induced by a quasi-norm satisfying (43).

Theorem 36. For any p ∈ [2, ∞) and any non-zero, antisymmetric, bounded bilinear form 
ωX on a p-uniformly convex Banach space X, (H(ωX), dcc) is Markov 2p-convex.

Proof. Let p, X, ωX be as in the statement. Since Markov 2p-convexity is a bi-Lipschitz 
invariant and the proof in [45] showing that Markov p-convexity follows from the p-
fork inequality is valid for quasi-metrics, it suffices to prove that (H(ωX), d) is Markov 
2p-convex for some equivalent quasi-metric d. Because of this, we may again assume X
is equipped with a uniformly p-convex norm with constant K. Therefore, it suffices to 
exhibit a quasi-metric d that satisfies the 2p-fork inequality. In the remainder of this 
proof, we will let N def= Np,λ the Koranyi-type norm from Proposition 35 and d def= dλ,p
the quasi-metric it induces. We will use (43) to prove the 2p-fork inequality:

d(w,x)2p
22p+1 + d(w,y)2p

22p+1 + d(x,y)2p
(4C ′C)2p ! 1

2d(z,w)2p + 1
4d(z,x)2p + 1

4d(z,y)2p, (48)

where C ′ is the quasi-triangle inequality constant of d.
First apply (43) with a = z and b = x to obtain

1
2N(z)2p + 1

2N(x−1z)2p " N(δ1/2(x))2p + 1
C2pN(δ1/2(x)−1z)2p.

Then apply (43) with a = z and b = y to obtain

1
2N(z)2p + 1

2N(y−1z)2p " N(δ1/2(y))2p + 1
C2pN(δ1/2(y)−1z)2p.
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Averaging these two inequalities and using the definition and homogeneity of d yields

d(0,x)2p
22p+1 + d(0,y)2p

22p+1 +
d(z, δ1/2(x))2p

2C2p +
d(z, δ1/2(y))2p

2C2p

! 1
2d(z,0)2p + 1

4d(z,x)2p + 1
4d(z,y)2p.

Then by convexity, the C ′-quasi-triangle inequality of d, and homogeneity of d, we get

d(0,x)2p
22p+1 + d(0,y)2p

22p+1 + d(x,y)2p
(4C ′C)2p ! 1

2d(z,0)2p + 1
4d(z,x)2p + 1

4d(z,y)2p

This proves (48) for w = 0. The general inequality follows from left-invariance. !

Two new metric invariants, called diamond convexity and graphical diamond con-
vexity, were introduced in [22]. Diamond convexity is an inequality involving stochastic 
processes (like Markov convexity), and graphical diamond convexity is a deterministic 
Poincaré-type inequality that refers explicitly to diamond graphs. In [22], it was shown 
that if a metric space X is Markov p-convex, then X is diamond p-convex, and hence 
the Heisenberg groups as in Theorem 36 are diamond 2p-convex. It is currently not 
known whether Markov p-convexity or diamond p-convexity implies graphical diamond 
p-convexity. However it was shown that diamond p-convexity (cf. [22]) and graphical 
diamond p-convexity (cf. [24, Chapter 2]) follow from the following p-short diagonals 
inequality for uniform convexity with constant K ∈ (0, ∞): for all w, x, y, z ∈ (X, dX)

1
2p dX(w, y)p+ 1

(2K)p dX(x, z)p ! 1
4dX(w, x)p+ 1

4dX(x, y)p+ 1
4dX(y, z)p+ 1

4dX(z, w)p (49)

Since, as we will show, the p-short diagonals inequality for uniform convexity is valid for 
the quasi-metric induced by a quasi-norm satisfying (43), we have:

Theorem 37. For any p ∈ [2, ∞) and any non-zero, antisymmetric, bounded bilinear 
form ωX on a p-uniformly convex Banach space X, (H(ωX), dcc) is graphical diamond 
2p-convex.

Proof. The setup is the same as in the proof of Theorem 36. The proof showing that 
graphical diamond p-convexity follows from (49) is valid for quasi-metrics (see [24, Propo-
sition 2.9] for instance). It thus remains to show that (43) implies that

1
22p d(w,y)2p + 1

(2C ′C)2p d(x, z)2p ! 1
4d(w,x)2p + 1

4d(x,y)2p + 1
4d(y, z)2p + 1

4d(z,w)2p,

(50)
where C ′ is the quasi-triangle inequality constant of d.
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First plug in a = w−1z and b = w−1y in (43) to obtain

N(δ1/2(w−1y))2p + 1
C2pN([δ1/2(w−1y)]−1w−1z)2p

! 1
2N(w−1z)2p + 1

2N((w−1y)−1w−1z)2p

= 1
2N(w−1z)2p + 1

2N(y−1z)2p.

Then plug in a = w−1x and b = w−1y in (43) and get

N(δ1/2(w−1y))2p + 1
C2pN([δ1/2(w−1y)]−1w−1x)2p

! 1
2N(w−1x)2p + 1

2N((w−1y)−1w−1x)2p

= 1
2N(w−1x)2p + 1

2N(y−1x)2p.

Averaging the two inequalities above and using the definition and homogeneity of d yields

d(w,y)2p
22p + 1

C2p

(d(w−1z, δ1/2(w−1y))2p + d(w−1x, δ1/2(w−1y))2p
2

)

! 1
4d(z,w)2p + 1

4d(z,y)2p + 1
4d(x,w)2p + 1

4d(x,y)2p.

Then by convexity, the C ′-quasi-triangle inequality of d, and the left-invariance of d, we 
get

d(w,y)2p
22p + d(x, z)2p

(2C ′C)2p ! 1
4d(w,x)2p + 1

4d(x,y)2p + 1
4d(y, z)2p + 1

4d(z,w)2p,

which is exactly (50). !

7. Relaxations of the fork inequality and of Markov convexity

In this section, we discuss some natural relaxations of the fork inequality and of 
Markov convexity. The following is a local analogue of umbel convexity.

Definition 38. We will say that a metric space (X, dX) is fork p-convex if there exists 
Π > 0 such that for all k " 1 and all f : B2k → X,

k−1∑

s=1

1
2k−1−s

2k−1−s∑

t=1
min

ε∈{−1,1}t2s+1−2s
min

δ,δ′∈{−1,1}2s−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp

! Πp 1
2k

2k∑

ℓ=1
max

ε∈{−1,1}ℓ
dX(f(ε1, . . . , εℓ−1), f(ε1, . . . , εℓ))p, (51)
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and we will denote by Πf
p(X) the least constant Π such that (51) holds.

We will see that the fork p-convexity inequality (51) follows from the following relax-
ation of the p-fork inequality:
For all w, x, y, z ∈ X,

1
2p min{dX(w, x)p, dX(w, y)p} + dX(x, y)p

4pKp
! 1

2dX(z, w)p + 1
2 max{dX(z, x)p, dX(z, y)p}

(52)
The fact that fork p-convexity implies umbel p-convexity is not completely immediate 

due to the limit inferior in the definition of umbel p-convexity. To prove it, we first need 
a technical lemma.

Lemma 39. For each k " 0, let Vk denote the subset of [N]"k × [N]"k consisting of 
all pairs (n̄, m̄) such that n̄ extends m̄ (abbreviated by n̄ ≼ m̄ and meaning that n̄ =
(n1, . . . , ni) and m̄ = (m1, . . . , mj) satisfy i ! j and n1 = m1, . . . , ni = mi). For every 
k ∈ N and function J : Vk → N, there exists a map φ := φ(k, J) : Bk → Tω

k satisfying 
the following property

(⋆)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ is a height and extension preserving graph morphism,
and

for every ε, δ for which (ε, 1, δ) ∈ Bk, there exists
an integer j′ = j′(ε, δ) " J(φ(ε),φ(ε, 1, δ)) such that, for every δ′ for which
(ε,−1, δ′) ∈ Bk, there exists η̄ = η̄(δ′) ∈ Tω

k such that φ(ε,−1, δ′) = (φ(ε), j′, η̄).

Proof. The proof is by induction on k. The base case k = 0 is vacuous. Suppose the 
lemma holds for some k " 0. Let J : Vk+1 → N be any function. Observe that for all 
r " 1, [{r, r + 1, . . . }]"k equipped with the natural tree order is isomorphic to [N]"k. 
Denote by Vk(r) the subset of [{r, r + 1, . . . }]"k × [{r, r + 1, . . . }]"k consisting of all 
pairs (n̄, m̄) such that n̄ extends m̄. Define a function J1 : Vk(2) → N by J1(n̄, m̄) def=
J((1, ̄n), (1, m̄)). Apply the inductive hypothesis to J1 to obtain a function φ1 : Bk →
(
[{2, 3, . . . }]"k, dT

)
satisfying (⋆). Set j0 def= max{J(∅, (1, φ1(δ))) : δ ∈ Bk}, and note 

that this maximum exists since Bk is finite. Define a function J0 : Vk(j0 + 1) → N by 
J0(n̄, m̄) def= J((j0, ̄n), (j0, m̄)). Apply the inductive hypothesis to J0 to obtain a function 
φ0 : Bk →

(
[{j0 +1, j0 +2, . . . }]"k, dT

)
satisfying (⋆). Finally we define φ : Bk+1 → Tω

k+1
by

• φ(∅) def= ∅,
• φ(1, ε) def= (1, φ1(ε)), and
• φ(−1, ε) def= (j0, φ0(ε)).
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We now check that φ satisfies the desired properties. Obviously, φ is a height and 
extension preserving graph morphism since both φ1 and φ0 are. Let (ε, 1, δ) ∈ Bk+1. If ε
is of the form (1, ε′), then (⋆) holds since it holds for φ1, and if ε is of the form (−1, ε′), 
then (⋆) holds since it holds for φ0. It remains to consider ε = ∅. In this case, we choose 
j′

def= j0 and for any (−1, δ′) ∈ Bk+1, we choose η̄ def= φ0(δ′). These choices witness the 
satisfaction of (⋆). !

Proposition 40. Let p ∈ (0, ∞). Every fork p-convex metric space (X, dX) is umbel p-
convex. Moreover, Πu

p(X) ! Πf
p(X).

Proof. Let k " 1 and f : [N]"2k → X a map. Without loss of generality, we may assume 
the right-hand-side of (4) is finite. Let γ > 0 be arbitrary. For each (n̄, (n̄, ̄δ)) ∈ Vk, 
choose J(n̄, (n̄, ̄δ)) ∈ N such that, for all j " J(n̄, (n̄, ̄δ)),

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

dX(f(n̄, δ̄), f(n̄, j, η̄))p
2sp ! inf

η̄∈[N]2s−1 :
(n̄,j,η̄)∈[N]!2k

dX(f(n̄, δ̄), f(n̄, j, η̄))p
2sp + γ

k
.

Now apply Lemma 39 to the function J defined as above to get a height and extension 
preserving graph morphism φ : B2k → Tω

2k satisfying (⋆). Let A denote the left-hand-side 
of the fork p-convexity inequality (51) applied to the map f ◦ φ : B2k → X, i.e.

A
def=

k−1∑

s=1

1
2k−1−s

2k−1−s∑

t=1
min

ε∈{−1,1}t2s+1−2s
min

δ,δ′∈{−1,1}2s−1

dX(f(φ(ε,−1, δ)), f(φ(ε, 1, δ′)))p
2sp .

Let B denote the left-hand-side of the umbel p-convexity inequality (4) applied to the 
map f : [N]"2k → X, i.e.

B
def=

k−1∑

s=1

1
2k−1−s

2k−1−s∑

t=1
inf

n̄∈[N]t2s+1−2s
inf

δ̄∈[N]2s :
(n̄,δ̄)∈[N]!2k

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

dX(f(n̄, δ̄), f(n̄, j, η̄))p
2sp .

Given ε ∈ {−1, 1}t2s+1−2s and δ ∈ {−1, 1}2s−1, it follows from the definitions of J , 
φ, and property (⋆) that there exists an integer j′ = j′(ε, δ) " J(φ(ε), φ(ε, 1, δ)) such 
that, for every δ′ ∈ {−1, 1}2s−1, there exists η̄ = η̄(δ′) ∈ [N]2s−1 such that φ(ε, −1, δ′) =
(φ(ε), j′(ε, δ), η̄(δ′)). Since φ(ε) ∈ [N]t2s+1−2s and φ(ε, 1, δ) ∈ [N]t2s+1 , we have

inf
n̄∈[N]t2s+1−2s

inf
δ̄∈[N]2s :

(n̄,δ̄)∈[N]!2k

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

dX
(
f(n̄, δ̄), f(n̄, j, η̄)

)p

! min
ε∈{−1,1}t2s+1−2s

min
δ∈{−1,1}2s−1

lim inf
j→∞

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

dX(f(φ(ε, 1, δ)), f(φ(ε), j, η̄))p
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! min
ε∈{−1,1}t2s+1−2s

min
δ∈{−1,1}2s−1

inf
η̄∈[N]2s−1 :

(n̄,j,η̄)∈[N]!2k

dX(f(φ(ε, 1, δ)), f(φ(ε), j′(ε, δ), η̄))p + γ

k

! min
ε∈{−1,1}t2s+1−2s

min
δ∈{−1,1}2s−1

min
δ′∈{−1,1}2s−1

dX(f(φ(ε, 1, δ)), f(φ(ε), j′(ε, δ), η̄(δ′)))p + γ

k

= min
ε∈{−1,1}t2s+1−2s

min
δ∈{−1,1}2s−1

min
δ′∈{−1,1}2s−1

dX(f(φ(ε, 1, δ)), f(φ(ε,−1, δ′)))p + γ

k

Hence, after dividing by 2sp and summing appropriately over t and s, we have B ! A +γ. 
Since γ > 0 was arbitrary, we have A ! B. To conclude that Πu

p(X) ! Πf
p(X), it remains 

to observe that

1
2k

2k∑

ℓ=1
max

ε∈{−1,1}ℓ
dX(f(φ(ε1, . . . , εℓ−1)), f(φ(ε1, . . . , εℓ)))p

! 1
2k

2k∑

ℓ=1
sup

n̄∈[N]ℓ
dX(f(n1, . . . , nℓ−1), f(n1, . . . , nℓ))p

as φ preserves the extension relation. !

A further relaxation of the p-fork inequality is the following:
For all w, x, y, z ∈ X,

1
2p min{dX(w, x)p, dX(w, y)p} + dX(x, y)p

4pKp
! max{dX(z, w)p, dX(z, x)p, dX(z, y)p} (53)

By analogy with terminology surrounding the notion of infrasup-umbel convexity, we 
will refer to inequality (53) as the infrasup p-fork inequality with constant K. We also 
introduce the following definition.

Definition 41. Let p ∈ (0, ∞]. A metric space (X, dX) is infrasup-fork p-convex if there 
exists C > 0 such that for all k " 1 and all f : B2k → X

(
k−1∑

s=1
min

ε∈B2k−2s
min

δ,δ′∈{−1,1}2s−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp

) 1
p

! CLip(f). (54)

We denote by Πisf
p (X) the least constant C such that (54) holds for all k " 1 and all 

maps f : B2k → X.

In the next theorem we gather results that are local analogues of those in Section 2.

Theorem 42.

(1) If a metric space (X, dX) satisfies inequality (52) with constant K > 0, then X is 
fork p-convex. Moreover, Πf

p(X) ! 4K.
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(2) If a metric space (X, dX) satisfies the infrasup p-fork inequality (53) with constant 
K > 0, then X is infrasup-fork p-convex. Moreover, Πisf

p (X) ! 4K.

Proof. The first assertion can be proven much in the same way as Theorem 12, and 
we leave this verification to the dutiful reader. We will prove the second assertion. The 
proof is rather similar to the proof of Theorem 12 albeit on some occasions where some 
slightly different justifications are needed. It will be sufficient to show by induction on k
that for all maps f : B2k → X, and all ρ ∈ {−1, 1}

min
δ∈{−1,1}2k−1

dX(f(∅), f(ρ, δ))p
2kp

+ 1
4pKp

k−1∑

s=1
min

ε∈B2k−2s
min

δ,δ′∈{−1,1}2s−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp

! max
1"ℓ"2k

max
ε∈{−1,1}ℓ

dX(f(ε1, . . . , εℓ−1), f(ε1, . . . , εℓ))p.

For the base case k = 1, the inequality reduces to

min
δ∈{−1,1}

dX(f(∅), f(ρ, δ))
2 ! max

{
max

ε∈{−1,1}
dX(f(∅), f(ε)), max

ε∈{−1,1}2
dX(f(ε1), f(ε1, ε2))

}
,

which is an immediate consequence of the triangle inequality. We now proceed to the 
inductive step and fix ι ∈ {−1, 1} and f : B2k+1 → X. Let µ ∈ {−1, 1}2k−1 such that

dX(f(∅), f(ι, µ))p
2kp = min

δ∈{−1,1}2k−1

dX(f(∅), f(ι, δ))p
2kp ,

and for each ρ ∈ {−1, 1}, choose ν(ρ) ∈ {−1, 1}2k−1

dX(f(ι, µ), f(ι, µ, ρ, ν(ρ)))p
2kp = min

δ∈{−1,1}2k−1

dX(f(ι, µ), f(ι, µ, ρ, δ))p
2kp .

By the induction hypothesis applied to the restriction of f to B2k (and with ρ = ι) we 
get

min
δ∈{−1,1}2k−1

dX(f(∅), f(ι, δ))p
2kp

+ 1
4pKp

k−1∑

s=1
min

ε∈B2k−2s
min

δ,δ′∈{−1,1}2s−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp

! max
1"ℓ"2k

max
ε∈{−1,1}ℓ

dX(f(ε1, . . . , εℓ−1), f(ε1, . . . , εℓ))p. (55)

By taking the first minimum in the sum and the maximum over larger sets we get
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min
δ∈{−1,1}2k−1

dX(f(∅), f(ι, δ))p
2kp

+ 1
4pKp

k−1∑

s=1
min

ε∈B2k+1−2s
min

δ,δ′∈{−1,1}2s−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp

! max
1"ℓ"2k+1

max
ε∈{−1,1}ℓ

dX(f(ε1, . . . , εℓ−1), f(ε1, . . . , εℓ))p. (56)

On the other hand, the induction hypothesis applied to g(ε) def= f((ι, µ), ε) where ε ∈ B2k

gives

min
δ∈{−1,1}2k−1

dX(g(∅), g(ι, δ))p
2kp

+ 1
4pKp

k−1∑

s=1
min

ε∈B2k−2s
min

δ,δ′∈{−1,1}2s−1

dX(g(ε,−1, δ), g(ε, 1, δ′))p
2sp

! max
1"ℓ"2k

max
ε∈{−1,1}ℓ

dX(g(ε1, . . . , εℓ−1), g(ε1, . . . , εℓ))p.

Observe first that,

max
1"ℓ"2k

max
ε∈{−1,1}ℓ

dX(g(ε1, . . . , εℓ−1), g(ε1, . . . , εℓ))p

= max
1"ℓ"2k

max
ε∈{−1,1}ℓ

dX(f(ι, µ, ε1, . . . , εℓ−1), f(ι, µ, ε1, . . . , εℓ))p

! max
1"ℓ"2k+1

max
ε∈{−1,1}ℓ

dX(f(ε1, . . . , εℓ−1), f(ε1, . . . , εℓ))p,

since we are maximizing over the set of all the edges instead of a subset of it. Also, for 
each s = 1, . . . , k − 1,

min
ε∈B2k−2s

min
δ,δ′∈{−1,1}2s−1

dX(g(ε,−1, δ), g(ε, 1, δ′))p
2sp

= min
ε∈B2k−2s

min
δ,δ′∈{−1,1}2s−1

dX(f(ι, µ, ε,−1, δ), f(ι, µ, ε, 1, δ′))p
2sp

" min
ε∈B2k+1−2s

min
δ,δ′∈{−1,1}2s−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp ,

since (ι, µ, ε) ∈ B2k+1−2s for all ε ∈ B2k−2s .
Therefore, it follows from the two relaxations above that

min
δ∈{−1,1}2k−1

dX(f(ι, µ), f(ι, µ, ρ, δ))p
2kp
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+ 1
4pKp

k−1∑

s=1
min

ε∈B2k+1−2s
min

δ,δ′∈{−1,1}2s−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp

! max
1"ℓ"2k+1

max
ε∈{−1,1}ℓ

dX(f(ε1, . . . , εℓ−1), f(ε1, . . . , εℓ))p. (57)

Since the sum and right hand side in (57) do not depend on ρ, it follows from (56) and 
(57) that

1
2kp

(
max

{
min

δ∈{−1,1}2k−1
dX(f(∅), f(ι, δ))p,

max
ρ∈{−1,1}

min
δ∈{−1,1}2k−1

dX(f(ι, µ), f(ι, µ, ρ, δ))p
})

+ 1
4pKp

k−1∑

s=1
min

ε∈B2k+1−2s
min

δ,δ′∈{−1,1}2s−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp (58)

! max
1"ℓ"2k+1

max
ε∈{−1,1}ℓ

dX(f(ε1, . . . , εℓ−1), f(ε1, . . . , εℓ))p.

If we let w def= f(∅), z def= f(ι, µ), and xρ
def= f(ι, µ, ρ, ν(ρ)) (for ρ ∈ {−1, 1}) it follows 

from how µ and ν(ρ) were chosen, that

1
2kp

(
max

{
dX(w, z)p, max

ρ∈{−1,1}
dX(z, xρ)p

})
= (59)

1
2kp

(
max

{
min

δ∈{−1,1}2k−1
dX(f(∅), f(ι, δ))p,

max
ρ∈{−1,1}

min
δ∈{−1,1}2k−1

dX(f(ι, µ), f(ι, µ, ρ, δ))p
})

.

Inequality (52) combined with (58) and (59) gives

1
2(k+1)p min{dX(w, x−1)p, dX(w, x1)p} + 1

4pKp

1
2kp dX(x−1, x1)p

+ 1
4pKp

k−1∑

s=1
min

ε∈B2k+1−2s
min

δ,δ′∈{−1,1}2s−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp (60)

! max
1"ℓ"2k+1

max
ε∈{−1,1}ℓ

dX(f(ε1, . . . , εℓ−1), f(ε1, . . . , εℓ))p.

Now observe that

min{dX(w, x−1)p, dX(w, x1)p}
= min{dX(f(∅), f(ι, µ,−1, ν(−1)))p, dX(f(∅), f(ι, µ, 1, ν(1)))p}
" min

δ∈{−1,1}2k+1−1
dX(f(∅), f(ι, δ))p,



F.P. Baudier, C. Gartland / Advances in Mathematics 438 (2024) 109461 51

and

dX(x−1, x1)p = dX(f(ι, µ,−1, ν(−1)), f(ι, µ, 1, ν(1)))p

" min
δ,δ′∈{−1,1}2k−1

dX(f(ι, µ,−1, δ), f(ι, µ, 1, δ′))p

" min
ε∈B2k

min
δ,δ′∈{−1,1}2k−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p

Plugging in the two relaxed inequalities above in (60) we obtain

min
δ∈{−1,1}2k+1−1

dX(f(∅), f(ι, δ))p
2(k+1)p + 1

4pKp
min
ε∈B2k

min
δ,δ′∈{−1,1}2k−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2kp

+ 1
4pKp

k−1∑

s=1
min

ε∈B2k+1−2s
min

δ,δ′∈{−1,1}2s−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp

! max
1"ℓ"2k+1

max
ε∈{−1,1}ℓ

dX(f(ε1, . . . , εℓ−1), f(ε1, . . . , εℓ))p,

and hence

min
δ∈{−1,1}2k+1−1

dX(f(∅), f(ι, δ))p
2(k+1)p

+ 1
4pKp

k∑

s=1
min

ε∈B2k+1−2s
min

δ,δ′∈{−1,1}2s

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp

! max
1"ℓ"2k+1

max
ε∈{−1,1}ℓ

dX(f(ε1, . . . , εℓ−1), f(ε1, . . . , εℓ))p,

which completes the induction step. !

Infrasup-fork p-convexity is an obvious relaxation of fork p-convexity. It is less obvious 
that infrasup-fork p-convexity is also a relaxation of Markov p-convexity,7 and we need 
a preliminary lemma that allows us to pass from the stochastic definition of Markov 
convexity to a deterministic inequality.

Lemma 43. Let (X, dX) be a metric space, p > 0, k " 1, {Wt}t∈Z the simple directed 
random walk on B2k starting at the root, and f : B2k → X a map. Then

(i) for all 0 ! s ! k and 2s ! t ! 2k,

E[dX(f(Wt), f(W̃t(t− 2s)))p]

7 It is unclear if fork p-convexity is implied by Markov p-convexity, see Problem 8.
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= 1
2t−2s

∑

ε∈{−1,1}t−2s

2s∑

ℓ=1

1
2ℓ

1
2ℓ−1

∑

ε′∈{−1,1}ℓ−1

2
42s−ℓ

∑

δ,δ′∈{−1,1}2s−ℓ

dX(f(ε, ε′,−1, δ), f(ε, ε′, 1, δ′))p,

(ii) and

k−1∑

s=1

1
2k

2k∑

t=2s

E[dX(f(Wt), f(W̃t(t− 2s)))p]
2sp

" 1
2

k−1∑

s=1
min

ε∈{−1,1}!2k−2s
min

δ,δ′∈{−1,1}2s−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp .(61)

Proof. The proof of (i) goes by performing consecutive ad-hoc conditionings. It is clear 
that Wt−2s = W̃t−2s(t − 2s) almost surely and both are uniformly distributed over the 
set {−1, 1}t−2s , which has cardinality 2t−2s . Therefore, by the law of total expectations,

E[dX(f(Wt), f(W̃t(t− 2s)))p]

= 1
2t−2s

∑

ε∈{−1,1}t−2s

E[dX(f(Wt), f(W̃t(t− 2s)))p | Wt−2s = ε]

Fix ε in the sequel.
Next, consider the event, denoted Eℓ, that Wt−2s and W̃t−2s(t −2s) branch from each 

other immediately before making the ℓth step after ε. Formally, for every 1 ! ℓ ! 2s and 
ε′ ∈ {−1, 1}ℓ−1,

Eℓ def=
⋃

ε′∈{−1,1}ℓ−1

Aℓ(ε′)

where

Aℓ(ε′) def=
⋃

u∈{−1,1}

{
Wt−2s+ℓ−1=W̃t−2s+ℓ−1(t−2s)=(ε,ε′),

Wt−2s+ℓ=(ε,ε′,u),
W̃t−2s+ℓ(t−2s)=(ε,ε′,−u)

}
.

The events Eℓ, 1 ! ℓ ! 2s, are clearly disjoint, and a simple computation shows that Eℓ
occurs with probability 2−ℓ. Consequently,

E[dX(f(Wt),f(W̃t(t− 2s)))p | Wt−2s = ε]

=
2s∑

ℓ=1

1
2ℓE[dX(f(Wt), f(W̃t(t− 2s)))p | {Wt−2s = ε},Eℓ].
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For each fixed ℓ, the events {Aℓ(ε′)}ε′∈{−1,1}ℓ−1 are obviously disjoint and, after condi-
tioning on Eℓ, each occur with probability 21−ℓ. Thus,

E[dX(f(Wt),f(W̃t(t− 2s)))p | {Wt−2s = ε},Eℓ]

= 1
2ℓ−1

∑

ε′∈{−1,1}ℓ−1

E[dX(f(Wt), f(W̃t(t− 2s)))p | {Wt−2s = ε},Eℓ, Aℓ(ε′)].

Finally, recalling the definitions of the events we have conditioned on, the inequality 
below clearly holds

E[dX(f(Wt), f(W̃t(t− 2s)))p | {Wt−2s = ε},Eℓ, Aℓ(ε′)]

=
∑

u∈{−1,1}

1
42s−ℓ

∑

δ,δ′∈{−1,1}2s−ℓ

dX(f(ε, ε′, u, δ), f(ε, ε′,−u, δ′))p

= 2
42s−ℓ

∑

δ,δ′∈{−1,1}2s−ℓ

dX(f(ε, ε′,−1, δ), f(ε, ε′, 1, δ′))p.

Walking back through the chain of equalities we have the desired equality.
We now use (i) to show (ii). Observe first that the inequality

k−1∑

s=1

1
2k − 2s + 1

2k−2s∑

t=0

1
2t

∑

ε∈{−1,1}t

1
42s−1

∑

δ,δ′∈{−1,1}2s−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp

"
k−1∑

s=1
min

ε∈{−1,1}!2k−2s
min

δ,δ′∈{−1,1}2s−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp

holds trivially, since the top expression involves convex combinations over the sets 
{−1, 1}"2k−2s and {−1, 1}2s−1 × {−1, 1}2s−1, and the bottom expression involves min-
ima over these sets. To prove inequality (61), observe that 1

2k−1 " 1
2k−2s when s ! k−1, 

and hence

2
k−1∑

s=1

1
2k

2k∑

t=2s

E[dX(f(Wt), f(W̃t(t− 2s)))p]
2sp

"
k−1∑

s=1

1
2k − 2s

2k∑

t=2s

E[dX(f(Wt), f(W̃t(t− 2s)))p]
2sp

(i)
"

k−1∑

s=1

1
2k − 2s

2k∑

t=2s

1
2t−2s

∑

ε∈{−1,1}t−2s

1
2

2
42s−1

∑

δ,δ′∈{−1,1}2s−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp

=
k−1∑

s=1

1
2k − 2s

2k−2s∑

t=0

1
2t

∑

ε∈{−1,1}t

1
42s−1

∑

δ,δ′∈{−1,1}2s−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp ,
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where in the application of (i), we discarded all the terms with ℓ > 1. !

Proposition 44. Every Markov p-convex metric space (X, dX) is infrasup-fork p-convex. 
Moreover, Πisf

p (X) ! 21/pΠM
p (X).

Proof. Let (X, dX) be a Markov p-convex metric space and k, {Wt}t∈Z, f as in the state-
ment of Lemma 43. Then

k−1∑

s=1
min

ε∈{−1,1}!2k−2s
min

δ,δ′∈{−1,1}2s−1

dX(f(ε,−1, δ), f(ε, 1, δ′))p
2sp

(61)
! 2

k−1∑

s=1

1
2k

2k∑

t=2s

E[dX(f(Wt), f(W̃t(t− 2s)))p]
2sp

! 2ΠM
p (X)p 1

2k
∞∑

t=1
E[dX(f(Wt), f(Wt−1))p]

! 2ΠM
p (X)pLip(f)p 1

2k
2k∑

t=1
E[dX(Wt,Wt−1)p]

= 2ΠM
p (X)pLip(f)p. !

Remark 45. We can show that Tessera’s p-inequality (3) is implied by the Markov 
p-convexity inequality (2) using arguments along the lines of those in the proofs of 
Lemma 43 and Proposition 44.

We record local analogues of the asymptotic results found in Section 3. These local 
analogues are extensions of results that are known to be valid for spaces that satisfy the 
Markov p-convexity inequality or Tessera’s p-inequality. The proofs of these local results 
are nearly identical to their asymptotic counterparts and can be safely omitted. The first 
result deals with distortion lower bounds.

Proposition 46. For all p ∈ (0, ∞), Πusf
p (B2k) " 2(k − 1)1/p and hence

cY(Bk) = Ω((log k) 1
p ),

for every metric space (Y, dY) that is infrasup-fork p-convex.

The second result provides compression lower bounds.

Theorem 47. Let p ∈ (0, ∞). Assume that there are non-decreasing maps ρ, ω : [0, ∞) →
[0, ∞) and for all k " 1 a map fk : B2k → Y such that for all x, y ∈ B2k

ρ(dT(x, y)) ! dY(fk(x), fk(y)) ! ω(dT(x, y)).
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Then,

∞∫

1

(ρ(t)
t

)p dt

t
! 2p − 1

p
Πisf

p (Y)pω(1)p.

In particular, the compression rate of any equi-coarse embedding of {Bk}k!1 into a metric 
space that is infrasup-fork p-convex satisfies

∞∫

1

(ρ(t)
t

)p dt

t
< ∞. (62)

Equipped with Proposition 46, we can show that two results from [39] about Markov 
convexity actually hold for the much weaker notion of infrasup-fork convexity. The proofs 
are the same as in [39] where the full power of Markov convexity was not needed (these 
partial results were greatly strengthened in [45] where the proof of Theorem 3 was 
completed). We recall the short arguments for the convenience of the reader.

Corollary 48.

(1) Let X be a Banach space. If X is infrasup-fork p-convex for some p " 2, then X is 
super-reflexive and has Rademacher cotype p + ε for every ε > 0.

(2) If a Banach lattice X that is infrasup-fork p-convex for some p " 2, then for every 
ε > 0, X admits an equivalent norm that (p + ε)-uniformly convex.

Proof. For the first assertion, Proposition 46 together with Bourgain’s super-reflexivity 
characterization implies that X is super-reflexive. The second part follows from 
the fact that by Maurey-Pisier theorem [46] X contains the ℓnqX ’s where qX =
inf{q : X has cotype q}. By Bourgain’s tree embedding we have that cX(Bk) =
O((log k)1/qX) and it follows from Proposition 46 that qX ! p. The second assertion 
follows from the first and a renorming result of Figiel [25] which says that every super-
reflexive Banach lattice with cotype q admits an equivalent norm that is (q+ε)-uniformly 
convex for every ε > 0. !

A very interesting dichotomy is contained in [39] where it was proved that for an infi-
nite metric tree T, supk∈N cT(Bk) < ∞ if and only if cℓ2(T) = ∞. The following corollary 
can be found in [39] and the additional assertion (4′) follows from the observations of 
this section.

Corollary 49. Let T be an infinite metric tree. The following assertions are equivalent.

(1) supk∈N cT(Bk) = 1.
(2) supk∈N cT(Bk) < ∞.
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(3) T is not Markov p-convex for any p ∈ (1, ∞).
(4) T is not Markov p-convex for some p ∈ (1, ∞).
(4’) T does not have non-trivial infrasup-fork convexity.

The proof of the non-trivial implication (4) =⇒ (1) in [39] is based on a delicate 
analysis of certain edge-colorings of trees and their relation to the ℓp-distortion of trees. 
In a nutshell, if (4) holds then cℓp(T) is unbounded, which in turn forces a certain 
coloring parameter to vanish. The vanishing of the coloring parameter is then utilized 
to show the presence of binary trees in T with arbitrarily good distortion. Since it is 
sufficient to assume (4′) to guarantee that cℓp(T) is unbounded (e.g. via Proposition 46), 
the implication (4′) =⇒ (1) follows from the same edge-coloring based argument.

Remark 50. It was shown in [45] that the equivalence between (1) and (2) in Corollary 49
does not hold if the target space is an arbitrary metric space. Also, one can prove the 
analogue of Proposition 21 for binary trees using infrasup-fork convexity.

The relaxations of the p-fork inequality that we considered in this section are formally 
significantly weaker, and it would be interesting to identify more examples of metric 
spaces satisfying these seemingly very weak inequalities. In fact, these examples must be 
found outside the realm of tree metrics and Banach spaces.

Note that if an infinite metric tree T admits an equivalent metric that satisfies the 
infrasup p-fork inequality (53), then Theorem 42 says that T has non-trivial infrasup-fork 
convexity, and by Proposition 46 we have supk∈N cT(Bk) = ∞. Then it follows from the 
dichotomy in [39] that cLp(T) ! cL2(T) < ∞, and thus T admits an equivalent metric 
that satisfies the r-fork inequality where r = max{2, p}. Therefore, when p ∈ [2, ∞)
an infinite metric tree admits an equivalent metric that satisfies the infrasup p-fork 
inequality if and only if it admits an equivalent metric that satisfies the p-fork inequality.

In the Banach space setting, we consider an alternative definition of uniform convexity 
via the following modulus which is a local analogue of the asymptotic modulus β̄ naturally 
linked to property (β):

βX(ε) def= inf
{

max
i∈{1,2}

{
1 −

∥∥∥
z − xi

2
∥∥∥
X

}
: ∥z∥X, ∥x1∥X, ∥x2∥X ! 1, ∥x1 − x2∥X " ε

}
. (63)

It is easily verified that for all ε ∈ (0, 2), βX(ε) > 0 if and only if there exists δ > 0 such 
that for all z, x, y ∈ BX, if ∥x − y∥X " ε then min{∥ z−x

2 ∥X, ∥ z−y
2 ∥X} ! 1 − δ.

The modulus βX is a “fork variant”, inspired by property (β), of the classical 2-point 
modulus of uniform convexity δX:

δX(ε) def= inf
{

1 −
∥∥∥
x + y

2
∥∥∥
X

: ∥x∥X, ∥y∥X ! 1, ∥x− y∥X " ε
}
. (64)
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Lemma 51. For all ε ∈ (0, 2),

δX
(ε

2
)
! βX(ε) ! 2δX(ε). (65)

Proof. Let z, x1, x2 ∈ BX and ∥x1−x2∥X " ε. If ∥x1+z∥X " ε
2 then ∥x1−z

2 ∥X ! 1 −δX( ε2). 
Otherwise, ∥x1+z∥X < ε

2 and this implies that ∥x2+z∥X " ∥x2−x1∥ −∥x1+z∥ > ε − ε
2 =

ε
2 . Therefore, ∥x2−z

2 ∥X ! 1 − δX( ε2 ). In any case, maxi∈{1,2}
{

1 −
∥∥∥ z−xi

2

∥∥∥
X

}
" δX( ε2 ), and 

the left-most inequality is proved.
For the right-most inequality, let x, y ∈ BX and ∥x − y∥X " ε. Take z = −x. By 

definition of βX, either ∥x+y
2 ∥X ! 1 − βX(ε) or ∥x∥X ! 1 − βX(ε). In the former case, 

there is nothing to do. In the latter case, ∥x+y
2 ∥X ! 1

2(1 − βX(ε)) + 1
2 = 1 − 1

2βX(ε), and 
the conclusion follows. !

It follows immediately from Lemma 51 that a Banach space X is uniformly convex if 
and only if βX(ε) > 0 for all ε > 0. Note in passing that this provides a rather direct 
proof that uniformly convex spaces have property (β). Quantitatively, X is uniformly 
convex with power type p if and only if βX(ε) $ εp. It is also easy to see that if X
supports the infrasup p-fork inequality (53), then βX(ε) $ εp, and thus X is uniformly 
convex with power type p by Lemma 51. Consequently, by [4] X is p-uniformly convex, 
and by [45, Lemma 2.3] it satisfies the p-fork inequality. Thus for Banach spaces, the 
p-fork inequality and the infrasup p-fork inequality are equivalent up to the value of the 
constants involved.

For the sake of completeness, we provide a more direct proof of the fact above which 
uses neither [4] nor [45] and for which it is easier to keep track of the value of the constant.

Lemma 52. Let X be a Banach space. If βX(t) " 1
c t

p then the infrasup p-fork inequality 
(53) holds in X with constant c1/p4−1.

Proof. Assume that βX(t) " 1
c t

p and let w, z, x, y ∈ X. Since the distance in X is trans-
lation invariant, we may assume z = 0. Also, by scale invariance of (53) we can assume 
that w, x, y ∈ BX. Thus (53) reduces to

1
2p min{∥w − x∥p, ∥w − y∥p} + ∥x− y∥p

4pKp
! 1. (66)

Now observe that min{∥w−x∥p

2p ; ∥w−x∥p

2p } ! min{∥w−x∥
2 ; ∥w−y∥

2 } whenever w, x, y ∈
BX. Therefore, (66) follows from the fact that by definition of δ̃X it holds min{∥w−x∥

2 ;
∥w−y∥

2 } ! 1 − 1
c∥x − y∥p, since without loss of generality we may assume that ∥x − y∥ >

0. !



58 F.P. Baudier, C. Gartland / Advances in Mathematics 438 (2024) 109461

8. A characterization of non-negative curvature

Recall that a geodesic metric space has non-negative curvature if for all x, y, z ∈ X
and mxy a midpoint of x and y,

2dX(z,mxy)2 + dX(x, y)2
2 " dX(z, x)2 + dX(z, y)2 (67)

Austin and Naor [1] showed that a geodesic metric space (X, dX) with non-negative 
curvature satisfies the 2-fork inequality with constant K = 1. In this section we prove 
the missing implication in Theorem D adapting an argument of Lebedeva and Petrunin 
[40] which is used to characterize non-negative curvature in terms of a certain fork 
inequality.

Proposition 53. If a geodesic metric space (X, dX) satisfies the 2-fork inequality with 
constant K = 1, then X has non-negative curvature.

Proof. Let x, y, z ∈ X and let mxy be a midpoint of x and y. Since X is geodesic there 
exists a geodesic connecting mxy and z, and for each n " 1, a point zn on this geodesic 
such that dX(mxy, zn) = dX(mxy,z)

2n . Set z0 = z and αn to be such that

αndX(zn,mxy)2 = dX(zn, x)2 + dX(zn, y)2 −
dX(x, y)2

2 (68)

Note that it is sufficient to show that α0 ! 2 in order to show that (X, dX) has non-
negative curvature. Observe first that the 2-fork inequality with constant K = 1 applied 
to zn, x, y, mxy gives that for all n " 1,

dX(zn, x)2 + dX(zn, y)2 + dX(x, y)2
2 ! 4dX(mxy, z)2 + 2dX(mxy, x)2 + 2dX(mxy, y)2 (69)

and thus

dX(zn, x)2 + dX(zn, y)2 −
dX(x, y)2

2
! 4dX(mxy, zn)2 + 2dX(mxy, x)2 + 2dX(mxy, y)2 − dX(x, y)2

= 4dX(mxy, zn)2 + 2dX(x, y)2
4 + 2dX(x, y)2

4 − dX(x, y)2

= 4dX(mxy, zn)2,

which means that αn ! 4 for all n " 1.
Now if we subtract dX(x,y)2

2 to the 2-fork inequality with constant 1 applied to 
zn+1, x, y, zn, we have
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dX(zn+1, x)2 + dX(zn+1, y)2 + 2dX(zn+1, zn)2 − dX(x, y)2
2

" dX(zn, x)2
2 + dX(zn, y)2

2 − dX(x, y)2
4 .

Hence,

αn+1dX(zn+1,mxy)2 " αn

2 dX(zn,mxy)2 − 2dX(zn+1, zn)2

which ultimately gives

αn+1
dX(z,mxy)2

22(n+1) " αn

2
dX(z,mxy)2

22n − 2dX(zn+1, zn)2.

Observe now that since the zn’s are on same geodesic

dX(zn+1, zn) = dX(mxy, z)
2n − dX(mxy, z)

2n+1 = dX(mxy, z)
2n+1 .

Then,

αn+1 " 22n+2

22n+1αn − 2 · 22n+2

22n+2 " 2αn − 2.

Assume that α0 > 2. Then a simple induction gives that αn " 2n(α0−2) +2 and hence 
limn αn = ∞, contradicting the fact that αn ! 4. Therefore α0 ! 2 and the conclusion 
follows. !

9. Concluding remarks and open problems

Our work raises a myriad of natural questions and problems. We will highlight a few 
of them we feel are particularly important and most likely challenging.

It follows from Corollary 29 that umbel p-convexity is stable under uniform homeo-
morphisms between Banach spaces. Because of this fact, umbel convexity cannot settle 
the metric characterization of Banach spaces with property (βp). Indeed, Kalton showed 
[29] that given a sequence {Fn}!1 that is dense in the Banach-Mazur compactum of 
finite-dimensional spaces, the Banach space Cp def= (

∑∞
n=1 Fn)ℓp is uniformly homeomor-

phic to Kp
def= (

∑∞
n=1 Fn)Tp ⊕(

∑∞
n=1 Fn)Tp where Tp is the p-convexification of Tsirelson 

space T . Therefore Kp is umbel p-convex since Cp has property (βp), but Kalton observed 
that Kp does not admit an equivalent norm that is asymptotically uniformly convex with 
power type p, and by [21] does not admit an equivalent norm with property (βp). The 
space Kp is thus an example of a Banach space that is umbel p-convex and that does 
not admit an equivalent norm with property (β) with power type p. This is in stark 
contrast with the renorming Theorem 3 for Markov convexity. The stochastic apparatus 
of Markov convexity is a powerful tool that is dearly missed in the asymptotic setting, 
and a new idea is needed to solve the following problem.
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Problem 1. For a given p ∈ (1, ∞), find a metric characterization of the class of Banach 
spaces admitting an equivalent norm with property (βp).

Interestingly, it was shown in [21] that Kp admits for every ε > 0 an equivalent norm 
with property (βp+ε) and the next problem arises naturally.

Problem 2. If a Banach space is umbel p-convex for some p ∈ (1, ∞), does it admit for 
all q > p an equivalent norm with property (βq)?

Our work shows that if a Banach space is umbel p-convex for some p ∈ (1, ∞), then it 
admits an equivalent norm with property (βq) for some q > 1. The difficulty in solving 
Problem 1 and Problem 2 stems from the fact that the renorming theory for spaces 
with property (β) is not fully grasped yet as it currently goes through the much better 
understood asymptotic uniformly convex/smooth renorming theories.

A tentatively more tractable, and somewhat related problem, is a local analogue of 
Problem 2.

Problem 3. If a Banach space is fork p-convex for some p ∈ [2, ∞), does it admit for 
q = p (or more modestly for all q > p) an equivalent norm which is q-uniformly convex?

In Section 5 we showed that (H(ℓ2), dcc) is infrasup-umbel 2-convex. In partic-
ular, this implies that cH(ℓ2)(Tω

k ) = Ω
(√

log k
)
, and this is optimal by Bourgain’s 

tree embedding (see Proposition 24). This has to be contrasted with the fact that 
(H(ℓ2), dcc) is only Markov 4-convex, and a Markov convexity-based argument gives 
cH(ℓ2)

(
Bk

)
= Ω

(
(log k)1/4

)
. This lower bound is suboptimal since S. Li [34] proved, us-

ing a refinement of an argument of Matousek [42], that cH(ℓ2)
(
Bk

)
= Ω

(√
log k

)
, and 

this latter bound is optimal by Bourgain’s tree embedding. By Theorem 36 and Propo-
sition 44 (H(ℓ2), dcc) is infrasup-fork p-convex for all p " 4, and it would be interesting 
to compute its exact infrasup-fork convexity.

Problem 4. Is (H(ωX), dcc) infrasup-fork p-convex whenever X is p-uniformly convex?

If Problem 4 has a positive answer, then the notion of infrasup-fork convexity would 
be a metric invariant that could detect the right order of magnitude for the distortion 
required to embed binary trees into the infinite Heisenberg group, something that Markov 
convexity is unable to achieve.

In the proof of Theorem 32, we showed that (H(ωX), dcc) admits an equivalent quasi-
metric satisfying the 2p-fork inequality (7) whenever X is p-uniformly convex. The 
following asymptotic problem remains open.

Problem 5. Does (H(ωX), dcc) admit an equivalent quasi-metric satisfying the p-umbel 
inequality whenever X has property (βp)? More generally, is (H(ωX), dcc) umbel p-convex 
whenever X has property (βp)?
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The scale-invariant parallelogram convexity inequality (42) defining p-uniform con-
vexity in Banach spaces has a natural analogue in Heisenberg groups, and the proof 
of Theorem 32 goes through establishing this inequality. The difficulty in adapting the 
proof to solve Problem 5 exactly lies in the fact that no scale-invariant “parallelogram” 
inequality exists for property (βp).

The reason why H(ℓ2) cannot be Markov p-convex for any p < 4 comes from the fact 
that certain Laakso graphs, which are known not to have non-trivial Markov convexity, 
can be embedded well enough in H(R), and hence in H(ℓ2). It seems possible that 
Laakso or diamond graph constructions could have non-trivial infrasup-fork convexity 
and thus infrasup-fork convexity would be a metric invariant capable of preventing bi-
Lipschitz embeddings of trees into diamond like structures. It is worth pointing out that 
it was proved by Ostrovskii [50] (see also [37]) that binary trees do not embed equi-bi-
Lipschitzly into diamond graphs. Note also that diamond convexity is a metric invariant 
that prevents bi-Lipschitz embeddings of diamond or Laakso graphs into trees, since it 
was proved in [22] that trees are diamond 2-convex.

Problem 6. Let Gk be one of the following graphs: the diamond graph Dk, the Laakso 
graph Lk, or their countably branching versions Dω

k and Lω
k , respectively. Are the param-

eters supk∈N Πisf
p (Gk), supk∈N Πisu

p (Gk), or supk∈N Πu
p(Gk) finite for some p < ∞?

It would be very interesting to exhibit examples of metric spaces that admit an 
equivalent metric satisfying the infrasup p-fork inequality but with no equivalent metric 
satisfying the p-fork inequality. In light of Theorem 32, Proposition 2.3 in [34] (or the 
proof of Theorem 36), and the discussion above, a natural candidate for p = 2 is the 
infinite Heisenberg group.

Problem 7. Does (H(ℓ2), dcc) admit an equivalent (quasi)-metric satisfying the infrasup 
2-fork inequality?

Finally, we do not know whether Markov p-convexity implies fork p-convexity. Loosely 
speaking, the issue is that the left-hand side of the Markov p-convexity inequality involves 
an average over all levels of the binary tree, while the left-hand side of the fork p-convexity 
inequality involves an average over dyadic levels.8

Problem 8. Does Markov p-convexity imply fork p-convexity?

8 For similar reasons, we do not know the relationship between the previously mentioned Poincaré in-
equality on binary trees [35, page 382] and Markov convexity or fork convexity.
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Appendix A. Table of inequalities

For the convenience of the reader, we summarize in the following table the main in-
equalities introduced or recalled in the paper. The table is organized so that the following 
three facts hold:

• An inequality in row i column j implies the inequality in row k column j for k > i

(with the exception of Markov p-convexity implying fork p-convexity, see Problem 8).
• A point-inequality in row i column j implies the Poincaré inequality in row i column 

j + 1.
• A local inequality in row i column j implies the asymptotic inequality in row i column 

j + 2.

Local Asymptotic
4-point inequality Poincaré inequality ω-point inequality Poincaré inequality
p-fork inequality (7) Markov p-convexity (2)
relaxed p-fork 
inequality (52)

fork p-convexity (51) p-umbel inequality (11) umbel p-convexity (4)

sup p-umbel inequality 
(18)

sup-umbel p-convexity 
(17)

infrasup p-fork 
inequality (53)

infrasup-fork 
p-convexity (54)

infrasup p-umbel 
inequality (21)

infrasup-umbel 
p-convexity (20)
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