Advances in Mathematics 438 (2024) 109461

journal homepage: www.elsevier.com/locate/aim

Contents lists available at ScienceDirect

Advances in Mathematics

MATHEMATICS

Umbel convexity and the geometry of trees ™

F.P. Baudier *, C. Gartland

Check for
updates

Texas AEM University, College Station, TX 77843, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 20 April 2021

Received in revised form 21 August
2023

Accepted 23 December 2023
Available online xxxx
Communicated by Dan Voiculescu

MSC:
46B85
68R12
46B20
51F30
05C63
46B99

Keywords:

Umbel convexity

Markov convexity

Rolewicz’s property (3)

Distortion and compression rate of
trees

Heisenberg groups

Nonlinear quotients

For every p € (0,00), a new metric invariant called umbel
p-convexity is introduced. The asymptotic notion of umbel
convexity captures the geometry of countably branching
trees, much in the same way as Markov convexity, the local
invariant which inspired it, captures the geometry of bounded
degree trees. Umbel convexity is used to provide a “Poincaré-
type” metric characterization of the class of Banach spaces
that admit an equivalent norm with Rolewicz’s property
(B). We explain how a relaxation of umbel p-convexity,
called infrasup-umbel p-convexity, plays a role in obtaining
compression rate bounds for coarse embeddings of countably
branching trees. Local analogues of these invariants - fork
p-convexity and infrasup-fork p-convexity - are introduced,
and their relationship to Markov p-convexity and relaxations
of the p-fork inequality is discussed. The metric invariants
are estimated for a large class of Heisenberg groups, and in
particular a parallelogram p-convexity inequality is proved for
Heisenberg groups over p-uniformly convex Banach spaces.
Finally, a new characterization of non-negative curvature is
given.

© 2023 Elsevier Inc. All rights reserved.

* F.P. Baudier was partially supported by the National Science Foundation under Grant Number DMS-
1800322 and DMS-2055604. C. Gartland was partially supported by the National Science Foundation under

Grant Number DMS-2247582.
* Corresponding author.

E-mail addresses: florent@tamu.edu (F.P. Baudier), cgartland@ucsd.edu (C. Gartland).
L Current address: University of California San Diego, La Jolla, CA 92093, USA.

https://doi.org/10.1016/j.aim.2023.109461

0001-8708/© 2023 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.aim.2023.109461
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2023.109461&domain=pdf
mailto:florent@tamu.edu
mailto:cgartland@ucsd.edu
https://doi.org/10.1016/j.aim.2023.109461

2 F.P. Baudier, C. Gartland / Advances in Mathematics 438 (2024) 109461

Contents
1. Introduction . . . . ... . 2
2. Property (8) with power type p implies umbel p-convexity . ...................... 10
3. Distortion and compression rate of embeddings of countably branching trees . ... ....... 19
4. Stability under nonlinear quotients . . . .. ... ... L L L 27
5. More examples of metric spaces with non-trivial infrasup-umbel convexity . . . . ... ... ... 34
6. Markov and diamond convexity of Heisenberg groups . . ...... ... . ... ... ........ 40
7. Relaxations of the fork inequality and of Markov convexity . ...................... 44
8. A characterization of non-negative curvature . . ... ... ... ... Lo o L. 58
9. Concluding remarks and open problems . ................. . . . ... . . . .. 59
Acknowledgments . ... ... 62
Appendix A. Table of inequalities . . . . . ... ... e 62
References . . . . . . e 62

1. Introduction

After the discovery by Ribe [56] of a striking rigidity phenomenon regarding local
properties of Banach spaces, the search for metric characterizations of local properties
of Banach spaces has been a main research avenue for what would become known as the
Ribe program. The Ribe program has grown into an extensive and tentacular research
program with far reaching ramifications, in particular in theoretical computer science
and geometric group theory. We refer the interested reader to [3] and [48] for more
information about this program.

The foundational result of the Ribe program is a 1986 theorem of Bourgain.

Theorem 1. [1/] A Banach space Y is super-reflexive if and only if supcn cy(Bg) = oo.

In Bourgain’s metric characterization of super-reflexivity, {By}x>1 is the sequence of
binary trees, and the parameter cy (X) denotes the Y-distortion of X for two metric spaces
(Y,dy) and (X,dx), i.e., the least constant D such that there exist s > 0 and a map
f: X =Y satisfying for all z,y € X

s - dx(z,y) <dv(f(2), f(y)) < sD-dx(z,y).

An important renorming result of Enflo [23] states that super-reflexivity can be charac-
terized in terms of uniformly smooth or uniformly convex renormings. Moreover thanks
to Asplund’s averaging technique [2], we can equivalently consider in Bourgain’s met-
ric characterization the class of Banach spaces that admit an equivalent norm that is
uniformly convex and uniformly smooth. From this perspective, an asymptotic analogue
of Bourgain’s metric characterization was obtained by Baudier, Kalton and Lancien in
20009.
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Theorem 2. [9] Let Y be a reflexive Banach space. Then,
Y admits an equivalent norm that is asymptotically uniformly convex and asymptoti-
cally uniformly smooth if and only if sup,en cy(TY) = 0.

The tree T¢ in Theorem 2 is the countably branching version of the binary tree By.
The discovery of Theorem 2 launched the quest for metric characterizations of asymptotic
properties of Banach spaces. It is worth pointing out that Ribe’s rigidity theorem [56]
provides a theoretical motivation to metrically characterize local properties of Banach
spaces, but no such rigidity result is known in the asymptotic setting. Nevertheless,
the asymptotic declination of Ribe program has seen some steady progress in the past
decade (see for instance [41], [19], [21], [15], [8], [17], [20], [11], [64]) with some interesting
applications to coarse geometry such as in [12] and [10].

Pisier’s influential quantitative refinement [55] of Enflo’s renorming states that a
super-reflexive Banach space X admits an equivalent norm whose modulus of uniform
convexity is of power type p for some p > 2, or equivalently as shown in [4], satisfies the
following inequality for all z,y € X and some constant K > 1.

|z +ylI” + ||z — y||?
2

1
p p
> [lall? + vl (1)

A Banach space whose norm satisfies (1) is said to be p-uniformly convez. The following
quantification of Bourgain’s metric characterization was obtained by Mendel and Naor
[45] building upon previous work of Lee, Naor, and Peres [38,39].

Theorem 3. [/5,39] A Banach space X admits an equivalent norm that is p-uniformly
convez if and only if X is Markov p-convex.

On the metric side of the equivalence in Theorem 3 is a complex inequality that
captures the geometry of trees with bounded degree. According to [39] and given p > 0,
a metric space (X,dx) is Markov p-convez if there exists a constant IT > 0 such that for
every Markov chain {W;};cz on a state space Q and every f: Q — X,

Z Z E [dx (f(W2), ég?ft(t —25)))"] <IIP ZE [dx (£ (W), f(Wt—l))p], 2)

s=0teZ teZ

where given an integer 7, {W;(7)};cz is the stochastic process which equals W; for time
t < 7 and evolves independently, with respect to the same transition probabilities, for
time ¢ > 7. The smallest constant II such that (2) holds will be denoted by II)(X).
Markov p-convexity is easily seen to be a bi-Lipschitz invariant, and quantitatively
I (X) < ey (X)IIA(Y). The discovery of the Markov convexity inequality was partially
inspired by the non-embeddability argument in Bourgain’s characterization, and it thus
naturally provides restrictions on the faithful embeddability of binary trees. Considering
the regular random walk on the binary tree Bqx, it is easy to check that HIJ)V[ (Bor) =
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21=2/P1/P and hence any bi-Lipschitz embedding of By, into a Markov p-convex metric
space incurs distortion at least Q((log k)l/ p) This lower bound extends to the purely
metric setting the lower bound obtained for p-uniformly convex spaces in [14]. Note also
that Markov p-convexity is stable under taking £,-sums of metric spaces and is preserved
under Lipschitz quotient mappings [45, Prop. 4.1].

Recall that a map f: (X,dx) — (Y,dy) is a coarse embedding if there are non-
decreasing maps p,w: [0,00) — [0, 00) and lim;_, p(t) = 0o and for all z,y € X,

pldx(z,y)) < dy(f(2), f(y)) < w(dx(z,y))-

The function p (resp. w) is usually called the compression (resp. expansion) control
function. We talk about equi-coarse embedding of a sequence of metric spaces if there is
a sequence of coarse embeddings that are controlled uniformly by given compression and
expansion functions. For graphs the expansion control function can always be assumed
to be linear and the compression rate is the best compression control function that
can be achieved. In his investigation of the compression rate of coarse embeddings of
groups, Tessera established the following restriction on the compression rate for equi-
coarse embeddings of binary trees.

Theorem 4. [62] The compression rate of any equi-coarse embedding of {By}ir>1 into a
p-uniformly convex Banach space satisfies

/&_Oo'
t
1

The proof of Theorem 4 is another variation of Bourgain’s non-embeddability argu-
ment and relies on the fact that for any p-uniformly convex Banach space X there exists
a constant C' > 0 such that for all £ > 1 and f: Bor — X, the following refinement of an
inequality implicit in [14] holds

k—1
. [ f(e,0) — f(e,0")%
ZO25<1§212113_25]Eae{f1,1}e]E(se{—1,1}2s]Ea/e{—1,1}25 Sop < CPLip(f)P.

(3)
Here, Lip(f) is the Lipschitz constant of f and {—1,1}" is the set of vertices of Box
whose height is exactly h, or in other words, the vertex set of the binary tree is Box :=
U%;;O{—l, 1} and the edge set consists of pairs of the form {e, (¢,9)} where e € {—1,1}"
for some 0 < h < 2¥ and § € {—1,1}. In the Banach space setting and thanks to
Theorem 3, Tessera’s inequality (3) is implied by Markov p-convexity. Even though
not readily apparent, inequality (3) also follows from Markov p-convexity in the purely
metric setting, and in turn the compression rate for the binary trees is also valid when the
embedding takes values into a Markov p-convex metric space. We suspect this observation
is known to experts and it is best seen when considering a deterministic inequality implied
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by Markov convexity. This fact will be properly justified in Section 7 (cf. Remark 45)
where we study certain relaxations of the Markov convexity inequality.

In this article we introduce new metric invariants, which are inspired by Markov
convexity and inequality (3), and that are crucial in resolving some problems regarding
the asymptotic geometry of Banach spaces. These new inequalities share many features
with their local cousins and capture the geometry of countably branching trees. The
difficulty in obtaining non-trivial inequalities for countably branching trees lies in the
fact that it is not clear how to make sense of the various averages over vertices when
there are infinitely many of them. The strongest asymptotic metric invariant that we
introduce in this article is the notion of umbel convezity. In the definition below, [N]S"
(resp. [N]") denotes the set of all subsets” of size at most h (resp. exactly h) which is
commonly used to code the vertex set of T}, the countably branching tree of height h.
Recall that two vertices m = (mq,ma,...,m;) and 7 = (n1,ng,...,n;) in T belong to
an edge if and only if j =i+ 1 and m1 = ny, mo = na,...,m; = n;.

Definition 5. Let p € (0,00). A metric space (X,dx) is umbel p-convex if there exists a
constant IT > 0 such that for all k > 1 and all f: [N]<2" — X,

& 22 7 dx (£(7,9), f (7, ,)"

Py — inf inf lim inf inf
s=1 2 io7 PEIN]RITI-2T Sem2®: - jo0 pem2-l 2%
(n,5)€[N]<2* (n.,m)€[N]<2*
1 &
p
<P Z sup dx (f(n1,...,ne—1), f(n1,...,ng))".
1—1 nE[N]*

(4)

The smallest constant IT such that (4) holds for all £ > 1 and all maps f: [N]Qk - X
will be denoted by II}] (X) and called the umbel p-convexity constant of X.

Umbel convexity behaves in many respects as Markov convexity does, albeit with
some significant and at times unavoidable discrepancies. This will be explained at length
throughout the sections. Our approach to obtain the umbel convexity inequality is rem-
iniscent of how Markov convexity can be derived from a certain 4-point inequality. The
terminology “umbel convexity” reflects the fact that the umbel p-convexity inequality
follows from a certain inequality for the complete bipartite graph K; ., which we view
pictorially as an umbel. See Fig. 1.

Umbel convexity plays a central role in the problem of characterizing metrically the
class of Banach spaces admitting an equivalent norm with property (5). The definition
below, due to Kutzarova [32], is equivalent to Rolewicz’s original definition [57]. A Banach

2 We will slightly abuse notation and write an element 7 € [N]S" as i = (n1,na,...,n¢) where ny <

ng < --- < ng and write concisely f(7,d) instead of the more formal expression f((n1,...,ne, 01,...,00))
whenever the last expression makes sense.
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T

w

Fig. 1. Ky ,, in the umbel position.

space (X, || - ||) has Rolewicz’s property () if for all ¢ > 0 there exists 3(t) > 0 such that
for all z € By and {zy }neny C By with inf;; ||z; — x| > t, there exists ip € N so that

<1-B(1).

0

HZ*IEZ‘
2

Moreover, X is said to have property () with power type p > 0 and constant ¢ > 0
(shortened to property (3,)) if B(t) > %

Property (3) is an asymptotic generalization of uniform convexity, but it is much
more than that. We denote by cof(X) the set of all the finite co-dimensional subspaces
of X. Recall that a Banach space X is asymptotically uniformly convex if dx(t) > 0 for
all t > 0, and asymptotically uniformly smooth if lim;_. px(t)/t = 0, where

Sx() Y inf  sup  inf |lz 4ty —1, (5)
zeX Y
Jafi=1 Y €t gy

and

_ g def .

px(t) = sup inf sup |z+ty||—1. (6)
zex Y €Ecof(X) yev
llzll=1 llyll=1

The following theorem follows from several important renorming results (in particular
from [31] and [30]) and we refer to [20] for a thorough discussion.

Theorem 6. The following classes of Banach spaces coincide:

(i) The class {(B)) of Banach spaces admitting an equivalent norm with Rolewicz’s
property ().
(it) The class ((Bp)) of Banach spaces admitting an equivalent norm with property (53,)
for some p € (1,00).
(i) The class of reflexive Banach spaces admitting an equivalent norm that is asymp-
totically uniformly convex and asymptotically uniformly smooth.
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We want to emphasize a subtle point here. Theorem 2, in combination with Theorem 6
(#it), provides a metric characterization of the class ((8)) within the class of reflexive
Banach spaces. However, Perreau [53] recently showed that supys, cs(T§) = oo where
J is James (non-reflexive) space [28]. Therefore, the condition sup,; cx(T}) = oo, does
not necessarily force X to be reflexive, and consequently it does not characterize the class
((B)). This reflexivity issue, which does not arise in the local setting, is resolved with the
help of umbel convexity.

Banach spaces with property (3,) are the prototypical spaces that are umbel p-convex
(see Corollary 13 in Section 2). The following theorem is a metric characterization of the
class ((8)) in terms of the existence of a certain Poincaré-type inequality.

Theorem A. Let X be a Banach space. Then, X admits an equivalent norm with property
(8) if and only if X is umbel p-convex for some p € (1,00).

While writing this article, we learned from Sheng Zhang [64] that he had discovered
independently a metric characterization of the class ((3)) in terms of a submetric test-
space in the sense of Ostrovskii [51]. A similar submetric test-space characterization can
be extracted with some care from the work of Dilworth, Kutzarova, and Randrianarivony
in [21] and is also a direct consequence of our work (see Corollary 19 in Section 2).

The delicate question of renorming a Banach space that is umbel p-convex will be
discussed in Section 9. Let us just mention here that there exists an example of a Banach
space constructed by Kalton in [29] that is umbel p-convex and does not admit an
equivalent norm with property (8,), but for every € > 0 admits an equivalent norm with
property (Bpe).

The question of estimating from above compression rates for equi-coarse embeddings
of the countably branching trees has remained open for a while, even for simple target

o0 n
n=1 goo

spaces such as (> ), for which the geometry of binary trees does not provide
any obstruction. The techniques in [9] and [15] provide quantitative information about
the faithful embeddability of the countably branching trees that are inherently of a
bi-Lipschitz nature, and do not provide any estimates on compression rates of coarse
embeddings. Umbel convexity can be used to resolve this problem. In fact, a significant

relaxation of the umbel convexity inequality is sufficient for this purpose.

Definition 7. Let p € (0,00). A metric space (X, dx) is said to be infrasup-umbel p-convex
if there exists a constant C' > 0 such that for all £ > 1 and all f: T, = X,

k—1 L _ . g
Z inf inf inf d(f(?’L, 2, m)y f(najvm )) < Clep(f)p
o] ne[Njs2h o2 i#jeN ! €[NJ28 =1, 25P

(78,3,m),(7,j,m’) €[N]<2F

It is plain that umbel p-convexity implies infrasup-umbel p-convexity. Compression
rate estimates can be obtained using the notion of infrasup-umbel convexity in the same
way Tessera derived Theorem 4 from inequality (3).
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Theorem B. Let p € (0,00). The compression rate of any equi-coarse embedding of
{T¢} k=1 into a metric space that is infrasup-umbel p-convex satisfies

ey e

The true gist of Theorem B lies in the large class of spaces it covers, since the infrasup-
umbel p-convexity inequality follows from a significant relaxation of the inequality that
was needed to prove umbel p-convexity. Moreover, the geometry of countably branching
trees provides embeddability obstructions for spaces such as infinite-dimensional hyper-
bolic spaces (see Corollary 23) which cannot be achieved by merely resorting to the
geometry of locally finite trees. More examples supporting these claims can be found in
Section 5. A particularly interesting class of examples are Heisenberg groups over cer-
tain infinite-dimensional Banach spaces. We refer to Section 5 for the definition of the
Heisenberg group (H(wy),de.), where d.. denotes the Carnot-Carathéodory metric, and
the important fact that (H(wy),d..) does not embed bi-Lipschitzly into a Banach space

with property (5,).

Theorem C. For every non-null, antisymmetric, and bounded bilinear form wx on X and
every p > 2, the infinite-dimensional Heisenberg group (H(wx),dee) is infrasup-umbel
p-conver whenever X has property (8p).

It is natural to ask if a stronger conclusion can be achieved in Theorem C, namely if
infrasup-umbel p-convexity can be upgraded to umbel p-convexity. We do not know if
this stronger conclusion holds, and we discuss the issue further following Problem 5.

Theorem C is in stark contrast with the situation in the local theory, as it was shown
by S. Li in [34] that the Heisenberg group (H(wgr2),d..) is not Markov p-convex for
p < 4, where wg: is the scalar cross product on R2. The reason that we can achieve
better convexity properties in the asymptotic setting is, loosely speaking, due to the
fact that the twisting factor wx(z;, ;) in the last coordinate always tends to 0 along a
subsequence (the importance of this fact is apparent in the proof of Theorem 32, from
which Theorem C follows). Therefore, as far as infrasup-umbel convexity is concerned,
the Heisenberg group H(wy) behaves the same as the abelian group X @ R (where the
second factor is equipped with a snowflaked metric m ), and thus one would expect it
to be infrasup-umbel p-convex whenever X has property (8,). Of course, for fixed vectors
x,y, the twisting factor wx(z,y) in the last coordinate cannot be ignored, resulting in a
more complex local geometry, as evidenced by the aforementioned result of Li. In fact,
as an application of his methods, it was also shown in [34] that the ball of radius n in the
integer lattice of H(wg2) has fo-distortion at least a constant multiple of® (logn)i—°®).

3 The sharp bound Q((log n)é) was proved by Lafforgue-Naor in [33].
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Our Theorem C shows that an analogous argument with infrasup-umbel convexity in
place of Markov convexity cannot be used to derive a nontrivial lower bound for the
distortion of the integer lattice of H(wy,) (where wy, is the form on ¢y @ ¢ given by
we, ((z,y), (2',y)) == &(z,y’) — 1(2/,y)) into a Banach space with property (82) (such
as ). As far as we can tell, it is plausible that the integer lattice of H(wy,) does
admit a bi-Lipschitz embedding into some Banach space with property (82). On the
other hand, Theorem C gives sharp distortion bounds of countably branching trees into
H(wy, ), while in [34] it is shown that Markov convexity does not give sharp distortion
bounds of the binary trees into H(wy,). Later, we will introduce a local analogue of
infrasup-umbel p-convexity, called infrasup-fork p-convexity. If we had a local analogue
of Theorem C stating that H(wy,) is infrasup-fork 2-convex, then this would recover the
sharp distortion bounds of the binary trees into H(wy, ). However, we do not know if this
is true (see Problem 7 and the discussion surrounding it).

Infrasup-umbel convexity can also be used to provide alternate and unified proofs
of generalizations of a number of results that can be found in [41], [19], [21], and [15].
These applications can mostly be found in Section 3 and 4 where a quantitative analysis
of embeddings of countably branching trees and the stability of umbel convexity and
infrasup umbel convexity under nonlinear quotients are carried out.

As already alluded to, the Markov p-convexity inequality is elegantly shown in [45] to
follow from a certain iteration of the following inequality:

-p P -p P P

2 dxéw,w) + 2 dxéw,y) + d)((i»”;é;l/; < %dx(z,w)p + idx(z,x)p + idx(zvy)y (7)

A metric space (X,dx) is said to satisfy the p-fork inequality with constant K > 0 if
(7) holds for all w,x,y,z € X.

In Section 6, we prove a parallelogram 2p-convexity inequality for Heisenberg groups
over p-uniformly convex Banach spaces. This useful inequality - first investigated for
finite-dimensional Carnot groups by the second author (|26, Lemma 4.17]) - is shown to
imply the 2p-fork inequality (7) and 2p-short diagonals inequality (49).

In light of our work on metric invariants related to countably branching trees, we study
in Section 7 certain relaxations of the p-fork inequality (7) and the related full-blown
deterministic metric invariants that can be derived from those. As previously mentioned,
we introduce the metric invariant infrasup-fork p-convexity - a natural local analogue
to infrasup-umbel p-convexity - that is sufficient to derive the conclusion of Theorem 4.
The advantage to work with this invariant, which is a significant relaxation of Tessera’s
inequality (3), is that it covers a large class of examples.

Finally, in Section 8, we borrow an idea from Lebedeva and Petrunin [40] to show that
the 2-fork inequality with constant K = 1 implies non-positive curvature. Interestingly,
it was shown by Austin and Naor in [1] that non-negative curvature implies the 2-fork
inequality with constant K = 1. The following characterization of non-negative curvature
follows by combining these two observations.
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Theorem D. Let (X,dx) be a geodesic metric space. Then X has non-negative curvature
if and only if X satisfies the 2-fork inequality with constant K = 1.

For the convenience of the reader, we also include in Appendix A a table summarizing
the main inequalities introduced or recalled in the paper.

Acknowledgments. We would like to thank Alexandros Eskenazis, Manor Mendel, and
Assaf Naor for sharing with us their forthcoming work [22], and Manor Mendel for his
generous and enlightening feedback on a first draft of this work that in particular led to
Proposition 21.

2. Property (83) with power type p implies umbel p-convexity

The main goal of this section is to provide a proof of Theorem A. This will be done
via several steps interesting in their own right. First we prove some preparatory lemmas
that will be used to derive a homogeneous inequality that is valid in any Banach space
with property (8,). The first lemma is essentially technical.

Lemma 8. Let (X, || - ||) be a Banach space. For all §,e > 0, v,w € X, and V,W > € with
ol <V, [lwl| < W, and 1V +1W < 1, if W+ﬁ“ < 1-36, then || Lo+ Jw| < 1-ed.

Proof. Rescaling if needed, we may assume that V+W = 2 and without loss of generality
57 + 5w H < 1 — 4. Multiplying each side by VW

that W > 1. By assumption we have ‘
yields H%v + %wH < (1 —0)VW. Then we have

5+ 31=10- )0+ 5 (5o + 3]

() s o
<W-14+(1-0)V
=V+W)-1-V4

<1-¢6. O

The second lemma is a simple, but crucial, refinement of property (3,).

Lemma 9. If (X, ||-]|) has property (8p) with p > 0 and constant ¢ > 0 then for all x € By
and {Zn}neN C By,

Tr—z 1
fH "l <1 -2 inf liminf ||z — 2. 8
Y e Al Ca 1 ®
Proof. Assume, as we may, that inf,cn liminf,en [|2; — 2;|| =t > 0 and hence for all

i € N we have liminf; ,o ||z; — 2;|| > t. Let ¢ > 0 be arbitrary. A diagonal extraction



F.P. Baudier, C. Gartland / Advances in Mathematics 438 (2024) 109461 11

argument gives a subsequence {2, };>1 such that for all 7, j € N it holds [|z; — 2y, || =
(1 — g)t. Therefore, there exists an infinite subset M o {ni1,na,...} of N such that
inf;zjem ||zi—2;] = (1—¢)t. Since by assumption () > %, it follows from the definition
of the (5)-modulus that there exists m € M such that
(1—e)Pt? 1 (1—¢)P

ZmH <1—-——=1—--——"—inf liminf ||z — z|".
C C i€EN j—oo

1=

Since € > 0 was arbitrary, the conclusion holds. O

Lemma 8 and Lemma 9 are now used to prove a homogeneous inequality in Banach
spaces with property (5,) for p > 1.

Lemma 10. If p € (1,00) and (X, | - ||) has property (8,) with constant ¢, then for all
w,z € X and {xp}nen C X

1 1 1 1
— f _ p 3 f 1 1 f . |P < _ _ p _ _ p 9
2% neN o= 2all” + K ieN jeN' s = 2”w i 2 §2§ e =] )

where K is the least solution in [2¢c,0) to the inequality

1 (2 2:\"\ P\ opt1
2—p<§+(2—<§)> + o<1 (10)

Proof. Before we begin the proof, note that inequality (10) has a solution K € [2¢, 00)

because p > 1.

Let w,z € X and {,}neny C X. Since the distance induced by the norm of X
is translation invariant, we may assume z = 0. We may also assume without loss of
generality that sup,cy ||Zn|| < o0, and by scale invariance of (9) we can assume that
Llw||P + 3 sup,.en [|#n]|P < 1. Thus equation (9) reduces to

P
— 1
inf | =" + = inf liminf |z; — z,|” < 1.
neN 2 ieN j—oo
If inf;en liminf; o ||2; — 2;|| = 0, the above inequality holds trivially by the triangle

inequality and convexity, so we may assume inf;cn liminf; o ||z; — ;]| > 0.
Set W |lw] and X o SUP,en [|[Znl], so that

1 1 1 1 p
WX <[ =wP 4 ZxP <1
5" T3 (2 *3 >

In particular remember that max{W? X?P} < 2. Set ¢ def %, and note that ¢ € (0,1].

We consider separately the two cases min{W, X} > ¢ and min{W, X} <e.
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Assume first that min{W, X} > ¢ holds. Lemma 9 implies

Tn

nGN ’ 2X

<1-- 1nf lim inf H H
c ieN j—oo

1
<1-— X7 zléllgl hjrglnf llz; — x;]|”

1
< 1-— — inf liminf ||z; — z;||".
2c ieN j—oo

Let n € (0,1) be arbitrary. Then by the above inequality and our assumption that
inf;en liminf; o ||2; — 25| > 0, we may choose m € N such that

|5 5%l <1- % o Inf liminf [l — "

This inequality shows that the hypotheses of Lemma 8 are fulfilled, and thus by the
definition of €, the fact that H e

< 1, and Lemma 8 we get

2 2c

p
. w—x 1—-n
DTz R nftmin e ol
_ 1-—
: Hw = H + (L= me inf lim inf ||lz; — z;{|” <1
i€EN j—oo

Since n € (0,1) was arbitrary, we achieve the required inequality.
Now assume we are in the second case min{W, X} < . We just treat the subcase
W < ¢; the other subcase follows from nearly the same argument. We have

, —z P 1 w4+ X\ 1
R +E3§£%ﬂi£f||mi—”ﬁj|"’<< 5 )+E(2X)p
9 —wpr)l/p\? 1
<<W+( 2W) ) + Xy
e+ (2—er)/p\" 1
<[ —=7 —opt+l
( 2 tx
1 [ 2¢ 2:\"\ /P\"  optt
== 2=
(et (- (%)) ) %
<1

where the last inequality is the definition of K, and the second-to-last inequality follows
from the fact that X? < 2, W < ¢, and the fact that ¢ — ¢ 4 (2 — t?)1/? is increasing on
[0,1]. O
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Since inequality (9) only involves the norm of differences of vectors, it will be conve-
nient to introduce the following definition and terminology.

Definition 11. A metric space (X,dx) is said to satisfy the p-umbel inequality with con-
stant K € (0, 00) if for all w, z € X and {x;};eny € X we have

1 1 1 1
% Zlélf dx (w, z;)P + Xr 11?15 hjrgg.}f dx (zi, z)P < de(zgw)p + 3 féllg dx(z, ;)P (11)

The p-umbel inequality is a strengthening of the triangle inequality for sequences
{z;}ien that do not admit any Cauchy subsequence. The next theorem is the main
result of this section.

Theorem 12. Let p € (0,00). If (X,dx) satisfies the p-umbel inequality with constant
K >0, then (X,dx) is umbel p-convez. Moreover, I1;(X) < max{1, 2%_1} ‘K.

Proof. We will show a bit more than what is needed for Theorem 12, and in this proof we
allow dx to be a quasi-metric and not necessarily a genuine metric, 7.e., that instead of
the triangle inequality we assume that there exists a constant ¢ > 1 such that dx(z,y) <

c(dx(x, z) +dx(z,y)) for all z,y, z € X. We will show by induction on k that for all maps
f:[N]$2" 5 Xandallr €N,

k1 ok—1—s =

1 1 g 7). F(i .5 v
Z E—1— Z inf inf lim inf inf X(f(" €), f(n,j ))
Kp - 2 s e ﬁE[N]tzeﬁlfzs £€[N]2°% . j—o0 SeN|2 -1, 9sp
- (n.2)eN] <2 (7,,6) €[N]<2*
d 7))P
+ inf X(f(@),kf(’f', n))
ne[Nj2F-1: 2kp
(r,n)€[N]2*

< max{1,2'7P} - cp Z sup dx nh...,ng,l),f(nl,...,ng))p.
1—1 REN]*

The conclusion of the theorem follows by discarding the additional non-negative term
which is solely needed for the induction proof.
For the base case k = 1, the inequality reduces to

inf dX(f(®)7 f(?", n))p

neN 2p
n>r

neN (n1,m2)€[N]?

<max{1,21-p}§<supdx<f<®>,f<n>>p+ sup dx<f<n1>,f<n1,n2>>p>.

Observing that this inequality is an immediate consequence of the quasi-triangle and
Holder inequalities, the base case is settled. For convenience, we assume throughout the
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remainder of the proof that p > 1, so that max{1,2'~?} = 1. The proof carries through
line-by-line in the case p < 1, but with an additional factor of 2!~? on the right-hand

side.
We now proceed with the inductive step and fix i € N and f: [N}Qk+1 — X. Given
e >0, we pick m € [N]@k_l such that
d i, m))P d i, 1))P
KO SERY e SUOLIGRY
A ne[NJzF-1 2kp
and for each r € N, choose u(r) € [N]Qk_l so that
o S » o W
dx(f(i,m), f(i,m,r,u(r))) < inf dx(f(i,m), f(i,m,r,n)) +e.
2kp ne[Nj2zF-1 2kp

In order to simplify the (otherwise awkward and tedious) notation we have implicitly
assumed above that m, v, and @(r) are such that i <my; < - <my <r <w(r) <--- <
uyp (1), or in other words that (¢,m,r, u(r)) truly belongs to [N]QkH. We will follow this
notational convention here and in the ensuing proofs.

By the induction hypothesis applied to the restriction of f to [N]S2 (and with r = 7)
we get

1 kz‘:l 1 Qkijs dx (f(7,€), f(n, ], 6))P

L L nf of lLiminf  inf
Kr p 2k—1-s et ﬁe[N]ltI’.’lS"'l—?S Eel[IIiIPS ljrggol 56[11\%25*1 2sp
k
NP V(D) R
+ inf < o0 sup dxfnlw"vnf—laf(nlw"anf P,
I g8 2 b (S ) )

(12)

On the other hand, the induction hypothesis applied to g(n) def f((i,m),n) where n €

[N]Qk gives

E—1 ok—1—s _

1 1 . . .. . dX(g(ﬁaé)7g(ﬁaja5))p
— —_ f f 1 f f
R LT X e ol B T
k
o dx(g(0), 9P _ e <
+ inf /e sup dx(g(n1,...,ne-1),9(n1,...,n¢))".
Re[N]2F -1 2kp 2k ;ﬁe[N]Z

Observe first that, for any 1 < ¢ < 2F,

sup dx(g(nh ceey nf*l)ag(nh e 7n€))p
ne[N]¢

= Sup dx(f(i7m7n17"'7n€—1)5f(i5m7n17'"7nf))p
ne[N]¢
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< sup dX(f(nlv'~'7n2k+l—1)7f(n17"'7n2k+£))p7
ne[NJ2F+e

since we are taking the supremum over the set of all edges between level 2¥ 4+ ¢ — 1 and
level 2% + ¢ instead of a subset of it. Also, for each s =1,...,k — 1,

gk—1—s

1 n,€), g(n, j, 9))"
Py — Z inf inf liminf inf dx(g(n. ). 9(, ), 9))
hTI7s L peNpee -2t 2€N]P* =00 fe(NJ2 -1 2P
1 I dx (f(i,m, 7, 8), f(i, 7, 7,5, 8))P
- Z inf inf hmlnff inf X(f(l7m7n7€)af(lamana]7 ))
2617 meNptti-2t se[NP Go00 elNJ 20
1 gk—1—s J o ~ S )
D Sy Z inf inf liminf inf x(f(,), f(7,5,9)) ,
28TIT o peNpER e tlo2s 2€[NJ2T G o0 GelN] 2¢p

since (¢, m,n) € [N}2k+t25+1_25 for all 7 € [N]i2" 2"

Therefore, it follows from the two relaxations above (and a reindexing) that

k—1 ok—s

1 1 dx (f(7,), f(7, j,0))”
_Z—k - Z inf inf liminf inf x(£(n,€), /(1. ,9))
Kp = Qk—1=s NN 'FLE[N]t2S+1725 £€[N]2° j—oo §e[N]2°-1 9sp
L L 2k}+1
A d ,m), ’L,T)’l,?",?’l
b g UM A S TR R
ne[NJ2" - e 2k 41

(13)

Taking the supremum over r in (13) and then averaging the resulting inequality with
(12) yields

2% <1 inf  dx(f(0), f(i,n))? + 1 sup inf  dx(f(i,m), f(i,m, 7, n))p>

2 meNpRE-1 reN ne[N]2F -1
1 e dx(f(,9), £(0,5,6))
R 2 2 it A T int it 2 (1)
p 2
< ;ﬁ Z sup dx(f(ny,...,ne—1), f(n1,...,ne))P.
(=1 n€[NJ*

If we let w % £(0), 2 wf f(i,m), and z, dof f@i,m,r,u(r)), it follows from how m and

u(r) were chosen, that

1 1 1
(= Py P
St <2dx(w,z) + 2115 dx(z, x,) })
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1 1 1
< Tp a lnf dX(f(®)7 f(l7h>)p +5 sup lnf dX(f(ZJ ’ﬁ’L)7 f(z}ﬁz,r, ﬁ))p +e
2 2 Re[N]2F -1 2 eN Re[N]2F -1
(15)
The p-umbel inequality combined with (14) and (15) gives
1 P P
st0r 0 dx(w,20)? + 7o o tnf liminf du(er, )
ok—s _
1 dX(f(n75) f(n J75))p
% Z = 2 i e o B T ot 3o
(16)
ok+1
c
S ok+1 Z _SUP dX(f(nla anlfl) f(nla anf))p_'_s
1—1 nE[N]¢
Now observe that
inf du(w,2,)? = inf de(F(0), f(im, @) > inf_ dx(f(0), (5, 7))",
reN reN ﬁG[N]2k+171
and
rlglgl lznig}fdx(xr,xq)p = Tlgé ligglfdx(f(i,m,r,a(r)),f(i,m,q,ﬂ(q)))p
> inf liminf  inf  dx(f(i,m,r,a(r)), f(i,m,q,5))?
r€EN g—oo jo[N]2k-1
> inf liminf inf  dx(f(i,m, &), f(i,7m,q,0))P
ge[N]2F 470 §e[NJ2k-1
> inf inf liminf inf  dx(f(n, &), f(R,q,0))F.
ne[N]2* zg[N]2F 4700 Fe[NJ2k-1
Plugging in the two relaxed inequalities above in (16) we obtain
 7))P 1 5. E 7.q.0))P
e SUOIGRY 1y KU 0ed)
ﬁE[N]szrl 2( +1)p Kpr ﬁE[NPk ée[N]Qk q—o0 56[N]2k,1 2kp
k—1 ok—s _
d 8))P
-|-i 1 inf inf liminf inf x(f(n.€), /(1. ,9))
et 2k=s = ne[N]r2* T -2% E€[N]2* j—oo Fe[N]2° -1 2P
2k+1
2k+1 Z sup dx(f(ni,...,ne—1), f(n1,...,n0))? + ¢,
—1 n€[N]*

and hence
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k ok—s o o
! 1 d P
5 D 5 inf inf liminf  nf XU /(7,4,0))
KP = 2878 = pe[nprasti-2 g€[N]2* j—00 Ge[N]>" 2P
dx (f(0). /i,
. X 7 ’I’L v
+ﬁ€[§§k+l 2(k+1)p 2k+1 Z Sulg]edx (n1, . sne—1), f(na, ... )P + €.

Since ¢ is arbitrary the induction step is completed. O
The next corollary is an immediate consequence of Lemma 10 and Theorem 12.
Corollary 13. A Banach space with property (5,) for some p € (1,00) is umbel p-convez.

Recall that it follows from [9] that if a Banach space X is reflexive and does not contain
equi-bi-Lipschitz copies of the countably branching trees, then X admits an equivalent
norm with property (8). Therefore, to complete the proof of Theorem A, it remains to
show that a Banach space that is umbel p-convex for some p € (1,00) satisfies those
requirements.

We will first show that reflexivity is implied by umbel p-convexity. The umbel p-
convexity inequality (4) is rather complex, and for many applications, such as the
reflexivity problem at stake, certain simpler relaxed inequalities will suffice. For example,
the following relaxation of the umbel p-convexity inequality will be sufficient to ensure
reflexivity:

There exists C' > 0 such that for all £ > 1 and all f: T%, = ([N}Qk,dT) — X,

k—1 _ = _ .
d b P
inf inf  liminf  inf (£(n,9), f(n, 7)) < CPLip(f)P.
‘5 AEIN|<E-20 seNi2’. D00 pe(Nj2il. 2%
- (7,8)€[N]<2" (7,4,7) €[N]<2F

(17)

Remark 14. Consider the following relaxation of the p-umbel inequality:
For all w,z € X and {z }nen C X

1 inf dx(w,z,)? + L inf lim inf dx (x;, z;)? < max{dx(w, 2)?, sup dx(x,, 2)P}. (18)

2P neN P {eN jeN neN
Using similar and slightly simpler arguments to those in the proof of Lemma 9, we could
show that if p € (0,00) and (X, || - ||) has property (53,), then the metric induced by the
norm on X satisfies inequality (18). Moreover, the relaxation of the umbel p-convexity
inequality (17) can then be derived from the relaxation of the p-umbel inequality in a
similar way umbel p-convexity was derived from the p-umbel inequality (and the proof
also works for quasi-metrics).

The following lemma can be deduced from one of James’ characterization of reflexivity,
and we refer to [21, Lemma 3.0.1] for its proof. Recall that [N]<“ denotes the set of all
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finite subset of N, and ([N]<“,dt) is the countably branching tree of infinite height
equipped with the tree metric.

Lemma 15. If X is non-reflexive, then for every 8 € (0,1), there exists a 1-Lipschitz

map g: ([N]<¥,dt) — X such that for all u = (nq,...,Ns,Ns41,...,Ns1k) and U =
(N1, ... s, ma,...,mg) where ny < -+ <ng < Ngy1 < -+ < Ngpp < Mg < -+ < My,
_ _ 0,  _ _
lg(@) = g(@)llx > gdv(a,) (19)

Remark 16. In fact, the conclusion of Lemma 15 holds under the weaker assumption that
the Banach space does not have the alternating Banach-Saks property (cf. [5]).

Proposition 17. Let (X, || - ||) be a Banach space. If X supports the inequality (17) for
some p € (0,00), then X is reflexive. In particular, if X is umbel p-convex for some
p € (0,00), then X is reflexive.

Proof. Assume that X supports the inequality (17) for some p € (0,00) but is not
reflexive. Consider the restriction to [N]Qk of the map ¢ from Lemma 15. Then, for
all 7 € [NJ<2-2 5§ = (§;,...,05:) € [N]?, j € N and 7 € [N]2~! such that
(1,0), (1, 4,77) € [N]<2", it follows from (19) that if j > d2-, then [|g(n, 8) — g (7, j, )% =
g—ZQ(s“)p. Therefore,

k-1 S o
75 - 1 J 5 20\P

S i inf liminf e 9O ZIOI M 1)(—) :

T ReINJ<2F-20 GeNi2T.  joo0 geNj2il 2sp

) (n,8)€[N]<2" (n.,m)€[N]<2"

and since ¢ is 1-Lipschitz, inequality (17) gives C? > (k — 1)(2—39)p for all k > 1; a
contradiction. 0O

An argument similar to the proof of Proposition 17 show that there is no equi-bi-
Lipschitz embeddings of the countably branching trees of finite but arbitrarily large
height, into a metric space that supports the inequality (17) for some p € (0,00). The
simple argument is deferred to Proposition 20 in the next section. Theorem A can be
derived from Theorem 6 and the following corollary which follows from the above dis-
cussion.

Corollary 18. Let X be a Banach space. The following assertions are equivalent.

(1) X admits an equivalent norm with property (8p) for some p € (1,00).

(2) X is umbel p-convex for some p € (1,00).

(3) X supports the relaxation of the umbel p-convexity inequality (17) for some p €
(1,00).
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Following Ostrovskii [51], we say that a class € of Banach spaces admits a submetric
test-space characterization if there exists a metric space X and a marked subset S C XxX
such that Y ¢ € if and only if X admits a partial bi-Lipschitz embedding into Y, i.e.
there exists a constant D > 1 such that for all (z,y) € S, dx(z,y) < ||f(z) — f(¥)|ly <
Ddx (z,y).

Below is the submetric test-space characterization of the class ((8)) mentioned in the
introduction.

Corollary 19. A Banach space X does not admit an equivalent norm with property ()
if and only if there exist a constant A > 0 and a 1-Lipschitz map g: ([N]<¢,dt) — X
such that for allu = (n1,..., Mg, Nga1,-.-,Nstk) and 0= (Ny,...,Ng,M1,...,My) where
Ny < - <Ng < N1 <00 < Ngpp <My < -0 - < Mg,

lo(a) — 9(0)lx > Jydr(a, 7).

Proof. Assume that X does not admit an equivalent norm with property (5). If X is
reflexive, then by [9] it contains a bi-Lipschitz embedding of ([N]<“,dt), the countably
branching tree of infinite height, and the condition is clearly satisfied. If X is not reflexive,
then we can take the map from Lemma 15. Assuming now that X admits an equivalent
norm with property (3), then we can assume that X supports the inequality (17) for
some p € (1,00). It remains to observe that the proof of Proposition 17 shows that
there cannot exist an X-valued map satisfying the conditions listed in the statement of
Corollary 19. O

3. Distortion and compression rate of embeddings of countably branching trees

As we hinted at in the previous section, umbel convexity and its relaxation (17) are
obstructions to the faithful embeddability of the countably branching tree. In fact, if we
are only concerned with embeddability obstructions, a further relaxation of (17), namely
the infrasup-umbel p-convexity inequality as defined in Definition 7, is sufficient. Recall
that (X, dx) is infrasup-umbel p-convex if there exists a constant C' > 0 such that for all
k>1andall f: TS, — X,

k—1 _ . _ .

S if i inf (71 ) FE G ON ) o
s=1 ne[N]<2k—2% i#jeN m,m/e[N]2°—1. 2°p h .
= (7,3,m),(7,j,m’) €[N]<2F

(20)

We will denote by II:*“(X) the least constant for which (20) holds for all k£ > 1 and all
maps f: T, — X.

Consider the following further relaxation of the p-umbel inequality, which we will refer
to as the infrasup p-umbel inequality. For all w, z € X and {z,}n,en C X,
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1 1
% nlrelg dx(w, zp)P + XP 1;2?& dx (i, ;)P < max{dx(w, z)p,igg dx(zn, 2)P}. (21)

If p € [1,00) and (X, | - ||) has property (5p), then the metric induced by the norm on X
satisfies inequality (21). Moreover, infrasup-umbel p-convexity can be derived from the
infrasup p-umbel inequality (here as well the proof works for quasi-metrics).

It is easily verified that the inequalities (4), (17), and (20) generate metric invariants,
in the sense that IT,(X) < ey (X)II,(Y) (and similarly for the other two inequalities). Note
also that II**(X) < IT%(X). The terminology “infrasup-umbel convexity” is reminiscent
of the terminology infratype and sup-cotype (see [54], [60], [61]). The notion of infratype
is obtained by relaxing the Rademacher type inequality by taking a minimum (instead
of an average) over sign choices. Similarly for the notion of sup-cotype a maximum over
sign choices replaces the traditional average. In our case, we replace the averages over
levels by an infimum on the left-hand side and by a supremum on the right-hand side of
(4). First of all, it is obvious that infrasup-umbel p-convexity p implies infrasup-umbel g-
convexity for every ¢ > p. Also, if the £,-sum in (21) is replaced with an £o-sum then the
resulting inequality follows from the triangle inequality and holds in any metric space.
We will then say that X has non-trivial infrasup-umbel convezity if it has infrasup-umbel
convexity p for some p < co.

We now record a lower bound on the infrasup-umbel convexity p constant and on the
distortion of countably branching trees.

Proposition 20. For all p € (0,00), H;SU(TQIC) > 2(k — 1)Y?, and hence Cy(Tk) =
Q((log k)l/p) for every infrasup-umbel p-convex metric space (Y,dy).

Proof. It suffices to consider f to be the identity map on the tree. For all nn € [N]@k’zs,
i#j €N, and §,7 € [N]?" =1 it holds that dt((n,i,6), (7, 5,7))? = 2t and thus

k—1 _ .= .

inf inf inf dY(f(nﬂ l7 6)7 f(n7j7 n))p > (k _ 1)217
7 ng[N]<2k -2 i#jeN 5.me[N]2°—1; 28P = )
= (71,3,), (7, 7) €[N] <2¥

which in turn implies that IT*(Tor) > 2(k — 1)1/? since obviously Lip(f) < 1. O

The lower bound above is known to be tight since ¢, has infrasup-umbel p-convex (it
has property (8,)) and it follows from Bourgain’s tree embedding [14] (see also [42] or
[15]) that c,, (T¢) = O((log k)/P).

There are several instances where the saturation of a Poincaré-type inequality asso-
ciated with the geometry of a graph implies the containment of a hardly distorted copy
of the graph, most notably in the metric dichotomies regarding [BMW-metric type |
Hamming cubes] in [13], [metric cotype | xo-discrete tori] in [44], and [diamond convex-
ity | diamond graphs] in [22]. We refer to [43] for a discussion of metric dichotomies.
Even though in general there is no metric dichotomy (see [45]) for tree metrics, it is
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likely possible that the saturation of deterministic Poincaré-type inequalities associated
to binary trees (e.g. the binary tree convexity inequality in [35, page 382]) induces em-
beddings with small distortion. In the setting of min/max Poincaré-type inequalities (as
opposed to standard Poincaré-type inequalities which typically involve averages), the
saturation argument is rather elementary to implement. For this purpose, observe that
if we denote by H;fz(X) the least constant C' with which the infrasup-umbel p inequality
(20) holds for all maps f: T, — X, then it follows from the triangle inequality that
ep(X) < 2(k — 1)Y/P. If for some map f: T, — X, the infrasup-umbel p inequality is
saturated, then X will contain a barely distorted copy of T%,.

Proposition 21. Let p € (0,00). If H;S’}C‘(X) =2(k — 1)/ then cx (T‘é’k) =1.

Proof. Since we are assuming that TI*}(X) = 2(k — 1)!/7, given any v > 0 there is a
map f: T3, — X, such that

k—1 _ .= _ .
inf inf inf dX(f(n77’75)7f(na.]a77))p
T neNj<2F -2t i EN el 20p
(R,1,8),(n,j,m) € [N] <2
> (1 w)(k — 1)2"Lip()". (22)

For s € {1,....k—1}, i1 # j € N, n € [N]Qk_T, and 6,7 € [N]>~! such that
(n,1,0), (7, 4,7) € [N]Qk, it follows from the triangle inequality that

dx(f(ﬁ,i,cl)s,pf(m,ﬁ))p < 2°Lip(f)”. (23)

Therefore,

dx (f(n,4,0), f(n,4,7))"
25p

> (1 —v(k = 1))2°Lip(f)". (24)

Since (1—x)'/? > 1—cx when x € (0,1) (take c = 1/pif1/p > land ¢ = 1if 1/p € (0, 1)),
we have

dx(f(n,1,0), f(7,5,1m)) = (1 = ev(k = 1)2" " Lip(f). (25)

The combination of (23) and (25) gives that f is a scaled-isometry (up to some small
error) for pairs of vertices with equal height, i.e. of the form (7, i,6), (n,,7) € [N}@k
where i # j. i € [N]S2=2" and 6,77 € [N]2~! for some s € {1,...,k — 1}. More
precisely, for such pairs of vertices we have dt((n,4,4), (7,5,7)) = 2°*! and

2 Lip(f) — ev(k — 1)2Lip(f) < dx(f(n,4,0), f(R, 4, 7)) < 2°T'Lip(f). (26)
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root

Fig. 2. Fork configuration.

It remains to estimate from below the distances between the images of an arbitrary pair
of vertices. Let u # v € T%, and assume without loss of generality that we are in the
following fork configuration given in Fig. 2.

In the figure, ¥ is the highest common ancestor of u,v, and w,x are chosen so that
dy(w,y) = d71(Z, y) and both are even. We allow the possibility that g is the root, y = v,
or w = u. We have

dx(f (), £(9))

> d(£(), £(2)) — dx (@), F(@)) — dx(f (D), F(2))

2 dr(@, 2)Lin(f) — vk — 1)2VLip(f) — dr(@, @)Lip(f) — dr (5, £)Lip()
= dr (@, 0)Lip(f) — ev(k — 1)2"Lip(f)
> dr (@, 0)Lip(f)(1 — ev(k — 1)2%).

Consequently, the distortion of f is at most 5& Which can be made as close to

1
1—cv(k—1)
1 as we wished by choosing v sufficiently small. O

The notion of infrasup-umbel convexity is not a coarse invariant, e.g. it was shown
in [12] that the countably branching tree of infinite height embeds coarsely into every
infinite-dimensional Banach space. However, it is a strong enough strengthening of the
triangle inequality which provides estimates on the compression rate of coarse embed-
dings of countably branching trees. Having established that there are spaces which have
non-trivial infrasup-umbel convexity, we can now derive Theorem 22 essentially in the
same way Tessera derived Theorem 4 from inequality (3).

Theorem 22. Let p € (0,00) and assume that there are non-decreasing maps
pyw: [0,00) = [0,00) and for all k =1 a map fr: Tor = Y such that for all z,y € Tor,

pldr(z,y)) < dy(fi(2), fx(y)) < wldr(z,y)).

Then,
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oo
p(t pdt 21,
T ()P (1)P.
1/ t I (Y)P(1)

In particular, the compression rate of any equi-coarse embedding of {T}m>1 into an
infrasup-umbel p-convex metric space satisfies

/(@)p% < 00. (27)

Proof. Assume that (Y, dy) infrasup-umbel p-convex and let C' = IT}**(Y). Then,

k—1

il o 7. i.7))P
Z inf inf inf dY(fk(naZa6)7fk(n7.]an)) >
 ReNJ<2k -2 i£jEN  saem -1 2%
(7,1,8), (7., ) E[N] <2*
k—1 N k—1
d 5 P 2(s+1)yp
1nf mf mf p( T((TL?Z’ )7(”3]777))) 2 Zp( ) ,
 Re[NJ<2F—2* i£jEN  saem -1 2°p = 2
(2,3,8),(7,5,7) €[N] <2
and hence it follows from (20) and the upper coarse inequality that
k—1
29)p
PP cruy(1y.
A
s=1
But,
2° p 2° p (s-1)
£y dt t 2-(s=Dp _g=sp  2p _ 1 p(25)P
/p() i (23)17/ T = (2S>p — p( ) ,
Pt tpt P P 2sp
2s—1 2s—1
and hence
21\: 1
rde 21 L p(2° —1
/ tp+1 dt Z / p Z 2sp S P Cruw(l)f <oo. O

1

It is well known that Banach spaces of the form (3", %), where p € (1,00)
and {F,.}n>1 is a sequence of finite-dimensional spaces, have property (5,) (see [19,
Proposition 5.1]), and thus they are infrasup-umbel p-convex and Theorem 22 applies.
No bounds such as (27) were previously known for the countably branching trees, even
for those simple Banach spaces.

An interesting application to hyperbolic geometry is the following. It is well known
that the infinite binary tree admits a bi-Lipschitz embedding into the hyperbolic plane
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H? (an almost isometric embedding of every finite weighted tree can be found in [58]).
It follows from [6, Theorem 1.1 (ii)] that T admits a bi-Lipschitz embedding into
the hyperbolic space H* of countably infinite dimension. The importance of studying
infinite-dimensional hyperbolic spaces was put forth by Gromov in [27, Section 6]. The
geometry of binary trees, via either Markov convexity or Bourgain’s metric characteriza-
tion, can be used to show that cg, (H*®) > ¢, (H?) = oco. Since (3, {%), contains a
bi-Lipschitz copy of By, the geometry of binary trees does not provide any obstruction
in such spaces. Nevertheless, resorting to the geometry of countably branching trees we
can conclude that cy (H*) = oo when Y is any Banach space of the form (377, %)y, ,
where p € (1,00). Similar arguments give restrictions on the coarse compression rate for
the infinite-dimensional hyperbolic space.

Corollary 23. Let H*® be the infinite-dimensional hyperbolic space and Y be an infrasup-
umbel p-convex metric space with p € (0,00). Then, the compression rate of any coarse
embedding of H*>® into Y satisfies

[yt o

4 4

In particular, cy (Hoo) = 00.

The tightness of Theorem 22 follows from [62, Theorem 7.3]. It turns out that Bour-
gain’s tree embedding, which takes value into /£,-spaces, can be extended to target
spaces containing ¢, in some asymptotic fashion. It is rather straightforward to show
that cy(TY) = O((log E)'/P) if Y has an £,-spreading model generated by a weakly-null
sequence. To show that the same bound holds for the larger class of Banach spaces ad-
mitting an £,-asymptotic model generated by a weakly-null array requires a bit more care
and a recent observation from [11]. Our embedding is an adjustment of Bourgain’s tree
embedding, but in this context new complications arise when estimating the co-Lipschitz
constant.

We refer to [10] for a discussion of the relationship between spreading models,
asymptotic models, and asymptotic structure. Here it suffices to say that Y has an
{,-asymptotic model generated by a weakly-null array if there exists a normalized weakly-
null array (y@ : 4,j€N) in Y such that for all K € N and § > 0, we may pass to
appropriate subsequences of the array so that for any k < j; < -+ < ji and any
ai,...,ax in [—1,1] we have

<. (28)

k ) k 1
I ot - (Sr)’
1=1 =1

The extreme cases in the proposition below extend prior results obtained in [12] for

spreading models.
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Proposition 24. If Y has an {y-asymptotic model generated by a weakly-null array for
some p € (1,00), then

cy(T¢) = O((1log )+ ).

If Y has an {1-asymptotic model or a co-asymptotic model generated by a weakly-null
array then supyey cy (TY) < oo.

Proof. Let k£ > 1 and fix a compatible bijection ®: [N|S¥ — {2k,2k + 1,...}, meaning

®((ny,m2,...,m¢)) < ®((n1,n2,...,n0,n011)) for all (ny,na,...,ne,ne1) € [N]JSF. In
addition to (28) and by applying [11, Lemma 3.8], we may also assume that for any
i1,...,09k in {1,..., k} and any pairwise different [, ..., ls; in N, the sequence (y (j ))3’“ 1

is (1 + §)-suppression unconditional for § > 0 arbitrarily small. Define a Bourgain-style
map f: ([N]SF dt) = Y by

J
f(’rLl,...,nj) Z(]_Z+1) yr(ij()nl Sng)?
=0

(@)
<I>(n1,...,
n,m € [N]SF such that 7 = (4,n1,...,n;) and m = (4, m1,...,my) for some u € [N]*
with s <k — j and j > h. Then,

where % +% =1, and where it is understood that for ¢ = 0, y ne) = ygg@). Consider

1f(n) = F(m)lly

® . . 1 . 1 7
:HZ((ery—Hl)q —(s-l—h—z—i—l)q)yc(bgul -
1=0

(&2

h

1
S (s+i—(s+i)+ 1) Yotamm ~ 20 (3R = (D) +1) " T, omi) ||y
i=1 =1

Bi Yi

J
(s-+i) (s+4)
H Zazy‘b(ul, UG ‘ + H Zﬁiy(b(ﬁ,nhmvni) + H Z'Yzyq;. (@ma,.. ’mT)
1=1

Recall that for all y > = > 0 and a € (0,1),

y“—wagy_x. (29)

Observe now that max{s,s+ j,s + h} < k and since ® is a compatible bijection taking
values into {2k,2k 4+ 1,...} it follows from (28) that
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~
H Zaiy(b(uly'“yui)
1=0

S 1
(5 40

< (i((s—i—j—i—i—l)é—(s—&-h—i—i—l)(lz)p);—i—é

=0
(20) ;& i1 i 3
e

s (7) 1 . s+j+1 1
<(i_os+jj—hz‘:1>p+5:U_h)(i_§ll‘)p+‘5

= 05((j — h)(log k) 7).

Also,

(-
s
)
N—
SIC
_|_
(«%)
N
/N
M-
()
|
<.
_|_
=
Q3
N—
3=
_l’_
[«

©
Il
—
.
I
—

<(
Y :

d (1)
H Z Bl‘y@(u,nl,m’ni)
i=0

and a similar computation gives

h
(s+1)
H Z’Yiy¢(a,m1,---7mi)
i=1

y = O;s(h).
Therefore,

1 () — f(m)lly < Os((j + h)(log k)¥) = Os((log k)7 )d (i, ).

For the lower bound, it follows from the suppression unconditionally condition that

1707) ~ Fem)ly > |

1+ i—1 i=1
1 J . P % d
s (S
1 J P\ J 1 g
:F(qu> _F:mﬂ(ﬁ_l——kd>gé(‘7)’

and similarly

1) = f(m)lly = Qs(h).
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Therefore,

1f£(n) = f(m)lly = Qs((5 + 1)) = Qs(dr(n,m))

and the conclusion follows.

For the case p = oo the map f takes the form f(nq,...,n;) = Egzo(j—inLl)yg()nh_”m)
and the argument above gives a bounded distortion. In the case p = 1, it can easily be
verified that the map f: ([N]S* dt) — Y given by

is a bi-Lipschitz embedding. O

Corollary 25. If X is infrasup-umbel p-convez for some p € (1,00), then X does not have
any {y-asymptotic model generated by a weakly-null array for any q > p.

Proof. By Proposition 24, T¢ embeds into X with distortion at most O((logk)'/7), but
this impossible by Proposition 20. O

4. Stability under nonlinear quotients

Recall that a map f: (X,dx) — (Y,dy) between metric spaces is called a Lipschitz
quotient map, and Y is simply said to be a Lipschitz quotient of X, if there exist constants
L,C > 0 such that for all x € X and r € (0,00) one has

By(f(@), ) € f(Bx(a,r)) € By(f(x), Lr). (30)

Note that the right inclusion in (30) is equivalent to f being Lipschitz with Lip(f) < L.
If the left inclusion in (30) is satisfied, then f is said to be co-Lipschitz, and the infimum
of all such C’s, denoted by coLip(f), is called the co-Lipschitz constant of f. We define
the codistortion of a Lipschitz quotient map f as codist(f) def Lip(f)-coLip(f). A metric
space Y is said to be a Lipschitz subquotient of X with codistortion « € [1,00) (or simply
Y is an a-Lipschitz subquotient of X) if there is a subset Z C X and a Lipschitz quotient
map f: Z — Y such that codist(f) < a. We define the X-quotient codistortion of Y as

qcx (Y) o inf{c: Y is an a-Lipschitz subquotient of X}.

We set qcy(Y) = oo if Y is not a Lipschitz quotient of any subset of X.
As is the case for Markov p-convexity, umbel p-convexity and its relaxations are also
stable under taking Lipschitz quotients.
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Proposition 26. Let p € (0,00) and (X,dx) be a metric space that is umbel p-convez.
If Y is a Lipschitz subquotient of X then Y is umbel p-convexr. Moreover, H;;(X) <
qex (Y)IL(X).

We omit the proof of Proposition 26 as it can be extracted from the more delicate
argument given in Proposition 28 below.

In the Banach space setting, umbel p-convexity is also stable under more general
notions of nonlinear quotients, most notably uniform quotients or coarse quotients, as
defined in [7] and [63] respectively. We will treat these nonlinear quotients all at once, and
we need to introduce some more notation. The K-neighborhood of a set A in a metric
space (X,dx), denoted Ak, is the set Ax o {z € X: Ja € A such that dx(z,a) < K}.
The following simple general lifting lemma will be crucial in the ensuing arguments about
nonlinear quotients.

Lemma 27. Let f: Z C X =Y and g: [N]S™ — Y, where g is any map and f is a map
such that there exist constant C >0 and K > 0 withY = f(Z)k, and for allx € Z and
r >0,

r
By(f(x). &) € f(Bx(w,1) N D).
Then, there is a map h: [N]S™ — Z such that for all n € [N]S™,

dx(h(nl,. .. ,nk),h(nl,. .. 7nk,1) <C- dy(g(nl, ... ,’I’Lk),g(nl,. .. ,nk,l)) +CK (31)

and

dv(f(h(n)),9(n)) < K. (32)

Proof. The proof is a simple induction on m. If m = 0, let y € f(Z) such that
def

dy(g(0),y) < K, pick an arbitrary z € Z such that f(z) = y, and then let h()) = 2
Obviously, dy (f(h(D)),g(?)) < K and the other condition is vacuously true. Assume that
the map h has been constructed on [N]S™. We extend h to [N]S™*+! as follows. Given
7 € [N]™ and i1 € N, let 7 2 dy(g(12), g(R, mum+1)). Since dy (f(h(R)), g(7)) < K we
have

9, nmi1) € By (f(h(R)),r + K) C f(Bx(h(n), C(r + K)) N Z)k-

Let y € f(Bx(h(n),C(r + K))NZ) C Y such that dy(y, g(n,nm+1)) < K, then pick
arbitrarily z € Bx(h(n), C(r+K))NZ such that f(z) = y, and finally set (7, nm1) = 2

from which it immediately follows that

dY(f(h(ﬁ’ nm+l))’g(ﬁanm+1)) < K.



F.P. Baudier, C. Gartland / Advances in Mathematics 438 (2024) 109461 29

Finally, observe that by definition
dx (h(7), b7ty i 11) < C(r + K) = Cdy (g(R), g(7, nns1)) + CK. D

Proposition 28. Let (Y,dy) be a self-similar' metric space. Assume that there is a map
f+Z C(X,dx) =Y, that is coarse Lipschitz, i.e., there exist L > 0 and A > 0 such that
forallxz,y e Z

dv(f(x), f(y)) < Ldx(z,y) + A. (33)

Assume also that there are constant C > 0 and K > 0 with Y = f(Z)k, such that for
allz € Z andr >0,

By (f(m), 1) C f(Bx(z,7) N Z)k. (34)

c

If X is umbel p-convex for some p € (0,00), then Y is umbel p-conver.

Proof. Let f: Z C X — Y be a map as above. We need to show that there exists a
constant IT > 0 such that for every map g : [N]Qk =Y,

k—1 gk—1-s S -

1 d 0 P
Z o Z inf inf lim inf inf v(9(n,9),9(, 5 1))
=2 Pt meNje ozt et oo geNj2 -l 20p

N - (7,6)€[N]<2* (7,5,7) €[N]<2*
1 &
<Hp_kz sup dY(g(nlﬂ"'7nZ71)7g(n17"‘7n5))p'
—1 ne[N]¢

Observe that if the right-hand side vanishes, then the left-hand side vanishes as well and
there is nothing to prove. Then by scale-invariance of the inequality and the self-similarity
of Y, we may assume

Z sup dy(g(ni,...,ne—1),9(n1,...,n0))’ = 1.
r—1 n€[N]*

Let II = Hg(X). Then by umbel p-convexity of X applied to h : [N]@k — Z C X, where
h is the lifting of g as defined in Lemma 27, we have

k—1 ok—1-s S = =

1 dx (h(n,0), h p
Z—2k_1_s Z inf+1 inf lim inf inf x(h(n, )27‘1)(”7]»77))
5= 5 AE[N]I2TI-20 semg2®:  J00 eyl 8
=1 =t (7,8)€[N]<2* (71.5,7) €[N] <2¥

4 A metric space (X,dx) is self-similar if for every t > 0, there exists a bijection &§;: X — X with
dx (8¢ (x),6:(y)) =t - dx (=, y) for every z,y € X.
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2k

1
< Hpik Z sup dX(h(nla v 777'@—1)) h(nla s 7nf))p'
—1 n€[N]*
(35)
It follows from (31) that
1 &
P Z sup dx(h(ni,...,ne—1),h(ny,...,n))"?
¢—1 NEIN]*
2k
1
< Hp_k Z sup (CdY(g(n17 ce 777,@_1),9(”1, s ané)) + CK)p
= elN)¢
< TP max{1,2°~ 1 }(C? 4 (CK)P). (36)

Let 1 <s<k—1and1<t<25 175 Then either

dY(g(ﬁa 6)vg(ﬁaj’ ﬁ))p < (L +A+ 2K)p

inf inf lim inf inf
ﬁe[N]t2s+1_25 EE[N]QS . j—o00 FEIN)2S =1, 2Sp 2517
(7m,6)€[N]<2* (7,4,7) €[N]<2*
(37)
or
n,8),9(n,5,7) _ (L+ A+ 2K)P
inf inf ~ liminf inf dv(g(n,9). 9(n. j 7)) >( TAT )
ﬁe[N]gtszrlfgs g, [N]2¢ j—o0 ne[N]2®—1. 2sp 25p
(n 5)€[N]<2k (7,5,7) €[N] <2

(38)
If (38) holds, then for all 7 € [N]*2"' =2" and § € [N]?°, we have

lim inf inf dy(g9(n,0),9(n,j,7)) > L+ A+ 2K,
J]—00 ;]E[N]Tgfl:
(R,5,m)€[N]<2*

-1

and thus there exists jo such that for all j > jo and all 77 € [N]?"~! we have

dv(9(n,9),9(n,j,n)) > L+ A+ 2K.

It follows from triangle inequality and (32) that

dv (f((n,0)), f(h(R,5,7))) = dv(g(n,0), g(R, 5, 7)) = (f( (72,9)), 9(72, 9)))
—dv(g(n,5,n)), f(h(n,5,1)))
>L+A+2K K- K
=L+A
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Observe now that dy(f(x), f(y)) < L + A whenever dx(z,y) < 1 and based on the

inequality above, necessarily dx(h(n,d)),h(n,j,7))) = 1. Thus in this case, it follows
from (32) and (33) that

dY(g(ﬁaé)vg(ﬁajv ﬁ)) < dY(f(h(ﬁvg))vf(h(ﬁvj, ﬁ))) +2K
< Ldx (h(n, ), h(7, 5,7 ))+A+2K

Then, letting 'y = (L + A+ 2K) for simplicity,

inf inf lim inf inf dv(g(, 5) 9(n, 3, m))"
REN]I2THI-2°  GeN2:  jo0 geNj2tol 20p
(7,8)€[N]<2" (7,5,7) €[N]<2"

dx (h(7,0), h
< AP inf inf lim inf inf x(h(1,9), h(n, j, 1))” )
ﬁE[N]t25+1_23 Se[N]2% . j—o0 AE[N]2°—1; 2Sp
(n,8)€[N]<2" (7,5,7) €[N]<2*

(39)

Consequently,

k—1 Qk—lfs _ =
1 d 1)
Z Py — Z inf+1 inf lim inf inf v(g(m, )Qi(n .31))"
o s —  he[Njt2sti-2s *E[N]ﬁ: j—00 REN]25—1. s
- =1 (7.0)€[N]<2¥ (g 7) €[N]<2*

(37)A(39) K1 2h e

1 p
< DS X max{;/sp’

s=1 t=1

dx (h(n,0), h
4P inf inf  liminf  inf x(h(#, 8), h(n, j,7))” }
ne[NJe2stl -2 5eN)2®: J=o0  peNj2e-1. 25P
(n,8)€[N]<2* (n,j,7)€[N]<2*

k—1 1 2k7175
< AP . . ..
=7 2_22’“’1’5 Z; ﬁe[N]ltrzlsf“—% se[anéﬁ h}ggf
- = (m5)E[NJ<2*

_ T _ . k—1

. dX(h(’n’,é)?h(na]vn))p ,yp
ﬁe[Nl]l;le*I: 25p + Zl

(71,5, €[N] 2" .

(35)A(36)

(e ] ’yp
< TP max{1, 27 }(CP + (CK)P) + > 5o < 00
s=1

k
which concludes the proof since 5 Z?:l supree [|9(ns s ne—1) — g(na, ... no)|lfy =
1, and the constant
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25p

(L+ A+ 2K (np max (1,27 (C7 + (CKP) + 3 - )

is independent of k and g. O

Note that a Lipschitz subquotient map satisfies the assumptions of Proposition 28
with L = Lip(f), A = 0, C = coLip(f), K = 0, and the proof of Proposition 26 can
be simplified and carried over for arbitrary metric spaces (without the self-similarity
assumption). The more general notions of nonlinear quotients which we will consider
satisfy the hypotheses of Proposition 28 under further assumptions on the metric spaces.

A map f: (X,dx) — (Y,dy) between metric spaces is called a uniform quotient map,
and Y is simply said to be a uniform quotient of X, if f is surjective, uniformly continuous
and co-uniformly continuous, i.e., for every r > 0 there exists §(r) > 0 such that for all
r € X, one has

By (f(x),6(r)) C f(Bx(,7)).

It is a standard fact that a co-uniformly continuous map into a connected space is
surjective.

The more recent notion of coarse quotient introduced in [63] is the following. A map
f: (X;dx) = (Y,dy) between metric spaces is called a coarse quotient map, and Y is
simply said to be a coarse quotient of X, if f is coarsely continuous and co-coarsely
continuous with constant K for some K > 0, i.e. for every r > 0 there exists d(r) > 0
such that for all x € X, one has

By (f(x),7)) C f(Bx(x,0(r)))k-

A co-coarsely continuous map may not be surjective, but nevertheless it is easily seen to
be K-dense in the sense that Y = f(X)g. In fact, it can be shown, using a very clever
argument due to Bill Johnson (see [63]), that if a Banach space Y is a coarse quotient of
a Banach space X, then there exists a coarse quotient mapping with vanishing constant
K =0 from X onto Y.

It is a standard fact that a map on a metrically convex space that is either uniformly
continuous or coarsely continuous, is automatically coarse Lipschitz (one can take for
instance L = max{1,2w;(1)} and ¢ = wy(1) where wy is the expansion modulus). Also,
every co-uniformly continuous, or co-coarsely continuous, map taking values into metri-
cally convex spaces satisfies (34) for some C' > 0 and K > 0 (see [64, Corollary 4.3]).

The following corollary follows from the discussion above and Proposition 28.

Corollary 29. Let (X,dx) be a metrically convex space that is umbel p-conver. If a self-
stmilar metrically convex metric space (Y, dy) is a uniform or coarse quotient of X, then
Y is umbel p-conver.
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Remark 30. Straightforward modifications of the proofs of Proposition 26 and Proposi-
tion 28 give that infrasup-umbel p-convexity is stable under Lipschitz subquotients and
by taking uniform or coarse quotient maps from metrically convex spaces into self-similar
metrically convex metric space.

Corollary 31 below, which is an immediate consequence of the stability of umbel
convexity under nonlinear quotients and Corollary 18, was proved for the first time in [21,

5

Theorem 2.0.1] (for uniform quotients)” using the delicate “fork argument” and in [64]

(for uniform or coarse quotients) using a more elementary self-improvement argument.

Corollary 31. Let X be a Banach space that has an equivalent norm with property (3). If
a Banach space M is a uniform or coarse quotient of X, then Y has an equivalent norm

with property (5).

Equipped with the stability under nonlinear quotients of umbel convexity and
infrasup-umbel convexity, and the fact that countably branching trees are neither umbel
p-convex for any p nor have non-trivial infrasup-umbel convexity, we are now in position
to prove, via a metric invariant approach, generalized versions of a number of known
results pertaining to the nonlinear geometry of Banach spaces with property (3) (e.g.
[41, Theorem 4.1, Theorem 4.2, Theorem 4.3], [19, Corollary 4.3, Corollary 4.5, Corollary
5.2, Corollary 5.3], [21, Theorem 3.0.2], and [15, Theorem 2.1, Theorem 4.6, Theorem
4.7]). We will just give one example here illustrating the flexibility of the metric invariant
approach.

Corollary 4.5 in [19] states that the space (.=, £p,)e,, where {p;};>1 is a decreasing
sequence such that lim; ,.. p; = 1, is not a uniform quotient of a Banach space that
admits an equivalent norm with property (/). The original proof uses a combination of
substantial results from the nonlinear geometry of Banach spaces which are interesting
in their own rights:

« Ribe’s result that (3°;2, 45, )¢, is uniformly homeomorphic to 1 & (3" €y, )es,

o the fact that co is a linear quotient of £1 & (Y o, €p:)ess

e a quantitative comparison of the (5)-modulus with the modulus of asymptotic uni-
form smoothness under uniform quotients (or the qualitative Lima-Randrianarivony
theorem [41] which states that cg is not a uniform quotient of a Banach space that
admits an equivalent norm with property (3)).

Alternatively, using the main result of [21], one could argue that the assumption implies

that (3°;; £p, )¢, admits an equivalent norm with property (), hence an equivalent norm
that is asymptotically uniformly smooth with power type p for some p > 1 = lim; o p;,

5 Under a separability assumption which was later lifted in [20].
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and derive a contradiction using linear arguments pertaining to upper and lower tree
estimates, which can be found in [30] or [49] for instance.

The metric invariant approach helps streamline and extend the argument as follows.
It is easy to verify that the map T} > n — Zé:l €(n1,...n;) Where [ is the length of n
and {es}reTe is the canonical basis of £, is a bi-Lipschitz embedding of T¢ into £,
with distortion at most 2, say, if p; is chosen small enough. Therefore, (3°7°, £, )¢, does
not have non-trivial infrasup-umbel convexity by Proposition 20, and (} .-, ¢p,)e, is not
a uniform quotient of a metrically convex metric space with non-trivial infrasup-umbel
convexity by Remark 30.

5. More examples of metric spaces with non-trivial infrasup-umbel convexity

In this section, we give more examples of metric spaces which are umbel convex or
have non-trivial infrasup-umbel convexity. We begin with the simple observation that
umbel convexity is trivial for proper® metric spaces in the same way that property (3)
is trivial for finite-dimensional normed spaces.

Example 1. A proper metric space (X,dx) satisfies the p-umbel inequality (11) for every
p € [1,00) and every K > 0, i.e., for all w,z € X and {z;};eny € X we have

1 1 1 1
(9) % l_iéllg dx(w, z;)P + K iiéllg hjrglorolf dx(zs, ;)P < §dx(z,w)p + = féllg dx(z,z;)P.

Consequently, IT;(X) = 0.

Proof. Obviously, if the right hand side of (11) is infinite, there is nothing to prove, so
assume it is finite. This implies that {z;};cn is contained in a bounded, and hence a
compact, set. Then {z;};cn has a convergent subsequence, from which it follows that

1
T inf i inf dx (:, 2;)” = 0.

This fact together with a convexity argument easily imply (11). O

It is not difficult to see that the p-fork inequality (7), or in fact a natural relaxation of
it, implies the p-umbel inequality (11). Thus by the implication of Theorem D that was
proved in [1], it follows that the class of metric spaces that are umbel 2-convex contains
all non-negatively curved spaces. This observation is reminiscent of the fact that local
properties of Banach spaces imply their asymptotic counterparts. To our knowledge, all
known examples of metric spaces that are Markov p-convex satisfy the p-fork inequality
and thus they are all umbel p-convex. However, it seems unclear whether Markov p-
convexity implies umbel p-convexity; the converse is obviously false. An interesting class

6 A metric space is proper if all its closed balls are compact.
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of examples comes from Banach Lie groups. Let X be a Banach space and wy an anti-
symmetric, bounded bilinear form on X. The Heisenberg group over wy, denoted H(wy),
is the set X x R equipped with the product

xxy = (2,8) % (4,0) © (x +y, 5+t +w(z,y)).

In the sequel we will sometimes abbreviate x * y by xy. If wx = 0, then H(wy) is
simply the abelian direct sum X & R, but otherwise H(wx) is nonabelian. The identity
element is 0 = (0,0), and inverses are given by (z,s)”! = (—x, —s). We always equip
a Heisenberg group with the product topology on X x R, and under this topology it
becomes a topological group.

There is a natural automorphic action of (0,00) on H(wy) given by t — d; where
5,((z,5) & (tz, 125).

The maps {6 }+~>0 are called dilations. A function d : H(wx) x H(wx) — [0, 00) with the
topological compatibility property d(x,,0) =, 00 0 < Xy, =00 0 is called

o left-invariant if d(gxx,g*y) =d(x,y) for all g,x,y € H(wx) and
e homogeneous if d(0;(x),d;:(y)) =t -d(x,y) for all x,y € H(wy) and ¢ > 0.

If d! and d? are two left-invariant, homogeneous functions, then the formal identity from
(H(wx),d') onto (H(wx),d?) is a bi-Lipschitz equivalence. Indeed, by symmetry it suffices
to show that the map is Lipschitz. By left-invariance this reduces to d*(x,0) < d?(x, 0),
and by homogeneity this further reduces to the existence of a constant ¢ > 0 such that
d!(x,0) < 1 whenever d?(x,0) < c. This claim is true by the topological compatibilities
of d*, d2.

When wy # 0, there is a canonical left-invariant, homogeneous metric on H(wx)
called the Carnot-Carathéodory metric, denoted de.. A pair (v, z) of Lipschitz curves
v :[0,1] = X, z : [0,1] — R is called a horizontal curve if ~ is differentiable almost
everywhere and 2'(t) = w((t),~'(¢)) for almost every ¢ € [0, 1]. The horizontal length of
a horizontal curve (7, z) is defined to be the length of . Then the Carnot-Carathéodory
distance between x and y is defined to be the infimum of horizontal lengths of horizontal
curves joining x and y. It is exactly the assumption wy # 0 that ensures that any
two points in H(wyx) can be joined by a horizontal curve. Obviously, d.. satisfies the
triangle inequality and is a length metric. Any left-invariant, homogeneous, symmetric
function on H(wy) is a quasi-metric since it is bi-Lipschitz equivalent to the metric
dee- A particularly handy way to obtain such functions is via Koranyi-type norms. For
p € [1,00] and a given A > 0, define a function N, »: H(wx) — [0, 00) by

aet [ (1213 + N2P|s|P)25, if p € [1,00)
Npa((z, ) = N .
max{||z||x, Ay/|s|} if p = 0.
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Then we define the function d, x(x,y) def Npa(y~! xx). Clearly, d,, » is a symmetric,
left-invariant, homogeneous function, and hence is a quasi-metric equivalent to d..

Banach Lie groups constructed this way have been investigated in [47] under the name
Banach homogeneous groups. When X = R™ & R" and

1

wx((z1,22), (Y1,92)) = %(331792) - §<x2,y1>,

H(wx) is a (finite-dimensional) Lie group called the nth Heisenberg group, and simply
denoted H(R™). The space H(R"™) is very well-studied by metric space geometers, see
[16] for an introduction. We will denote by H(¢2) the infinite-dimensional Heisenberg
group H(wg,) where we, ((z1,91), (22, y2)) = 2(z1,y2) — 3(y1,22). Note that we, Z 0.
It was shown by Li in [34] that the set of p’s for which H(¢2) is Markov p-convex is
exactly [4, 00). We believe that Li’s proof can be adjusted to show that H(wy) is Markov
2p-convex whenever X is p-uniformly convex. In Section 6, we will provide a more direct
argument - based on that found in [26, Section 4.2] - to prove this result (cf. Theorem 36).

The next theorem shows that a Heisenberg group over a Banach space with property
(Bp) is infrasup-umbel p-convex. These examples are interesting since these Heisenberg
groups do not admit bi-Lipschitz embeddings into any Banach space with an equivalent
norm with property (), and thus are genuine metric examples. Indeed, an infinite-
dimensional Heisenberg group contains H(R) bi-Lipschitzly, and it was crucially observed
by Semmes [59] that H(R) does not embed bi-Lipschitzly into any Banach space with the
Radon-Nikodym property (in particular a reflexive one) since Pansu’s differentiability
theorem [52] extends to RNP-target spaces (cf. [36] and [18] for more details).

Theorem 32. Letp € [2,00) and wx be any bounded antisymmetric bilinear form on a Ba-
nach space X that satisfies the relazation of the p-umbel inequality (18) with constant C'.
Then (H(wx),dso,1) satisfies the relazation of the p-umbel inequality (18) with constant
max{C,?2 - 8/7}.

Consequently, for any p € [2,00) and any non-zero, antisymmetric, bounded bilinear
form wy on a Banach space X with property (8,), (H(wx),dcc) s infrasup-umbel p-
conver.

Proof. Assume that we have shown that the quasi-metric do 1 satisfies the relaxation
of the p-umbel inequality (18), then by Remark 14 and that fact de 1 is equivalent to
dee, it will follow that (H(wy),d..) satisfies inequality (17) and hence is infrasup-umbel
p-convex.

Assume that X satisfies the relaxation of the p-umbel inequality (18) with constant
C. Set K % max{C,2 - 8'/7} and simply write d = doy; and N = N1 in this proof.
By left-invariance, we may assume z = 0. There is nothing to prove if the right hand
side of (18) is infinite, so assume it is finite. This implies {x;};env = {(24, 8i) fien s a
bounded subset of H(wy), and hence {x;};en and {s; };en are bounded subsets of X and
R, respectively. By Proposition 17 and Remark 14, X is reflexive, and there is M € [N]¢
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such that weak-lim;epgz; = o and lim;epgs; = s for some z € X and s € R. Then
(denoting w = (w, t))

d(x;, w)P d(x;,x;)P N(x1w)P N(x1x.)P
inf M + inf lim inf M = inf M + inf lim inf M
i€EN P ieN jeN KP i€EN 2p ieN jeN KpP
_ . |IP . AR
— inf max { [|w 331HX7 [t —si — w(w,z;)|> }
i€N 2p 2p

. .. ||33i—$j||§< |8i—8‘—w($i x‘)|%
f lim inf { j 2 }
+ I i [t max Kp Kp

< lim inf max {

Jw — 2|5 |t — s — w(w,z)| }
€M

o 2r

(M)

e s — ;% [si — s — w(wi,z;)]
lim inf lim inf { J T }
+ 1?611%/}11 1?61&1 max Kr , 7or
:max{liminf Il — 2illx |t—s—w(w7x)\%}
ieM ’ o

el gl s — s —w(w, )|t
lim inf lim inf }
+max{ Hem jem  Kr K?

Since wy is antisymmetric, wyx(z, ) = 0 and hence

; p . x. )P
inf d(xi, w)? + inf lim inf dixi, %)
ieN 2P ieN jeN  (2K)P
| £ 2P
< max { lim in o = 2l 1o 5 = wlw, o)l b+ lim inf lim nf e — 2yl
i€M 2P 2p ieM  jeM KP

()
Assume the first term in the maximum is larger. Then
w — z;||% x; — xi]|% (18
() = lim inf llw = illi + lim inf lim inf lles = ;1 < max {||w||f(,7 sup Hx1||§}

ieM P iEM  jeM Kpr ieM

< max {N(w)p7 sup N(xi)p} = max {d(O7 w)P, supd(O0, xi)p}
€N ieN

so (18) holds in this case. Now assume the second term in the maximum is larger. Then

(x) = [t s —w(w,)|f + lim inf lim inf M
2P ieM  jeM Kr
P P P
poa [t |2 £ lw(w,z)[2 | 27 P
s 2 + 7o S il
1 P P z z 2p
< 005 + 161 + ol Eal) + 2 sup sl
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1 » 1 2P
< JU1% = I8+ 51wl + lalF0) + 25 sup s
T+ 15 + gl + (5 + 5 ) sup sl
= — —1S —[|w bu Tj
4 1 gl Wla T\ ™ Few ) SoR il
1, » 1, » 1 1
< 3%+ 1s/% + Fhwllt + 7 sup il

€N

< max {tﬁ 1%, w2, sup ||xi||§z}
€N

= max {N(w)p,sup N(xi)p} = max {d(O,W)p,supd(O,xi)p} . O
i€EN ieEN
In general, the value of p for which H(wy) is infrasup-umbel p-convex cannot
be taken smaller. When p € [2,00), X = ¥, &, ({,)* has property (8,) and take
wx((z1,y7), (x2,95)) = y5(x1) — yi(x2) (which is obviously nonzero). The map from
¢, to H(wy) defined by x + ((x,0),0) is an isometric embedding, but Corollary 25
implies that £, is not infrasup-umbel g-convex for any ¢ < p.
Finally, we explain how we can construct more spaces that are umbel p-convex by
taking finite £,-sums of spaces satisfying the p-umbel inequality. The next lemma, which
is a simple consequence of Ramsey’s theorem, will be crucial to achieve this goal.

Lemma 33. Every metric space (X,dx) satisfying the p-umbel inequality (11) satisfies the
following formally stronger property:

For any w, z,x; € X with sup;cn dx(z,2;) < 00 and € > 0, there exists an infinite subset
M of N such that

1 1 1 1
— supdx(w, z;)? + — sup dx(z;, 2,;)? < =dx(z,w)? + = inf dx(z,z;)? +. (40
g SR Ox(w, 20+ g sup dx(a ) < gdx(w) 4 5 int dx(e ) ke (40

Proof. Choose N € N large enough so that % < ¢ and let

def 1 1
B = max< — supdx(w, x;)?, — sup dx(x;,z;)?, = supdx(z,x;)? ;.
{2p ieN (w, 1) KP izjeN (i, ;) 2 jeN (2,2:)

Consider the finite cover [0, B] C UWBW (2, £]. Since

1
—dx(w, z;)?,

1 1
o —dx(xi,:L'j)p, §dx(Z,.’El)p (S [0, B]

KP

for every i # j € N, the pigeonhole principle and Ramsey’s theorem gives us an infinite
subset Ml C N and natural numbers k1, ko, ks < [NB] such that, for every i # j € M,

idx(w x;)P € [

N 'N

_ \P _Z
2dX(vaz) S N ,N

ki —1 Kk 1 ko —1 ko
2p
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and
1 k3 —1 k3
ﬁdx(l‘%l‘j)p € |: N ,N:| .
Therefore,
1(sud(wx)p 'nfd(wx)p)<1 1(sud(zx)p 'nfd(za:)p)<1
Py i) — 1 y Lg X 7 5 yLi)m — 1 y L X 7
2P iEI\I/)JI A €M x N 7;61\14)1 x €M x N
and
(sup de(ria,)? — infdx(ra))) < 4
— zi, ;)P — in zi,x:)P) < —.
KP i;;lepM X J itjeM J N

Then we apply (11) to w, z, {x; };em together with the inequalities above and get

1 1
— sup dx(w, ;)? + — sup dx(z;, z;)?

2P jem Pizjem
(2) % + %dx(mw)p + %SSI\I/)JI dx(z,2;)"
< % + %dx(z,w)p + % zlélléﬂ dx (2, z4)P

<e+ %dx(z,w)p + %zlenl\fﬂ dx(z,xz;)?. O
A consequence of the theorem below, whose proof requires Ramsey’s theorem via
Lemma 33, is that a finite £,-sum (Zgzl Xi)e, is umbel p-convex whenever {Xi}{zl are
metric spaces satisfying the p-umbel inequality for some universal constant K > 0. It is
worth pointing out that an arbitrary £,-sum of metric spaces which are Markov p-convex
(with some universal Markov convexity constant) is Markov p-convex.

Theorem 34. Let p € [1,00) and let (X,dx), (Y, dy) be metric spaces satisfying the p-umbel
inequality (11) for some constant K > 0. Then X @, Y satisfies the p-umbel inequality
(11) with constant K.

Proof. Let (w!,w?), (21, 2%) € X&,Y and {(z},2?)}ien C X, Y. If the right hand side
of (11) is infinite, there is nothing to prove, so assume it is finite. Let € > 0 be arbitrary.
Then by Lemma 33, we can find M € [N]“ such that

1 1 _1\p 1 1 _.1\p 1 1 1\p 1 : 1 ..1\p
ﬁf:&dx(w , ;) +K—i;}16pde(azi,xj) < idx(z ,w) +§ilen1\f/ﬂdx(z ,x; )P +e
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and

1 1 1 1
— d 2 2p—i—— d 2 2~p<—d 2 w?)? + = inf d 2 2p—i—.
2p lsélp v(w?, x%) pis;lep y(x“acj) 5 v(z%,w?)P 4+ 2i1€n v(z7, z7) 5

Adding these two equations yields

1 1
— (sup dx (w', z})P + sup dy(wQ,xf)p) +— | sup dx(zj,zj)? + sup dy(z},z3)P
2P \;em ieM KP \ izjem iAjeM

1 1
< = (dx (2t wh)P +dy (22, w)P) + = | inf dx (2!, 27)P + inf dy(22, 27)P | +2¢.  (41)
2 2 \ieM ieM

Then using the definition of the metric dx ®, dy, we get

17

L. 1,9y (o1 2y Lo 12y (o1 2\\p
Piléll{}dx @p dy((w™, w?), (z;, 7)) + 7or 7iléllghjrg})rclfdx ©p dv (7, 27), (x5, 27))

1 1
<o sup(dx(w', ;)P + dy(w?, 7)) + — sup (dx(z, ) +dy(a],23))
2P jem K? jzicm

1
<— (sup dy (wh, z})P + sup dY(TU?,f?)p)
2p ieM €M

1
+ — | sup dx(z},z})P + sup dy(z?,z?)P
K <i¢jeM T iggem

—
-
—_

~

1
< = (dx (2 wh)? + dy (22, w?)P) 4 = <inf dx(z',2))? + inf dy(22,$3)p> + 2
2 \ieM ieM

VAN
N~ N~ N~

1
(A, ') dv(, w?)?) + 5l (dx (2", 2)” + dy (22, 22)7) o 22
1€

1
<zdx @p dy((zl,xz), (wl,w2))p + 3 sup dx P, dy((zl7 22), (:E2 ml))p + 2e.

i
ieN

Since & > 0 was arbitrary, inequality (11) follows. O
6. Markov and diamond convexity of Heisenberg groups

In this section we fulfill our promise from Section 5 and show that Heisenberg groups
over p-uniformly convex Banach spaces are Markov 2p-convex. This fact will follow from a
“parallelogram convexity inequality” analogous to the following parallelogram inequality
holding in a Banach space X that is p-uniformly convex with constant K: for all z,y € X

)% + llz — yl%
2

p

>3
2

p 1 Y
— |z = Z|| . 42
X+KPHx 21llx (42)

Inequality (42) can be derived easily from inequality (1) (and vice versa).
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Proposition 35. Let p € [2,00) and wx be any non-zero, antisymmetric, bounded bilin-
ear form on a p-uniformly convex Banach space X. Then, there is a constant C :=
C(X,wx) > 0 and a Koranyi-type norm N, x for some X := MX,wx) > 0 such that for
every a = (a,s),b = (b,t) € H(wx),

1 1 B 1 _
5VpA@)% + SNy A (b7 )™ = Ny a(31/2(D)™ + =z Npa(d1/2(b) ~'a). (43)

£ f
Proof. Assume that X is p-uniformly convex with constant K. Let w o wx and N o

1-p

N, A, where AP = o (3 + ﬁfl KQTUJHP and ||w|| < oo is the least constant B satisfying

|w(a, b)| < Blla||lx||b||lx- We have
1 1 _ 2P
§N(a)2p +5N(b 'a)? = = || ¥ | P+ ||a —b|¥ + - ls —t+wlad)l

1 1 Z 2 A2P
Z <§ llally + B la— b||§)<> + —| [P + —|s —t+w(a,b)[? (convexity)

= (]
> el
2

Since w is antisymmetric and bounded,

1
T &k

b
a— —

Py 2 /\2p /\2
5 ) +f|3|p—|—f|3—t—|—w(a b)|P. (44)

X

b 2”+ 1 b 2 /b bl \?
a=|z —-|la— = — {ll=z - =

2 K2p 2 P \[12]l, 21|,

v 2p+ L, b N b b P

= . T - a5 T s (W 77 S
2|, K% 2 KP|wl[P 2 2
b1 1 b||? 2t-p

=5 +olle— 5l + s lw(a,b)?
2|, K2 2|y  KP|w|P
LI 1 b||*? 1

== — lla—= 2P ( ) b)|P 4
2X+K2p a 2X+ (3+3p'6\w(a, ) (45)

where we have used the definition of A in the last equality. Incorporating (45) into (44)
we thus have,

| R URv o 1.1 b|[*
Z Z > |12 i | P
V(@)% +3N(ba) 2, TEE 2,
b)IP +[sP +[s =t +w(a,b)P  |wla,b)P  [s]P [|s—t+w(a,b)P
)\Qp ‘OJ(G/, ) ) = ) )
+ ( 3 TG 6 6 )
5

(46)

We now proceed to estimate 8 as follows,
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t|? b)|P P —t b)|P
B> 3 % + % + % (convexity and triangle inequality)
>£p+ 4p w(a,b)p+§p+§_£+w(a,b)p
~ 3 376 4 4 4 4 4
t|? 4p t  w(a,b)|”
S|t S . . . ).
1 + 1.6 ’s 1 5 (convexity and triangle inequality) (47)

If we let €' % max {K, (%) ” }, combining (47) with (46), we have

2p
+ A%
X

2p 1 p

+ —
X cep

p )\2;0
+ @

1 1 b
ZN(a)?®* + ZN(b~ ! 2p> Z
SNG4 N > |

b
a— —

2

t t  w(a,b)
4 4 2

s —

1
> N(61/2(b))? + @N(51/2(b)7la)2p-

This completes the proof of (43). O

The following theorem follows from the fact that the 2p-fork inequality is valid for the
quasi-metric induced by a quasi-norm satisfying (43).

Theorem 36. For any p € [2,00) and any non-zero, antisymmetric, bounded bilinear form
wx on a p-uniformly convex Banach space X, (H(wx),de.) is Markov 2p-convez.

Proof. Let p, X, wx be as in the statement. Since Markov 2p-convexity is a bi-Lipschitz
invariant and the proof in [45] showing that Markov p-convexity follows from the p-
fork inequality is valid for quasi-metrics, it suffices to prove that (H(wx),d) is Markov
2p-convex for some equivalent quasi-metric d. Because of this, we may again assume X
is equipped with a uniformly p-convex norm with constant K. Therefore, it suffices to

exhibit a quasi-metric d that satisfies the 2p-fork inequality. In the remainder of this
def

proof, we will let N def Np. » the Koranyi-type norm from Proposition 35 and d = dj ,

the quasi-metric it induces. We will use (43) to prove the 2p-fork inequality:
d(w,x)? d(w,y)*  dx,y)* _1

1 1
2 2 2
922p+1 922p+1 (4C/C)2p < Ed(Z,W) P+ Zd(Z,X) P+ Zd(zay) p’ (48)

where C’ is the quasi-triangle inequality constant of d.
First apply (43) with a = z and b = x to obtain

1 1 _ 1 _
§N(Z)2p+ SN (x '2)%" > N(81/5(x))* + oz N (012(x) 'z)?P.

Then apply (43) with a = z and b = y to obtain

1 1 _ 1 _
§N(Z)2p+ SNy '2)% = N(61/2(y))* + 2 NV (012(y) '2)?.
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Averaging these two inequalities and using the definition and homogeneity of d yields

d(O,X)2p d(07Y)2p d(zvdl/Q(X))h) d(z751/2(y))2p
922p+1 922p+1 20'2p 2(2p

1 1
< 5d(,0/% + <d(2,%)% + 1d(z,y)*".

N | =

Then by convexity, the C’-quasi-triangle inequality of d, and homogeneity of d, we get

d(0,x)?? d(0,y)** d(x,y)* 1 9 1 9 1 9
22p+1 22p+1 (4C/C>2p < §d(z,0) P+ Zd(ZaX) P+ Zd(zaY) P

This proves (48) for w = 0. The general inequality follows from left-invariance. 0O

Two new metric invariants, called diamond convexity and graphical diamond con-
vexity, were introduced in [22]. Diamond convexity is an inequality involving stochastic
processes (like Markov convexity), and graphical diamond convexity is a deterministic
Poincaré-type inequality that refers explicitly to diamond graphs. In [22], it was shown
that if a metric space X is Markov p-convex, then X is diamond p-convex, and hence
the Heisenberg groups as in Theorem 36 are diamond 2p-convex. It is currently not
known whether Markov p-convexity or diamond p-convexity implies graphical diamond
p-convexity. However it was shown that diamond p-convexity (cf. [22]) and graphical
diamond p-convexity (cf. [24, Chapter 2]) follow from the following p-short diagonals
inequality for uniform convexity with constant K € (0,00): for all w, z,y,z € (X,dx)

1
- P
5 dx (w, y)?+

1 1 1 1
P = Py Py Py P
(2K)de(x7z) < 4dX(w7$) +4dX(xay) +4dx<y7z) +4dx(2,’ll)) (49)
Since, as we will show, the p-short diagonals inequality for uniform convexity is valid for
the quasi-metric induced by a quasi-norm satisfying (43), we have:

Theorem 37. For any p € [2,00) and any non-zero, antisymmetric, bounded bilinear
form wx on a p-uniformly convex Banach space X, (H(wx),dec) @s graphical diamond
2p-convex.

Proof. The setup is the same as in the proof of Theorem 36. The proof showing that
graphical diamond p-convexity follows from (49) is valid for quasi-metrics (see [24, Propo-
sition 2.9] for instance). It thus remains to show that (43) implies that

Lawy)? e dxm)® <

1 1 1
2p - 2p - 2p L 2p
2% (207CY2r d(w, %)% + 2d(x,y) + d(y, 2)* + ;d(z, W)™,

(50)

NG

where C’ is the quasi-triangle inequality constant of d.
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First plug in a = w™ !z and b = w—ly in (43) to obtain

N(61/2(w™hy))?P + —N([él/g(w_ly)]—lw—lz)%

Cc?r
1 1
< EN(W_lz)QP + 2N((w_1y)_1w_1z)2p
_ 1 —1,_\2p 1 2p
= 2N(w z)* + 2N( z)“P.

Then plug in a = w™!x and b = wly in (43) and get

N(612(wly))?P + —N([(Sl/g(w_ly)]—lw—lx)%

C?r
1 1
< EN(W_1X)2P + §N((W_1y)_1w_1x)2p
1

1
= QN(W_lx)ZP + §N(y_1x)2p.

Averaging the two inequalities above and using the definition and homogeneity of d yields

dw,y)? 1 d(w 'z, 8 0(wly) 2P + d(wlx, 8y o (wly))
T ow *@( 2 )

1 1 1 1
< 4z, wW)* + 1d(z,y)* + 7d(x, W)™ + 2d(x,¥)*

Then by convexity, the C’-quasi-triangle inequality of d, and the left-invariance of d, we
get

dw,y)?* d(x,z)* < 1
22p (2C'C)?p

1
d(w x)% 4 d(x v+~ d(y, z)% + Zd(z,w)Qp,
which is exactly (50). O
7. Relaxations of the fork inequality and of Markov convexity

In this section, we discuss some natural relaxations of the fork inequality and of
Markov convexity. The following is a local analogue of umbel convexity.

Definition 38. We will say that a metric space (X,dx) is fork p-convez if there exists
II > 0 such that for all £ > 1 and all f: Bor — X

k—1 gk—1-s

Z# Z min min dX(f(S,—l,(S),f(g’l,(s'))p
2k—1—s

s=1 i3 ee{-1,1pe 20 6.50e{ 1,132 0 2°P

< 2k ZEE{ aixl}edx (615'"756—1)af(€17"'35€))p7 (51)
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and we will denote by IIJ (X) the least constant IT such that (51) holds.

We will see that the fork p-convexity inequality (51) follows from the following relax-
ation of the p-fork inequality:

For all w, z,y, z € X,

I dx(z,y)? _ 1 1
o min{dx(w, z)?, dx(w, y)’} + T < idx(z,w)p + 3 max{dx(z, z)P,dx(z,y)’}
(52)

The fact that fork p-convexity implies umbel p-convexity is not completely immediate
due to the limit inferior in the definition of umbel p-convexity. To prove it, we first need
a technical lemma.

Lemma 39. For each k > 0, let Vj, denote the subset of [N]SF x [N]|S¥ consisting of
all pairs (n,m) such that n extends m (abbreviated by n < m and meaning that n =
(n1,...,n;) and m = (mq,...,m;) satisfy i < j and ny = my,...,n; = m;). For every
k € N and function J: Vi, — N, there exists a map ¢ := ¢(k,J): By — TY satisfying
the following property

¢ is a height and extension preserving graph morphism,

and

(x) § for every €,5 for which (¢,1,8) € By, there exists

an integer j' = j'(g,0) = J(¢(e), d(e,1,0)) such that, for every &' for which
(e,—1,¢") € By, there exists 1 = 1(8") € T% such that ¢(e,—1,0") = (¢(e), j', 7).

Proof. The proof is by induction on k. The base case k = 0 is vacuous. Suppose the
lemma holds for some k£ > 0. Let J: V41 — N be any function. Observe that for all
r =1, [{r,7 +1,...}]S* equipped with the natural tree order is isomorphic to [N]Sk.
Denote by Vi(r) the subset of [{r,r + 1,...}]S* x [{r,r +1,...}]S¥ consisting of all
pairs (n,m) such that n extends m. Define a function J;: Vi (2) — N by Ji(n,m) wf

J((1,n),(1,m)). Apply the inductive hypothesis to J; to obtain a function ¢;: By —

€

([{2,3,...}]S", dr) satisfying (*). Set jo def max{J (0, (1,¢1(6))): § € Bx}, and note
that this maximum exists since By is finite. Define a function Jy: Vi(jo + 1) — N by

Jo(n, m) def J((jo,n), (o, m)). Apply the inductive hypothesis to Jy to obtain a function
¢o: Br = ([{jo+1,j0+2,...}]S¥, dr) satisfying (x). Finally we define ¢: Br11 — T,
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We now check that ¢ satisfies the desired properties. Obviously, ¢ is a height and
extension preserving graph morphism since both ¢; and ¢g are. Let (g,1,0) € Biyq. If €
is of the form (1,¢’), then (%) holds since it holds for ¢y, and if € is of the form (—1,¢’),
then (%) holds since it holds for ¢¢. It remains to consider ¢ = ). In this case, we choose
Ve def jo and for any (—1,6") € Bgy1, we choose 7 et @0(0"). These choices witness the
satisfaction of (). O

Proposition 40. Let p € (0,00). Every fork p-convexr metric space (X,dx) is umbel p-
convez. Moreover, IT%(X) < IIJ (X).

Proof. Let £ > 1 and f : [N]Qk — X a map. Without loss of generality, we may assume
the right-hand-side of (4) is finite. Let v > 0 be arbitrary. For each (n, (n,0)) € Vi,
choose J (7, (7,6)) € N such that, for all j > J (7, (7,9)),

dX(.f(ﬁ’ 5)7 f(ﬁhj’ ﬁ))p

lim inf inf dX(f(ﬁa S),f(ﬁ7j,7_}))p < inf 4 z
J=o0  peNj2-1. 25 T ezt 2sp k
(R,j,7) €[N]<2" (nj,m)€[N]<2"

Now apply Lemma 39 to the function J defined as above to get a height and extension
preserving graph morphism ¢: Bor — T4, satisfying (x). Let A denote the left-hand-side
of the fork p-convexity inequality (51) applied to the map f o ¢: By — X, i.e.

k—1 gk—1-s
1 -1,6 1,0")))?P
Adéfz — Z min min dX(f(¢<57 y ))7f(¢(8? ; ))) )
s=1 280 o7 ee{—1,1}2 =20 5.0 e{ 1,1} 7 20p

Let B denote the left-hand-side of the umbel p-convexity inequality (4) applied to the
map f: [N]Qk — X, ie.

k—1 gk—t=s - 3 .
e 1 d 75 ) vJ P
BYS % inf inf  liminf  inf x(f(n,9), £ (1,5, m)"
pr 2k—1=s i3 RE[N]EetI-2® sempt:  joroo peNgiol 25p
- - (7,6)e[N]<2" (71,4,7) €[N]<2*

s

Given e € {—1,1}"2"7=2" and § € {—1,1}* L, it follows from the definitions of .J,
¢, and property (%) that there exists an integer j' = j'(¢,0) > J(¢(e), ¢(g,1,0)) such
that, for every &' € {—1,1}2"~1 there exists 7 = 7(¢') € [N]> ! such that ¢(e, —1,8") =

1

(6(e), ' (£.6),7(8")). Since ¢(e) € [N]2"~2" and ¢(e,1,4) € [N]2""", we have

inf inf lim inf inf dx (f(ﬁ7 8), f(7, 7, ﬁ))p
ﬁE[N]tQS‘Fl—Z\S 3_€[les: j—o0 ﬁe[N]2371:
(n,6)€[N]<2* (71,4,7) €[N] <2*
< min min lim inf inf dx (f(p(e,1,9)), f(#(e),4,7))"

ee{—1,1}125F1 =25 §€{—1,1}2°~1 j—00  gemj2e-1.
(7,5,7) €[N] <2
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< min min inf dx (f(p(g,1,9)), f(d(e),5'(g,6),7m))P + J
ee{—1,1}t25F1—2% e {-1,1}2° -1 jeN)2°—1. k
(R,j.7) €[N]<2"
< : i/ =(5)) )P 1
= EE{ 11/11152134»1 28 56{ nl/ull%zs 1§¢e {1’1'111{1}25 1 dx(f(¢(€7 ]" 6))7 f(¢(5)7] (87 6)7”7(6 ))) + k_
- i d 1, —Lene
e~ 1%33“ e ser it me b x(f(9(e 1,0, (9le ~LEN) + ¢

Hence, after dividing by 2°7 and summing appropriately over ¢t and s, we have B < A+7.
Since v > 0 was arbitrary, we have A < B. To conclude that TI}} (X) < HIJ;(X), it remains
to observe that
1 &
— ax d Ely---yE0-1)), €1,---,60)))F
o8 O, S, ), S0 20)
k
12

< 272 sSup dX(f(nlv"'777’[71)7]‘-(”17"'7“@))1)
1—1 nE[N]*

as ¢ preserves the extension relation. O

A further relaxation of the p-fork inequality is the following;:
For all w,z,y, 2z € X,

dx(z, ) < max{dx(z, w)”, dx(z,2)", dx(z,9)"}  (53)

1
— min{dx (w, z)?, dx(w, y)?} + APKP

9P
By analogy with terminology surrounding the notion of infrasup-umbel convexity, we
will refer to inequality (53) as the infrasup p-fork inequality with constant K. We also
introduce the following definition.

Definition 41. Let p € (0,00]. A metric space (X,dx) is infrasup-fork p-convez if there
exists C' > 0 such that for all £ > 1 and all f: Bor — X

€€Byk _os 8,6/€{—1,1}2°—1 25p

(H winmin dx<f<e,—1,6>,f<e,1,5'>>p>pgoup(f). 54

s=1

We denote by IIi*f(X) the least constant C' such that (54) holds for all k£ > 1 and all
maps f: Bor — X.

In the next theorem we gather results that are local analogues of those in Section 2.

Theorem 42.

(1) If a metric space (X,dx) satisfies inequality (52) with constant K > 0, then X is
Jork p-convex. Moreover, I1J (X) < 4K.
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(2) If a metric space (X,dx) satisfies the infrasup p-fork inequality (53) with constant
K > 0, then X is infrasup-fork p-convezx. Moreover, H;Sf(X) <4K.

Proof. The first assertion can be proven much in the same way as Theorem 12, and
we leave this verification to the dutiful reader. We will prove the second assertion. The
proof is rather similar to the proof of Theorem 12 albeit on some occasions where some
slightly different justifications are needed. It will be sufficient to show by induction on k
that for all maps f: Box — X, and all p € {-1,1}

dx(f(©), f(p,6))"

min k
se{—1,1}2k-1 2kP
k—1
1 dX(f(5,—1,5),f(€,1,5/))p
+ 4p Kp ZEEBanzb 65/e{mlr}}2s 1 2sp
< max  max dx(f(e1,...,€0-1), f(€1,...,€0))P.

1<0<2k ee{—1,1}*
For the base case k = 1, the inequality reduces to

min  FUOTEO) ol s ax(70), £0)),_mas dx(7(e), f(e1.22)) .

se{-1,1} 2 ec{-1,1} ec{-1,1}2

which is an immediate consequence of the triangle inequality. We now proceed to the
inductive step and fix © € {—1,1} and f: Boesr — X. Let g € {—1,1}2"~! such that

SO ) ). F )
2kp se{—1,1}2F-1 2kp ’

and for each p € {—1,1}, choose v(p) € {—1,1}2"~1

dX(f(L’ ,u)a f(”a Ky Py V(p)))p _ : dX(f(Lvl’(')7 f(LMu’p? 6))1)

- min -
20p se{—1,1}2F-1 25

By the induction hypothesis applied to the restriction of f to Bor (and with p = 1) we

get
p
win SUO.0.9)
se{—1,1}2"-1 25p
k-1
1 : dx(f(6?_1a5)7f(€7176/))p
+ 4P Kp desznzs 55/€{m11}}29 1 2sp
< max  max  dx(f(e1,...,€0-1), f(e1,...,€0))P. (55)

102k ec{—1,1}¢

By taking the first minimum in the sum and the maximum over larger sets we get
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dX(f(®)7 f(La 5));0

min
se{—1,132F-1 2kp
k—1
1 d -1,6 1,8"))P
T Z min min X(f(sa ) S)a f(€7 ) ))
4P KP - €€Byk+1 _gs 6,67€{—1,1}2°—1 2sp
< max max  dx(f(e1,...,e0-1), f(e1,...,€0))".

1<OL2R+ T ee{—1,1}¢

49

(56)

On the other hand, the induction hypothesis applied to g(¢) det F((¢, ), €) where € € Bor

gives

dx(g(0), g(,0))?

min
se{—1,1}2"—1 2kp
k—1
1 dx(g(e, —1,8), ge,1,8"))P
n Z min min X(g(g ) g<5 ))
4p Kp €€BLL_us 6,67€{—1,1}2°1 25P
s=1
< max  max dx(g(e1,.-.,€0-1),9(€1,...,€0))P.
1<0<2F ee{—1,1}*
Observe first that,
max max d €1y...360-1),9(e1,...,€0))P
|, max. x(g(e1 e-1),9(e1 0))
= max max dx(f(¢e, 81,0 ,80-1), f(e, 0,61, ,€0))F
1<0<2F ec{—1,1}*
< max max dx(f(e1,...,€0-1), f(€1,...,€0))",

1<e<2FH ee{—1,1}¢

since we are maximizing over the set of all the edges instead of a subset of it. Also, for

eachs=1,...,k—1,

dX(g(E’ _17 5)79(8’ 1)5/))1)

min min
€€Byk s 6,6/€{—1,1}2°—1 25P
. . dX(f(L?:U’757_175)7f(L7/”’a€7176/))p

= min min

€€Bk _ps 6,6/€{—1,1}2°—1 25p

d e, —1,0), f(e,1,0"))P

o min omm | SUELOSELO)P

€€B k11 _os 6,6/€{—1,1}2°—1 28p

since (¢, 4, &) € Bort1_gs for all € € Bor_os.
Therefore, it follows from the two relaxations above that

p
min dX(f(L,/L),f(Lvﬂvp, 6))
se{—1,1}2k—1 2kp
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1 kZ i dx(f(e,~1,6), f(,1,8)"
4pr aeszJrl 55 & 5’6{ 1 1}25 1 98P
g max max dX(f(El,...,5@_1),.]0(51,...75@))1). (57)

102K+ e€{—1,1}¢
Since the sum and right hand side in (57) do not depend on p, it follows from (56) and
(57) that
sz (max{ min du(F0). £(1,0)",

se{—1,1}2k-1

max min dx (f(b,ﬂ)af(L7M’p’6))p})

pE{-1,1} se{—1,1}2F—1

k—1
1 dx(f(€,—1,5),f(€,].,5/))p
4PKP Zseszf} s 8,67€{— 11}25 1 2sp (58)
<  max max dx(f(e1,...,€0-1), f(€1,...,€0))P.

12+ ee{—1,1}¢

If we let w & f(0), = e f(e,p), and z, & f(e, s pyv(p)) (for p € {—1,1}) it follows
from how p and v(p) were chosen, that

2%p(max{dx(w,z)p max dx(z, xp)p}> = (59)

pe{—-1,1}

2% (max { min dx (f(0), f(e,0))P,

se{—1,1}2F-1

max min dx(f(t ), (i 0.6))7} )

pe{-11} se{—1,1}2F—1
Inequality (52) combined with (58) and (59) gives

1 ] 1 1
Sty min{dx (w, 2 0)7, dx(w, 20"} + e o
k—1

1 Z . dX(f(53_176)7f(€7135/))p

m m 60
+41’KP seszklﬁ 9s 8,6/€{— 12}25 1 2sp (60)

dx(x_1,21)P

< ma max d €1,...,E0— £1,...,60))".
\1§E§2}’§+1€€{71),(1}2 X(f( 1, y &l 1)af( 1, ) Z))

Now observe that

min{dx(w, z_1)?, dx(w, z1)"}
= min{dx(f(w), f(Lv s _L V(_l)))pa dX(f(®)7 f(L7 Hy 1, V(l)))p}
> min dx (f(0), f(z,0))",

se{—1,1)2k+1-1
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and

dX(-r—la -Tl)p = dX(f(L7 M, —1, V(_l))7 f(L’ u, 1, V(l)))p

> min dx (f (e, pt, =1,6), f (1, p1,1,0"))P
5,67e{—1,1}2F-1

min min dx(f(e,—1,9), f(,1,8"))P
€€Byk §,5'€{—1,1}2" -1

WV

Plugging in the two relaxed inequalities above in (60) we obtain

d 6))P 1 d -1,6 1,6")P
min X(f(mia .]i(La )) + min min X(f(€7 ) ]3> f(sa ) ))
se{—1,132F+1-1 2(k+1)p 4P KP c€Byy 8,67e{—1,1}2F -1 2kp
k—1
1 d — \p
4p Kp £ e€Bori1 s 6,57€{-1,1}2" 1 2sp
P
< 1<I[n<aé}1§+l 56?1211),(1}[ dX(f(Elv s 75571)7 f(€17 .o 7‘€f)) ’
and hence
d P
min X(f((b)a f(Lv 5))
se(-taatrion 20D
k
1 -1 1,6")P
+ Z min min dX(f(é', a(s)a f(é" 75 ))
4P Kp = e€Bokt1 s 0,87€{~ 1,1} 2sp
< max max  dx(f(e1,...,e0-1), f(e1,.--,€0))",

12k ee{—1,1}¢
which completes the induction step. O

Infrasup-fork p-convexity is an obvious relaxation of fork p-convexity. It is less obvious
that infrasup-fork p-convexity is also a relaxation of Markov p-convexity,” and we need
a preliminary lemma that allows us to pass from the stochastic definition of Markov
convexity to a deterministic inequality.

Lemma 43. Let (X,dx) be a metric space, p > 0, k > 1, {W;}sez the simple directed
random walk on Bgx starting at the root, and f: Boyr — X a map. Then

(i) for all0 < s < k and 2° < t < 2F,

E[dx (f(We), f(Wi(t — 2°)))7]

7 It is unclear if fork p-convexity is implied by Markov p-convexity, see Problem 8.
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1 211
:ﬁ Z Z?Q@—l

ee{—1,1}t-2° £=1

Z % Z dx(f(€,5’,—175),]0(6,6/,1,(5,));0,

e'e{—1,1}¢-1 5,6’€{—1,1}2°~¢
(i) and
k—1 2" = s\\\p
1 3 E[dx (f (W), FW(t — 2°)))P]
1 2k t=2 .
- —os

—Z . dX(f(gafla(s)af(gﬁlv(S/))p

min
Tieet—1 1}<2k—2s 5.0'e{~1,1}2" 1 2%

(61)

Proof. The proof of (i) goes by performing consecutive ad-hoc conditionings. It is clear
that Wi_q9s = Wt,gs (t — 2%) almost surely and both are uniformly distributed over the
set {—1, 1}’5’25, which has cardinality 2¢=2". Therefore, by the law of total expectations,

Fix € in the sequel.

Next, consider the event, denoted &y, that W;_os and Wt,gs (t —2%) branch from each
other immediately before making the ¢th step after €. Formally, for every 1 < ¢ < 2% and
e e{-1,1}1,

def ’
& = U )
e’e{—1,1}¢-1
where
Wi_os 4p1=Wy_as 14_1(t—2%)=(e,e)
def t—2s 40— 1=Wi_os o1 €),
Ag(&‘/) = U { _ Wioase=(e,e" ), }

ue{—1,1} Wt—25+2(t_25):(€75/:_u)

The events &y, 1 < £ < 2%, are clearly disjoint, and a simple computation shows that &,
occurs with probability 27¢. Consequently,

E[dx (f(W2)./(We(t = 2°)))" | Wi—ae = ]

2%
-t LB (OV). SOVt = 2))7 | (Wicar = b8
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For each fixed ¢, the events {Ay(¢")}./c{_1,1}¢-1 are obviously disjoint and, after condi-
tioning on &y, each occur with probability 2'~*. Thus,

Efdx (f(We),f(We(t = 2)))7 | {Wi-2: = €}, &)
= 2. Eldx(fF(W0), F(Wi(t = 2°)))7 | {Wi2e = £}, &, Au(€)]-

e’e{—1,1}¢-1

Finally, recalling the definitions of the events we have conditioned on, the inequality
below clearly holds

E[dx (f (We), f(We(t = 2)))7 | {Wi-2s = €}, &, Ae(")]

= Z 42.}_g Z dx(f(€,€/,u,5),f(€,€/,711,,5/))1)

ue{—1,1} §,8'e{—1,1}2°—¢

= % > dx(f(e,e',—1,8), f(e,e',1,8"))P.

5,67 €{—1,1}2°~¢

Walking back through the chain of equalities we have the desired equality.
We now use (i) to show (i3). Observe first that the inequality

k-1 22 1 dx(f(e,-1,9), f(e,1,8"))”
sz_%HZQt > o ma 2 x(f(e Sor e

EE{ ll}f 5,5/6{—1,1}25*1
k—1
>3 min dx(f(,~1,0), f(=, 1, )
=l EnE e e 950

holds trivially, since the top expression involves convex combinations over the sets
{~1,1}52"-2" and {~1,1}2"~! x {~1,1}2"~, and the bottom expression involves min-

ima over these sets. To prove inequality (61), observe that 2,9%1 > Qkizs when s < k—1,

and hence
1 d W, (t — 2¢)))P
QZ;ﬁtZQS E[dx (f (W, )J;p (t—2%))*]

Ut | d W, (t —2%)))P
2;21@,252 E[dx (f (We), f(Wi( )P

2sp
t=2s

OF 1 & 12 dx(f(z,—1,0), f(£,1,8)"
2 ok _ 9s Z 9t—2° Z 9421 Z 9sp
s=1 =2 se{-1,1} -2 §,8e{-1,1}>" "1
k— ok _2s Np
1 Z dx(f(gv_laa)af(8a176))
B 42°—-1 9sp ’

s=1 56{ 1,1}t §,8'e{—1,1}2°~-1
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where in the application of (i), we discarded all the terms with £ > 1. O

Proposition 44. Fvery Markov p-convex metric space (X,dx) is infrasup-fork p-convexz.
Moreover, T/ (X) < 21/pH£4(X).

Proof. Let (X,dx) be a Markov p-convex metric space and k, {W;}icz, f as in the state-
ment of Lemma 43. Then

k—1 B .
Z min dX(f(&, 1’5)af(6a176 ))
Lt se Ml Sop
(11) k—1 2Z f(Wt(t_Q ))) ]
25p
s=1 " t=2¢
1 o0
?Z (W)
219
< 200 (X)PLip(f)" o Z]E [dx (Wy, Wy_1)?]
t=1

= 2I (X)PLip(f)”. O

Remark 45. We can show that Tessera’s p-inequality (3) is implied by the Markov
p-convexity inequality (2) using arguments along the lines of those in the proofs of
Lemma 43 and Proposition 44.

We record local analogues of the asymptotic results found in Section 3. These local
analogues are extensions of results that are known to be valid for spaces that satisfy the
Markov p-convexity inequality or Tessera’s p-inequality. The proofs of these local results
are nearly identical to their asymptotic counterparts and can be safely omitted. The first
result deals with distortion lower bounds.

Proposition 46. For allp € (0,00), Hgsf(Byc) > 2(k — 1)Y/? and hence
1
cv(B) = Q((log k)7),
for every metric space (Y,dy) that is infrasup-fork p-conver.
The second result provides compression lower bounds.

Theorem 47. Let p € (0,00). Assume that there are non-decreasing maps p,w: [0,00) —
[0,00) and for all k =1 a map fi: By — Y such that for all x,y € Bas

pldr(z,y)) < dv(fi(2), fr(y)) < w(dr(z,9)).
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Then,

/'O(t 9 2 dypiss (v,

T P

In particular, the compression rate of any equi-coarse embedding of {By}x>1 into a metric
space that is infrasup-fork p-convex satisfies

7(@)’)% < . (62)
1

t

Equipped with Proposition 46, we can show that two results from [39] about Markov
convexity actually hold for the much weaker notion of infrasup-fork convexity. The proofs
are the same as in [39] where the full power of Markov convexity was not needed (these
partial results were greatly strengthened in [45] where the proof of Theorem 3 was
completed). We recall the short arguments for the convenience of the reader.

Corollary 48.

(1) Let X be a Banach space. If X is infrasup-fork p-convex for some p > 2, then X is
super-reflexive and has Rademacher cotype p + € for every € > 0.

(2) If a Banach lattice X that is infrasup-fork p-convex for some p = 2, then for every
e >0, X admits an equivalent norm that (p + €)-uniformly convex.

Proof. For the first assertion, Proposition 46 together with Bourgain’s super-reflexivity
characterization implies that X is super-reflexive. The second part follows from
the fact that by Maurey-Pisier theorem [46] X contains the ly’s where gx =
inf{q: X has cotype ¢q}. By Bourgain’s tree embedding we have that cx(By) =
O((log k)*/ax) and it follows from Proposition 46 that gy < p. The second assertion
follows from the first and a renorming result of Figiel [25] which says that every super-
reflexive Banach lattice with cotype ¢ admits an equivalent norm that is (¢+¢)-uniformly
convex for every e > 0. O

A very interesting dichotomy is contained in [39] where it was proved that for an infi-
nite metric tree T, sup,en c1(Br) < oo if and only if ¢y, (T) = oco. The following corollary
can be found in [39] and the additional assertion (4') follows from the observations of
this section.

Corollary 49. Let T be an infinite metric tree. The following assertions are equivalent.

(1) supgen cr(Bg) = 1.
(2) suppen cT(Br) < oco.
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(8) T is not Markov p-convez for any p € (1,00).
(4) T is not Markov p-convex for some p € (1,00).
(4’) T does not have non-trivial infrasup-fork convexity.

The proof of the non-trivial implication (4) = (1) in [39] is based on a delicate
analysis of certain edge-colorings of trees and their relation to the £,-distortion of trees.
In a nutshell, if (4) holds then c,, (T) is unbounded, which in turn forces a certain
coloring parameter to vanish. The vanishing of the coloring parameter is then utilized
to show the presence of binary trees in T with arbitrarily good distortion. Since it is
sufficient to assume (4') to guarantee that c,,(T) is unbounded (e.g. via Proposition 46),
the implication (4') = (1) follows from the same edge-coloring based argument.

Remark 50. It was shown in [45] that the equivalence between (1) and (2) in Corollary 49
does not hold if the target space is an arbitrary metric space. Also, one can prove the
analogue of Proposition 21 for binary trees using infrasup-fork convexity.

The relaxations of the p-fork inequality that we considered in this section are formally
significantly weaker, and it would be interesting to identify more examples of metric
spaces satisfying these seemingly very weak inequalities. In fact, these examples must be
found outside the realm of tree metrics and Banach spaces.

Note that if an infinite metric tree T admits an equivalent metric that satisfies the
infrasup p-fork inequality (53), then Theorem 42 says that T has non-trivial infrasup-fork
convexity, and by Proposition 46 we have sup,cy c1(Br) = 0o. Then it follows from the
dichotomy in [39] that ¢y (T) < cr,(T) < oo, and thus T admits an equivalent metric
that satisfies the r-fork inequality where » = max{2,p}. Therefore, when p € [2,00)
an infinite metric tree admits an equivalent metric that satisfies the infrasup p-fork
inequality if and only if it admits an equivalent metric that satisfies the p-fork inequality.

In the Banach space setting, we consider an alternative definition of uniform convexity
via the following modulus which is a local analogue of the asymptotic modulus /3 naturally
linked to property (53):

Bx(€) f 1nf{ max {

1€{1,2}

Z;
szl el < 3, Jlz = 2ol > <} (63)

It is easily verified that for all € € (0,2), Bx(e) > 0 if and only if there exists 6 > 0 such
that for all z,z,y € By, if ||z — y[|x > € then min{||%=5%||x, | Z2[x} <1 —6.
The modulus By is a “fork variant”, inspired by property (8), of the classical 2-point

modulus of uniform convexity dx:

r+y

ox(e) Lint {1 ||| <ol lylle < 1,z =yl > e} (64)
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Lemma 51. For all € € (0,2),

e

5x(§) < Bx(e) < 20x(e). (65)

Proof. Let z, 21,22 € By and |21 —z2|lx = €. If [|[z1+2||x = § then || 257 x < 1-0x(5).

Otherwise, ||z1+z2||x < 5 and this implies that ||zo+z2[|x = ||[z2— 21| —[|z1+2] > -5 =
= ox(5), and

Z2—T;

2

5. Therefore, || *5=[|x < 1—0x(5). In any case, max;e; 2} {1 — H
the left-most inequality is proved.

For the right-most inequality, let x,y € By and ||z — y||lx > . Take z = —z. By
definition of By, either |[ZF|x < 1 — Bx(e) or ||z[lx < 1 — Bx(e). In the former case,
there is nothing to do. In the latter case, |“E2|x < 1(1— Bx(e)) + 3 = 1 — 1Bx(e), and
the conclusion follows. O

It follows immediately from Lemma 51 that a Banach space X is uniformly convex if
and only if Sx(g) > 0 for all € > 0. Note in passing that this provides a rather direct
proof that uniformly convex spaces have property (5). Quantitatively, X is uniformly
convex with power type p if and only if Sx(e) = €P. It is also easy to see that if X
supports the infrasup p-fork inequality (53), then Sx(¢) 2 P, and thus X is uniformly
convex with power type p by Lemma 51. Consequently, by [4] X is p-uniformly convex,
and by [45, Lemma 2.3] it satisfies the p-fork inequality. Thus for Banach spaces, the
p-fork inequality and the infrasup p-fork inequality are equivalent up to the value of the
constants involved.

For the sake of completeness, we provide a more direct proof of the fact above which
uses neither [4] nor [45] and for which it is easier to keep track of the value of the constant.

Lemma 52. Let X be a Banach space. If Bx(t) > %t” then the infrasup p-fork inequality
(53) holds in X with constant c¢*/P4~1.

Proof. Assume that Sx(t) > %tp and let w, z,x,y € X. Since the distance in X is trans-
lation invariant, we may assume z = 0. Also, by scale invariance of (53) we can assume
that w,z,y € Bx. Thus (53) reduces to

1. |l —yl|?
—min{|lw — z||?, |w - Y|P} + ———

- - <1 (66)

. — p — p
Now observe that min{ ”“’2—;"”; %

By. Therefore, (66) follows from the fact that by definition of dx it holds min{w;
M} < 1— 2|z —y|?, since without loss of generality we may assume that ||z — y|| >
0. O

} < min{w;w} whenever w,z,y €
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8. A characterization of non-negative curvature

Recall that a geodesic metric space has non-negative curvature if for all z,y,z € X
and mg, a midpoint of « and vy,

dX(‘Tvy)Q

5 > dx(z, %)% 4 dx (2, 9)* (67)

2dx(Z, mmy)z —+
Austin and Naor [1] showed that a geodesic metric space (X,dx) with non-negative
curvature satisfies the 2-fork inequality with constant K = 1. In this section we prove
the missing implication in Theorem D adapting an argument of Lebedeva and Petrunin
[40] which is used to characterize non-negative curvature in terms of a certain fork
inequality.

Proposition 53. If a geodesic metric space (X,dx) satisfies the 2-fork inequality with
constant K =1, then X has non-negative curvature.

Proof. Let z,y,z € X and let m,, be a midpoint of x and y. Since X is geodesic there
exists a geodesic connecting mg, and z, and for each n > 1, a point z, on this geodesic
such that dx(may,2n) = W;%Z) Set zp = z and «,, to be such that

dx(-’ﬂ, y)2

. (63)

O‘ndX(Zna mxy)z = dX(Zny x)Q + dX(Zna y)2 -

Note that it is sufficient to show that ay < 2 in order to show that (X, dx) has non-

negative curvature. Observe first that the 2-fork inequality with constant K = 1 applied
t0 2, T, Y, Mgy gives that for all n > 1,

d 2
dX(Zna -r)Q + dx(Zn, 3/)2 + @ < 4dx(mxya Z)2 + 2dX(mxy7 33)2 + 2dX(mxya y)2 (69)
and thus
2
dx (2n, )* + dx (20, y)* — M

< 4dX(mwya Zn)2 + 2dX(mazya l‘)2 + 2dX(mwy7 y)2 - dx(l‘, y)2

2 2
=4dx(m$y,zn)2+2dX(Z’y) +2dx(ﬂiy) _ dy(z,p)?

= 4dx(mxya Zn)27

which means that a,, <4 for alln > 1.

dx (z,9)°
2

Now if we subtract to the 2-fork inequality with constant 1 applied to

Zn+1;L, Y, Zn, WE have
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dX($7 y)2

dx (zn+1, x)2 + dX(Zn+17y)2 + 2dx (241, Zn)z - 9

2 dx(z‘/nam)2 + dX(Znay)Q dx(xay)Q.
2 2 4

Hence,

«
anJrldX(ZnJrla mzy)z 2 7ndX(zn7 mzy)2 - 2dX(Zn+1u Zn)2
which ultimately gives

dx (2, mey)? _ o dx (2, mpy)?
Oén-i—lT_i_glc;! > %sz — 2dx(2’n+1,zn)2.

Observe now that since the z,’s are on same geodesic

dx(may, 2) B dx (mey,2)  dx(Mmay, 2)

dX(Zn+17 Zn) ==

on 2n+1 - 2n+1
Then,
22n+2 2. 22n+2
Qnt1 2 92n+1 Qn — 92n+2 = 20 — 2.

Assume that og > 2. Then a simple induction gives that a,, > 2™(ag—2)+2 and hence
lim,, o, = o0, contradicting the fact that «, < 4. Therefore oy < 2 and the conclusion
follows. 0O

9. Concluding remarks and open problems

Our work raises a myriad of natural questions and problems. We will highlight a few
of them we feel are particularly important and most likely challenging.

It follows from Corollary 29 that umbel p-convexity is stable under uniform homeo-
morphisms between Banach spaces. Because of this fact, umbel convexity cannot settle
the metric characterization of Banach spaces with property (8,). Indeed, Kalton showed
[29] that given a sequence {F,}>1 that is dense in the Banach-Mazur compactum of

finite-dimensional spaces, the Banach space C, o (302 Fn)e, is uniformly homeomor-

P
phic to K, e Cn s Fn)7, @ () Fn)7, where T, is the p-convexification of Tsirelson
space 7. Therefore K, is umbel p-convex since C,, has property (3,), but Kalton observed
that K, does not admit an equivalent norm that is asymptotically uniformly convex with
power type p, and by [21] does not admit an equivalent norm with property (/,). The
space K is thus an example of a Banach space that is umbel p-convex and that does
not admit an equivalent norm with property (5) with power type p. This is in stark
contrast with the renorming Theorem 3 for Markov convexity. The stochastic apparatus
of Markov convexity is a powerful tool that is dearly missed in the asymptotic setting,
and a new idea is needed to solve the following problem.
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Problem 1. For a given p € (1,00), find a metric characterization of the class of Banach
spaces admitting an equivalent norm with property (8p).

Interestingly, it was shown in [21] that K}, admits for every ¢ > 0 an equivalent norm
with property (8,4.) and the next problem arises naturally.

Problem 2. If a Banach space is umbel p-convex for some p € (1,00), does it admit for
all ¢ > p an equivalent norm with property (54)7?

Our work shows that if a Banach space is umbel p-convex for some p € (1, 00), then it
admits an equivalent norm with property (5,) for some ¢ > 1. The difficulty in solving
Problem 1 and Problem 2 stems from the fact that the renorming theory for spaces
with property (8) is not fully grasped yet as it currently goes through the much better
understood asymptotic uniformly convex/smooth renorming theories.

A tentatively more tractable, and somewhat related problem, is a local analogue of
Problem 2.

Problem 3. If a Banach space is fork p-convex for some p € [2,00), does it admit for
g = p (or more modestly for all ¢ > p) an equivalent norm which is g-uniformly convex?

In Section 5 we showed that (H({2),d..) is infrasup-umbel 2-convex. In partic-
ular, this implies that cps,)(T¢) = Q(y/Iogk), and this is optimal by Bourgain’s
tree embedding (see Proposition 24). This has to be contrasted with the fact that
(H(43),dce) is only Markov 4-convex, and a Markov convexity-based argument gives
CH(zz)(Bk) = Q((log k)1/4). This lower bound is suboptimal since S. Li [34] proved, us-
ing a refinement of an argument of Matousek [42], that CH@Z)(B;C) = Q(\/W), and
this latter bound is optimal by Bourgain’s tree embedding. By Theorem 36 and Propo-
sition 44 (H(¢2),d..) is infrasup-fork p-convex for all p > 4, and it would be interesting
to compute its exact infrasup-fork convexity.

Problem 4. Is (H(wy), d..) infrasup-fork p-convex whenever X is p-uniformly convex?

If Problem 4 has a positive answer, then the notion of infrasup-fork convexity would
be a metric invariant that could detect the right order of magnitude for the distortion
required to embed binary trees into the infinite Heisenberg group, something that Markov
convexity is unable to achieve.

In the proof of Theorem 32, we showed that (H(wx),d..) admits an equivalent quasi-
metric satisfying the 2p-fork inequality (7) whenever X is p-uniformly convex. The
following asymptotic problem remains open.

Problem 5. Does (H(wy),dc.) admit an equivalent quasi-metric satisfying the p-umbel
inequality whenever X has property (5,)? More generally, is (H(wy), dc.) umbel p-convex
whenever X has property (8,)?
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The scale-invariant parallelogram convexity inequality (42) defining p-uniform con-
vexity in Banach spaces has a natural analogue in Heisenberg groups, and the proof
of Theorem 32 goes through establishing this inequality. The difficulty in adapting the
proof to solve Problem 5 exactly lies in the fact that no scale-invariant “parallelogram”
inequality exists for property (5p).

The reason why H(¢3) cannot be Markov p-convex for any p < 4 comes from the fact
that certain Laakso graphs, which are known not to have non-trivial Markov convexity,
can be embedded well enough in H(R), and hence in H(#¢3). It seems possible that
Laakso or diamond graph constructions could have non-trivial infrasup-fork convexity
and thus infrasup-fork convexity would be a metric invariant capable of preventing bi-
Lipschitz embeddings of trees into diamond like structures. It is worth pointing out that
it was proved by Ostrovskii [50] (see also [37]) that binary trees do not embed equi-bi-
Lipschitzly into diamond graphs. Note also that diamond convexity is a metric invariant
that prevents bi-Lipschitz embeddings of diamond or Laakso graphs into trees, since it
was proved in [22] that trees are diamond 2-convex.

Problem 6. Let G, be one of the following graphs: the diamond graph Dy, the Laakso
graph Ly, or their countably branching versions DY and LY, respectively. Are the param-
eters supycy H;Sf(Gk), supyen 7% (Gy), or supyey I1%(Gy) finite for some p < 00?

It would be very interesting to exhibit examples of metric spaces that admit an
equivalent metric satisfying the infrasup p-fork inequality but with no equivalent metric
satisfying the p-fork inequality. In light of Theorem 32, Proposition 2.3 in [34] (or the
proof of Theorem 36), and the discussion above, a natural candidate for p = 2 is the
infinite Heisenberg group.

Problem 7. Does (H(¢3),d..) admit an equivalent (quasi)-metric satisfying the infrasup
2-fork inequality?

Finally, we do not know whether Markov p-convexity implies fork p-convexity. Loosely
speaking, the issue is that the left-hand side of the Markov p-convexity inequality involves
an average over all levels of the binary tree, while the left-hand side of the fork p-convexity
inequality involves an average over dyadic levels.®

Problem 8. Does Markov p-convexity imply fork p-convexity?

& For similar reasons, we do not know the relationship between the previously mentioned Poincaré in-
equality on binary trees [35, page 382] and Markov convexity or fork convexity.
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Appendix A. Table of inequalities

For the convenience of the reader, we summarize in the following table the main in-
equalities introduced or recalled in the paper. The table is organized so that the following
three facts hold:

e An inequality in row ¢ column j implies the inequality in row k column j for k > i
(with the exception of Markov p-convexity implying fork p-convexity, see Problem 8).

e A point-inequality in row i column j implies the Poincaré inequality in row i column
J+1

e A local inequality in row 7 column j implies the asymptotic inequality in row 4 column
Jj+2

Local Asymptotic

4-point inequality Poincaré inequality w-point inequality Poincaré inequality

p-fork inequality (7) Markov p-convexity (2)

relaxed p-fork fork p-convexity (51) p-umbel inequality (11)  umbel p-convexity (4)
inequality (52)
sup p-umbel inequality sup-umbel p-convexity
(18) (17)
infrasup p-fork infrasup-fork infrasup p-umbel infrasup-umbel
inequality (53) p-convexity (54) inequality (21) p-convexity (20)
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