Optimal Oblivious Routing with Concave
Objectives for Structured Networks

Kanatip Chitavisutthivong, Sucha Supittayapornpong, Pooria Namyar, Mingyang Zhang,
Minlan Yu, and Ramesh Govindan

Abstract—ODblivious routing distributes traffic from sources to
destinations following predefined routes with rules independent
of traffic demands. While finding optimal oblivious routing with
a concave objective is intractable for general topologies, we
show that it is tractable for structured topologies often used
in datacenter networks. To achieve this, we apply graph auto-
morphism and prove the existence of the optimal automorphism-
invariant solution. This result reduces the search space to tar-
geting the optimal automorphism-invariant solution. We design
an iterative algorithm to obtain such a solution by alternating
between convex optimization and a linear program. The convex
optimization finds an automorphism-invariant solution based on
representative variables and constraints, making the problem
tractable. The linear program generates adversarial demands to
ensure the final result satisfies all possible demands. Since the
construction of the representative variables and constraints are
combinatorial problems, we design polynomial-time algorithms
for the construction. We evaluate the iterative algorithm in terms
of throughput performance, scalability, and generality over three
potential applications. The algorithm i) improves the throughput
up to 87.5% for partially deployed FatTree and achieves up to
2.55x throughput gain for DRing over heuristic algorithms, ii)
scales for three considered topologies with a thousand switches,
iii) applies to a general structured topology with non-uniform
link capacity and server distribution.

Index Terms—Oblivious routing, datacenter networks, convex
optimization, graph automorphism.

I. INTRODUCTION

Topology design for datacenter networks has gained atten-
tion due to the need to construct high capacity datacenters at
low cost and low management complexity [1]-[|12]]. Although
several topologies have been proposed, only the folded-Clos
family of topologies [1]]-[4] achieves designed capacity with
existing routing solutions including Equal-Cost Multi Path
(ECMP) [13]] and Valiant Load-Balancing (VLB) [[14], [15].
For topology designs that deviate from folded-Clos [6[—[/11]]

This work was supported by Office of the Permanent Secretary, Ministry of
Higher Education, Science, Research and Innovation (OPS MHESI), Thailand
Science Research and Innovation (TSRI), Vidyasirimedhi Institute of Science
and Technology (VISTEC) under Grant No. RGNS 65-216, in part by the
U.S. National Science Foundation under grant No. CNS-1955422, and in part
by ACE, one of the seven centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA. The early version of
this work appeared in the Proceedings of IEEE INFOCOM 2022 [DOI:
10.1109/INFOCOM48880.2022.9796682].

Corresponding author: Sucha Supittayapornpong (sucha.s@vistec.ac.th).

Kanatip Chitavisutthivong and Sucha Supittayapornpong are with Vidyasir-
imedhi Institute of Science and Technology, Thailand.

Pooria Namyar, Mingyang Zhang, and Ramesh Govindan are with Univer-
sity of Southern California, United States.

Minlan Yu is with Harvard University, United States.

Partially deployed FatTree

Deterministic FatClique

Fig. 1. Examples of highly structured topologies

the design of scalable routing algorithms that can achieve their
designed capacity is an open question.

Routing inside datacenter networks can be categorized into
traffic-aware routing and oblivious routing. Traffic-aware rout-
ing reduces network congestion and improve overall through-
put by regularly adjusting routes and fractions of traffic
demands over the routes according to queue occupancy or
traffic demands [6], [7]], [16]]. These advantages come at a
cost of specialized hardware and routing complexity. Alter-
natively, oblivious routing is much simpler. Traffic demands
are distributed according to predefined routes and shares of
the demands over each route. In particular, the routing is
oblivious to the current traffic demand, so regular configuration
of routes is unnecessary [15]]. Because of this simplicity,
oblivious routing, including ECMP and VLB, is deployed in
several large-scale datacenter networks [1]—-[4]. A real-world
measurement at Facebook also suggests oblivious techniques
work well leaving little room for improvement using advanced
traffic-aware routing [[17].

Although existing oblivious routing is widely deployed, it
achieves designed capacity only for the folded-Clos and clique
topologies. Specificallyy, ECMP can achieve the designed
capacity of folded-Clos topologies including FatTree [1],
Google’s Jupiter [3]] and Facebook’s Fabric [4]]. VLB achieves
designed capacity for a clique topology and works reasonably
well in Microsoft’s VL2 [2]]. However, recent datacenter topol-
ogy designs have moved away from the folded-Clos family
[8]-[12] and, for these, existing oblivious routing approaches
cannot be used to achieve their designed capacity.

Of these new designs, highly structured topologies, such as
FatClique [11] and DRing [12] (Fig. E]), are more manageable
(i.e., they are easier to install and expand) than random
topologies [8]], [9]. For these structured topologies, this paper
develops a general oblivious routing algorithm that relies
on hardware support for multi-path routing (WCMP) already
available in commodity switches.

For any network, oblivious routing can be formulated as
a robust multi-commodity flow problem with a concave ob-

jective in which the number of constraints grows factorially
with the number of switches in the network. Even for a small
network, the problem size, in terms of numbers of variables
and constraints, can easily overwhelm an optimization solver’s
memory and renders the problem intractable.

For structured topologies, however, we show that we can use
the topological structure and graph automorphism to reduce
the problem size to the point that is tractable for any off-the-
shelf solver running on commodity hardware.

To do this, we first prove the existence of an optimal solu-
tion that is invariant to automorphism—the solution is a permu-
tation of itself. Based on this result, we reduce the search space
of an optimal solution to the solution that is automorphism-
invariant. Using graph automorphism, we formulate a robust
multi-commodity flow problem with significantly fewer vari-
ables and constraints to target this optimal solution. While the
formulation has robust constraints, we observe that the optimal
solution is in a much lower dimensional space compared to the
original robust formulation, due to the automorphism-invariant
property of the optimal solution. Therefore, we only need
to consider a smaller subset of traffic demands instead of
considering all possible demands.

This leads to the design of an iterative algorithm that
alternates between convex optimization and a linear program.
The convex optimization finds an automorphism-invariant
routing solution. The linear program generates adversarial
traffic demands to make sure the end result of the iterative
algorithm is optimal and satisfies all possible traffic demands.
Both optimization problems are based on representative vari-
ables and constraints, which significantly reduce the problem
sizes. However, the construction of representative variables
and constraints is a combinatorial problem, associated with
the exponentially large number of automorphisms. We design
polynomial-time algorithms to construct these representatives
by utilizing the generators of the automorphisms.

We evaluate our iterative algorithm in terms of throughput,
scalability, and generality over three potential applications. 1)
The algorithm improves the throughput up to 87.5% over a
heuristic algorithm for partially deployed FatTree topologies.
It also yields up to 2.55% throughput gain for DRing topolo-
gies. ii) The algorithm is scalable and provides the optimal
oblivious routing solution for FatClique, DRing, and partially
deployed FatTree topologies with a thousand switches. iii) We
demonstrate the generality of the algorithm by considering a
structured topology with non-uniform link capacity and server
distribution.

The contributions of this work are threefold, which leads to
a more general oblivious routing formulation supporting tradi-
tional linear objective functions and fairness-aware functions.

e« We prove the existence of an automorphism-invariant
optimal solution of an oblivious routing problem with
a concave objective in every structured topology. This
reduces the search space of optimal solutions.

e We design the iterative algorithm that targets the
automorphism-invariant optimal solution using graph au-
tomorphism. The algorithm is tractable in comparison to
solving the intractable oblivious routing formulation.

o We develop the polynomial-time construction of the al-
gorithm and illustrate three applications of the algorithm.

The paper is organized as follows. Section|[I] presents related
works. Section [[IIl models a datacenter network and formulates
the oblivious routing problem. Section [[V] proves the existence
of the optimal solution that is automorphism invariant. Section
[V] uses this insight to develop the iterative algorithm target-
ing the automorphism-invariant optimal solution. Section
provides an efficient construction of representative variables
and constraints. Our approach is evaluated in Section |VII} and
Section concludes our work.

II. RELATED WORK

Oblivious routing has long been studied in two perspectives:
algorithmic construction with performance bounds [18]]-[25]]
and mathematical optimization [20]—[23]], [26]—[29].

Oblivious routing with competitive ratio: In 1980s,
Valiant et al. 18], [[19] studied the competitive ratio, which is
the maximal ratio of the congestion resulting from an oblivious
routing algorithm to the optimal congestion for any traffic
matrix, and proposed an O(logn)-competitive ratio oblivious
routing algorithm for hypercube topology where n is the
number of nodes in a network. The key idea of Valiant’s
routing scheme is that the traffic from a source is equally split
to intermediate nodes, and every intermediate node routes the
traffic to its destination. Applegate et al. [27], [28]] proved the
Q(y/n) lower-bound of competitive ratio for a directed graph.

Alternatively, an oblivious routing scheme can be efficiently
constructed from decomposition trees from hierarchical de-
composition. In [24]], Réacke proposed the oblivious routing
scheme for undirected graphs with competitive ratio O(log3 n)
using a single decomposition tree. Later in [25]], Ricke utilized
the convex combination of decomposition trees [30] to obtain
an O(logn)-competitive ratio routing scheme. Nonetheless,
the aforementioned methods focus on competitive ratios in-
stead of optimal oblivious routing schemes.

Optimal oblivious routing: Azar er al. [26|] proposed a
polynomial-time linear program with a separate oracle for
optimal oblivious routing solution. Later, Applegate et al.
[27], (28] proposed an efficient single polynomial-size linear
program by combining the dual formulation of the oracle
with the main linear program. Kodialam et al. [20]-[23]]
focused on the hose traffic model and independently proposed
a single polynomial-size linear program. They also proposed
a generalized two-phase routing scheme where the traffic can
be split to intermediate nodes with predetermined split ratios.
The scheme is proven to achieve at least half of the optimal
throughput in some cases. For a clique topology, Zhang-Shen
et al. [14], [29] utilized the unique property of employing two-
phase routing on a clique network to obtain the optimal link
capacity allocation for robust backbone networks. However,
all methods mentioned above are either intractable for large-
scale topologies or too specific to some topologies. Instead, our
work proposes a new method for highly structured large-scale
topologies and supports concave objective functions, which
have not been considered in all previous works.

Physical Network

Logical Network

Fig. 2. Aggregated link capacity in the physical network is normalized to the
number of physical links in the logical network. Switches are labeled by O to
5. Switches 0 to 3 are connected to 2, 2, 3, 3 servers respectively.

III. SYSTEM MODEL

This section formally models a datacenter network, traffic
demands, and the oblivious routing formulation. These models
are general and should fit most practical datacenter networks.

A. Datacenter network model

A datacenter network is an interconnection of servers and
ethernet switches. Each server has a single full-duplex port for
bi-directional communication and is connected to a switchl]
Each network switch has a finite number of full-duplex ports
for interconnection with servers and other switches. For ex-
ample, Broadcom’s Tomahawk 4 Ethernet switch chip can be
configured as 256 ports at 100Gbps [33]]. Two devices are
physically connected by connecting ports from both ends.
In practice, there could be multiple physical links between
two devices to increase communication capacity. Our model
considers a logical link between any two devices, and the
logical capacity equals the combined capacity of all physical
links between the devices. Since the capacity of physical links
are identical, we normalize the logical link capacity by the
physical link capacityﬂ and we only consider the number of
physical links between devices. This model based on logical
links is illustrated in Fig. 2]

A datacenter network is a directed graph with the set of
switches S and the set of logical links £. Every logical link
connects two switches. The graph is assumed to be connected.
A directed link (i,7) connects switch ¢ to switch j with
capacity Cj; equaling the number of physical links between
the switches. Because of the full-duplex ports, link (7, j) € £
if and only if (j,4) € £, and both links have identical capacity,
ie., Cij; = Cj; for every (i,7) € L. To account for servers,
let H; be the number of servers connected to switch s for
every s € S. Then, we define S as the set of switches
with k servers attached, S, = {s € S: H, = k} for every
non-negative integer k. The set Sy contains all switches with
no servers attached. We further define a set of switches with
server(s) attached as H = S\Sp.

We adopt the multi-commodity model to directly measure
throughput between every pair of source and destination
switches with server(s) attached. Denote the set of commodi-
ties by C = {(u,v) € H? : uw# v}. This set is also used for
traffic demand modeling.

'When a server has multiple ports and routing capability, as in server-
centric topologies [31]], [32], such a server can be viewed as an ethernet
switch attached with multiple servers.

2When the capacities of physical links are not identical, the normalization
uses the greatest common divisor.

B. Traffic model

Traffic inside a datacenter network is a combination of
demands generated by servers attached to different switches.
Since a commodity is defined at the switch level, the demand
from a switch is the aggregate demand from its attached
servers to servers on other switches. This demand is limited
by the capacity of the server-facing links, the logical links
between a switch and its attached servers. From the normal-
ization, every switch can source and receive traffic demands at
most the number of its attached servers. We denote the traffic
demand of commodity (u,v) by t*¥ for every (u,v) € C. A
combination of traffic demands from every commodity forms a

traffic matrix [t*Y] € RT‘Z) where R is a set of non-negative
reals. The set of all possible traffic matrices is denoted by 7T,
which is also called the hose traffic model [23]], [34]], where

2 Yoent™ <H, YucH
T=t"eR™ « >yt <H, YweH
t' =0 Yu e H

The first and second constraints ensure every switch can source
and receive traffic at most the total capacity of all server-
facing links. The last constraint ensures that a switch internally
forwards traffic between servers connected to it.

This traffic set is used to design optimal oblivious routes
between every commodity with predictable throughput per-
formance. For example, if all routes can deliver every traffic
matrix in 7, no congestion from capacity violation will occur.

C. Oblivious routing formulation

Oblivious routing distributes traffic demand of every com-
modity over links in the network. We assume traffic can be
split arbitrarily at any intermediate switch similar to [14], [[15].
Every splitting proportion is independent of the traffic demand.
For example, with the 1 : 2 split proportion, 1 unit of traffic
demand is split to 1/3 and 2/3, and 2 units are split to 2/3 and
4/3. Hence, the routing is oblivious to traffic demands. Next,
we formulate an oblivious routing optimization problem.

Recall that we adopt the multi-commodity model with the
commodity set C where a commodity is a pair of source and
destination switches. For each commodity (u,v), we decouple
traffic demand ¢"* from routing and splitting by defining f;3"
as a share of the demand over a link (¢, j) such that the actual
traffic over the link is ¢* f{1".

Since, in general, a datacenter’s traffic demand can be any
traffic matrix in 7, the throughput of commodity (u,v) is
defined by a non-negative factor 6“% that scales every traffic
demand of the commodity in the traffic set. For example, the
worst-case throughput, described in [10], [15], [35], is the
worst scaling over all commodities, min, »)ec 0*", such that
the overall worst-case throughput equals 1/2 means any traffic
matrix 7' € T /2 does not violate any link capacity.

For generality, our formulation maximizes a concave func-
tion g : le‘ — R of the throughput variables {0“"}. This
general concave function includes the worst-case throughput
above, the worst-case throughput with marginal throughput
136]

A min
(u,v)eC

oW 1 Z au'u7 (1)

(u,v)eC

the proportional fair function [37]]

> log(6"),

(u,v)€C

2

and other functions such as the average delay [38|] and the a-
fairness function [39]]. We thus formulate the oblivious routing
problem with a concave objective as follows:

Maximize g({@“”})
Subject to Z Z
J€O(3) JEZL(3)
O {li =u] —1[i =]},
Z tuv uv < Clja V(l,

(u,v)ec
Ji. 6" e Ry,

Y

Vie S,V(u,v) €C
Jj) e LV[t) e T

V(u,v) € C,¥(i,j) € L,

3)
where O(4) and Z(%) are respectively the sets of switches that
switch ¢ has out-going links to and in-coming links fronﬂ The
first constraint is a conservation of share at every switch. The
second constraint is a robust link capacity that considers all
possible traffic matrices.

Although the formulation can be transformed to a linear
program with the extreme points of the traffic set (similar
to the technique used in [34]), the sheer numbers of com-
modities O(|H|*), directed links O(|£]), and the extreme
points O(|H|!) at the scale of datacenter networks can easily
overwhelm the available memory of any off-the-shelf solver
and its ability to obtain optimal solutions. In particular,
the numbers of variables and constraints are respectively
O(HI’|£]) and O(JH|*|S| + |L|[H]!). Another formulation
in [27]] can reduce these numbers to polynomial; even so, the
formulation can still overwhelm available memory easily as
shown in our evaluations. In the next section, we leverage
topological structure in some datacenter networks to achieve
tractability.

IV. CHARACTERIZATION OF OPTIMAL SOLUTIONS

This section first introduces graph automorphisms that iden-
tify “similar” structure in datacenter networks together with
the objective function in (). We then prove the existence of
an optimal oblivious routing solution that also has a “similar”
structure.

A. Graph automorphism

Graph automorphism is a permutation of nodes in the graph
such that the adjacency between nodes before and after the
permutation is the same. For a datacenter network, we extend
the adjacency preservation of graph automorphism to include
the preservation of servers at a switch, link capacity, and the
objective function as illustrated in Fig. [3] and defined formally
below.

Definition 1 (Automorphism). Given an objective function g
and a network topology with switch set S, link set L, link

3We have O(i) = Z(4) under the full-duplex assumption.

Fig. 3. Suppose the objective function is Z(u,v)ec log “v. The right
network is an automorphism of the left network with ¢ () = « + 1 when
x is even and ¢ (z) = — 1 when z is odd. Both networks have the same
adjacency and distributions of link capacities and servers.

0—1

Fig. 4. The share variables of commodities (0,1) and (2,3) in an
automorphism-invariant optimal solution are shown. Each arrow represents
a share variable. For each commodity, the shares having the same value
are assigned an identical color. They are automorphism invariant, e.g.,

gi* = 851* under the automorphism that permutes switches 4 and 5.

For commodity (2,3), we have f25* = f22* under the automorphism that
permutes switches 0 and 1. For throughput variables, we have §01* = 910*
and 623* = §32* under the automorphism that permutes switch pairs (0, 1)
and (2, 3).

capacities {C,;}, and the numbers of servers at every switch
{H.}, an automorphism ¢ : S — S preserves:

1) Adjacency: (¢ (i),¢(j)) € L for every (i,j) € L.

2) Link capacity: Ci; = Cypiyg(;) for every (i,]) € L.

3) Number of Servers: H, = Hy,) for every u € S.

4) Objective function: g({0**}) = g({6¢(W*)}),

Note that the invariant of an objective function in Definition
[[] means the objective function is indifferent when com-
modities are permuted under an automorphism; for example,
g({euu}) = Z(u v)EC loge = E(u,v)ec log 9¢(u)¢(1’) =
g({9¢(u)¢(v)})_

The set of all automorphisms is denoted by ®. While the
size of this set could grow exponentially large, it is finite, i.e.,
|®| < oo. Next, we use these automorphisms to reduce the
search space for an optimal solution of the formulation in (3.

B. Existence of an automorphism-invariant optimal solution

We will show the existence of an automorphism-
invariant optimal solution of the formulation in (3). In an
automorphism-invariant optimal solution, every decision vari-
able in a group under automorphisms in ¢ takes the same
value as shown in Fig. [}

We first show that applying an automorphism to an optimal
solution results in another optimal solution.

Lemma 1. Suppose { v 9“”*} is an optimal solution of
the formulation in (). szen any automorphism ¢ € ®, the
solution { fr 9“”} is also an optimal solution such that

_ :zf((iﬁ v)* and 0% — PP e(v)*.

Proof. To show that the solution from an automorphism is
also an optimal solution, we show that the solution leads to
the optimal objective value and the feasibility of all constraints.

Proving the objective value is optimal is straightforward
from the invariant of an objective function in Definition (1] as

g({6’}) = g({6°}) = g({6"}).

We then consider the feasibility of constraints.

From a share conservation constraint at switch ¢ and com-
modity (u,v) in (@), the difference between the out-going
shares and the in-coming shares is

U)¢>(v H(u)p(v)*
Alwv,i)= Y i Z oo
JEO(1) JEZ(:
o d(u)p v)* P(u)p(v)*
= > fi; Z Fioty - @)
JEO((4)) JEL($())

This is because the adjacency preservation of the automor-
phism in Definition (1} Since the share conservation holds true
for the optimal solution, the difference in becomes:

A(u, i) = 620 {16 (i) = ¢ ()] = 1[6 (i) = ¢ (v)]}
= 0" {I]i =] —L[i = v]}.

This shows that the share conservation constraint at switch %
and commodity (u,v) under the solution from an automor-
phism is feasible. This holds true for every switch ¢ € S and
every commodity (u,v) € C.

For the link capacity constraint at link (i,j) and traffic
matrix [t**] in (@), the left-hand side under the solution from
an automorphism equals

)y

(u,v)ecC

e = 2 OO
(u,v)eC

< Coiye(s) = Cij-

The first equality follows from the re-indexing of terms in the
summation over the commodity set. The inequality uses the
fact that the capacity constraint of link (¢ (7),¢ (j)) under
the optimal solution is feasible when the traffic matrix is
[t (We " ()], which is a member of the traffic set 7. The
last equality follows the capacity preservation in Definition
Therefore, the link capacity constraint at link (¢, j) and traffic
matrix 7' = [t**] under the solution from an automorphism is
feasible. Again, this holds true for every link (4,7) € £ and
every traffic matrix [t“] € T.

In short, we have shown that the solution from an au-
tomorphism yields the optimal objective value and leads to
feasibility of all constraints. Thus, the solution is optimal. [

Lemma (1| implies that the automorphism of an optimal
solution is another optimal solution. Next, we show that there
exists an optimal solution that is invariant to automorphism.

Theorem 1. There exists an automorphism-invariant optimal
~Uv
fo the formulation in @) such that f;; =

solution { f;
Ad(u)o

¥ 7
figu)d,) and 0" = b

(ZJ)EE and every ¢ € P.

for every (u,v) € C, every

Proof. The formulation in (3) always has an optimal solu-
tion since the overall capacity from all links is limited. Let
{f¥*,6"v*} be such an optimal solution. From Lemma

the solution {fcb(u)d)(“)* go (Wb (v)* } is an optimal solution for

every automorphism ¢ € <I> We construct the automorphism-

invariant solution { fi } as follows:

1]7

”ﬁ” Zf (w)p(v)*
fij |<I>| b #(@)(d)
€

b U)¢(U)*
= ol 5

Pped

V(u,v) € C,V(i,j) € L
Y(u,v) € C

We then show that this solution is automorphism-invariant.
Specifically, it holds for any ¢’ € ® that

2@ (W' (v) (w) (¢’ (v))=
Foiyei) = op Zf¢<¢>'< D)l ¢’(J)

Bo(0) _ 3
|¢|Zf¢<)6G) =

Pped

The second equality holds because the automorphism set @ is
a group, so i) the composition of two automorphism mapping
functions gives an automorphism in the group and ii) such
composition over <I) yields the same . Similarly, the same
holds true for 6"

éqﬁ (u)¢' (v Z 9¢> (v))*
|<I)| PP

geow)x — o
e Z
PP

Therefore, the solution is automorphism-invariant. Next, we
show that it is feasible and optimal. The feasibility can be
easily shown from the facts that the solution is a convex
combination of optimal solutions and all constraints are affine.
For the optimality, let g* be the optimal objective value of the
problem in (B). We have from the concavity of an objective
function and Jensen’s inequality [40] that

) =g (3 o)

PpeED
¢(v)*}> _ 9*7

> ja Lo ({

where the last equality uses the fact that all terms in the
summation equal ¢g*. Since, the solution {# } is feasible, it
must be that g({# }) = g*, and the solution is optimal. [J

a({

Theorem [T] implies that there is an optimal solution whose
variables in the same group under automorphisms take the
same value. We use this insight in the next section to reduce
the number of decision variables and constraints of the obliv-
ious routing formulation.

V. FINDING AN AUTOMORPHISM-INVARIANT OPTIMAL
SOLUTION

We now formulate an optimization problem that targets
an automorphism-invariant solution. The formulation defines
a new set of representative variables representing groups of
variables under the automorphisms. Furthermore, unnecessary
constraints and traffic matrices are removed from the formu-
lation, resulting in a tractable iterative algorithm.

Representative

(0,1) : 01 = {6°1, 919}

(0 2) 992 = {902’903_912’913}
(0): §20 = {620,02],030,93]}
) éQS = {9237932}

Fig. 5. Throughput variables form four groups. Each group is represented by a

representative throughput variable and a corresponding commodity. The set of

representative commodities is C = {(0, 1), (0, 2), (2,0), (2, 3) }. Commodity
~01

(0, 1) has a representative throughput 6§ representing variables §°1, 910,

Commodity (0, 1) Commodity (2, 3) Commodities (0, 2) & (2, 0)

Fig. 6. Representative share variables of each representative commodity. An
arrow represents a representative share variable in the direction of the arrow.
For example, with commodity (0, 1), the link (0,4) has two representative

. 401 %0 . . .
variables fo,, f40, and the link (2,5) has only one representative variable

}2 5. Representative share variables for each representative commodity depend
on the network structure and the commodity.

A. Representative variables

From Theorem |1, we observe that the optimal values of
throughput variables form groups under automorphisms. In
particular, the values are identical for every commodity in the
same group, whose members can be mapped to one another by
some automorphisms, i.e., a group of commodities containing
commodity (u,v) is {(¢ (u), ¢ (v)) : V¢ € ®}. Therefore, we
can pick a commodity in each group as a representative
commodity for the group. We denote the set of all representa-
tive commodltles by C and define a representative throughput
variable 6" for every representative commodity (u,v) € C.
Fig. 5] shows an example of representative commodities and
throughput variables. Further, we define a function 7 : C — &
such that the input commodity under the output automorphism
is the representative commodity of the input, i.e., ¢ = 7(u,v)
and (¢ (u), ¢ (v)) € C. Section m describes an efficient
algorithm to construct C and 7.

The representative shares can be defined using the same
process. For each representative commodity (u,v) € C., we
observe from Theorem [I] that the optimal values of share vari-
ables form groups under automorphisms. In particular, the val-
ues are identical for every link in the same group, whose mem-
bers can be mapped to one another by some automorphisms
that does not affect (u,v), i.e., the group of links containing
link (i,) is {(6 (5) 6 (7)) : (& (u) & (1)) = (u,v) 3¢ € B}.
Therefore, we can pick a link in each group as a representative
link for the group. We denote the set of all Arueé)resentative
links for a representative commodity (u,v) by £ and define
a representative share variable f ;; for every (u,v) € C
and every (i,j) € £ . Fig. |§I shows representative share
variables for a simple network. Further, we define a mapping
function ¢"¥ : £ — & such that the input link under the
output automorphism is the representative link of the input
ie., & — 0" (i,j) and (6 (i), (j) € £". Section
describes an efficient algorithm to construct £ and o

Since the representative variables of throughput and share

have been defined, the last step is to map every variable in (3]
to these representatives. We define the mapping of throughput
and share variables in to their representatives as follows:

o1 36(W),6(v)
0] =0

Y(u,v) € C where ¢ = m(u,v),
28 (w)é(v) .
5] = Forweeay Ywv) €CV(.j) € L

where ¢ = (u,v) and ¢ = Uqﬁ(u)d)(v)(i’j).

Using the above mapping and the representative variables, we
formulate an optimization problem targeting an automorphism-
invariant optimal solution in Theorem [1| as follows:

Maximize g({¢[0""]})

Subject to Z o] - Z e i) =

JEO(2) JEZ(1)
0" {I[i=u]—1[i =]}, Vie S, V(u,v)eC

>t] < Cy, VL G) € LY €T
(u,v)eC

AUV AUV

f’ij70

~AUvV

Y(u,v) € C,V(i,j) € L.
&)

The total numbers of variables and constraints in (3)) are sig-
nificantly reduced by considering the representative variables.
Notice that the share conservation constraints are defined over
representative commodities C instead of C. The next sections
address the challenging robust link capacity constraint.

€Ry,

B. Removing unnecessary link constraints

The number of link capacity constraints in (§) grows like
O(|L||H|"). However, many constraints are unnecessary and
can be removed. We observe that traffic demands on link
(i, 7') can be aggregated for each representative share.

> trelrnl= X X T 2.

(uw)ec (u,v)€C (i,j)eL™” (a,b)ec:¢ [f;,l;_,] =Fu

= > > Fyjay. (6)

(uw)€eC (i,j)eL™”

"’LL’U

(a,b)EC:Lp[la/l; } flL]u t

Any two links that have the same set of coefficient alphas
under some automorphism are duplicate, and we only need
to consider one of them as a representative constraint. Let
L be the set of representative link constraints. Section
provides an efficient algorithm to construct this set. Therefore,
the link capacity constraint in (3)) can be replaced by

Z tu'usa [iujv

(u,w)eC

uv
where o} =}

| <Cy, V(,j) €LV ET. (7)

Notice that the reduction from £ to £ is by considering the
representative variables and traffic demands. Ignoring them
and only considering automorphisms of links can lead to an
under-constrained formulation and a sub-optimal solution.

C. Traffic matrix selection

Including the entire traffic set 7 into the link capacity
constraint is impractical due to the continuity of the set. While
it is possible to consider the set of extreme points, the number
of such points is O(|H|!) for a simple case of double stochastic
matrices when the number of servers per switch is identical.

To alleviate this issue, we construct the traffic set iteratively
based on two observations. First, the worst-case traffic load
on different representative link is caused by a different set of
traffic matrices. Therefore, we define a set of traffic matrices
7T;; considered for representative link (7, j) € L and formulate
the optimization parameterized by these sets as follows.

R ({ﬂj}(i,j)eﬁ) :
Maximize g({¢[0“"]})

Subject to Z o [fi] - Z e lfii] =

JEO(1) JEZ(2)
0 {I[i=u]—1[i =]}, Vie S, V(u,v) el

St [f] < OV g) € LV € Ty
(u,v)eC

AUV AUV A ~AUv

fij70 €R+7 V(U7U)€C7V(i7j)€£ .
3)

While solving the above formulation with insufficient traffic
matrices in the traffic sets {7;;} leads to a sub-optimal obliv-
ious routing solution, the sub-optimal solution can still guide
which traffic matrices should be included in the sets. This
leads to the second observation that traffic matrices also have
automorphisms, and one matrix can represent many matrices.
This observation can be seen from the coefficient alphas in
(6). The implication is that including only a small subset of
traffic matrices in each traffic set 7;; is sufficient to achieve
an optimal oblivious routing solution. We therefore generate
representative traffic matrices based on a solution of by
solving a simple linear program parameterized by the solution
for every link (i, ') € L as follows.

T ~uw (u,v)éé
i'j’ ({fzg }(i,j)eil““) .

Maximize Z "o [5]

ilj’
(u,w)€C
Subject to Z t" < H,, YueH &)
veH\{u}
> t"w<H, YweH
ueH\{v}
"’ e Ry, V(u,v) €C.

For every representative link (i’, j'), the optimization in (9)
finds the worst-case traffic matrix with respect to a given set of
representative shares. The obtained traffic matrix is added to
T:j, which is considered in (8] for later iterations. This process
is summarized next.

D. Iterative algorithm

In Algorithm |1} the traffic sets are initialized with an initial
traffic matrix. The algorithm iteratively finds a routing solution

Algorithm 1: Optimal oblivious routing

Initialize D;; < {[t*ini} for every (i,7) € L
while U(i,j)e& ’Dij * 0 do R
Tij < Tij UD;; for every (i,j) € L

U uf}iuy)):,cc Y R (Tbger)

for (i',7) € L do

[] T (}uv (Uv”)Eé)

) = Ty { 1} S

. PAVY S ger

it > 0ec o [Z—’f}’,] > Cjy; then

| Diyr = {[t"]}
else

L 'Di/]‘/ «—0

L (u,v)€C ~uw (u,v)EC
return {fi; }(i here {Guu}

according to these traffic sets. The routing solution is used to
generate more traffic matrices, which in turn help improving
the next routing solution, by including those that violate link
capacity constraints into the traffic sets. This process continues
until no traffic matrices violating the link capacity constraints
are foundE] Thus, the final routing solution is optimal because
it is an automorphism-invariant solution that optimizes the
objective and satisfies all conservation constraints in (8) and
that no traffic matrices violate capacity under this solution.
Note that Algorithm |I| is non-polynomial time due to the
alternation.

The initial traffic matrix [t“V], . in Algorithm [I| can sig-
nificantly reduce the number of iterations required to obtain
the optimal solution. We set this matrix to the solution of
the weighted bipartite matching problem, where the node sets
are U = V = H, and the weight between any two nodes
(u,v) € U x V equals the product of their minimum path
length in the network topology times their maximum traffic
load min(H,, H,). This initialization is inspired by the works
in [35], [42], [43]], in which all switches have the same number
of servers.

VI1. EFFICIENT IMPLEMENTATION

Algorithm [T]and its sub-rouAtinAeE gn the previous section rely
heavily on representative sets C, L , £, and the mapping func-
tions m and o“’. Constructing them from the automorphism
set ®, whose size grows exponentially, is a combinatorial
problem. This section describes polynomial-time algorithms
for efficient construction, based on automorphism generators.

A. Generators of automorphisms

Generators are a smaller set of automorphisms that can
generate a whole set of automorphisms. Specifically, every
automorphism in the set is a combination of the generators.
This set can be obtained from off-the-shelf software, such as
nauty [44], for an undirected graph with vertices, edges, and
a set of colors assigned to the vertices.

4This process is similar to constraint generation techniques [41].

g({0"}) = 24,0y ec log 0

Logical network

Undirected graph with colors

Fig. 7. A logical network is transformed to an undirected graph with colors.

The objective function in (3) and our datacenter network
model with link capacities and numbers of servers at each
switch can be transformed to an undirected graph with colors
as shown in Fig. |7} Every switch is translated to a vertex in the
graph. To preserve the number of servers at each switch under
automorphism, an identical color is assigned to the vertices
whose number of servers is the same, and different colors are
assigned to vertices having different numbers of servers. For
links and capacities, each link is transformed into an auxiliary
vertex with two edges. One end of both edges is connected
to the auxiliary vertex, and the other ends connect to the two
switches to which the original link is adjacent. To preserve
link capacity under automorphism, the auxiliary vertices of
links with the same capacity are assigned the same color, and
auxiliary vertices of links with different capacities are assigned
different colors. To preserve the invariant of the objective
function, a vertex and edges are added between the source and
destination of each commodity. The vertices associated with
commodities whose permutation does not change the objective
function are assigned an identical color. Otherwise, the vertices
are assigned different colors if their associated commodities
change the objective function under some permutation.

The above transformation yields an undirected graph with
a set of colors as an input to the off-the-shelf software that
outputs the generators. We denote the set of these generators
by ®, whose generated automorphisms satisfy Definition |1} It
is used to efficiently generate representative sets and mapping
functions used extensively in the previous section.

B. Representative commodity

The representative commodity set C and the mapping func-
tions 7, used for the formulation in (E]), are constructed by
Algorithm 2]

Algorithm [2| searches over the commodity set. It picks a
commodity, assigns it as a representative commodity, and finds
all represented commodities. The search process utilizes the
generator set ®, instead of the exponentially large automor-
phism set ®, to find represented commodities. The algorithm
visits each commodity once, so the complexity is O (|C\ ‘ti))
Once all represented commodities of the picked representative
are found, the algorithm picks an unpicked commodity and
continues the process. In the process, the dictionary D keeps
track of automorphisms that map representatives to their repre-
sented commodities. The last step inverts each automorphism

Algorithm 2: Representative commodity construction

Initialize empty sets O, P,C and dictionaries D,

for (u,v) € C do

if (u,v) € P then

L continue

C + CU{(u,v)}

D(ua ’U) — ¢identity

Q «+ QU {(u,v)}

while Q is not empty do

Pop (a,b) from Q

P+ PU{(a,b)}

for ¢ € d do
if (¢ (a),¢ (b)) ¢ P then
L Q-+ QU{(¢

for (u,v) € C do
| m(u,v) < (D(u,v))~!

return Representative set C and function 7

in D and constructs the dictionary 7 storing automorphisms
that map represented commodities to their representatives.

C. Representative share

For each representative commodity (u,v), the set of repre-
. AUV . ;
sentative shares £ and the mapping functions ¢*, used for
the formulation in (), are constructed by Algorithm

Algorithm 3: Representative share construction

Initialize empty sets Q, P, £ and dictionary D, c""
0" {pe b (wv) = (6(w),0(v)}
for (i,7) € L do
if (7,j) € P then
L continue
LY« £ U{G,j)}
D(Z,]) — ¢identity
Q«— QU{(i,j)}
while Q is not empty do

Pop (a,b) from Q
PP L)%a, b)}
forpc® do
if (¢(a),¢ (b)) ¢ P then
L Q< QuU{(¢(a),0(b)}
D(¢(a), ¢ (b)) < ¢ (D(a,b))

for (i,7) € £ do
L 0“"(i,5) « (D(3,4)) "

. AUV . p
return Representative set £ and function o"?

Given a representative commodity (u,v), the algoritAhurg
first constructs a commodity-preserved generator set ¢
containing all generators that have no effect on the given
commodity. The algorithm then searches over the links set

using these commodity-preserved generators. It picks a link as
a representative link and finds all correspondiqgugepresented
links. This process utilizes the generator set & to search
for represented links. The algorithm visits each link once, so
its complexity is O (|L‘|‘§DUUD Once all represented links
of the picked representative are found, the algorithm picks
an unpicked link and continues the process. The dictionary D
keeps track of automorphisms that map representatives to their
represented links. The last step inverts each automorphism in
D and constructs the dictionary o“? storing automorphisms
that map represented links to their representatives.

D. Representative link capacity constraint

The set of representative links L for the capacity constraints
in can be constructed by removing redundant constraints
under automorphisms. More precisely, two constraints of links
(z,y) and (g, h) are redundant when 1) their link capacities
are identical, C, = Cyp, and 2) their traffic loads in (@)
are identical under the traffic set 7. The former is easy to
identify, but the latter is challenging as the comparison is over
the whole traffic set. Theorem [2] simplifies this comparison.

Theorem 2. Given links (x,y) and (g,h), their capacity
constraints in terms of representative shares are

2. 2 7 2

(u,0)€C (4,4)€L (a,b)eC:p[f2b]=F3;

)SID SN D S

(u, U)GC (1, j)Gﬁ (‘1 b)ecs"[fgh] f‘j

t < Cpy V[t €T,

uv

o 1% < Gy V[t €T,

uv

The two constraints are identical when 1) their link capacities
are identical, i.e., Cyy = Cyp, and 2) their numbers of traffic
demands associated with a representative share are identical
for every representative share such that the followmg holds
for every (u,v) € C and every (i,j) € "

{anec ol =7} =
{@nec:elrm =1} ao

Proof. The first condition is straightforward. We prove the

second condition as follows. Considering link (¢',j), we ob-

serve that every commodity in {(a b)eC:o[fib] =i

is represented by a common commodity A(:;fj v) as they share
the same representative share variable f,;. It follows that
these commodities generate an identical set of traffic demands,
so the set of aggregated traffic demands associated with the
representative share variable are identical if the numbers of
members in both sets are the same, i.e., when holds, then

£ - V[t

uv

(a,b)eC:p[f2t]=T;

€T =

t v e T

D

(a,b)GC:gp[;ﬁ

uv

Therefore, comparing the number of traffic demands associ-
ated with each representative share is sufficient. O

The implication of Theorem [2] is that we only need to
compare the number of traffic demand terms associated with
each representative share to determine whether two constraints
are identical under automorphism. This leads to a simpler
construction of the representative capacity constraints.

The set of representative capacity constraints is constructed
by computing the distribution of the numbers of traffic demand
terms associated with representative shares. Then, for every
group of links having the same distribution, we take one link
from the group and use it as the representative of the group.

VII. EVALUATION

The performance, scalability, and generality of Algorithm [I]
are evaluated over three potential applications. The algorithm
is implemented in Python 3. The generators of automorphisms
are obtained from nauty [44]]. All evaluation is performed on
a commodity computer with Intel Core i9-12900K processor
and 128GB memory. Every optimization problem is solved
by MOSEK [45]. Furthermore, all optimal routing solutions
are double-checked for capacity violation using the method in
[42].

A. Throughput performance

Partially deployed FatTree: A fully deployed FatTree
topology [1]], constructed from 32-port switches, can accom-
modate 8192 servers. In practice, this topology is incremen-
tally deployed in blocks when additional servers are needed.
However, the routing for the fully deployed topology is not
optimal for the partially deployed one due to the imbalance
at the core switches, i.e., each core switch in Fig. E] has two
links to one block and a link to another block. Therefore, we
apply our algorithm to find the optimal oblivious routing for
partially deployed FatTree with different numbers of aggre-
gation blocks. Note that the fully deployed topology has 32
aggregation blocks.

We evaluate the performance of our algorithm by the worse-
case throughput, min, ,)ec 6. The result is shown in Fig.
and is compared to a heuristic algorithm in [46], which tries
to balance the imbalance by weighting flows regarding their
bottleneck capacity. Our algorithm yields 12.5% — 87.5%
throughput improvement over the heuristic algorithm when
their throughput values are different. In addition to the worst-
case throughput in Fig. 8 Fig. [9] shows the normalized
total throughput, \CI Z(u U)EC9 from the max-min with
marginal throughput objective in (E]} and the proportional fair
objective in (2). The latter yields slightly higher normalized
total throughput.

DRing: The DRing topology [12]] is designed for moderate-
scale datacenter networks. A DRing topology is constructed
from supernodes where each supernode consists of switches.
Every pair of switches is directly connected if they lie in
adjacent supernodes. We compare the performance of the
optimal routing solution from our algorithm with the solution
from Shortest-Union(2) routing scheme suggested in [|12].

S100F @0 =

a e s o

'g‘ L Al ".“ . -

3 0.751 ‘ot et

£

g 0501 ..q. Optimal by Linear (1)

$ 0254 "® Optimal by Log (2)

&5 0.

g Heuristic

= 0.00 T T T T T T
5 10 15 20 25 30

Number of aggregation blocks

Fig. 8. Worst-case throughput values under partially deployed FatTree. At 30
aggregation blocks, the throughput improvement is 87.5%.

Number of aggregation blocks

5

21004 e e 2 A
=y o
3 0.95 A v ., Y o
S e el k3 v

= 0.90 1 » ' -

<] . : L

_ac—; 0.85 - Rr Optfmal by Linear (1) e ,,»"

9 --@- Optimal by Log (2) TP

T 0.80 T T T T T T

E 5 10 15 20 25 30
2

Fig. 9. Normalized total throughput values under partially deployed FatTree.

=
aq

Table[[|shows the improvement of the worst-case throughput
from three sizes of DRing. The small-size DRing is con-
structed from 6 supernodes with 2 switches per supernode
and 10 servers per switch, as shown in Fig. [I0} The large-size
DRing is constructed from 10 supernodes with 20 switches
per supernode and 80 servers per switch. The last setting
follows the original paper [[12]. The result shows that our
optimal solution yields 1.36x to 2.55x throughput gain over
the Shortest-Union(2) routing scheme.

Fig. [T0] compares the routing solutions obtained from our
algorithm and Shortest-Union(2) under the small-size DRing.
There are two groups of commodities represented by com-
modities (0, 1) and (0, 2). There is no differences between the
two routing schemes for commodity (0, 1), as shown in the
left plot. However, the traffic is distributed differently under
the two routing schemes for commodity (0, 2), as shown in the
middle and right plots. Our optimal routing solution improves
the worst-case throughput by dispersing traffic to every switch.

B. Scalability under various topologies

FatClique: The FatClique topology [11] has been proposed
for high manageability datacenter networks without routing.
Our algorithm could provide this missing routing. Each Fat-
Clique topology is built as follows. The numbers of blocks,
sub-blocks per block, and switches per sub-block are set to an
identical value. We range this value from 2 to 12.

TABLE I
THE WORST-CASE THROUGHPUT UNDER DRINGS

Worst-case throughput
Topology Shortest-Union(2) | Optimal Linear | Gain
Small 0.25 0.34 1.36x
Large 0.11 0.28 2.55x
DRing paper [12] 0.07 0.16 2.29x

Representative commodity (0, 1)
Shortest-Union2 & Optimal

Representative commodity (0, 2)

Representative commodity (0, 2)
Shortest-Union2 Optimal

2 3
1 7
0 5
PR X

@® 9 8

Fig. 10. The example of routing solutions under a small-size DRing. Each
node represents a switch. The source and destination are assigned an identical
color if they lie within the same supernode.

X

- --% - Optimization A&+ Rep. commodity =% Rep. link .~
g 4000 Generator --®- Rep. share I
c
£ .
@ 2000 X
£ ’
=

0 [T % ab D Wernani

T - ==='l' T T
500 750 1000 1250 1750

Number of switches

1500

Fig. 11. The overall computation times at different FatClique’s sizes are
broken down into computing automorphism generators by nauty (Generator),
finding representative commodities by Algorithm|2| (Rep. commodity), finding
representative shares by Algorithm@(Rep. share), finding representative links
utilizing Theorem |Z| (Rep. link), and the execution time of Algorithm |I|
(Optimization).

The computation time of Algorithm [I] at different sizes of
FatClique is shown in Fig.[TT} While finding the representative
links is the most time-consuming part, it can be pre-computed
before executing Algorithm [T} Fig. [I2] shows the sizes of the
strawman formulation in (3) and the automorphism-invariant
formulation in (8) in terms of numbers of variables and
constraints assuming only one traffic matrix is considered,
|T| = 1. It is easy to see that the latter formulation is much
smaller than the former one. In fact, the formulation in (3]
cannot be computed beyond 216 switches due to insufficient
computing memory. Fig. [I3] shows the numbers of traffic
matrices required for finding the optimal oblivious routing
solutions in formulations (3) and (8). Again, the numbers of
required traffic matrices in Algorithm [I] is much smaller than
the set of all extreme points.

Other topologies: Next, we consider the optimization times
of other topologies. We use the same settings for FatClique
and partially deployed FatTree. For DRing, The number of
switches per supernode is twice the number of supernodes,
which is incremented by 2 from 4 to 20.

The result in Fig. [T4] shows the optimization times of Algo-
rithm [T] with the objectives in (I) and (2) and the optimization
times of the linear program in [27]f| The linear program
cannot scale beyond 32 switches due to insufficient memory
for all three topologies. Our algorithm scales well, and its
optimization times under the two objectives are comparable.

C. Structured topology with non-uniformity

Our algorithm is applicable for a more general structured
topology with non-uniform link capacities and server distribu-

5The heuristic in [46] for FatTree does not involve solving optimization.

) 9
© B
2 10 RSP
2. f:‘ *- Variables in (3) =% Variables in (8)
= 10° 1 ,’A“ --&- Constraints in (3) -4+ Constraints in (8)
§ A A& A A

3 K U PP VRPET D R PELDY CLLRTITELLLLRRELD
8 10 &A}: B P Weenrannanannas Weerranraraanaan Py

0 250 500 750 1000 1250 1500 1750

Number of switches

Fig. 12. The numbers of variables and constraints, assuming |7| = 1,
in formulations () and () are plotted at different sizes of FatClique. The
maximum numbers for formulation (8) are respectively 144 and 5185 when
topology has 1728 switches.

Group structure Representative commodity (0, 1) Representative commodity (2, 3)

@ o R L0
O) @ ®@ @ £®
@
@ =D ® o ©
© ®° ©®°

Representative commodity (2, 5)

*
o) 10177 4 : =%+ Traffic matrices in (3)
S --%- Traffic matrices in (8)
© 10130 4
= :
2 .
T 1% ¥
= :
L:oj 1036 4 *
et dee e [P e enna e P, *
0 250 500 750 1000 1250 1500 1750
Number of switches
Fig. 13. The numbers of traffic matrices per link capacity constraint in

formulations (3) and (B) are plotted at different sizes of FatClique. The
maximum number for formulation (8) is 81 when topology has 1331 switches,
while the numbers beyond 103%® are not plotted for formulation (@) with more
than 125 switches.

tion as illustrated in Fig. [T5] The top-left plot shows the net-
work with 4 groups of switches, {0,1},{2,3,4},{5,6,7,8},
{9, 10, 11}, where the first three groups have different numbers
of servers per switch and the last group has none. Logical
links with different thicknesses have different capacities. The
other plots show the optimal oblivious routing for different
representative commodities. It is worth mentioning that the
optimal routing solution for each representative commodity
can be different. For example, commodities (0,1) only uses
one-hop intermediate switches, while commodity (0,2) dis-
perses traffic to all switches. This behavior differs from [15]
where traffic demands from every commodity are dispersed to
the same set of intermediate switches.

VIII. CONCLUSION

This paper presents an iterative algorithm to find the optimal
oblivious routing for structured topologies. The algorithm
utilizes the insight that the optimal routing solution is auto-
morphism invariant in order to reduce the solution space and

192
—» FatClique by [27] —e-- PFatTree by (2) —e— PFatTree by (1)
’5144' —=- DRing by [27] —¢ DRing by (2) —r DRing by (1)
° 96 1 —» FatClique by (2) —>¢- FatClique by (1)
[} 7/ 7/
£ / / A
= 48 ot \(;/ /..,
SRy N VI, W ettt
RPN S = .
0 250 500 750 1000 1250 1500 1750
Number of switches
Fig. 14. The optimization time at different size of FatClique, partially

deployed FatTree, and DRing. The limit of optimization time is set to
192 hours. The maximum number of switches is 1728 switches. Note that
the smallest partially-deployed FatTree cannot be solved by [27]] due to
insufficient memory.

Fig. 15. Optimal oblivious routing for non-uniform and structured topology

complexity. This algorithm is applicable for designing obliv-
ious routing for existing datacenter network topologies and
future structured topologies with non-uniform link capacities
and server distribution.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 4, pp. 63-74, Aug. 2008. [Online]. Available:
https://doi.org/10.1145/1402946.1402967

[2] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “VI2: A scalable
and flexible data center network,” SIGCOMM Comput. Commun.
Rev., vol. 39, no. 4, pp. 51-62, Aug. 2009. [Online]. Available:
https://doi.org/10.1145/1594977.1592576

[3] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala,
J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Holzle, S. Stuart, and
A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized
control in google’s datacenter network,” SIGCOMM Comput. Commun.
Rev., vol. 45, no. 4, pp. 183-197, Aug. 2015. [Online]. Available:
https://doi.org/10.1145/2829988.2787508

[4] A. Andreyev. Introducing data center fabric, the next-
generation facebook data center network. [Online]. Available:
https://engineering.tb.com/2014/11/14/production-engineering/

introducing-data-center-fabric- the- next- generation-facebook- data- center-network/

[5] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“Hyperx: Topology, routing, and packaging of efficient large-scale
networks,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’09. New York,
NY, USA: Association for Computing Machinery, 2009. [Online].
Available: https://doi.org/10.1145/1654059.1654101

[6] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in 2008 International Symposium on
Computer Architecture, 2008, pp. 77-88.

[71 M. Besta and T. Hoefler, “Slim fly: A cost effective low-diameter net-
work topology,” in SC ’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2014, pp. 348-359.

[8] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish:
Networking data centers randomly,” in 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12). San
Jose, CA: USENIX Association, Apr. 2012, pp. 225-238. [Online].
Available: https://www.usenix.org/conference/nsdil2/technical-sessions/
presentation/singla

[91 A. Valadarsky, G. Shahaf, M. Dinitz, and M. Schapira, “Xpander:
Towards optimal-performance datacenters,” in Proceedings of the 12th
International on Conference on Emerging Networking EXperiments and
Technologies, ser. CONEXT ’16. New York, NY, USA: Association
for Computing Machinery, 2016, pp. 205-219. [Online]. Available:
https://doi.org/10.1145/2999572.2999580

https://doi.org/10.1145/1402946.1402967
https://doi.org/10.1145/1594977.1592576
https://doi.org/10.1145/2829988.2787508
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://doi.org/10.1145/1654059.1654101
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla
https://doi.org/10.1145/2999572.2999580

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

A. Singla, P. B. Godfrey, and A. Kolla, “High throughput data
center topology design,” in 1/th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). Seattle, WA: USENIX
Association, Arp. 2014, pp. 29-41. [Online]. Available: https://www.
usenix.org/conference/nsdil4/technical-sessions/presentation/singla

M. Zhang, R. N. Mysore, S. Supittayapornpong, and R. Govindan,
“Understanding lifecycle management complexity of datacenter
topologies,” in [16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). Boston, MA: USENIX
Association, Feb. 2019, pp. 235-254. [Online]. Available:
https://www.usenix.org/conference/nsdil9/presentation/zhang

V. Harsh, S. A. Jyothi, and P. B. Godfrey, “Spineless data centers,”
in Proceedings of the 19th ACM Workshop on Hot Topics in
Networks, ser. HotNets ’20. New York, NY, USA: Association
for Computing Machinery, 2020, pp. 67-73. [Online]. Available:
https://doi.org/10.1145/3422604.3425945

D. Thaler and C. Hopps. Rfc2991: Multipath issues in unicast and
multicast next-hop selection. [Online]. Available: https://datatracker.ietf.
org/doc/html/rfc2991

R. Zhang-Shen and N. McKeown, “Guaranteeing quality of service to
peering traffic,” in IEEE INFOCOM 2008 - The 27th Conference on
Computer Communications, 2008, pp. 1472-1480.

M. Kodialam, T. V. Lakshman, J. B. Orlin, and S. Sengupta, “Preconfig-
uring ip-over-optical networks to handle router failures and unpredictable
traffic,” IEEE Journal on Selected Areas in Communications, vol. 25,
no. 5, pp. 934-948, 2007.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Pro-
ceedings of the 7th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI'10. USA: USENIX Association, 2010,
p. 19.

A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” SIGCOMM Comput. Commun.
Rev., vol. 45, no. 4, pp. 123-137, Aug. 2015. [Online]. Available:
https://doi.org/10.1145/2829988.2787472

L. G. Valiant and G. J. Brebner, “Universal schemes for parallel
communication,” in Proceedings of the Thirteenth Annual ACM
Symposium on Theory of Computing, ser. STOC ’81. New York,
NY, USA: Association for Computing Machinery, 1981, p. 263-277.
[Online]. Available: https://doi.org/10.1145/800076.802479

L. G. Valiant, “A scheme for fast parallel communication,” SIAM
Journal on Computing, vol. 11, no. 2, pp. 350-361, 1982. [Online].
Available: https://doi.org/10.1137/0211027

M. Kodialam, T. Lakshman, and S. Sengupta, “Efficient and robust
routing of highly variable traffic,” in In Proceedings of Third Workshop
on Hot Topics in Networks (HotNets-III), 2004.

M. Kodialam, T. V. Lakshman, and S. Sengupta, “Maximum throughput
routing of traffic in the hose model,” in Proceedings IEEE INFOCOM
2006. 25TH IEEE International Conference on Computer Communica-
tions, April 2006, pp. 1-11.

M. Kodialam, T. V. Lakshman, J. B. Orlin, and S. Sengupta, “Oblivious
routing of highly variable traffic in service overlays and ip backbones,”
IEEE/ACM Transactions on Networking, vol. 17, no. 2, pp. 459472,
2009.

M. Kodialam, T. V. Lakshman, and S. Sengupta, “Traffic-oblivious
routing in the hose model,” IEEE/ACM Transactions on Networking,
vol. 19, no. 3, pp. 774-787, 2011.

H. Ricke, “Minimizing congestion in general networks,” in The 43rd
Annual IEEE Symposium on Foundations of Computer Science, 2002.
Proceedings., 2002, pp. 43-52.

H. Ricke, “Optimal hierarchical decompositions for congestion
minimization in networks,” in Proceedings of the Fortieth Annual ACM
Symposium on Theory of Computing, ser. STOC ’08. New York,
NY, USA: Association for Computing Machinery, 2008, p. 255-264.
[Online]. Available: https://doi.org/10.1145/1374376.1374415

Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Ricke, “Optimal
oblivious routing in polynomial time,” in Proceedings of the Thirty-Fifth
Annual ACM Symposium on Theory of Computing, ser. STOC ’03.
New York, NY, USA: Association for Computing Machinery, 2003, p.
383-388. [Online]. Available: https://doi.org/10.1145/780542.780599
D. Applegate and E. Cohen, “Making intra-domain routing
robust to changing and uncertain traffic demands: Understanding
fundamental tradeoffs,” in Proceedings of the 2003 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, ser. SIGCOMM ’03. New York, NY, USA:
Association for Computing Machinery, 2003, p. 313-324. [Online].
Available: https://doi.org/10.1145/863955.863991

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

D. Applegate and E. Cohen, “Making routing robust to changing
traffic demands: Algorithms and evaluation,” IEEE/ACM Transactions
on Networking, vol. 14, no. 6, pp. 1193-1206, 2006.

R. Zhang-Shen and N. McKeown, “Designing a predictable internet
backbone with valiant load-balancing,” in Proceedings of the 13th
International Conference on Quality of Service, ser. IWQoS’05. Berlin,
Heidelberg: Springer-Verlag, 2005, p. 178-192.

J. Fakcharoenphol, S. Rao, and K. Talwar, “A tight bound on
approximating arbitrary metrics by tree metrics,” in Proceedings of
the Thirty-Fifth Annual ACM Symposium on Theory of Computing,
ser. STOC ’03. New York, NY, USA: Association for Computing
Machinery, 2003, p. 448-455. [Online]. Available: https://doi.org/10.
1145/780542.780608

C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: A scalable
and fault-tolerant network structure for data centers,” in SIGCOMMOS.
Association for Computing Machinery, Inc., August 2008. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
dcell-a-scalable-and-fault- tolerant-network-structure-for-data-centers/
C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
S. Lu, and G. Lv, “Bcube: A high performance, server-centric
network architecture for modular data centers,” in ACM SIGCOMM.
Association for Computing Machinery, Inc., August 2009. [Online].
Available: https://www.microsoft.com/en-us/research/publication/

bcube-a-high-performance-server-centric-network-architecture-for-modular-data-cente

Broadcom. Tomahawk4 / bcm56990 series. [Online].
Available: |https://www.broadcom.com/products/ethernet-connectivity/
switching/strataxgs/bcm56990-series

S. Supittayapornpong, B. Raghavan, and R. Govindan, “Towards highly
available clos-based wan routers,” in Proceedings of the ACM Special
Interest Group on Data Communication, ser. SIGCOMM °19. New
York, NY, USA: Association for Computing Machinery, 2019, p.
424-440. [Online]. Available: https://doi.org/10.1145/3341302.3342086
P. Namyar, S. Supittayapornpong, M. Zhang, M. Yu, and R. Govindan,
“A throughput-centric view of the performance of datacenter topologies,”
in Proceedings of the 2021 ACM SIGCOMM 2021 Conference,
ser. SIGCOMM ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 349-369. [Online]. Available: https:
//doi.org/10.1145/3452296.3472913

S. Supittayapornpong, P. Namyar, M. Zhang, M. Yu, and R. Govindan,
“Optimal oblivious routing for structured networks,” in I[EEE INFOCOM
2022 - IEEE Conference on Computer Communications, 2022, pp. 1988—
1997.

F. Kelly, “Charging and rate control for elastic traffic,” European
Transactions on Telecommunications, vol. 8, no. 1, pp. 33-37, 1997.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.
4460080106

R. Srikant and L. Ying, Communication Networks: An Optimization,
Control and Stochastic Networks Perspective. USA: Cambridge Uni-
versity Press, 2014.

J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp. 556—
567, 2000.

S. Boyd and L. Vandenberghe, Convex Optimization.
University Press, 2004.

S. Boyd and L. Vandenberghe, “Localization and cutting-plane meth-
ods,” From Stanford EE 364b lecture notes, 2007.

B. Towles and W. Dally, “Worst-case traffic for oblivious routing
functions,” IEEE Computer Architecture Letters, vol. 1, no. 1, pp. 4—
4, 2002.

S. A. Jyothi, A. Singla, P. B. Godfrey, and A. Kolla, “Measuring and
understanding throughput of network topologies,” in SC ’16: Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2016, pp. 761-772.

B. D. McKay and A. Piperno, “Practical graph isomorphism, ii,” Journal
of Symbolic Computation, vol. 60, pp. 94—112, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0747717113001193
M. ApS, MOSEK Fusion API for Python 9.3.21, 2022. [Online].
Available: https://docs.mosek.com/9.3/pythonfusion/index.html

J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh,
and A. Vahdat, “Wcmp: Weighted cost multipathing for improved
fairness in data centers,” in Proceedings of the Ninth European
Conference on Computer Systems, ser. EuroSys *14. New York, NY,
USA: Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2592798.2592803

Cambridge

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/singla
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/singla
https://www.usenix.org/conference/nsdi19/presentation/zhang
https://doi.org/10.1145/3422604.3425945
https://datatracker.ietf.org/doc/html/rfc2991
https://datatracker.ietf.org/doc/html/rfc2991
https://doi.org/10.1145/2829988.2787472
https://doi.org/10.1145/800076.802479
https://doi.org/10.1137/0211027
https://doi.org/10.1145/1374376.1374415
https://doi.org/10.1145/780542.780599
https://doi.org/10.1145/863955.863991
https://doi.org/10.1145/780542.780608
https://doi.org/10.1145/780542.780608
https://www.microsoft.com/en-us/research/publication/dcell-a-scalable-and-fault-tolerant-network-structure-for-data-centers/
https://www.microsoft.com/en-us/research/publication/dcell-a-scalable-and-fault-tolerant-network-structure-for-data-centers/
https://www.microsoft.com/en-us/research/publication/bcube-a-high-performance-server-centric-network-architecture-for-modular-data-centers/
https://www.microsoft.com/en-us/research/publication/bcube-a-high-performance-server-centric-network-architecture-for-modular-data-centers/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://doi.org/10.1145/3341302.3342086
https://doi.org/10.1145/3452296.3472913
https://doi.org/10.1145/3452296.3472913
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4460080106
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4460080106
https://www.sciencedirect.com/science/article/pii/S0747717113001193
https://docs.mosek.com/9.3/pythonfusion/index.html
https://doi.org/10.1145/2592798.2592803

Kanatip Chitavisutthivong received the B.Eng. de-
gree in computer engineering from Kasetsart Univer-
sity, Thailand. He is currently pursuing the M.Eng.
degree in information science and technology from
Vidyasirimedhi Institute of Science and Technology,
Thailand. His research interests include routing, dat-
acenter networking, and optimization.

Sucha Supittayapornpong is a faculty member in
the School of Information Science and Technology
at Vidyasirimedhi Institute of Science and Technol-
ogy, Thailand. He received his B.Eng. in computer
engineering from Kasetsart University, his M.Eng.
in telecommunications from Asian Institute of Tech-
nology, and his Ph.D. in Electrical Engineering from
the University of Southern California. His research
interests include datacenter networking, performance
optimization, and operations research.

Pooria Namyar is a Ph.D. student in Electrical
Engineering at the University of Southern California.
He received his Bachelor’s degree in Electrical En-
gineering from the Sharif University of Technology,
IRAN, in 2019. His research focuses on optimizing
the performance and availability of large-scale cloud
systems.

Mingyang Zhang is a software engineer at Google.
He received his PhD in computer science from Uni-
versity of Southern California. His research interests
include datacenter networks and systems.

Minlan Yu is a Gordon McKay professor at Harvard
School of Engineering and Applied Science. She re-
ceived her B.A. in computer science and mathemat-
ics from Peking University and her M.A. and PhD in
computer science from Princeton University. Her re-
search interests include data networking, distributed
systems, enterprise and data center networks, and
software-defined networking.

Ramesh Govindan is the Northrop Grumman Chair
in Engineering and Professor of Computer Sci-
ence and Electrical Engineering at the University
of Southern California. His research interests in-
clude routing and measurements in large internets,
networked sensing systems, and mobile computing
systems.

13

	Introduction
	Related Work
	System Model
	Datacenter network model
	Traffic model
	Oblivious routing formulation

	Characterization of Optimal Solutions
	Graph automorphism
	Existence of an automorphism-invariant optimal solution

	Finding an automorphism-invariant optimal solution
	Representative variables
	Removing unnecessary link constraints
	Traffic matrix selection
	Iterative algorithm

	Efficient Implementation
	Generators of automorphisms
	Representative commodity
	Representative share
	Representative link capacity constraint

	Evaluation
	Throughput performance
	Scalability under various topologies
	Structured topology with non-uniformity

	Conclusion
	References
	Biographies
	Kanatip Chitavisutthivong
	Sucha Supittayapornpong
	Pooria Namyar
	Mingyang Zhang
	Minlan Yu
	Ramesh Govindan

