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Abstract—Employing 1-bit analog-to-digital converters (ADCs)
is necessary for large-bandwidth massive multiple-antenna systems
to maintain reasonable power consumption. However, conducting
channel estimation with such 1-bit ADCs and with low complexity is
a challenging task. In this paper, we propose to employ an Ensemble
Regression (ER) model to conduct low-complexity and high-quality
channel estimation. The amount of proposed computations are less
than 3% of that proposed by similar deep learning (DL) methods,
and in turn requires approximately 4% of the power consumed in
computations while maintaining the same level of performance.

Index Terms—Analog-to-digital converters, Channel estimation,
Ensemble Regression.

I. INTRODUCTION

Emerging applications such as extended reality (XR) require
high data rates, which can be accomplished using massive
multiple antenna communication systems over high-bandwidth
millimeter wave (mmWave) spectrum band. However, having
such large bandwidth and consequently higher sampling fre-
quency require high power consumption from some transceiver
components such as analog-to-digital converters (ADCs) [1]. For
example, power consumption of ADCs with resolution above
6 bits increases quadratically with the sampling frequency [2].
Such high power consumption led to a research direction of
having low-resolution ADCs, with especial emphasis on 1-bit
ADCs. This is especially true in massive MIMO system, in
which each antenna can be equipped with a 1-bit ADC [3]. How-
ever, such low-resolution ADCs encounter challenges regarding
accurate channel estimation, and this is the scope of this paper.

One way to improve channel estimation with low-resolution
ADCs is by assuming specific random distributions for the
channel models [4]-[7]. As practical channels deviate from stan-
dard channel models, such model-based low-resolution channel
estimation solutions require long pilot sequences, which hinders
their practicality [1]. Machine learning (ML) can address the
challenges of such model-based channel estimation, and this is
the motivation of this paper.
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A few Deep Learning (DL) models (e.g., [8]) were introduced
to have channel estimation, with 1-bit ADC, without assuming a
specific form for the channel model. Furthermore in [9], systems
with a mix of high- and low-resolution ADCs were employed,
but only the received signals from the high-resolution ADCs
were used for channel estimation. Channel estimation in OFDM
systems, which use 1-bit ADCs, was considered in [10] but only
for single-antenna systems. In addition to channel estimation, a
DL model was considered in [11] for joint channel estimation
and data detection in low-dimensional MIMO systems. Finally,
a DL model for data detection alone, using 1-bit ADCs, was
introduced in [12].

The common feature among such DL-based channel estima-
tion models (e.g., [8]) is that they all are very computationally
demanding, as they require a large number of multiplication op-
erations that grows with the number of neurons composing such
DL models. Therefore, there is a need to find low-complexity
ML model for low-resolution-ADCs channel estimation, and this
is the goal of this paper.

The Ensemble Regression (ER) model comes from the family
of additive models similar to deep neural networks [13]. Gener-
ally, ensemble models depend on adaptively aggregating the ap-
proximation of several elemental approximators instead of learn-
ing all of the approximations simultaneously as in the case of
DL. This enables ER to achieve respectable performance while
utilizing simpler elemental approximators. Also, ER achieves
such low complexity by requiring lesser model parameters and
simpler arithmetic operations to train, which, in turn, means
faster training and adaptation, and easier implementation using
a combinational logic circuit [14].

In this paper, we propose an ER model for channel estimation
with 1-bit ADCs, which is based on regression trees that are
essentially zero-order hold approximators. Such ER model aims
to accomplish a good tradeoff point between the quality of the
estimation and its practicality in terms of the number of required
arithmetic operations. To the best of the authors’ knowledge,
this is the first time to employ ER for channel estimation from
quantized 1-bit ADCs, and this is the main contribution of
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Fig. 1. System model.

this paper. The rest of the paper is organized as follows: in
Section II, we present the system model and formulate the 1-bit
ADC channel estimation problem. In Section III, we describe
the proposed ER model as a part of the Fast 1-Bit Ensemble
Regression for Channel Estimations (FIERCE) approach to
solve the problem. In Section IV, we present our numerical
results before the paper is finally concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model and problem
formulation.

A. System Model

Fig. 1 shows the system model, which consists of a single base
station that is equipped with M antennas and communicates with
a single-antenna user equipment (UE). For simplicity of illustra-
tion, Fig. 1 only shows a single UE. The receiver chain of the
base station is entirely composed of 1-bit ADCs. Additionally,
we assume a time division duplexing (TDD) system operation,
in which the channel is estimated through uplink training and
then employed for downstream data transmission.

We consider a general geometric channel model with L paths
that sums up the gains {w}le of the different array responses
a(6;) arriving with angles {6}~ , such that h = Zle ~via(0y).

For the purpose of channel estimation, we assume the UE
sends a pilot signal p of dimension N x 1 that spans N
consecutive time slots. Also, let the M -antenna channel between
the base station and UE be denoted by the M x 1 channel vector
h. The received M x N signal matrix at the base station, over
N time slots, can be modeled as Y = hpT + N, where N is an
M x N additive Gaussian noise matrix and 7' denotes vector
transposition. Utilizing 1-bit ADC of the received signal at each
receive antenna, let X be an M x N matrix that contains all
1-bit quantized measurements of Y. Knowing X and h, the base
station is able to find an estimate of the M x 1 channel vector,
to be denoted as h.

As for downlink data transmission, we assume that the base
station utilizes transmit beamforming using the estimated 1-bit
channel by multiplying the data signals at the M antennas by

h/||h||. As a result the received signal-to-noise-ratio (SNR) per
each transmit antenna can be defined as

p [h"np?
M ||}’
where p is the mean reception SNR before beamforming. The

SNR will be used as the performance measure for the quality
of the low-resolution channel estimation.

SNR =

(1

B. Problem Formulation

The purpose of this paper is then to examine the construction
of an effective channel estimation technique for constructing
the channel h from the highly quantized signal X. Our aim is
to construct a channel estimation approach that minimizes the
mean-squared error (MSE) between the estimated and original
channel vectors which can be defined as

MSE = E[|h — h|]?], )

where h is estimated using E[f(x)] and f(-) is a vector func-
tion of the low-complexity and power-efficient zero-order-hold
regression-trees.

III. ER FOR CHANNEL ESTIMATION

In this section, we investigate the proper usage of another
additive model, namely the ER, to achieve the same task but
with significantly lesser computations.

The ER learner is composed of weak regression models,
namely regression tree models that are trained to collaboratively
learn a more complex model. This is analogous to the neural
network that uses weak neurons and augment their regression
power to achieve highly complex regressions. The ensemble
learning technique used is the Least-Square Boosting (LSBoost)
[15] and it is described in Algorithm 1 as a part of the proposed
F1ERCE approach.

The building block, which is the tree regression simply does a
zero-order piece-wise regression for a given set of observations.
The piece-wise, splits are chosen based on a greedy algorithm
that searches for the split that minimizes the MSE. The ensemble
learning comes from giving more attention to the residuals of
the estimates of the ensemble when learning new trees. Finally,
the ensemble decision is a weighted average of the estimations
of all trees.

For each value of the output channel dimensions, an ensem-
ble is learnt to map the inputs to one of the desired output
dimensions. For example, if there are 10 antennas, each will
have a complex channel estimate, and hence we will need 20
ER models.

Fig. 2 shows a simple regression example where the esti-
mations of 7' simple regression trees are combined using the
weights 7 to produce the final estimation.



Fig. 2. Illustration for the Ensemble Regression model.

A. The Proposed FIERCE Algorithm

The first step is to prepare the training data to be ready
for modelling. That is to vectorize each observation of the
measurements matrices X. This operation produces a row vector
z of dimensions 1 x2M N, which is the total number of elements
in the measurement matrix with the real and imaginary parts
concatenated together. The matrix containing all training vectors
Z would then have a dimensionality of D x2M N where D is the
number of observations in the training set. Then, the proposed
F1ERCE algorithm compresses the dimensionality of Z using
Principal Components Analysis (PCA). This projection uses the
K first eigenvectors of the correlation matrix of the training
data Z to reduce the dimensionality of the input while retaining
a significant amount of the carried information. This compressed
version of the input Z g, which has a dimensionality of D x K,
helps in reducing the number of learning parameters required
later on by the ER model.

Finally, the channel estimate for a given compressed signal
observation denoted by z4, which is a row vector in matrix Zg,
is a weighted voting regression denoted by Fr(z,) based on
T weak local experts, which are regression trees in our work,
each is denoted by fi(z4) € R, t = 1,...,T. The proposed
F1ERCE algorithm then collaboratively trains the local experts
using the actual channel vectors hgy,d = 1,..., D in the training
set corresponding to each measurement z;. The algorithm is
detailed in Algorithm 1 and the final estimator F'r FIERCE is
seeking for all measurements can be described as follows:

h; Zy
h2 V%]

hd Zq

Algorithm 1: FIERCE
Result: Channel Estimation
1 Initialization;
2 Uncorrelate and compress the input data matrix Z using
PCA to K dimensions Z;
3 Set the learning rate n € |0, 1];
4 Set the initial regression additive function to the average
channel value Fy(z) = 5 >, ha;
s fort«+ 1to7 do
6 for d < 1to D do
7 Compute the residual error between the estimated
and actual channels for the dth sample
according to rgy = hy — F;_1(24);
8 Fit the local expert fi(z;) by using tree
regression to ry;

9 end
10 Update Fi(zq) = Fi—1(zq) + 1 * fi(2q);
11 end

12 Final Regression h; = Fr(zq),d=1,....,D

In the next section, we present our numerical results, which
prove the efficacy of the proposed algorithm.

IV. SIMULATION RESULTS

The simulation results are generated using a modified version
of the code from [8]. The network parameters used are those
described in [8] to allow for proper comparison of performance.
The network layout is a conference room of dimensions 10 X
10 x 5 meters with two tables. The BS antennas are 2.5 m high,
and the user is simulated in 150k locations in the room at 1 m
height.

The proposed FIERCE in massive MIMO has several hyper-
parameters to tune. First, the number of PCA components, which
is chosen to be 200, a figure which retains more than 95% of
the information for different numbers of antennas. Next, the
number of trees and the properties of each tree. There is always
a trade-off between bias (generalization, which can result in
under-fitting) and variance (complexity, which can result in over-
fitting). In general, decreasing the trees depth and increasing
their number produces better generalization [15]. Yet, of course
increasing the number of trees demand more computations. The
balance reached with cross-validation is to have 500 trees and
5 splits maximum per tree. Finally, the learning rate is chosen
to be 0.9, which is based on empirical rules of thumb [13].



TABLE I
SUMMARY OF SIMULATION AND MODEL PARAMETERS

Network Layout Parameters

Room Size 10 x 10 x 5 m
User height 1m

Active BSs 32
Bandwidth 0.01 GHz
Number of Antennas in y-axis  from 2 — 100
Number of multipaths 1

ER Parameters

Number of weak trees 500

Number of splits per tree 5

Learning rate 0.9

Boosting algorithm LSBoost

Table I summarizes the network layout simulation and the ER
learning parameters.

A. The proposed model performance for different pilot lengths

Fig. 3 shows the results of the proposed model and the DL
model proposed by [8] for different pilot lengths and various
number of antennas. It can be readily seen that the general trend
of performance behavior follows that of [8]; the more antennas,
the more paths seen by the model, and the better the overall
performance is. Moreover, the FIERCE algorithm is able to
perform better when the number of antennas is intermediate.
This is a result of the adaptive capacity the ER uses to avoid
over-fitting through its step-by-step growing of complexity that
is guided by modelling residual errors as shown in Algorithm
1.

The capacity of the utilized ER model with 500 regression
trees starts to be under-fit when the number of antennas reaches
50. To overcome this, simply more tress should be added. Fig. 4
shows how increasing the number of regression tress improves
the FIERCE capacity to learn and improve performance at pilot
length 5 and 50 antennas.

For the utilized model, the savings in computations are
significant. The previous attempt to solve the channel estimation
problem using highly quantized inputs utilized a huge fully-
connected network to achieve the task [8]. For example, in the
case for pilot length of 5, the neural network model requires
approximately 72M multiplication operations and comparisons
(because the non-linearity used is a rectified-linear unit) to
do an estimation for just one observation. On the other hand,
our proposed model requires approximately 50k divisions for
voting, 500 multiplications for PCA, and 250k comparisons for
estimations in the regression trees (relational operations).

Moreover, according to [16], the average CPU power required
for different clock frequencies is shown in Table II. The total
power consumed given the required amount of computations for
a single observation in the case of pilot length 5 would then be
approximately 21 J for the DL model, and 0.8 J for FIERCE.
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Fig. 3. SNR per antenna for different pilot lengths and number of antennas.

0.975 T T T T T

0.97

0.965

SNR

0.96

0.955

q

0.95 L L . L L L . . L
200 250 300 350 400 450 500 550 600 650 700

Number of regression trees in ER

Fig. 4. SNR per antenna vs. the number of regression trees with pilot length 5
and 50 antennas.

That accounts for 96% computational power requirements re-
duction on average.

B. The proposed model performance for different training sizes

The number of samples required for training was estimated
properly in [8]. However, in real life scenarios, such number of

TABLE I
AVERAGE POWER CONSUMPTION FOR ARITHMETIC OPERATIONS

Operation Average Power Consumption
Comparison 194.5 nJ
Multiplication 296.5 nJ

Division 325.5 nJ
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Fig. 5. SNR per antenna for different pilot lengths and number of antennas.

training observations may not be available to adapt the system
when there is a change in the nature of the channel. Fig. 5
shows the impact of training the proposed model using different
number of observations versus the performance for a pilot length
of 5 and different number of antennas. It is clear that the rate of
deterioration with decreasing the number of training samples is
correlated to the size of input dimensions. Again, this figure
assesses the ER resilience against over-fitting when the data
decreases, and it shows that the deterioration due to lack of
data is sustainable at 5% even after dropping 80% of the total
amount of training data utilized in [8]. Of course, this will not be
the case for DL, which has much more parameters to learn and
depends on back propagation of total error rather than adaptive
step-by-step learning that is based on residual errors.

V. CONCLUSION

This work proposed a practical ER solution for channel
estimation based on 1-bit quantized observations that is com-
putationally and power efficient. The proposed ER algorithm
uses regression trees as its building unit, which can be easily
implemented as combinational logic circuits. The proposed
model achieves over 97% reduction in the number of required
computations required by the previously proposed model in the
literature and 96% reduction in the power requirements while
sustaining similar performance in most cases. The work also
shows the impact of the training size on the performance of
the proposed model. It is found that the proposed algorithm is
more robust against data scarcity for training and adaptation.
In conclusion, the proposed ER model shows high potential
for being a practical solution for the 1-bit quantization-based
channel estimation problem.
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