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Abstract—Employing 1-bit analog-to-digital converters (ADCs)
is necessary for large-bandwidth massive multiple-antenna systems
to maintain reasonable power consumption. However, conducting
channel estimation with such 1-bit ADCs and with low complexity is
a challenging task. In this paper, we propose to employ an Ensemble
Regression (ER) model to conduct low-complexity and high-quality
channel estimation. The amount of proposed computations are less
than 3% of that proposed by similar deep learning (DL) methods,
and in turn requires approximately 4% of the power consumed in
computations while maintaining the same level of performance.

Index Terms—Analog-to-digital converters, Channel estimation,
Ensemble Regression.

I. INTRODUCTION

Emerging applications such as extended reality (XR) require

high data rates, which can be accomplished using massive

multiple antenna communication systems over high-bandwidth

millimeter wave (mmWave) spectrum band. However, having

such large bandwidth and consequently higher sampling fre-

quency require high power consumption from some transceiver

components such as analog-to-digital converters (ADCs) [1]. For

example, power consumption of ADCs with resolution above

6 bits increases quadratically with the sampling frequency [2].

Such high power consumption led to a research direction of

having low-resolution ADCs, with especial emphasis on 1-bit

ADCs. This is especially true in massive MIMO system, in

which each antenna can be equipped with a 1-bit ADC [3]. How-

ever, such low-resolution ADCs encounter challenges regarding

accurate channel estimation, and this is the scope of this paper.
One way to improve channel estimation with low-resolution

ADCs is by assuming specific random distributions for the

channel models [4]±[7]. As practical channels deviate from stan-

dard channel models, such model-based low-resolution channel

estimation solutions require long pilot sequences, which hinders

their practicality [1]. Machine learning (ML) can address the

challenges of such model-based channel estimation, and this is

the motivation of this paper.

A few Deep Learning (DL) models (e.g., [8]) were introduced

to have channel estimation, with 1-bit ADC, without assuming a

specific form for the channel model. Furthermore in [9], systems

with a mix of high- and low-resolution ADCs were employed,

but only the received signals from the high-resolution ADCs

were used for channel estimation. Channel estimation in OFDM

systems, which use 1-bit ADCs, was considered in [10] but only

for single-antenna systems. In addition to channel estimation, a

DL model was considered in [11] for joint channel estimation

and data detection in low-dimensional MIMO systems. Finally,

a DL model for data detection alone, using 1-bit ADCs, was

introduced in [12].

The common feature among such DL-based channel estima-

tion models (e.g., [8]) is that they all are very computationally

demanding, as they require a large number of multiplication op-

erations that grows with the number of neurons composing such

DL models. Therefore, there is a need to find low-complexity

ML model for low-resolution-ADCs channel estimation, and this

is the goal of this paper.

The Ensemble Regression (ER) model comes from the family

of additive models similar to deep neural networks [13]. Gener-

ally, ensemble models depend on adaptively aggregating the ap-

proximation of several elemental approximators instead of learn-

ing all of the approximations simultaneously as in the case of

DL. This enables ER to achieve respectable performance while

utilizing simpler elemental approximators. Also, ER achieves

such low complexity by requiring lesser model parameters and

simpler arithmetic operations to train, which, in turn, means

faster training and adaptation, and easier implementation using

a combinational logic circuit [14].

In this paper, we propose an ER model for channel estimation

with 1-bit ADCs, which is based on regression trees that are

essentially zero-order hold approximators. Such ER model aims

to accomplish a good tradeoff point between the quality of the

estimation and its practicality in terms of the number of required

arithmetic operations. To the best of the authors’ knowledge,

this is the first time to employ ER for channel estimation from

quantized 1-bit ADCs, and this is the main contribution of978-1-6654-8237-0/22/$31.00 ©2022 IEEE



Fig. 1. System model.

this paper. The rest of the paper is organized as follows: in

Section II, we present the system model and formulate the 1-bit

ADC channel estimation problem. In Section III, we describe

the proposed ER model as a part of the Fast 1-Bit Ensemble

Regression for Channel Estimations (F1ERCE) approach to

solve the problem. In Section IV, we present our numerical

results before the paper is finally concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model and problem

formulation.

A. System Model

Fig. 1 shows the system model, which consists of a single base

station that is equipped with M antennas and communicates with

a single-antenna user equipment (UE). For simplicity of illustra-

tion, Fig. 1 only shows a single UE. The receiver chain of the

base station is entirely composed of 1-bit ADCs. Additionally,

we assume a time division duplexing (TDD) system operation,

in which the channel is estimated through uplink training and

then employed for downstream data transmission.

We consider a general geometric channel model with L paths

that sums up the gains {γl}
L

l=1
of the different array responses

a(θl) arriving with angles {θl}
L

l=1
such that h =

∑

L

l=1
γla(θl).

For the purpose of channel estimation, we assume the UE

sends a pilot signal p of dimension N × 1 that spans N
consecutive time slots. Also, let the M -antenna channel between

the base station and UE be denoted by the M×1 channel vector

h. The received M ×N signal matrix at the base station, over

N time slots, can be modeled as Y = h pT + N, where N is an

M × N additive Gaussian noise matrix and T denotes vector

transposition. Utilizing 1-bit ADC of the received signal at each

receive antenna, let X be an M × N matrix that contains all

1-bit quantized measurements of Y. Knowing X and h, the base

station is able to find an estimate of the M × 1 channel vector,

to be denoted as ĥ.

As for downlink data transmission, we assume that the base

station utilizes transmit beamforming using the estimated 1-bit

channel by multiplying the data signals at the M antennas by

ĥ/∥ĥ∥. As a result the received signal-to-noise-ratio (SNR) per

each transmit antenna can be defined as

SNR =
ρ

M

|ĥ
H

h|2

∥h∥2
, (1)

where ρ is the mean reception SNR before beamforming. The

SNR will be used as the performance measure for the quality

of the low-resolution channel estimation.

B. Problem Formulation

The purpose of this paper is then to examine the construction

of an effective channel estimation technique for constructing

the channel h from the highly quantized signal X. Our aim is

to construct a channel estimation approach that minimizes the

mean-squared error (MSE) between the estimated and original

channel vectors which can be defined as

MSE = E[∥h− ĥ∥2], (2)

where ĥ is estimated using E[f(x)] and f(·) is a vector func-

tion of the low-complexity and power-efficient zero-order-hold

regression-trees.

III. ER FOR CHANNEL ESTIMATION

In this section, we investigate the proper usage of another

additive model, namely the ER, to achieve the same task but

with significantly lesser computations.

The ER learner is composed of weak regression models,

namely regression tree models that are trained to collaboratively

learn a more complex model. This is analogous to the neural

network that uses weak neurons and augment their regression

power to achieve highly complex regressions. The ensemble

learning technique used is the Least-Square Boosting (LSBoost)

[15] and it is described in Algorithm 1 as a part of the proposed

F1ERCE approach.

The building block, which is the tree regression simply does a

zero-order piece-wise regression for a given set of observations.

The piece-wise, splits are chosen based on a greedy algorithm

that searches for the split that minimizes the MSE. The ensemble

learning comes from giving more attention to the residuals of

the estimates of the ensemble when learning new trees. Finally,

the ensemble decision is a weighted average of the estimations

of all trees.

For each value of the output channel dimensions, an ensem-

ble is learnt to map the inputs to one of the desired output

dimensions. For example, if there are 10 antennas, each will

have a complex channel estimate, and hence we will need 20

ER models.

Fig. 2 shows a simple regression example where the esti-

mations of T simple regression trees are combined using the

weights η to produce the final estimation.



Fig. 2. Illustration for the Ensemble Regression model.

A. The Proposed F1ERCE Algorithm

The first step is to prepare the training data to be ready

for modelling. That is to vectorize each observation of the

measurements matrices X. This operation produces a row vector

z of dimensions 1×2MN , which is the total number of elements

in the measurement matrix with the real and imaginary parts

concatenated together. The matrix containing all training vectors

Z would then have a dimensionality of D×2MN where D is the

number of observations in the training set. Then, the proposed

F1ERCE algorithm compresses the dimensionality of Z using

Principal Components Analysis (PCA). This projection uses the

K first eigenvectors of the correlation matrix of the training

data Z to reduce the dimensionality of the input while retaining

a significant amount of the carried information. This compressed

version of the input ZK , which has a dimensionality of D×K,

helps in reducing the number of learning parameters required

later on by the ER model.

Finally, the channel estimate for a given compressed signal

observation denoted by zd, which is a row vector in matrix ZK ,

is a weighted voting regression denoted by FT (zd) based on

T weak local experts, which are regression trees in our work,

each is denoted by ft(zd) ∈ R, t = 1, . . . , T . The proposed

F1ERCE algorithm then collaboratively trains the local experts

using the actual channel vectors hd, d = 1, ..., D in the training

set corresponding to each measurement zd. The algorithm is

detailed in Algorithm 1 and the final estimator FT F1ERCE is

seeking for all measurements can be described as follows:
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Algorithm 1: F1ERCE

Result: Channel Estimation

1 Initialization;

2 Uncorrelate and compress the input data matrix Z using

PCA to K dimensions ZK ;

3 Set the learning rate η ∈ ]0, 1];
4 Set the initial regression additive function to the average

channel value F0(zk) =
1

D

∑

d
hd;

5 for t← 1 to T do

6 for d← 1 to D do

7 Compute the residual error between the estimated

and actual channels for the dth sample

according to rd = hd − Ft−1(zd);
8 Fit the local expert ft(zd) by using tree

regression to rd;
9 end

10 Update Ft(zd) = Ft−1(zd) + η ∗ ft(zd);
11 end

12 Final Regression ĥd = FT (zd), d = 1, ..., D

In the next section, we present our numerical results, which

prove the efficacy of the proposed algorithm.

IV. SIMULATION RESULTS

The simulation results are generated using a modified version

of the code from [8]. The network parameters used are those

described in [8] to allow for proper comparison of performance.

The network layout is a conference room of dimensions 10 ×
10×5 meters with two tables. The BS antennas are 2.5 m high,

and the user is simulated in 150k locations in the room at 1 m

height.

The proposed F1ERCE in massive MIMO has several hyper-

parameters to tune. First, the number of PCA components, which

is chosen to be 200, a figure which retains more than 95% of

the information for different numbers of antennas. Next, the

number of trees and the properties of each tree. There is always

a trade-off between bias (generalization, which can result in

under-fitting) and variance (complexity, which can result in over-

fitting). In general, decreasing the trees depth and increasing

their number produces better generalization [15]. Yet, of course

increasing the number of trees demand more computations. The

balance reached with cross-validation is to have 500 trees and

5 splits maximum per tree. Finally, the learning rate is chosen

to be 0.9, which is based on empirical rules of thumb [13].



TABLE I
SUMMARY OF SIMULATION AND MODEL PARAMETERS

Network Layout Parameters
Room Size 10× 10× 5 m
User height 1 m
Active BSs 32

Bandwidth 0.01 GHz
Number of Antennas in y-axis from 2− 100

Number of multipaths 1

ER Parameters
Number of weak trees 500

Number of splits per tree 5

Learning rate 0.9

Boosting algorithm LSBoost

Table I summarizes the network layout simulation and the ER

learning parameters.

A. The proposed model performance for different pilot lengths

Fig. 3 shows the results of the proposed model and the DL

model proposed by [8] for different pilot lengths and various

number of antennas. It can be readily seen that the general trend

of performance behavior follows that of [8]; the more antennas,

the more paths seen by the model, and the better the overall

performance is. Moreover, the F1ERCE algorithm is able to

perform better when the number of antennas is intermediate.

This is a result of the adaptive capacity the ER uses to avoid

over-fitting through its step-by-step growing of complexity that

is guided by modelling residual errors as shown in Algorithm

1.

The capacity of the utilized ER model with 500 regression

trees starts to be under-fit when the number of antennas reaches

50. To overcome this, simply more tress should be added. Fig. 4

shows how increasing the number of regression tress improves

the F1ERCE capacity to learn and improve performance at pilot

length 5 and 50 antennas.

For the utilized model, the savings in computations are

significant. The previous attempt to solve the channel estimation

problem using highly quantized inputs utilized a huge fully-

connected network to achieve the task [8]. For example, in the

case for pilot length of 5, the neural network model requires

approximately 72M multiplication operations and comparisons

(because the non-linearity used is a rectified-linear unit) to

do an estimation for just one observation. On the other hand,

our proposed model requires approximately 50k divisions for

voting, 500 multiplications for PCA, and 250k comparisons for

estimations in the regression trees (relational operations).

Moreover, according to [16], the average CPU power required

for different clock frequencies is shown in Table II. The total

power consumed given the required amount of computations for

a single observation in the case of pilot length 5 would then be

approximately 21 J for the DL model, and 0.8 J for F1ERCE.

Fig. 3. SNR per antenna for different pilot lengths and number of antennas.

Fig. 4. SNR per antenna vs. the number of regression trees with pilot length 5

and 50 antennas.

That accounts for 96% computational power requirements re-

duction on average.

B. The proposed model performance for different training sizes

The number of samples required for training was estimated

properly in [8]. However, in real life scenarios, such number of

TABLE II
AVERAGE POWER CONSUMPTION FOR ARITHMETIC OPERATIONS

Operation Average Power Consumption
Comparison 194.5 nJ

Multiplication 296.5 nJ
Division 325.5 nJ



Fig. 5. SNR per antenna for different pilot lengths and number of antennas.

training observations may not be available to adapt the system

when there is a change in the nature of the channel. Fig. 5

shows the impact of training the proposed model using different

number of observations versus the performance for a pilot length

of 5 and different number of antennas. It is clear that the rate of

deterioration with decreasing the number of training samples is

correlated to the size of input dimensions. Again, this figure

assesses the ER resilience against over-fitting when the data

decreases, and it shows that the deterioration due to lack of

data is sustainable at 5% even after dropping 80% of the total

amount of training data utilized in [8]. Of course, this will not be

the case for DL, which has much more parameters to learn and

depends on back propagation of total error rather than adaptive

step-by-step learning that is based on residual errors.

V. CONCLUSION

This work proposed a practical ER solution for channel

estimation based on 1-bit quantized observations that is com-

putationally and power efficient. The proposed ER algorithm

uses regression trees as its building unit, which can be easily

implemented as combinational logic circuits. The proposed

model achieves over 97% reduction in the number of required

computations required by the previously proposed model in the

literature and 96% reduction in the power requirements while

sustaining similar performance in most cases. The work also

shows the impact of the training size on the performance of

the proposed model. It is found that the proposed algorithm is

more robust against data scarcity for training and adaptation.

In conclusion, the proposed ER model shows high potential

for being a practical solution for the 1-bit quantization-based

channel estimation problem.
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