
Constant Approximation for

Private Interdependent Valuations

Alon Eden

The Hebrew University

alon.eden@mail.huji.ac.il

Michal Feldman

Tel Aviv University

mfeldman@tauex.tau.ac.il

Kira Goldner

Boston University

goldner@bu.edu

Simon Mauras

Tel Aviv University

smauras@tauex.tau.ac.il

Divyarthi Mohan

Tel Aviv University

divyarthim@tau.ac.il

AbstractÐThe celebrated model of auctions with interdepen-
dent valuations, introduced by Milgrom and Weber in 1982, has
been studied almost exclusively under private signals s1, . . . , sn
of the n bidders and public valuation functions vi(s1, . . . , sn).
Recent work in TCS has shown that this setting admits a constant
approximation to the optimal social welfare if the valuations
satisfy a natural property called submodularity over signals
(SOS). More recently, Eden et al. (2022) have extended the
analysis of interdependent valuations to include settings with
private signals and private valuations, and established O(log2 n)-
approximation for SOS valuations. In this paper we show that
this setting admits a constant factor approximation, settling the
open question raised by Eden et al. (2022).

Index TermsÐtruthful, interdependent, submodular

I. INTRODUCTION

The interdependent values model captures auction scenarios

where each bidder has some partial information about the good

for sale, but their value for the good depends also on the

information held by other bidders [24, 28]. This captures many

realistic scenarios such as the selling of a natural resource

(e.g., oil) of unknown value, art auctions, and ad-auctions of

online impressions, among many others. This model has been

widely studied in the economic literature, with its importance

being recognized by the 2020 Nobel Prize in Economics [17].

In this model, each bidder i possesses a private signal: a real

number si (e.g., the estimate that the bidder has for the amount

of oil in the auctioned oil field). The bidder also possesses

a public valuation function vi(s1, . . . , sn) which maps the

signals of all biddersÐone’s own signal, as well as others’Ð

into a value for the item for sale (e.g., a bidder’s value for

the expected amount of oil in the field given all bidders’

information).

Previous work in economics has found that this intricate

setting gives rise to many impossibility results, and good

design is possible only in very restricted cases [23, 9, 19, 3].
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More recently, the EconCS community has put effort toward

circumventing these impossibilities via the algorithmic lens of

approximation (e.g., [25, 5, 12, 13, 1, 15, 22, 8, 18, 6]).

A major breakthrough toward positive welfare guarantees

comes from Eden et al. [13], who devise a 4-approximation

mechanism for valuation functions that satisfy a property they

refer to as Submodular-over-Signals (or SOS). SOS is a natural

generalization of the submodularity property of set functions.

Roughly speaking, a valuation function v(·) is SOS if, for a

signal profile s−j for all bidders but j, when the signals s−j

are lower, then an increase in signal sj has a larger effect

on the valuations. In other words, information (signals) ex-

hibit decreasing marginal returns. The SOS condition captures

many natural settings including most scenarios studied in the

literature, such as mineral-rights auctions and art auctions.

Only more recently, Eden et al. [15] have studied the case

where valuation functions are assumed to be private (unknown

to the seller or other bidders), just like signals are. This reflects

the fact that in many real-world settings, individuals’ private

information encompasses both their partial information about

the good for sale, as well as the way they aggregate everyone’s

private information into a value. For instance, in the oil field

example, an oil company’s signal may be an estimate of the

amount of oil, while their valuation function may reflect the

company’s estimated production cost, which may impact the

profitability of the oil field. There is no reason to assume that

the signalÐthe estimated amount of oil in this caseÐis less

private than the valuation functionÐthe estimated production

cost in this case. Indeed, while public valuations can be shown

to be easier to handle, in the oil example, as well as in

many additional auction settings, it is much more realistic to

assume that both signals and valuation functions are private

information.

As Eden et al. [15] show, private valuation functions pose

a much greater challenge than public ones. In particular,

the single-crossing condition1, which enables full efficiency

in single-item auctions with public valuations and private

1Roughly speaking, a valuation function is single-crossing if i’s signal si
affects i’s valuation at least as much as it does any other bidder.



signals, is rendered useless in settings where the valuations are

private as well, and cannot guarantee more than the trivial n-

approximation. On the positive side, they devise an O(log2 n)-
approximation mechanism when the valuations are SOS. Eden

et al. [15] left the following question unresolved:

ªIs there a mechanism that achieves a constant-

factor approximation to the optimal welfare under

private signals and private valuations?º

We answer this question in the affirmative. Informally, our

main result is the following.

Main Theorem. There exists a polynomial time truthful mech-

anism that gives a constant-factor approximation to the optimal

welfare in a single-item auction with private interdependent

valuations that satisfy the SOS condition.

Our main result extends in several ways: First, it applies

to non-monotone SOS valuations. Second, it extends beyond

single-item auctions, to settings with unit-demand valuations

over multiple identical items.

Notably, our mechanism is randomized. This is inevitable,

as even in the case of public SOS valuations, one cannot

guarantee any approximation with deterministic mechanisms

[13]. Moreover, turning to approximation is inevitable, as even

in the case of public SOS valuations, one cannot get better than

2-approximation even with a randomized mechanism [13].

Our results are derived by introducing a new hierarchy of

valuations which we term d-self-bounding valuations, where

each valuation profile is parameterized by d ∈ {1, . . . , n}.

The mechanism we devise gives a tight Θ(d)-approximation

for d-self-bounding valuations. Our main results then follow

by showing that monotone SOS valuations are 1-self-bounding

and non-monotone SOS valuations are 2-self-bounding.

A. Related Work

The two immediate precursors of this work are Eden et al.

[13], which introduces SOS valuations for interdependent

settings and brings them into the context of combinatorial

auctions, and Eden et al. [15], which is the first work to study

interdependent valuations with private valuation functions.

On the combinatorial front, [13] devises a random-sampling

version of the VCG mechanism that obtains a 4-approximation

for public SOS valuations that satisfy an additional separability

condition. For private valuation functions under the SOS

condition, Eden et al. [15] show a O(log2 n)-approximation

mechanism in the single-item setting. The same paper [15] also

considers a restricted setting, where the valuation functions

depend on the signals of at most a constant number of bidders,

and provides a constant-approximation mechanism for this

case. Related is Dasgupta and Maskin [9], who study the

interdependent setting when the seller is unaware of bidders’

valuation functions, but crucially, the bidders do know each

others’ valuation functions. They devise a mechanism where

the bidders bid a complicated contingent bidding function

which maps the bids of other bidders to a bid for the bidder.

They show that under single-crossing-type conditions, there is

a fully-efficient equilibrium.

A recent burst of work from the EconCS community has

investigated interdependent value auctions in a variety of

settings. Roughgarden and Talgam-Cohen [25] study prior-

independent mechanisms for revenue maximization. Chawla

et al. [5] design approximately-optimal mechanisms for rev-

enue maximization while trying to minimize the assumptions

needed. Eden et al. [12] relax the single-crossing condition

and study approximately-optimal welfare-maximizing auc-

tions. Amer and Talgam-Cohen [1] and Lu et al. [22] improve

the approximation guarantees for single-item auctions under

the SOS condition. Eden et al. [14] study the PoA of simple,

non-truthful mechanisms. Cohen et al. [8] study combinatorial

public projects in interdependent settings.

Our work introduces classes of valuation functions over sig-

nals analogous to the combinatorial valuation functions studied

by [20]. The combinatorial valuations were proven useful in

devising nearly-optimal mechanisms for welfare [10, 2, 11]

and revenue [4, 26], as well as nearly simple, non-truthful,

nearly-optimal mechanisms [7, 27, 16].

B. Organization

In Section II, we present our model and main definitions;

specifically, in Section II-A we present the interdependent

values model, and give sufficient conditions for a truthful

mechanism and in Section II-B we present the main properties

of valuations used in this paper. In Section III, we discuss the

main ideas and intuition of our mechanism by presenting a

naÈıve attempt and discussing the obstacles to this approach. In

Section IV, we present and prove our main result: a truthful

Θ(d)-approximation mechanism to d-self-bounding valuations.

Finally, in Section V, we extend our result to the case of

multiple identical items and unit-demand bidders.

II. MODEL AND PRELIMINARIES

A. Interdependent Valuations and Truthful Mechanisms

We consider a single-item auction with n bidders with

interdependent valuations. (In later sections, we extend our

work to k identical items and unit-demand bidders). Every

bidder i ∈ [n] receives a private signal si ∈ Si, where

Si denotes the signal space of bidder i. We denote by

S = S1 × . . . × Sn the joint signal space of the bidders, and

by s = (s1, . . . , sn) ∈ S a signal profile. As is standard, we

denote by s−i = (s1, . . . , si−1, si+1, . . . , sn) the signal profile

of all bidders other than bidder i.
In addition, every bidder i has a private valuation function

vi : S → R+, which maps a signal profile into a non-negative

real number, which is bidder i’s value for the item. We denote

by Vi ⊆ R
S
+ the valuation space of bidder i, and by V =

V1× . . .×Vn the joint valuation space of all bidders. A vector

v = (v1, . . . , vn) ∈ V denotes a valuation profile.

A mechanism is defined by a pair (x,p) of an allocation

rule x : S×V → [0, 1]n and a payment rule p : S×V → R
n
+,

which receive bidder reports about their signals and valuations,

and return an allocation and a payment for each bidder.

xi(s,v) and pi(s,v) denote bidder i’s allocation probability



and payment for reported signals and valuations s,v, respec-

tively.

Unless specified otherwise, we access bidder valuations via

value queries; namely, given a signal profile s, bidder i’s value

oracle vi returns vi(s). A mechanism is said to be polynomial

if it makes a polynomial number of value queries.

A mechanism (x,p) is said to be truthful if it is an ex-

post Nash equilibrium for the bidders to truthfully report

their private information (signals and valuations). In our query

access model, truthfulness means that it is in every bidder’s

best interest to answer every query truthfully, given that other

bidders do the same.

Definition 1 (EPIC-IR). A mechanism (x,p) is ex-post incen-

tive compatible (IC) if for every i ∈ [n], s ∈ S,v ∈ V, s′i ∈
Si, v

′
i ∈ Vi

xi(s,v) · vi(s)− pi(s,v) ≥
xi(s−i, s

′
i,v−i, v

′
i) · vi(s)− pi(s−i, s

′
i,v−i, v

′
i). (1)

It is ex-post individually rational (IR) if for every i ∈ [n],
s ∈ S, and v ∈ V

xi(s,v) · vi(s)− pi(s,v) ≥ 0 (2)

It is EPIC-IR if it is both ex-post IC and ex-post IR. An allo-

cation x is EPIC-IR implementable if there exists a payment

rule p such that the pair (x,p) is EPIC-IR.

It is well known that even when the valuation functions are

public, this is the strongest possible solution concept when

dealing with interdependent valuations.2

Eden et al. [15] give a sufficient condition for an allocation

rule x to be EPIC-IR implementable.

Proposition 1 (Eden et al. [15]). An allocation rule x is EPIC-

IR implementable if for every bidder i, xi depends only on

s−i,v−i and vi(s), and is non-decreasing in vi(s).
For an (EPIC-IR) implementable x, the corresponding pay-

ment rule p is given by:

pi(s,v) := xi(s−i,v−i, vi(s))·vi(s)−
∫ vi(s)

0

xi(s−i,v−i, t) dt.

(3)

That is, bidder i’s allocation may depend on all other bid-

ders’ signals and valuation functions, and it can only depend

on bidder i’s signal si or valuation function vi through the

numerical value vi(s). Eden et al. [15] show that this condition

is almost necessary in order to be EPIC-IR implementable.3

For the purpose of tie-breaking, we introduce the following

notation.

2Dominant strategy incentive-compatibility does not make sense, as a bidder
i might not be willing to win if other bidders over-bid, which causes the
winner to over-pay and incur a negative utility.

3The necessary conditions for EPIC-IR implementablity are (i) xi is
monotone in vi(s), and (ii) for a given s−i, the set of signals si, s

′

i
and valuation functions vi, v

′

i such that vi(si, s−i) = v′i(s
′

i, s−i) and
xi(vi, si, s−i) ̸= xi(v

′

i, s
′

i, s−i) has measure 0.

Definition 2 (Lexicographic tie-breaking). Let ai, bj ∈ R
+,

where ai is associated with bidder i and bj is associated

with bidder j. Given an ordering of the bidders π =
(π(1), . . . , π(n)), we say ai >π bj if either ai > bj , or ai = bj
and π(i) > π(j).

As an example, consider two quantities a1, b2 and the

identity permutation π(i) = i.

• If a1 = 1 and b2 = 0, then a1 >π b2.

• If a1 = 0 and b2 = 0, then b2 >π a1.

B. Properties of Valuation over Signals

In this section we introduce several properties of valuation

functions over signals. Recall that a valuation function over

signals is a function v : S1 × . . . × Sn → R+, which assigns

a (non-negative) real value to every vector of bidder signals.

Assume that signal spaces are totally ordered (e.g., Si ⊆ R

for all i). Denote by s ⪰ t that s is coordinate-wise greater

than or equal to t. We first present the definition of a monotone

valuation function.

Definition 3 (Monotone). A valuation v over signals is

monotone if v(s) ≥ v(t) for all s ⪰ t.

Note that, while prior work in the interdependent values

literature often assumes valuation functions to be monotone

over signals, we also consider non-monotone valuations (see

Proposition 2).

We next present the definition of submodularity over signals,

defined by Eden et al. [13].

Definition 4 (SOS). A valuation function v is submodular over

signals (SOS) if for every i ∈ [n] and every s ⪰ t, it holds

that v(si, s−i)− v(ti, s−i) ≤ v(si, t−i)− v(ti, t−i).

Note that, when signals are binary (i.e., Si = {0, 1} for all

i), SOS coincides with the classic notion of submodular set

functions.

For the next properties, we use the notation v(s−i) :=
inf

oi∈Si

v(oi, s−i) to denote the lowest value of a valuation

function v over all bidder i’s signals, for a given signal profile

s−i of all bidders other than bidder i. We sometimes refer to

v(s−i) as a lower-estimate of v. Note that if v is monotone,

then v(s−i) := v(0, s−i) (where we normalize the lowest

signal in Si to be 0).

For our results, we use the notion of d-self-bounding valu-

ations, defined as follows.

Definition 5 (self-bounding and d-self-bounding). A valuation

function v is self-bounding over signals if for every s ∈ S,

n∑

i=1

(v(s)− v(s−i)) ≤ v(s). (4)

Similarly, a valuation function v is d-self-bounding over

signals, for some parameter d ∈ [n], if for every s ∈ S,
∑n

i=1(v(s)− v(s−i)) ≤ d · v(s).
For example, any function of the form v(s) =

∑n
i=1 fi(si)

is self-bounding. Another example of self-bounding functions



are monotone SOS functions. In fact, any SOS function is 2-

self-bounding as shown in the following proposition.

Proposition 2. Every monotone SOS valuation function is

self-bounding. Moreover, every (possibly non-monotone) SOS

valuation function is 2-self-bounding.

Proof. Consider an SOS function v : S → R+. Take s, o ∈ S

and partition [n] = A ⊔ B, with A = {a1, . . . , ak} and B =
{b1, . . . , bℓ} such that oA ⪯ sA and sB ⪯ oB .

• For all 1 ≤ i ≤ k let Ai = {a1, . . . , ai} and s′ =
(oAi

, s−Ai
). We have s′ ⪯ s, and thus, by SOS for all

i ∈ {2, . . . , k} we have,

v(s)− v(oai
, s−ai

) ≤ v(oAi−1
, s−Ai−1

)− v(oAi
, s−Ai

).

The inequality with i = 1 is trivial. Therefore, summing

over all 1 ≤ i ≤ k, we obtain
∑

a∈A

(v(s)− v(oa, s−a)) ≤ v(s)− v(oA, sB) ≤ v(s).

• For all 1 ≤ i ≤ ℓ let Bi = {b1, . . . , bi} and s′ =
(oBi

, s−Bi
). We have s ⪯ s′, and thus, by SOS for all

i ∈ {2, . . . , ℓ} we have,

v(s)− v(obi , s−bi) ≤ v(oBi−1
, s−Bi−1

)− v(oBi
, s−Bi

).

The inequality with i = 1 is trivial. Thus, summing over

all 2 ≤ i ≤ ℓ, we obtain
∑

b∈B

(v(s)− v(ob, s−b)) ≤ v(s)− v(oB , sA) ≤ v(s).

Recall that v(s−i) := infoi v(oi, s−i) for all i. If v is non-

decreasing, we set A = [n] and B = ∅, and we use the first

inequality. In the general case, we define the sets A and B
according to the side of each infimum, and we sum the two

equations, concluding the proof.

A stricter notion than self-bounding is that of a critical (or

d-critical) valuation, defined as follows.

Definition 6 (d-critical). A valuation v is d-critical over

signals for some parameter d ∈ [n] if for every s ∈ S, the

number of bidders i such that v(s) > v(s−i) is at most d. It

is said to be critical if this number is at most 1.

We note that even the case of d = 1 captures interesting

scenarios (previously studied in the literature), such as the

case where vi(s) = maxj vi,j(sj) for all i.

Proposition 3. Every d-critical valuation function is d-self-

bounding.

Proof. Given a d-critical function v, observe that we can

bound each term v(s) − v(s−i) by v(s) if v(s−i) < v(s),
and by 0 otherwise. Summing over all i gives that v is d-self-

bounding.

Eden et al. [15] studied valuations termed d-bounded de-

pendency valuations which depend on at most d signals. Ob-

viously d-bounded dependency valuations are also d-critical,

which in turn are d-self-bounding. Eden et al. [15] show

that no EPIC-IR mechanism can give a better than O(d)-
approximation for d-bounded dependency valuations. Thus,

their result implies the following.

Proposition 4 (Follows from Proposition 4.1 in Eden et al.

[15]). For every d, no EPIC-IR mechanism can give better

than (d + 1)-approximation for d-self-bounding valuations,

even if the valuations are public.

III. MAIN IDEAS OF OUR TECHNIQUES

a) Starting point: d-critical valuations: We begin with

d-critical valuations. When d is a constant, the mechanism de-

vised by Eden et al. [15] for d-bounded dependency valuations

gives a constant-factor approximation to the optimal social

welfare for this restricted class of valuations. We note that

this mechanism is substantially different from their O(log2 n)-
approximation for SOS valuations. For simplicity of presenta-

tion, our description below refers to 1-critical valuations. The

entire discussion extends easily to d-critical valuations.

The mechanism can be described as follows: For every

bidder i, compare i’s value vi(s) to the other bidders’ j ̸= i
values under the worst-possible signal of bidder i, namely

vj(s−i) = infoi vj(oi, s−i). Then, if vi(s) > vj(s−i) for every

other bidder j ̸= i, bidder i is said to be a ªcandidateº (to be

allocated to), which means that the item is allocated to bidder

i with probability xi = 1/2.

As they show, this mechanism is EPIC-IR (as for every

v−i, s−i, i’s allocation probability is monotone in vi(s)), and

gives a 1/2-approximation (since the highest-valued bidder

wins with probability at least 1/2). Moreover, if there is a

unique highest-valued bidder, call it i⋆, then this mechanism

is feasible, since the only bidder that has a chance to receive a

non-zero allocation probability aside from i⋆ is the one bidder

whose signal can decrease i⋆’s value at signal profile s (bidder

i′ in Figure 1). Since there is at most one such bidder, and

since both get allocation probability 1/2, the mechanism is

feasible. Otherwise (if there is no unique highest value), it can

be handled by using a fixed lexicographic tie-breaking between

identical values when deciding if a bidder is a candidate.

Value

vi⋆ (s)

vi⋆ (s−i′ )

vi′ (s)
vℓ(s)

vk(s)

vi⋆ (s−j) = vi⋆ (s) (∀j ̸= i′)

Fig. 1: Illustration of the mechanism in Eden et al. [15] for

bounded-dependency valuations. There are at most two candi-

dates: the highest-valued bidder i⋆ (breaking ties consistently),

and the only bidder i′ whose signal affects the value of i⋆. No

other bidder (e.g., k or ℓ) can be a candidate.

This idea can be extended to a (d + 1)-approximation

mechanism for d-critical valuations. In this case, we set

xi = 1/(d+ 1) instead.

We next describe how to build upon this idea for the general

case of SOS valuations.



b) SOS valuations.: Unfortunately, for SOS valuations,

the previous observation has no bearing, as for any given signal

profile, vi(s) can be affected by an arbitrary number of bid-

ders, leading to an Ω(n)-approximation. Here, Proposition 2

comes to our aid. Namely, since SOS valuations are 1-self-

bounding, there is at most one bidder that can decrease i’s
value by a factor larger than 2.

c) First attempt: discretized values.: As a naÈıve first

attempt, consider simply discretizing the valuation space into

powers of 2, and rounding down every value to the nearest

power of two. That is, for a valuation function v, we define

the discretized value ṽ(s) = 2⌊log v(s)⌋ for all signal profiles

s. If it happens to be the case that the valuations are slightly

below a power-of-two (i.e., v(s) = 2ℓ − ε), then they need

to be lowered by a factor of at least 1/2 in order for v(s)
and v(s−i) to be discretized to different powers-of-two. In

this case, at most one bidder can decrease the value of a

bidder from its true rounded-down value to the next rounded-

down value, and so we could use the mechanism for 1-

critical valuations and lose another factor of 2 due to the

discretization. Unfortunately, the discretized value may, in

general, be affected by all bidders, even for SOS valuations.

Thus, even the discretized valuations can be n-critical. This is

demonstrated in the following example.

Example 1. Consider the 1-self-bounding valuation function

v(s) = 2(1+ϵ)
n ·∑i si, where si = 1 for all i and ϵ < 1/(n−

1). Its discretization is ṽ(s) = 2. For every i, v(0i, s−i) < 2,

thus ṽ(0i, s−i) = 1, and n different bidders can decrease i’s
rounded-down value to the next power-of-two.

Indeed, the valuation v(s) in Example 1 is monotone SOS

(and 1-self-bounding), but the naÈıve discretization results in

all n bidders being able to decrease the discretized valuation

at the true signal profile of s = (1, 1, · · · , 1).
d) Second attempt: randomized discretization.: Our next

attempt is using randomized discretization. Concretely, rather

than rounding down to the nearest 2ℓ from below for ℓ ∈ Z,

we draw r ∼ U [0, 1) and round down to the nearest 2ℓ+r

from below. We show that using this random discretization,

in expectation, a constant number of bidders can decrease the

(randomly) discretized valuation.

However, even with our randomized discretization, another

problem may arise: a fixed tie-breaking order can lead to too

many bidders being candidates, which results in a feasibility

problem. This is demonstrated in the following example.

Example 2. For each bidder i ≥ √
n, let i = i−√

n+1, we

set

vi(s) = 2(n−i)/n ·
i∑

j=i

sj/
√
n.

For s = (1, 1, . . . , 1), the values of the all the bidders i ≥ √
n

are almost evenly distributed between 1 and 2; specifically,

vi(1, . . . , 1) = 2(n−i)/n. Each bidder j can affect values which

are slightly smaller than their own, that is vi(s−j) = vi(s) ·

(1− 1/
√
n) for all i ∈ [j, j +

√
n− 1], and vi(s−j) = vi(s)

for every other i. We illustrate this visually in Figure 2.

vj(s)

2

1

Value

j j +
√
nIndex

vi(s)
vi(0j , s−j)

ṽi(0j , s−j)

Fig. 2: Illustration of Example 2 showing that the expected

number of candidates can be
√
n using a fixed tie-breaking

rule.

In Example 2, the true values of the bidders decrease with

their index/name. Suppose we break ties according to the

identity permutation π (i.e., π(i) = i for all i). This means

that by Definition 2, in the above example, if the discretized

values are the same for two bidders, we break ties in favor of

the bidder with the lower true value. We claim that each bidder

is a candidate with probability 1/
√
n. This is because, bidder j

is a candidate when vj(s) and vi(s−j) for i < j are rounded

to the same discretization point, and all vi(s−j) for i > j
are rounded to a lower discretization point (the discretization

points are illustrated by the two red lines in Figure 2).

This corresponds to the event that the corresponding random

discretization point falls between 2(n−j)/n and 2(n−j−√
n)/n

(the shaded red area illustrated in Figure 2); i.e., when we

draw r ∼ U [0, 1) it falls in (1 − j/n − 1/
√
n, 1 − j/n],

an interval of length 1/
√
n. Hence, the expected number of

bidders who are candidates is
√
n. So if we directly attempt

to use the above mechanism that is designed for the case

where at most d bidders can decrease one’s value, we need

to normalize the allocation probabilities xi by
√
n in order to

preserve feasibility, which in turn leads to a
√
n-factor loss in

the approximation ratio.

e) Final solution: randomized tie-breaking.: To handle

this, we turn to a random tie-breaking rule. Specifically, we

choose a tie-breaking rule by picking a tie-breaking order

(permutation) uniformly at random. The intuition here is

reminiscent of the secretary problem where we bound the

probability of prematurely accepting a sub-optimal element

by relying on the second-best appearing earlier in the sample.

Here, we observe that if we break ties in favor of a bidder

i < j (i.e., i ranks above j in the random tie-breaking order)

then bidder j has no chance of being a candidate. Following

this intuition, we turn to using a random permutation in order

to break ties. However, note that there is still a (worst-case)

order with a large number of candidates as shown above

in Example 2. Therefore, we set the allocation probabilities

proportional to the probability that bidder j is a candidate,

instead of giving a fixed allocation probability to all the



bidders who are candidates under a given randomization.

Our Randomized Candidate Filtering (RCF) Mechanism

combines the concepts of randomized discretization and ran-

dom tie-breaking as follows. It first considers the rounded-

down valuations to randomly selected discretization points.

It marks bidder i as a ªcandidateº to be allocated if their

discretized value is larger than all the other bidders’ discretized

lower-estimates, breaking ties according to a random permu-

tation. Mechanism RCF then allocates the item to bidder i
according to the probability that i will be a candidate when

choosing a random r ∼ U [0, 1] and a uniformly random

permutation π.

In Lemma 1, we show that the mechanism is EPIC-IR

since for a fixed s−i,v−i increasing vi(s) also increases the

probability of being a candidate. This mechanism is not yet

feasible, as the expected number of candidates can exceed

1. Therefore, we normalize the allocation probability by (an

upper bound on) the expected number of candidates. Bounding

the expected number of candidates is our main technical

challenge.

IV. O(d)-APPROXIMATION FOR d-self-bounding

In this section, we prove our main result. Building upon the

intuition of the previous sections, we define our mechanism

for instances with d-self-bounding valuations. We prove truth-

fulness and show the desired O(d)-approximation guarantee

which is optimal (up to constants). As SOS valuations are

2-self-bounding, this implies a constant-factor approximation

EPIC-IR mechanism for SOS valuations, answering the open

question raised by Eden et al. [15] in the affirmative.

Theorem 1. There exists an EPIC-IR mechanism that obtains

a tight Θ(d)-approximation to the optimal welfare for any

instance with d-self-bounding valuations. Specifically,

• There exists a 5.55-approximation mechanism for mono-

tone SOS valuations.

• There exists a 8.32-approximation mechanism for (non-

monotone) SOS valuations.

• The mechanism can be made oblivious to d by losing

another factor of 2 in the approximation.

Finally, the allocation and payments can be computed in

polynomial time.

Our mechanism, the Randomized Candidate Filtering (RCF)

Mechanism, operates as follows. It rounds down valuations to

randomly selected thresholds around powers of 2, and marks

a bidder as candidate by setting ci = 1 if their rounded-down

value is lexicographically larger (Definition 2) than all other

bidders’ rounded-down lower-estimates. Tie-breaking is done

using a randomly drawn permutation. Our mechanism assigns

each bidder an allocation probability which is proportional to

the probability this bidder will be a candidate (that is, sets

xi = E[ci]/η, for a normalization factor η). The probability is

taken over the random rounding and the random lexicographic

tie-breaking.

The desiderata of the mechanism are: (i) truthfulness, (ii)

constant approximation to the optimal social welfare, and (iii)

allocation feasibility.

The mechanism is truthful since as a bidder’s value in-

creases, ci can only increase (Lemma 1).

To show that the mechanism achieves a good approximation,

we show that for every random coin toss of the algorithm, there

is always a nearly-optimal candidate (Lemma 2).

The main technical challenge is the third desideratum,

namely feasibility. As there can be more than one candidate

for a given random seed, the mechanism need not be feasible.

The main technical challenge is indeed showing that for d-

self-bounding valuations, the expected number of candidates

is O(d); this is established in Lemma 4. Therefore, by

normalizing by a factor O(d), we retain feasibility and get

an O(d)-approximation algorithm. As SOS valuations are 1-

self-bounding, this implies a constant-factor approximation

EPIC-IR mechanism for SOS valuations, answering the open

question raised by Eden et al. [15] in the affirmative. Our

mechanism follows.

Randomized Candidate Filtering (RCF) Mechanism.

1) Elicit reported signals ŝ = {ŝi ∈ Si}i∈[n] and values

v̂ = {v̂i : S → R+}i∈[n].

2) Let η ≥ 1 be a normalization parameter to be set later.

3) For each bidder i, define

xi =
Er,π[ci]

η
,

where r is uniformly distributed on [0, 1), π is a uni-

formly random permutation, and ci is an indicator vari-

able defined as follows:

ci =

{

1, if fr(v̂i(̂s)) >π fr(v̂j (̂s−i)) for all j ̸= i

0, otherwise

where fr(w) := 2r+k such that 2r+k ≤ w < 2r+k+1 for

all w.

4) Allocate the item to bidder i with probability xi for all

i ∈ [n].
5) Charge prices using Equation (3).

We begin by showing the mechanism is truthful.

Lemma 1. The RCF Mechanism is EPIC-IR.

Proof. Fix bidder i and reported signals and valuations ŝ−i,

v̂−i of the other bidders. We show that for every choice of r
and π, ci is monotone in v̂i(̂s). This immediately implies that

xi is monotone as well which implies the mechanism can be

implemented in an EPIC-IR manner by Proposition 1. Fix r
and π. If we increase v̂i(̂s), then for every j, we can only get

fr(v̂i(̂s)) >π fr(v̂j (̂s−i)) to be satisfied if it wasn’t satisfied

before. This is since the left hand side of the inequality

increases while the right hand side is not affected. Therefore,

ci is monotone in v̂i(̂s) which proves the lemma.



As the mechanism is truthful, from now on we assume

bidders bid their true valuations and signals, and write s and

v instead of ŝ and v̂.

We next show that the mechanism obtains near-optimal

welfare.

Lemma 2. The RCF Mechanism obtains an (η · 2 ln 2)-
approximation to the optimal welfare.

Proof. Fix valuations and signals v, s and consider the ran-

dom choice of r and σ. Consider the bidder i⋆ such that

fr(vi⋆(s)) >π fr(vj(s)) for every j. For bidder i⋆ it must

be the case that ci⋆ = 1 as fr(vj(s)) ≥ fr(vj(s−i⋆)) for

every j. Moreover, we have that

vi⋆(s) ≥ fr(vi⋆(s)) ≥ fr(max
i

vi(s)).

Therefore, for every v, s, r, π, we have that
∑

i ci · vi(s) ≥
vi⋆(s) ≥ fr(maxi vi(s)), and

∑

i

xi(v, s) · vi(s) =
∑

i

Er,π[ci]

η
· vi(s)

=
Er,π[

∑

i ci · vi(s)]
η

≥ E
r
[fr(max

i
vi(s))]/η. (5)

To finish the proof, we show that for a positive real v ∈ R+,

Er[fr(v)] ≥ v
2 ln 2 . Let v = 2k+α for some k ∈ N and α ∈

[0, 1], and let r be the random number sampled in step (3) of

RCF. If r is chosen such that r ≤ α, then v is rounded down

to 2k+r. On the converse, if r > α, then v is rounded down

to 2k+r−1. Overall,

E
r
[fr(v)] =

∫ α

0

2k+rdr +

∫ 1

α

2k+r−1dr

=
2k+α − 2k + 2k − 2k+α−1

ln 2

=
2k+α

2 ln 2
=

v

2 ln 2
. (6)

Combining Equations (5) and (6) gives the desired bound.

A. The RCF Mechanism is Feasible for η = O(d)

In this section we show that the RCF mechanism is feasible

when the valuations are d-self-bounding when using a normal-

ization factor η = O(d). We first consider the setting where

d is known, and extend the result to the setting where d is

unknown in Section IV-C. In our proof, we use the following

notation for convinience.

Definition 7. For any α ≥ 0,

log†2(α) = max(0,min(1, log2 α)).

The following property of log†2 is used in our proofs.

Lemma 3. For any α, β ≥ 0,

log†2(α · β) ≤ log†2(α) + log†2(β).

Proof. For any x, y ∈ R, we have max(0, x + y) ≤
max(0, x) + max(0, y) and min(1, x + y) ≤ min(1, x) +
min(1, y). Therefore,

log†2(α · β) = max(0,min(1, log2 α · β))
= max(0,min(1, log2 α+ log2 β))

≤ max(0,min(1, log2 α) + min(1, log2 β))

≤ max(0,min(1, log2 α))

+max(0,min(1, log2 β))

= log†2 α+ log†2 β.

.

The following lemma shows it is enough to normalize the

allocation by a factor η = O(d) in order to maintain feasibility.

Lemma 4. For every single-item auction with d-self-bounding

valuations, the RCF Mechanism with η = 2(d+1) is feasible.

Proof. We show that the expected number of candidates
∑n

i=1 Er,π[ci] is at most 2(d+ 1). By the definition of xi

this implies that
∑

i xi ≤ 1 for η = 2(d + 1), thus proving

feasibility.

First, we rename the bidders such that v1(s) ≥ v2(s) ≥
· · · ≥ vn(s). We set k to be the number of bidders i whose

value are larger than v1(s)/2, that is k = max{i | vi(s) >
v1(s)/2}. This parameter distinguishes the analysis for large

valued bidders (numbered 1 through k), and small valued

bidders (numbered k + 1 to n). By Lemma 9 we get the

following bound on the probability of being a candidate,

∀i ∈ [n], E
r,π

[ci] ≤
1

i(i+ 1)
+

log†2(2vi(s)/v1(s−i))

k + 1

+
∑

j∈[k]

log†2(vi(s)/vj(s−i))

j(j + 1)
.

Next, using Lemma 3, we write

E
r,π

[ci] ≤
1

i(i+ 1)
+

log†2(v1(s)/v1(s−i))

k + 1

+
∑

j∈[k]

log†2(vj(s)/vj(s−i))

j(j + 1)
︸ ︷︷ ︸

Ai

+
log†2(2vi(s)/v1(s))

k + 1

+
∑

j∈[k]

log†2(vi(s)/vj(s))

j(j + 1)
︸ ︷︷ ︸

Bi

(7)

Recall that we want to show that

∑

i

E
r,π

[ci] ≤
n∑

i=1

1

i(i+ 1)
+
∑

i

Ai +
∑

i

Bi ≤ 2(d+ 1).

First, observe that
∑n

i=1
1

i(i+1) = n
n+1 ≤ 1. To conclude the

proof, we use Lemma 7 which shows that
∑

i Ai ≤ 2d, and

Lemma 8 which shows that
∑

i Bi ≤ 1.



In our proofs, we use the following technical lemma.

Lemma 5. For any a, b ∈ R
+, we have that

Pr
r
[fr(a) > fr(b)] = max(0,min(1, log2(a/b))) = log†2(a/b).

Proof. First, note that if a ≤ b, then Pr[fr(a) > fr(b)] = 0
and log2(a/b) ≤ 0; and if a ≥ 2b, then Pr[fr(a) > fr(b)] = 1
and log2(a/b) ≥ 1. Thus, we consider two cases:

• a = 2i+α, b = 2i+β for β < α < 1. For this case,

Pr[fr(a) > fr(b)] if r ∈ (β, α]. This happens with

probability α− β = log2 a− log2 b = log2(a/b).
• a = 2i+α, b = 2i−1+β , α ≤ β < 1. In this

case, fr(a) > fr(b) if (a) r ≤ α, which implies

fr(a) = 2i+r > 2i−1+r = fr(b), or (b) r > β,
which implies fr(a) = 2i−1+r > 2i−2+r = fr(b).
These events are disjoint, and happen with probability

α+ 1− β = log2 a− log2 b = log2(a/b).

The following lemma establishes a useful property of d-self-

bounding functions. Namely, that by the random discretization

the expected number of bidders who can decrease some bidder

i’s value to a lower discretization point is O(d). Indeed, the left

hand side of Equation (8) is the expected number of bidders

who can decrease the discretized value at a signal profile to

the next (lower) power of 2.

Lemma 6. For any d-self-bounding function v, it holds that

n∑

i=1

log†2

(
v(s)

v(s−i)

)

≤ 2d. (8)

Proof. We define the function ϕ(x) = − log2(1 − x) and we

write
n∑

i=1

log†2

(
v(s)

v(s−i)

)

=

n∑

i=1

ϕ(yi),

where yi := min

(

1− v(s−i)

v(s)
,
1

2

)

.

Because ϕ is convex, it lies below its chord between ϕ(0) = 0
and ϕ(1/2) = 1, thus

∀yi ∈ [0, 1/2], ϕ(yi) ≤
yi
1/2

= 2yi.

Using the d-self-bounding property to derive the second in-

equality, we have that

n∑

i=1

yi ≤
n∑

i=1

v(s)− v(s−i)

v(s)
≤ d.

Therefore, summing over all i we conclude that
n∑

i=1

log†2

(
v(s)

v(s−i)

)

=

n∑

i=1

ϕ(yi) ≤
n∑

i=1

2yi ≤ 2d.

We first bound the Ai terms.

Lemma 7. Given an instance with d-self-bounding valuations,

we have that
n∑

i=1

Ai ≤ 2d,

where Ai’s are defined in the proof of Lemma 4.

Proof. Recall definition from Equation (7)

Ai =
log†2(v1(s)/v1(s−i))

k + 1
+
∑

j∈[k]

log†2(vj(s)/vj(s−i))

j(j + 1)
.

Moreover, by Lemma 6 we have
∑n

i=1 log
†
2(vj(s)/vj(s−i)) ≤

2d for all bidders j. Hence, summing Ai over all i and

swapping the summation of i and j we get,

n∑

i=1

Ai =

n∑

i=1

log†2(v1(s)/v1(s−i))

k + 1

+
∑

j∈[k]

n∑

i=1

log†2(vj(s)/vj(s−i))

j(j + 1)

≤ 2d

k + 1
+
∑

j∈[k]

2d

j(j + 1)

=
2d

k + 1
+ 2d · k

k + 1
= 2d.

Next, we bound the Bi terms.

Lemma 8. Given an instance, we have that

n∑

i=1

Bi ≤ 1,

where Bi’s are defined in the proof of Lemma 4.

Proof. Recall that k = max{i | vi(s) > v1(s)/2}. Therefore,

for every i > k,

log†2(2vi(s)/v1(s)) ≤ log†2(1) = 0.

For i ≤ k, we first observe that

log2(2vi(s)/v1(s)) ≤ 1.

Moreover for i ≤ j ≤ k, we have.

log2(vi(s)/vj(s)) ≤ log2(v1(s)/(v1(s)/2)) ≤ 1,

hence we can replace log†2 with log2 for these terms. Thus,

n∑

i=1

Bi =

n∑

i=1




log†2(2vi(s)/v1(s))

k + 1
+

k∑

j=1

log†2(vi(s)/vj(s))

j(j + 1)





=
k∑

i=1

log2(2vi(s)/v1(s))

k + 1
+

k∑

i=1

k∑

j=i

log2(vi(s)/vj(s))

j(j + 1)

=
k∑

i=1

1 + log2(vi(s))− log2(v1(s))

k + 1

+
k∑

i=1

k∑

j=i

log2(vi(s))− log2(vj(s))

j(j + 1)
. (9)



We now bound the second sum.

k∑

i=1

k∑

j=i

log2(vi(s))− log2(vj(s))

j(j + 1)

=

k∑

i=1

log2(vi(s))

k∑

j=i

1

j(j + 1)
−

k∑

j=1

k∑

i=j

log2(vi(s))

i(i+ 1)

=

k∑

i=1

log2(vi(s)) ·
(
1

i
− 1

k + 1

)

−
k∑

i=1

log2(vi(s))

i(i+ 1)
· i

=

k∑

i=1

log2(vi(s)) ·
(
1

i
− 1

k + 1
− 1

i+ 1

)

=

k∑

i=1

log2(vi(s)) ·
(

1

i(i+ 1)
− 1

k + 1

)

.

Plugging back into Equation (9), we get

n∑

i=1

Bi =
k

k + 1
(1− log2(v1(s)))

+

k∑

i=1

log2(vi(s)) ·
(

1

k + 1
+

1

i(i+ 1)
− 1

k + 1

)

=
k

k + 1
(1− log2(v1(s))) +

k∑

i=1

log2(vi(s)) ·
1

i(i+ 1)

≤ k

k + 1
− log2(v1(s)) ·

k

k + 1
+ log2(v1(s))

k∑

i=1

1

i(i+ 1)

=
k

k + 1
≤ 1.

Finally, we prove the upper bound on the probability of

being a candidate which is used in Lemma 4.

Lemma 9. The probability of each bidder i being a candidate

is bounded by

E
r,π

[ci] ≤
1

i(i+ 1)
+

log†2(2vi(s)/v1(s−i))

k + 1

+
∑

j∈[k]\{i}

log†2(vi(s)/vj(s−i))

j(j + 1)
.

Proof. Fix the random choices r and π of Mechanism RCF.

We observe that the following conditions are equivalent for

bidder i to a candidate:

ci = 1

⇔ ∀j ̸= i, fr(vi(s)) >π fr(vj(s−i))

⇔ ∀j ̸= i,

{

fr(vi(s)) ≥ fr(vj(s−i)) if π(i) > π(j)

fr(vi(s)) > fr(vj(s−i)) if π(i) < π(j)

⇔ ∀j ̸= i,

{

fr(vi(s)) > fr(vj(s−i)/2) if π(i) > π(j)

fr(vi(s)) > fr(vj(s−i)) if π(i) < π(j)
,

where the first equivalence follows by the definition of ci, the

second follows by the definition of >π and last follows by the

definition of fr.

To simplify this condition with two cases, we sort agents by

decreasing low estimates, and we let σ(ℓ) denote the bidder j
with ℓ-th highest vj(s−i). In particular, we have

vσ(1)(s−i) ≥ vσ(2)(s−i) ≥ · · · ≥ vσ(n−1)(s−i).

Next, we define

τi,ℓ = max(vσ(ℓ)(s−i), vσ(1)(s−i)/2)

and τi,n = vσ(1)(s−i)/2.

Finally, we let t(π) = min{ℓ ∈ [n − 1] | π(i) < π(σ(ℓ))}
if π ranks some j above i, and t(π) = n otherwise. Recall

that if i is a candidate then fr(vi(s)) ≥ fr(vj(s−i)) for

all j ̸= i. Hence, observe that if i is a candidate then

fr(vi(s)) ≥ fr(vσ(1)(s−i)) > fr(vσ(1)(s−i)/2), no matter

whether π(σ(1)) > π(i) or π(σ(1)) < π(i). This gives the

simplified condition

ci = 1 ⇔ fr(vi(s)) > fr(τi,t(π)).

We compute the expected value of ci

E
r,π

[ci] =

n∑

ℓ=1

Pr
π
[t(π) = ℓ] · E

r,π
[ci | t(π) = ℓ]

=

n∑

ℓ=1

Pr
π
[t(π) = ℓ] · Pr

r
[fr(vi(s)) > fr(τi,ℓ)]

=

n∑

ℓ=1

Pr
π
[t(π) = ℓ] · log†2(vi(s)/τi,ℓ),

where the second equality follows from simplified condition

above and the last equality follows by Lemma 5.

Now, remains to compute the probability that t(π) = ℓ,
induced by the uniformly random ordering π. Observe that

t(π) > ℓ if and only if i is ranked before all bidders

σ(1), . . . , σ(ℓ), which happens with probability 1
ℓ+1 , for any

ℓ ∈ [n − 1]. In particular, this implies that t(π) = ℓ with

probability 1
ℓ − 1

ℓ+1 = 1
ℓ(ℓ+1) , hence

E[ci] =
log†2(vi(s)/τi,n)

n
+

n−1∑

ℓ=1

log†2(vi(s)/τi,ℓ)

ℓ(ℓ+ 1)
. (10)

To conclude the proof, we will permute terms in the sum using

the rearrangement inequality4. We define σ(n) = i, such that

4The rearrangement states that for every choice of real numbers x1 ≤
. . . ≤ xn, y1 ≥ . . . ≥ yn and permutation ρ : [n] → [n], we have xny1 +
. . .+ x1yn ≤ xρ(1)y1 + . . .+ xρ(n)yn.



σ : [n] → [n] is a permutation, and we denote σ−1 its inverse.

E
r,π

[ci] =
log†2(vi(s)/τi,n)

n+ 1
+
∑

ℓ∈[n]

log†2(vi(s)/τi,ℓ)

ℓ(ℓ+ 1)

≤ log†2(vi(s)/τi,n)

n+ 1
+
∑

j∈[n]

log†2(vi(s)/τi,σ−1(j))

j(j + 1)

≤ log†2(vi(s)/τi,n)

k + 1
+
∑

j∈[k]

log†2(vi(s)/τi,σ−1(j))

j(j + 1)

≤ log†2(vi(s)/τi,n)

k + 1
+

1

i(i+ 1)

+
∑

j∈[k]\{i}

log†2(vi(s)/vj(s−i))

j(j + 1)

≤ log†2(2vi(s)/v1(s−i))

k + 1
+

1

i(i+ 1)

+
∑

j∈[k]\{i}

log†2(vi(s)/vj(s−i))

j(j + 1)
,

where the equality simply follows by rewriting 1/n as

1/(n+ 1) + 1/(n(n+ 1)), the first inequality follows by the

rearrangement inequality, the second inequality holds because

τi,n ≤ τi,σ−1(j) for all j, the third inequality follows because

vj(s−i) ≤ τi,σ−1(j) and the last inequality holds because

v1(s−i)/2 ≤ τi,n. The last inequality corresponds to the

statement of the Lemma.

B. Polynomial Time Implementation

In this section, we show how to implement Mechanism RCF

in polynomial time. The main technical challenge is to avoid

enumerating all possible tie breaking permutation π in Mecha-

nism RCF. The polynomial time implementation is illustrated

in Mechanism PRCF. The mechanism makes n2 queries to

bidders. In general, it queries bidders for their low estimates,

that is {v̂i(̂s−j)}i,j . Note that when valuation functions are

monotone, it suffices to query valuations on the minimum sig-

nals, that is {v̂i(0j , ŝ−j)}i,j . The mechanism queries bidders

for their value on polynomially many signal profiles, which

relates to the different values each bidder’s value has to pass

in order for the bidder to be a candidate, the thresholds τi,ℓ. It

then computes the probability of each bidder to be a candidate

using the log†2 function, and the corresponding payment using

Equation (3).

Figure 3 illustrates some of the components used in the

proof of Lemma 10.

Lemma 10. Mechanism RCF can be implemented in

polynomial-time.

Proof. We show that Mechanism PRCF is a polynomial time

implementation of Mechanism RCF. First, Mechanism RCF is

truthful, thus we assume bidders bid their true valuations and

signals, and write s and v instead of ŝ and v̂.

Polynomial-time Randomized Candidate Filtering (PRCF)

Mechanism.

1) Elicit reported signals ŝ = {ŝi ∈ Si}i∈[n], and query each

bidder i on:

• its value v̂i(̂s) for signal profile ŝ; and

• for every bidder j ̸= i, query i’s lowest possible value

v̂i(̂s−j) for signals ŝ−i.

2) Let η ≥ 1 be identical to η in Mechanism RCF.

3) For each bidder i, we define the following:

• Let τi,n = maxj ̸=i v̂j (̂s−i)/2, and let τi,ℓ be the ℓ-th
value in {max(v̂j (̂s−i), τi,n)}j ̸=i.

• Let xi =
1

η

(

log†2(v̂i(̂s)/τi,n)

n
+

n−1∑

ℓ=1

log†2(v̂i(̂s)/τi,ℓ)

ℓ(ℓ+ 1)

)

.

• Let pi =
max(0,min(τi,n, v̂i(̂s)− τi,n))

nη ln 2

+
n−1∑

ℓ=1

max(0,min(τi,ℓ, v̂i(̂s)− τi,ℓ))

ℓ(ℓ+ 1)η ln 2
.

4) Allocate the item to bidder i with probability xi.

5) Charge price pi to bidder i.
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Er,π[ci | t(π) > 4]

Fig. 3: The blue piece-wise linear curve denotes the log-scale

plot of the allocation probability xi as a function of vi(s).
In particular, xi is the weighted average of Er,π[ci|t(π) = ℓ]
for all ℓ, weighted by the probability that t(π) = ℓ. The log-

scale plot of Er,π[ci|t(π) = ℓ] is denoted by the different

colored piece-wise linear curves. The lower estimates of

bidders are represented with dashed lines at v1(s−i) = 1,

v2(s−i) = e−1/6, v3(s−i) = e−1/3 and v4(s−i) = e−1/2.

The mechanism queries the bidder’s valuations on O(n2)
many signal profiles. In particular, after eliciting signals s,

each bidder i is then asked to report vi(s) and vi(s−j) for all

j ̸= i. For extending the mechanism to the case where d is

unknown (as discussed in the next section), we also ask the

bidders to report the minimum di such that their valuation

function vi(·) is di-self-bounding. The mechanism runs in

polynomial time as it gives a tractable formula to compute

each bidder’s allocation probability and payment as a function

of n different thresholds τi,ℓ. First, notice that the probabilities

in mechanisms RCF and PRCF are equal, as demonstrated in

Equation (10).

It remains to show that the payment formula implements



Equation (3) for the given allocation rule. We first make the

following observations towards computing log†2(v/c) · v −
∫ v

0
log†2(t/c)dt for all v ≥ 0 and constant c > 0.

• If v ≤ c, then
∫ v

0
log†2(t/c)dt = 0.

• If c ≤ v ≤ 2c, then

∫ v

0

log†2(t/c)dt = 0 +

∫ v

c

log2(t/c)dt

= vlog2(v/c)−
v − c

ln 2
.

• If v ≥ 2c, then

∫ v

0

log†2(t/c)dt = 0 +

∫ 2c

c

log2(t/c)dt+

∫ v

2c

dt

=

(

2c log2(2c/c)−
2c− c

ln 2

)

+ (v − 2c)

= v − c

ln 2
.

Plugging in the above observations we immediately get

log†2(v/c) · v −
∫ v

0

log†2(t/c)dt

=







0, if v ≤ c

(v − c)/ln 2, if c ≤ v ≤ 2c

c/ ln 2, if v ≥ 2c

=
max(0,min(c, v − c))

ln 2
. (11)

We are now ready to compute the payments for our allo-

cation rule xi according to Equation (3). For any fixed v−i,

s−i, and for all v ≥ 0 we have

xi(v) · v −
∫ v

0

xi(t)dt

=
1

η

(

log†2(v/τi,n)

n
+

n−1∑

ℓ=1

log†2(v/τi,ℓ)

ℓ(ℓ+ 1)

)

· v

−
∫ v

0

1

η

(

log†2(t/τi,n)

n
+

n−1∑

ℓ=1

log†2(t/τi,ℓ)

ℓ(ℓ+ 1)

)

dt

=
1

η

(

log†2(v/τi,n) · v
n

−
∫ v

0

log†2(t/τi,n)

n
dt

)

+

n−1∑

ℓ=1

1

η

(

log†2(v/τi,ℓ) · v
ℓ(ℓ+ 1)

−
∫ t

0

log†2(t/τi,ℓ)

ℓ(ℓ+ 1)
dt

)

=
1

η

(
max(0,min(τi,n, v − τi,n))

n ln 2

)

+

n−1∑

ℓ=1

1

η

(
max(0,min(τi,ℓ, v − τi,ℓ)

ℓ(ℓ+ 1) ln 2

)

, (By (11))

which is exactly the payment pi for vi(s) = v defined in

Mechanism PRCF.

C. Unknown d

In this section we show how to extend our results for the

case where the value of d is unknown. Recall that Mechanism

RCF uses a bound on d to set the normalization factor

η. However, in order to keep the mechanism truthful, the

allocation of i cannot rely on i’s valuation function vi(.), and

hence on di. To address this challenge, we define personalized

normalization factors for each bidder i that doesn’t use di.
In particular, for each bidder i, we use the smallest value d
such that all bidders j ̸= i are d-self-bounding. This way, all

bidders except at most a single bidder (the one with the largest

d) have the correct normalization factor η. Thus, by scaling

the allocation probabilities by another factor of 2, feasibility is

guaranteed and the O(d)-approximation is preserved. We note

that this modification requires asking each bidder to report the

smallest value di such that their valuation function is di-self-

bounding.

This is formalized in the following lemma.

Lemma 11. For every instance with d-self-bounding valu-

ations, where d is unknown, one can compute personalized

normalization factors ηi such that by setting xi = Er,π[ci]/ηi
in the RCF mechanism we get a feasible, truthful, O(d)-
approximation to the optimal welfare.

Proof. Given reported signals ŝ and valuations v̂, we set

ηi = 4(d̂−i + 1) with d̂−i = maxj ̸=i dj where each v̂j is

dj-self-bounding (which means dj ≤ d). Observe that d̂−i

doesn’t depend on ŝi or v̂i. Moreover, by the same arguments

as Lemma 1, ci is monotone in v̂i(̂s) and doesn’t depend on

i’s information. This implies that the allocation xi is also

monotone in v̂i(̂s) and doesn’t depend on ŝi or v̂i. Hence,

by Proposition 1 the allocation is EPIC-IR implementable.

Next, we show that the resulting allocation is feasible.

Recall that in Lemma 4 we showed that when η = 2(d + 1)
we have

∑

i Er,π[ci]/η ≤ 1. Suppose ηi = ηj for all bidders

i, j, we observe that ηi = 2η. This is because we have

d̂−i = d̂−j = maxi di = d. Hence by Lemma 4 we have
∑

i xi =
∑

i E[ci]/2η ≤ 1/2, which is a feasible allocation.

Suppose ηi ̸= ηj for some bidders i ̸= j, then we have

a unique bidder i = argmaxj dj with di = d. Hence we

have ηj = 2η for all j ̸= i, and by Lemma 4 we have
∑

j ̸=i xi ≤ 1/2. Moreover, since ηi ≥ 2, we have xi ≤ 1/2.

This implies
∑

j xj ≤ 1, and thus proving feasibility.

Finally, we show that the we obtain a O(d)-approximation.

Observe that ηi ≤ 2η for all bidders i, so by the same

arguments Lemma 2 we have that the mechanism is a 2η·2 ln 2
approximation to the optimal welfare.

D. Putting it All Together

We now have all the ingredients to prove our main theorem.

The full proof follows.

Proof of Theorem 1. Lemma 1 shows the mechanism is truth-

ful, Lemma 2 and Lemma 4 show the mechanism is fea-

sible and gets 4(d + 1) ln 2 = O(d)-approximation for d-



self-bounding valuations. By Proposition 4, every EPIC-IR

mechanism cannot have a better than Ω(d)-approximation for

d-self-bounding valuations, even if the valuations are public.

By Proposition 2, this gives a 8 ln 2 ≈ 5.55-approximation for

monotone SOS functions, and a 12 ln 2 ≈ 8.32-approximation

for non-monotone SOS functions. By Lemma 11, all the results

generalize to the case where the bound on d is unknown by

losing another factor of 2 in the approximation. Finally, by

Lemma 10, the mechanism can be implemented in polynomial

time.

V. MULTI-UNIT AUCTIONS WITH UNIT-DEMAND BIDDERS

In this section we extend results from Section IV to multi-

unit auctions with n unit-demand bidders and m identical

items. We assume that 1 ≤ m < n; otherwise, trivially

we could give each bidder one of the items. We consider

the following small adjustment of RCF and show that this

gives a truthful and feasible mechanism that obtains an O(d)-
approximation when allocating m identical items to n unit-

demand bidders.

a) Adjusted RCF Mechanism:

1) In step (3) of the mechanism we set ci = 1 if

fr(vi(s)) >π fr(vj(s−i)) for at least n−m bidders j ̸= i,
and 0 otherwise.

2) In step (4) of the mechanism we allocate items using

Proposition 5 such that the allocation is ex-post feasible.

Theorem 2. Given an instance with n unit-demand bidders

and m identical items, there exist an EPIC-IR mechanism

which obtains O(d)-approximation for d-self-bounding valua-

tions.

Proof. We first observe that the resulting mechanism is truth-

ful following the same arguments as Lemma 1. Next, in

Lemma 12 we claim that for η = 4(d + 1) the resulting

allocation is fractionally feasible, i.e.,
∑

i xi ≤ m. We further

use a randomized rounding procedure following Proposition 5

to obtain a randomized allocation such that each bidder i is

allocated an item with probability xi, while making sure the

allocation is ex-post feasible, that is, at most m bidders are

allocated.

Finally, we show that the mechanism obtains an O(d)-
approximation to the optimal welfare. Fix valuations and sig-

nals v, s and consider any random choice of r and π. Wlog we

rename bidders such that v1(s) ≥ v2(s) ≥ · · · ≥ vn(s). Let I⋆

denote the top m bidders according to fr(vi(s)) breaking ties

according to priority in π. We denote I⋆ = {i1, i2, · · · , im}
where

fr(vi1(s)) >π fr(vi2(s)) >π . . . >π fr(vim(s)).

For each iℓ ∈ I⋆ it must be the case that ciℓ = 1. This is

because

fr(viℓ(s)) >π fr(vj(s)) ≥ fr(vj(s−i))

for every j /∈ I⋆ (thus, for at least n−m many bidders, which

implies that iℓ is a candidate). Moreover, we have that

viℓ(s) ≥ fr(viℓ(s)) ≥ fr(vℓ(s)).

Therefore, for every v, s, r, π we have that

n∑

i=1

civi(s) ≥
∑

iℓ∈I⋆

viℓ(s) ≥
m∑

ℓ=1

fr(vℓ(s)).

Hence, we have

n∑

i=1

xi · vi(s) =
∑

i

E[ci]

η
· vi(s) ≥ E

[
n∑

i=1

civi(s)

η

]

≥ E

[
m∑

ℓ=1

fr(vℓ(s))

η

]

≥
m∑

ℓ=1

vℓ(s)

η · 2 ln 2 ,

where for the last inequality we recall, from the proof of

Lemma 2, that Er[fr(v)] ≥ v/(η · 2 ln 2). For η = 4(d + 1)
this provides the desired O(d)-approximation.

We also observe that the same extension can be made to

the case where the mechanism is oblivious of the value d.

Observation 1. The adjusted RCF mechanism can be made

oblivious to d by losing an additional factor of 2, by using

personalized normalization parameters ηi = 8maxj ̸=i(dj+1).

A. Fractional Feasibility

In this section we show that the adjusted RCF provides a

fractionally feasible allocation for any multi-unit auction in-

stance. In particular, we show that the allocation probabilities,

xi, always sum up to at most m.

Lemma 12. Let xi = E[ci]/η be the allocation probability

from the adjusted RCF with η = 4(d+1). Then the allocation

is fractionally feasible, that is,

n∑

i=1

xi ≤ m.

Proof. We will show that the expected number of candidates
∑

i E[ci] is at most 4m(d+1). Thus for η = 4(d+1) we have
∑

i xi ≤ m as desired. Wlog we rename the bidders such that

v1(s) ≥ v2(s) ≥ . . . ≥ vn(s). Let k be the number of bidders

whose values are larger that vm/2. Similar to the single item

settings, we distinguish the bidders as large values (numbered

1 through k) and small valued (numbered k + 1 through n)

for the analysis.

We first consider the highest m − 1 bidders. Since the

probability that each one of them is a candidate is at most

1, we get
∑m−1

i=1 E[ci] ≤ m− 1.

Second, we consider the low bidders i ∈ {k + 1, . . . , n}.

We observe that for each one of them to be a candidate it is

necessary that there are at most m−1 bidders j ̸= i such that

fr(vj(s−i)) > fr(vi(s)). Hence, there exists some j ∈ [m]
such that fr(vi(s)) ≥ fr(vj(s−i)) > fr(vj(s−i)/2). With



this we bound the probability that a small valued bidder i is

a candidate as follows,

E
r,π

[ci] ≤ Pr[∃j ∈ [m] such that fr(vi(s)) > fr(vj(s−i)/2)]

≤
m∑

j=1

log†2

(
2vi(s)

vj(s−i)

)

≤
m∑

j=1

log†2

(
vj(s)

vj(s−i)

)

, (12)

where the last inequality follows by definition of small valued.

Using Lemma 6, it follows that
∑n

i=k+1 E[ci] ≤ 2dm.

Finally, it remains to bound the probability that bidders i ∈
{m, . . . , k} are candidates. In Lemma 15 (below) we show

that,

E
r,π

[ci] ≤
m

i(i+ 1)
+

m

k + 1
+

k∑

j=1

m

j(j + 1)
· log†2

(
vi(s)

vj(s−i)

)

.

By Lemma 3 we get the following bound,

E
r,π

[ci] ≤
m

i(i+ 1)
+

m

k + 1

+

k∑

j=1

m

j(j + 1)
· log†2

(
vj(s)

vj(s−i)

)

(13)

︸ ︷︷ ︸

Ai

+

k∑

j=1

m

j(j + 1)
· log†2

(
vi(s)

vj(s)

)

︸ ︷︷ ︸

Bi

. (14)

We observe that

k∑

i=m

(
m

i(i+ 1)
+

m

k + 1

)

= 1− m

k + 1
+m · k + 1−m

k + 1

≤ 1 +m.

We next show that
∑k

i=m Ai ≤ 2dm (in Lemma 13), and
∑k

i=m Bi ≤ m (in Lemma 14), implying that
∑k

i=m E[ci] ≤
2dm+ 2m+ 1.

Overall, we get
∑n

i=1 E[ci] ≤ 4dm+ 3m ≤ 4(d+ 1)m.

Lemma 13. Given an instance with d-self-bounding valua-

tions, we have that

k∑

i=m

Ai ≤ 2dm,

where Ai’s are defined in the proof of Lemma 12

Proof. Recall definition of Ai for large valued bidders i ∈ [k]
from Equation (13),

Ai =
k∑

j=1

m

j(j + 1)
· log†2

(
vj(s)

vj(s−i)

)

,

Hence, summing over i and swapping the summation of i
and j we get,

n∑

i=1

Ai ≤
m∑

j=1

n∑

i=1

log†2

(
vj(s)

vj(s−i)

)

+

k∑

j=1

n∑

i=1

m

j(j + 1)
log†2

(
vj(s)

vj(s−i)

)

≤
k∑

j=1

m

j(j + 1)
2d (By Lemma 6)

= 2dm ·
(

1− 1

k + 1

)

≤ 2dm.

Lemma 14. For Bi’s defined in Equation (14), we have that

k∑

i=m

Bi ≤ m.

Proof. We first re-write the sum by first observing that for all

j < i we have log†2(vi(s)/vj(s)) = 0, then group together all

terms corresponding to any bidder i.

k∑

i=m

k∑

j=1

m

j(j + 1)
· log†2

(
vi(s)

vj(s)

)

≤
k∑

i=m

k∑

j=i

m

j(j + 1)
· (log2(vi(s))− log2(vj(s)))

=

k∑

i=m

log2(vi(s))

k∑

j=i

m

j(j + 1)

−
k∑

j=m

log2(vj(s))

j
∑

i=m

m

i(i+ 1)
·

=

k∑

i=m

log2(vi(s)) ·
(
m

i
− m

k + 1

)

−
k∑

j=m

log2(vj(s)) ·
(
m(j −m+ 1)

j(j + 1)

)

=

k∑

i=m

log2(vi(s)) ·
(

m2

i(i+ 1)
− m

k + 1

)

.

We then upper bound (and lower bound) all vi(s) by vm(s)
(and vk(s) respectively) for all large valued bidders i ≥ m,

and note that vm(s) ≤ 2vk(s) in order to obtain the desired



inequality.

k∑

i=m

k∑

j=1

m

j(j + 1)
· log†2

(
vi(s)

vj(s)

)

≤
k∑

i=m

log2(vi(s)) ·
(

m2

i(i+ 1)
− m

k + 1

)

≤
k∑

i=m

log2(vm(s)) · m2

i(i+ 1)
−

k∑

i=m

log2(vk(s)) ·
m

k + 1

= log2(vm(s)) ·
(
m2

m
− m2

k + 1

)

− log2(vk(s)) ·
m

k + 1
· (k + 1−m)

= log2(vm(s)) ·m
(

1− m

k + 1

)

− log2(vk(s)) ·m
(

1− m

k + 1

)

= m · (log2(vm(s))− log2(vk(s))) ·
(

1− m

k + 1

)

≤ m.

Lemma 15. For any i, the probability that i is a candidate

(i.e., ci = 1) is

E
r,π

[ci] ≤
m

i(i+ 1)
+

m

k + 1
+
∑

j∈[k]\i

m

j(j + 1)
·
(

vi(s)

vj(s−i)

)

.

Proof. For any choice of r and π, we observe that the

following conditions are all necessary for bidder i to be a

candidate in the adjusted RCF mechanism:

1) there exists at most m − 1 bidders j ̸= i such that

fr(vj(s−i)) > fr(vi(s)), and

2) if there are at least m bidders j with π(j) > π(i), then

there are at most m − 1 of these bidders j such that

fr(vj(s−i)) ≥ fr(vi(s)).

To simplify these conditions we introduce the following nota-

tions. We first order all the other bidder j ̸= i in decreasing

order of vj(s−i) as follows

vσ(1)(s−i) ≥ vσ(2)(s−i) ≥ . . . ≥ vσ(n−1)(s−i).

We define the following ªcritical thresholdsº,

τi,ℓ = max(vσ(ℓ)(s−i), vσ(m)(s−i)/2) ∀ℓ ≤ n− 1

and τi,n = vσ(m)(s−i)/2.

Finally, for any permutation π, we define t(π) = n if π(i) >
n − m, otherwise we define t(π) = ℓ such that π(σ(ℓ)) >
π(i) and there exists exactly m − 1 many ℓ′ < ℓ such that

π(σ(ℓ′)) > π(i).
Therefore, the necessary conditions for i to be a candidate

can be simplified as,

ci = 1 =⇒ fr(vi(s)) > fr(τi,t(π)).

Hence we have,

E
r,π

[ci] =

n∑

ℓ=m

Pr
π
[t(π) = ℓ] · E

r,π
[ci|t(π) = ℓ]

≤
n∑

ℓ=m

Pr
π
[t(π) = ℓ] · Pr

r
[fr(vi(s)) > fr(τi,ℓ)]. (15)

Observe that t(π) = n is the event that i has top m
rank according to π, which happens with probability m/n.

Moreover, for each ℓ ∈ {m,m + 1, . . . , n − 1}, t(π) = ℓ is

the event that i is exactly ranked m + 1 amongst the ℓ + 1
bidders {i, σ(1), σ(2), . . . , σ(ℓ)} and σ(ℓ) is in the top m rank

amongst the other ℓ bidders. Thus we have,

Pr[t(π) = ℓ] =
1

ℓ+ 1
· m
ℓ

and Pr[t(π) = n] =
m

n
.

Hence, plugging this into Equation (15) and using Lemma 5

we get,

E
r,π

[ci] ≤
n∑

ℓ=m

Pr
π
[t(π) = ℓ] · log†2(vi(s)/τi,ℓ)

≤m

n
· log†2(vi(s)/τi,n)

+

n−1∑

ℓ=m

m

ℓ(ℓ+ 1)
log†2(vi(s)/τi,ℓ)

=
m

n+ 1
· log†2(vi(s)/τi,n)

+

n∑

ℓ=m

m

ℓ(ℓ+ 1)
log†2(vi(s)/τi,ℓ)

≤ m

n+ 1
· log†2(vi(s)/τi,n)

+

n∑

ℓ=1

m

ℓ(ℓ+ 1)
log†2(vi(s)/τi,ℓ).

Because σ orders the bidders in decreasing order of lower

estimates, we have that log†2(vi(s)/τi,ℓ) are increasing in ℓ.
Moreover, since 1/(ℓ(ℓ + 1)) are decreasing in ℓ, by the

rearrangement inequality we have

E
r,π

[ci] ≤
m

n+ 1
· log†2

(
vi(s)

τi,n

)

+
∑

j ̸=i

m

j(j + 1)
log†2

(
vi(s)

max(vj(s−i), τi,n)

)

+
m

i(i+ 1)
log†2

(
vi(s)

τi,n

)

,

where we reshuffle the log†2(vi(s)/τi,ℓ)) terms and recall by

definition τi,ℓ = max(vσ(ℓ)(s−i), τi,n).



Next, we bound the log†2 terms by using τi,n for j > k and

vj(s−i) for j ≤ k to obtain,

E
r,π

[ci] ≤
(

m

n+ 1
+

m

i(i+ 1)

)

· log†2
(
vi(s)

τi,n

)

+
∑

j∈[k]\{i}

m

j(j + 1)
log†2

(
vi(s)

vj(s−i)

)

+
∑

k<j≤n
j ̸=i

m

j(j + 1)
· log†2

(
vi(s)

τi,n

)

≤
(

m

k + 1
+

m

i(i+ 1)

)

· log†2
(
vi(s)

τi,n

)

+
∑

j∈[k]\{i}

m

j(j + 1)
log†2

(
vi(s)

vj(s−i)

)

.

B. Ex-post Feasibility

Finally, using a folklore randomized rounding procedure,

that follows from Birkhoff decomposition, we obtain an ex-

post feasible allocation where at most m items are allocated

while preserving the marginal probability of allocation for

each bidder.

Birkhoff decomposition states that doubly stochastic ma-

trices (square matrices, with each row/columns summing to

1) are convex combinations of permutations matrices (with

exactly one 1 per row/column). Proposition 5 is a folklore

generalization of Birkhoff decomposition, which we use to

turn the probability vector (x1, . . . , xn) ∈ [0, 1]n such that
∑n

i=1 xi ≤ m into a distribution over feasible allocations such

that each bidder i either receives no items or a single item,

and the marginal probability of receiving an item is exactly xi.

Proposition 5. Let M be the set of n×m matrices with non-

negative values, such that each row and each column sums to

at most 1. Any matrix in M can be decomposed (in polynomial

time) into a convex combination of matrices from M with

{0, 1} coefficients.

To prove Proposition 5, we use the following folklore

generalization of Kőnig’s line coloring theorem [21].

Proposition 6. Given a weighted bipartite graph (positive

edge weights) with at least one edge, there is a matching

which covers all maximum-degree vertices (sum of weights

of incident edges).

We now prove Proposition 5.

Proof of Proposition 5. Consider a matrix M0 ∈ M. We see

M0 as a weighted bipartite graph, where nodes are rows and

columns, and edges corresponds to cells with positive values.

Let ∆(M0) be the maximum degree of a vertex. If ∆(M0) = 0
the proof is finished. Otherwise, by Proposition 6, there exists

a matching µ0 ∈ M∩ {0, 1}n×m which covers all maximum

degree vertices, and which can be computed in polynomial

time (with a maximum weight matching algorithm). Let

v0 > 0 be the difference between the highest and second

highest degrees, and let w0 > 0 be the minimum weight of

an edge in µ0. Define z0 = min(v0, w0), add z0 · µ0 to the

decomposition, and define M1 = M0−z0 ·µ0. Notice that M1

contains less edges (strictly, if w0 ≤ v0) and more maximal-

degree vertices (strictly, if v0 ≤ v0) than M0. Additionally,

∆(M1) = ∆(M0)− z0. Apply inductively the same argument

to define M1, M2, until reaching Mk = 0. We obtained

a decomposition of M0 as a positive linear combination of

matchings, with a sum of coefficients equal to ∆(M0) ≤ 1.

We conclude by adding the empty matching with a coefficient

of 1−∆(M0).
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