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Abstract—The celebrated model of auctions with interdepen-
dent valuations, introduced by Milgrom and Weber in 1982, has
been studied almost exclusively under private signals s1, ..
of the n bidders and public valuation functions v;(s1,...,sn).
Recent work in TCS has shown that this setting admits a constant
approximation to the optimal social welfare if the valuations
satisfy a natural property called submodularity over signals
(SOS). More recently, Eden et al. (2022) have extended the
analysis of interdependent valuations to include settings with
private signals and private valuations, and established O(log® n)-
approximation for SOS valuations. In this paper we show that
this setting admits a constant factor approximation, settling the
open question raised by Eden et al. (2022).

Index Terms—truthful, interdependent, submodular
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I. INTRODUCTION

The interdependent values model captures auction scenarios
where each bidder has some partial information about the good
for sale, but their value for the good depends also on the
information held by other bidders [24, 28]. This captures many
realistic scenarios such as the selling of a natural resource
(e.g., oil) of unknown value, art auctions, and ad-auctions of
online impressions, among many others. This model has been
widely studied in the economic literature, with its importance
being recognized by the 2020 Nobel Prize in Economics [17].
In this model, each bidder 7 possesses a private signal: a real
number s; (e.g., the estimate that the bidder has for the amount
of oil in the auctioned oil field). The bidder also possesses
a public valuation function v;(s1,...,s,) which maps the
signals of all bidders—one’s own signal, as well as others’—
into a value for the item for sale (e.g., a bidder’s value for
the expected amount of oil in the field given all bidders’
information).

Previous work in economics has found that this intricate
setting gives rise to many impossibility results, and good
design is possible only in very restricted cases [23, 9, 19, 3].
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More recently, the EconCS community has put effort toward
circumventing these impossibilities via the algorithmic lens of
approximation (e.g., [25, 5, 12, 13, 1, 15, 22, 8, 18, 6]).

A major breakthrough toward positive welfare guarantees
comes from Eden et al. [13], who devise a 4-approximation
mechanism for valuation functions that satisfy a property they
refer to as Submodular-over-Signals (or SOS). SOS is a natural
generalization of the submodularity property of set functions.
Roughly speaking, a valuation function v(-) is SOS if, for a
signal profile s_; for all bidders but j, when the signals s_;
are lower, then an increase in signal s; has a larger effect
on the valuations. In other words, information (signals) ex-
hibit decreasing marginal returns. The SOS condition captures
many natural settings including most scenarios studied in the
literature, such as mineral-rights auctions and art auctions.

Only more recently, Eden et al. [15] have studied the case
where valuation functions are assumed to be private (unknown
to the seller or other bidders), just like signals are. This reflects
the fact that in many real-world settings, individuals’ private
information encompasses both their partial information about
the good for sale, as well as the way they aggregate everyone’s
private information into a value. For instance, in the oil field
example, an oil company’s signal may be an estimate of the
amount of oil, while their valuation function may reflect the
company’s estimated production cost, which may impact the
profitability of the oil field. There is no reason to assume that
the signal—the estimated amount of oil in this case—is less
private than the valuation function—the estimated production
cost in this case. Indeed, while public valuations can be shown
to be easier to handle, in the oil example, as well as in
many additional auction settings, it is much more realistic to
assume that both signals and valuation functions are private
information.

As Eden et al. [15] show, private valuation functions pose
a much greater challenge than public ones. In particular,
the single-crossing condition', which enables full efficiency
in single-item auctions with public valuations and private

'Roughly speaking, a valuation function is single-crossing if i’s signal s;
affects 7’s valuation at least as much as it does any other bidder.



signals, is rendered useless in settings where the valuations are
private as well, and cannot guarantee more than the trivial n-
approximation. On the positive side, they devise an O(log2 n)-
approximation mechanism when the valuations are SOS. Eden
et al. [15] left the following question unresolved:

“Is there a mechanism that achieves a constant-
factor approximation to the optimal welfare under
private signals and private valuations?”

We answer this question in the affirmative. Informally, our
main result is the following.

Main Theorem. There exists a polynomial time truthful mech-
anism that gives a constant-factor approximation to the optimal
welfare in a single-item auction with private interdependent
valuations that satisfy the SOS condition.

Our main result extends in several ways: First, it applies
to non-monotone SOS valuations. Second, it extends beyond
single-item auctions, to settings with unit-demand valuations
over multiple identical items.

Notably, our mechanism is randomized. This is inevitable,
as even in the case of public SOS valuations, one cannot
guarantee any approximation with deterministic mechanisms
[13]. Moreover, turning to approximation is inevitable, as even
in the case of public SOS valuations, one cannot get better than
2-approximation even with a randomized mechanism [13].

Our results are derived by introducing a new hierarchy of
valuations which we term d-self-bounding valuations, where
each valuation profile is parameterized by d € {1,...,n}.
The mechanism we devise gives a tight ©(d)-approximation
for d-self-bounding valuations. Our main results then follow
by showing that monotone SOS valuations are 1-self-bounding
and non-monotone SOS valuations are 2-self-bounding.

A. Related Work

The two immediate precursors of this work are Eden et al.
[13], which introduces SOS valuations for interdependent
settings and brings them into the context of combinatorial
auctions, and Eden et al. [15], which is the first work to study
interdependent valuations with private valuation functions.
On the combinatorial front, [13] devises a random-sampling
version of the VCG mechanism that obtains a 4-approximation
for public SOS valuations that satisfy an additional separability
condition. For private valuation functions under the SOS
condition, Eden et al. [15] show a O(log® n)-approximation
mechanism in the single-item setting. The same paper [15] also
considers a restricted setting, where the valuation functions
depend on the signals of at most a constant number of bidders,
and provides a constant-approximation mechanism for this
case. Related is Dasgupta and Maskin [9], who study the
interdependent setting when the seller is unaware of bidders’
valuation functions, but crucially, the bidders do know each
others’ valuation functions. They devise a mechanism where
the bidders bid a complicated contingent bidding function
which maps the bids of other bidders to a bid for the bidder.
They show that under single-crossing-type conditions, there is
a fully-efficient equilibrium.

A recent burst of work from the EconCS community has
investigated interdependent value auctions in a variety of
settings. Roughgarden and Talgam-Cohen [25] study prior-
independent mechanisms for revenue maximization. Chawla
et al. [5] design approximately-optimal mechanisms for rev-
enue maximization while trying to minimize the assumptions
needed. Eden et al. [12] relax the single-crossing condition
and study approximately-optimal welfare-maximizing auc-
tions. Amer and Talgam-Cohen [1] and Lu et al. [22] improve
the approximation guarantees for single-item auctions under
the SOS condition. Eden et al. [14] study the PoA of simple,
non-truthful mechanisms. Cohen et al. [8] study combinatorial
public projects in interdependent settings.

Our work introduces classes of valuation functions over sig-
nals analogous to the combinatorial valuation functions studied
by [20]. The combinatorial valuations were proven useful in
devising nearly-optimal mechanisms for welfare [10, 2, 11]
and revenue [4, 26], as well as nearly simple, non-truthful,
nearly-optimal mechanisms [7, 27, 16].

B. Organization

In Section II, we present our model and main definitions;
specifically, in Section II-A we present the interdependent
values model, and give sufficient conditions for a truthful
mechanism and in Section II-B we present the main properties
of valuations used in this paper. In Section III, we discuss the
main ideas and intuition of our mechanism by presenting a
naive attempt and discussing the obstacles to this approach. In
Section IV, we present and prove our main result: a truthful
O(d)-approximation mechanism to d-self-bounding valuations.
Finally, in Section V, we extend our result to the case of
multiple identical items and unit-demand bidders.

II. MODEL AND PRELIMINARIES
A. Interdependent Valuations and Truthful Mechanisms

We consider a single-item auction with n bidders with
interdependent valuations. (In later sections, we extend our
work to k identical items and unit-demand bidders). Every
bidder ¢ € [n] receives a private signal s; € S;, where
S; denotes the signal space of bidder i. We denote by
S =51 x...x S, the joint signal space of the bidders, and
by s = (81,...,8,) € S a signal profile. As is standard, we
denote by s_; = (81,...,8i—1,Si+1,- - - , S ) the signal profile
of all bidders other than bidder 3.

In addition, every bidder ¢ has a private valuation function
v; : S — R4, which maps a signal profile into a non-negative
real number, which is bidder 7’s value for the item. We denote
by V; C IR?_ the valuation space of bidder ¢, and by V =
Vi x...xV, the joint valuation space of all bidders. A vector
v = (v1,...,v,) € V denotes a valuation profile.

A mechanism is defined by a pair (x,p) of an allocation
rule x : SxV — [0,1]™ and a paymentrule p : SxV — R7,
which receive bidder reports about their signals and valuations,
and return an allocation and a payment for each bidder.
x;(s,v) and p;(s,v) denote bidder i’s allocation probability



and payment for reported signals and valuations s, v, respec-
tively.

Unless specified otherwise, we access bidder valuations via
value queries; namely, given a signal profile s, bidder ¢’s value
oracle v; returns v;(s). A mechanism is said to be polynomial
if it makes a polynomial number of value queries.

A mechanism (x,p) is said to be truthful if it is an ex-
post Nash equilibrium for the bidders to truthfully report
their private information (signals and valuations). In our query
access model, truthfulness means that it is in every bidder’s
best interest to answer every query truthfully, given that other
bidders do the same.

Definition 1 (EPIC-IR). A mechanism (x,p) is ex-post incen-
tive compatible (IC) if for every i € [n],s € S,v € V, s} €
Si, UZ/' eV

/

xi(s,v) : 'Ui(S) —pi(S,V) >
zi(s_g, 85, V_4,0}) - v (8) — pi(S—s, 8;, Vi, v;). (1)

It is ex-post individually rational (IR) if for every i € [n],
seS, andveV
2

It is EPIC-IR if it is both ex-post IC and ex-post IR. An allo-
cation x is EPIC-IR implementable if there exists a payment
rule p such that the pair (x,p) is EPIC-IR.

x;(s,v) - v;(s) — pi(s,v) >0

It is well known that even when the valuation functions are
public, this is the strongest possible solution concept when
dealing with interdependent valuations.’

Eden et al. [15] give a sufficient condition for an allocation
rule x to be EPIC-IR implementable.

Proposition 1 (Eden et al. [15]). An allocation rule x is EPIC-
IR implementable if for every bidder i, x; depends only on
S_i,V_; and v;(s), and is non-decreasing in v;(s).

For an (EPIC-IR) implementable x, the corresponding pay-
ment rule p is given by:

v;(s)
pi(s,v) = xi(s,hv,i,vi(s))-vi(s)—/ xi(s—q, v, t)dt.
0

3)

That is, bidder 7’s allocation may depend on all other bid-
ders’ signals and valuation functions, and it can only depend
on bidder ¢’s signal s; or valuation function v; through the
numerical value v;(s). Eden et al. [15] show that this condition
is almost necessary in order to be EPIC-IR implementable.’

For the purpose of tie-breaking, we introduce the following
notation.

ZDominant strategy incentive-compatibility does not make sense, as a bidder
4 might not be willing to win if other bidders over-bid, which causes the
winner to over-pay and incur a negative utility.

3The necessary conditions for EPIC-IR implementablity are (i) x; is
monotone in wv;(s), and (ii) for a given s_;, the set of signals s,-,s;
and valuation functions wv;, v} such that v;(s;,s_;) = v}(s},s_;) and
@ (vs, 84,5_3) 7# x; (v}, s, 5_;) has measure 0.

Definition 2 (Lexicographic tie-breaking). Let a;,b; € RT,
where a; is associated with bidder i and b; is associated
with bidder j. Given an ordering of the bidders ™ =
(m(1),...,m(n)), we say a; > bj if either a; > bj, or a; = b;
and (i) > 7 (7).

As an example, consider two quantities aq,bs and the
identity permutation 7 (%) = i.

e If a; =1 and by = 0, then a; >, ba.

e If a; = 0 and by = 0, then by >, a;.

B. Properties of Valuation over Signals

In this section we introduce several properties of valuation
functions over signals. Recall that a valuation function over
signals is a function v : S1 X ... x S, — R4, which assigns
a (non-negative) real value to every vector of bidder signals.

Assume that signal spaces are totally ordered (e.g., S; C R
for all 7). Denote by s > t that s is coordinate-wise greater
than or equal to t. We first present the definition of a monotone
valuation function.

Definition 3 (Monotone). A valuation v over signals is
monotone if v(s) > v(t) for all s = t.

Note that, while prior work in the interdependent values
literature often assumes valuation functions to be monotone
over signals, we also consider non-monotone valuations (see
Proposition 2).

We next present the definition of submodularity over signals,
defined by Eden et al. [13].

Definition 4 (SOS). A valuation function v is submodular over
signals (SOS) if for every i € [n] and every s = t, it holds
that ’U(Si, S_,’) — ’U(tz‘, S—i) < ’U(Si,t_i) - U(ti, t_i).

Note that, when signals are binary (i.e., S; = {0, 1} for all
1), SOS coincides with the classic notion of submodular set
functions.

For the next properties, we use the notation v(s_;) :=

inkf9 v(0;,8_;) to denote the lowest value of a valuation
0;€5;
function v over all bidder ¢’s signals, for a given signal profile

s_; of all bidders other than bidder . We sometimes refer to
v(s_;) as a lower-estimate of v. Note that if v is monotone,
then v(s_;) := v(0,s_;) (where we normalize the lowest
signal in S; to be 0).

For our results, we use the notion of d-self-bounding valu-
ations, defined as follows.

Definition 5 (self-bounding and d-self-bounding). A valuation
Sfunction v is self-bounding over signals if for every s € S,

“4)

Similarly, a valuation function v is d-self-bounding over
signals, for some parameter d € |[n|, if for every s € S,

Yima(v(s) —u(s—i)) < d-v(s).

For example, any function of the form v(s) = Y7, fi(s:)
is self-bounding. Another example of self-bounding functions



are monotone SOS functions. In fact, any SOS function is 2-
self-bounding as shown in the following proposition.

Proposition 2. Every monotone SOS valuation function is
self-bounding. Moreover, every (possibly non-monotone) SOS
valuation function is 2-self-bounding.

Proof. Consider an SOS function v : S — R,.. Take s,0 € S

and partition [n] = AU B, with A = {ay,...,ax} and B =
{b1,...,be} such that o4 < s4 and sp < op.
eForalll < i < klet A, = {ay,...,a;} and s =

(0a;,5-4,). We have s’ < s, and thus, by SOS for all
i€{2,...,k} we have,

U(S) - U(Oaia S*ai) < U(OAi—l ’ S*Ai—l) - U(OAm S*Ai)‘

The inequality with ¢ = 1 is trivial. Therefore, summing
over all 1 <17 < k, we obtain

Z(v(s) —0(04,8-q)) < v(s) —v(oa,sp) <v(s).
acA
eForall 1 < i < {let B = {b,...,b;} and §' =
(oB,,5_p,). We have s < s, and thus, by SOS for all
i€42,...,0} we have,

’U(S) - U(Obm S*bz‘) < /U(OBi—17S*Bi—1) - v(oBivs*Bi)'

The inequality with ¢ = 1 is trivial. Thus, summing over
all 2 < ¢ </, we obtain

Z(U(s) —v(op,5-p)) <wv(s) —v(op,sa) <v(s).
beB
Recall that v(s_;) := inf,, v(0;,s_;) for all 7. If v is non-
decreasing, we set A = [n] and B = (), and we use the first
inequality. In the general case, we define the sets A and B
according to the side of each infimum, and we sum the two
equations, concluding the proof. O

A stricter notion than self-bounding is that of a critical (or
d-critical) valuation, defined as follows.

Definition 6 (d-critical). A valuation v is d-critical over
signals for some parameter d € [n] if for every s € S, the
number of bidders i such that v(s) > v(s_;) is at most d. It
is said to be critical if this number is at most 1.

We note that even the case of d = 1 captures interesting
scenarios (previously studied in the literature), such as the
case where v;(s) = max; v; j(s;) for all i.

Proposition 3. Every d-critical valuation function is d-self-
bounding.

Proof. Given a d-critical function v, observe that we can
bound each term v(s) — v(s_;) by v(s) if v(s_;) < v(s),
and by 0 otherwise. Summing over all ¢ gives that v is d-self-
bounding. O

Eden et al. [15] studied valuations termed d-bounded de-
pendency valuations which depend on at most d signals. Ob-
viously d-bounded dependency valuations are also d-critical,
which in turn are d-self-bounding. Eden et al. [15] show

that no EPIC-IR mechanism can give a better than O(d)-
approximation for d-bounded dependency valuations. Thus,
their result implies the following.

Proposition 4 (Follows from Proposition 4.1 in Eden et al.
[15]). For every d, no EPIC-IR mechanism can give better
than (d + 1)-approximation for d-self-bounding valuations,
even if the valuations are public.

III. MAIN IDEAS OF OUR TECHNIQUES

a) Starting point: d-critical valuations: We begin with
d-critical valuations. When d is a constant, the mechanism de-
vised by Eden et al. [15] for d-bounded dependency valuations
gives a constant-factor approximation to the optimal social
welfare for this restricted class of valuations. We note that
this mechanism is substantially different from their O(log2 n)-
approximation for SOS valuations. For simplicity of presenta-
tion, our description below refers to 1-critical valuations. The
entire discussion extends easily to d-critical valuations.

The mechanism can be described as follows: For every
bidder ¢, compare i’s value v;(s) to the other bidders’ j # 4
values under the worst-possible signal of bidder ¢, namely
v;(s—;) = inf,, vj(0;,s_;). Then, if v;(s) > v,(s_;) for every
other bidder j # 4, bidder i is said to be a “candidate” (to be
allocated to), which means that the item is allocated to bidder
1 with probability x; = 1/2.

As they show, this mechanism is EPIC-IR (as for every
v_i,S_;, i’s allocation probability is monotone in v;(s)), and
gives a 1/2-approximation (since the highest-valued bidder
wins with probability at least 1/2). Moreover, if there is a
unique highest-valued bidder, call it ¢*, then this mechanism
is feasible, since the only bidder that has a chance to receive a
non-zero allocation probability aside from ¢* is the one bidder
whose signal can decrease ¢*’s value at signal profile s (bidder
¢/ in Figure 1). Since there is at most one such bidder, and
since both get allocation probability 1/2, the mechanism is
feasible. Otherwise (if there is no unique highest value), it can
be handled by using a fixed lexicographic tie-breaking between
identical values when deciding if a bidder is a candidate.

Fig. 1: Illustration of the mechanism in Eden et al. [15] for
bounded-dependency valuations. There are at most two candi-
dates: the highest-valued bidder ¢* (breaking ties consistently),
and the only bidder ¢’ whose signal affects the value of i*. No
other bidder (e.g., k& or ¢) can be a candidate.

This idea can be extended to a (d + 1)-approximation
mechanism for d-critical valuations. In this case, we set
x; = 1/(d + 1) instead.

We next describe how to build upon this idea for the general
case of SOS valuations.



b) SOS valuations.: Unfortunately, for SOS valuations,
the previous observation has no bearing, as for any given signal
profile, v;(s) can be affected by an arbitrary number of bid-
ders, leading to an )(n)-approximation. Here, Proposition 2
comes to our aid. Namely, since SOS valuations are 1-self-
bounding, there is at most one bidder that can decrease ¢’s
value by a factor larger than 2.

c) First attempt: discretized values.: As a naive first
attempt, consider simply discretizing the valuation space into
powers of 2, and rounding down every value to the nearest
power of two. That is, for a valuation function v, we define
the discretized value o(s) = 2L1°8v()] for all signal profiles
s. If it happens to be the case that the valuations are slightly
below a power-of-two (i.e., v(s) = 2¢ — ¢), then they need
to be lowered by a factor of at least 1/2 in order for v(s)
and v(s_;) to be discretized to different powers-of-two. In
this case, at most one bidder can decrease the value of a
bidder from its true rounded-down value to the next rounded-
down value, and so we could use the mechanism for 1-
critical valuations and lose another factor of 2 due to the
discretization. Unfortunately, the discretized value may, in
general, be affected by all bidders, even for SOS valuations.
Thus, even the discretized valuations can be n-critical. This is
demonstrated in the following example.

Example 1. Consider the 1-self-bounding valuation function
v(s) = w - >, 8i, where s; =1 for all i and € < 1/(n —
1). Its discretization is v(s) = 2. For every i, v(0;,8_;) < 2,
thus ©(0;,s_;) = 1, and n different bidders can decrease i’s
rounded-down value to the next power-of-two.

Indeed, the valuation v(s) in Example 1 is monotone SOS
(and 1-self-bounding), but the naive discretization results in
all n bidders being able to decrease the discretized valuation
at the true signal profile of s = (1,1,---,1).

d) Second attempt: randomized discretization.: Our next
attempt is using randomized discretization. Concretely, rather
than rounding down to the nearest 2¢ from below for ¢ € Z,
we draw 7 ~ UJ[0,1) and round down to the nearest 2¢+"
from below. We show that using this random discretization,
in expectation, a constant number of bidders can decrease the
(randomly) discretized valuation.

However, even with our randomized discretization, another
problem may arise: a fixed tie-breaking order can lead to too
many bidders being candidates, which results in a feasibility
problem. This is demonstrated in the following example.

Example 2. For each bidder i > \/n, let i =1 —/n+1, we
set

K2

vi(s) =200/ N Vs /.

i=i

Fors = (1,1,...,1), the values of the all the bidders i > \/n
are almost evenly distributed between 1 and 2; specifically,
vi(1,...,1) = 2"=9/"_ Each bidder j can affect values which
are slightly smaller than their own, that is v;(s_;) = v;(s) -

(1 —=1/y/n) forall i € [j,j+ /n—1], and v;(s_;) = v;(s)
for every other i. We illustrate this visually in Figure 2.

1 o 0i(8)
21 - ! = 0;(05,8-5)
e .. “vi(05,8-;) v
vj(s) ............................. hd .’. ............................................
[ HEEH -
11 . : * .
Value ! !

+

Index J j +.\/ﬁ
Fig. 2: Illustration of Example 2 showing that the expected
number of candidates can be y/n using a fixed tie-breaking
rule.

In Example 2, the true values of the bidders decrease with
their index/name. Suppose we break ties according to the
identity permutation 7 (i.e., w(i) = 4 for all ¢). This means
that by Definition 2, in the above example, if the discretized
values are the same for two bidders, we break ties in favor of
the bidder with the lower true value. We claim that each bidder
is a candidate with probability 1//n. This is because, bidder j
is a candidate when v;(s) and v;(s_;) for ¢ < j are rounded
to the same discretization point, and all v;(s_;) for ¢ > j
are rounded to a lower discretization point (the discretization
points are illustrated by the two red lines in Figure 2).
This corresponds to the event that the corresponding random
discretization point falls between 2("~7)/" and 2(n—i—vn)/n
(the shaded red area illustrated in Figure 2); i.e., when we
draw r ~ UJ[0,1) it falls in (1 — j/n —1/y/n, 1 — j/n],
an interval of length 1/1/n. Hence, the expected number of
bidders who are candidates is y/n. So if we directly attempt
to use the above mechanism that is designed for the case
where at most d bidders can decrease one’s value, we need
to normalize the allocation probabilities x; by /n in order to
preserve feasibility, which in turn leads to a /n-factor loss in
the approximation ratio.

e) Final solution: randomized tie-breaking.: To handle
this, we turn to a random tie-breaking rule. Specifically, we
choose a tie-breaking rule by picking a tie-breaking order
(permutation) uniformly at random. The intuition here is
reminiscent of the secretary problem where we bound the
probability of prematurely accepting a sub-optimal element
by relying on the second-best appearing earlier in the sample.
Here, we observe that if we break ties in favor of a bidder
1 < j (i.e., ¢ ranks above j in the random tie-breaking order)
then bidder 5 has no chance of being a candidate. Following
this intuition, we turn to using a random permutation in order
to break ties. However, note that there is still a (worst-case)
order with a large number of candidates as shown above
in Example 2. Therefore, we set the allocation probabilities
proportional to the probability that bidder j is a candidate,
instead of giving a fixed allocation probability to all the



bidders who are candidates under a given randomization.

Our Randomized Candidate Filtering (RCF) Mechanism
combines the concepts of randomized discretization and ran-
dom tie-breaking as follows. It first considers the rounded-
down valuations to randomly selected discretization points.
It marks bidder ¢ as a “candidate” to be allocated if their
discretized value is larger than all the other bidders’ discretized
lower-estimates, breaking ties according to a random permu-
tation. Mechanism RCF then allocates the item to bidder @
according to the probability that ¢ will be a candidate when
choosing a random r ~ UJ0,1] and a uniformly random
permutation 7.

In Lemma 1, we show that the mechanism is EPIC-IR
since for a fixed s_;, v_; increasing v;(s) also increases the
probability of being a candidate. This mechanism is not yet
feasible, as the expected number of candidates can exceed
1. Therefore, we normalize the allocation probability by (an
upper bound on) the expected number of candidates. Bounding
the expected number of candidates is our main technical
challenge.

IV. O(d)-APPROXIMATION FOR d-self-bounding

In this section, we prove our main result. Building upon the
intuition of the previous sections, we define our mechanism
for instances with d-self-bounding valuations. We prove truth-
fulness and show the desired O(d)-approximation guarantee
which is optimal (up to constants). As SOS valuations are
2-self-bounding, this implies a constant-factor approximation
EPIC-IR mechanism for SOS valuations, answering the open
question raised by Eden et al. [15] in the affirmative.

Theorem 1. There exists an EPIC-IR mechanism that obtains
a tight ©(d)-approximation to the optimal welfare for any
instance with d-self-bounding valuations. Specifically,

o There exists a 5.55-approximation mechanism for mono-
tone SOS valuations.

o There exists a 8.32-approximation mechanism for (non-
monotone) SOS valuations.

o The mechanism can be made oblivious to d by losing
another factor of 2 in the approximation.

Finally, the allocation and payments can be computed in
polynomial time.

Our mechanism, the Randomized Candidate Filtering (RCF)
Mechanism, operates as follows. It rounds down valuations to
randomly selected thresholds around powers of 2, and marks
a bidder as candidate by setting ¢; = 1 if their rounded-down
value is lexicographically larger (Definition 2) than all other
bidders’ rounded-down lower-estimates. Tie-breaking is done
using a randomly drawn permutation. Our mechanism assigns
each bidder an allocation probability which is proportional to
the probability this bidder will be a candidate (that is, sets
x; = E[e;]/n, for a normalization factor 7). The probability is
taken over the random rounding and the random lexicographic
tie-breaking.

The desiderata of the mechanism are: (i) truthfulness, (ii)
constant approximation to the optimal social welfare, and (iii)
allocation feasibility.

The mechanism is truthful since as a bidder’s value in-
creases, c¢; can only increase (Lemma 1).

To show that the mechanism achieves a good approximation,
we show that for every random coin toss of the algorithm, there
is always a nearly-optimal candidate (Lemma 2).

The main technical challenge is the third desideratum,
namely feasibility. As there can be more than one candidate
for a given random seed, the mechanism need not be feasible.
The main technical challenge is indeed showing that for d-
self-bounding valuations, the expected number of candidates
is O(d); this is established in Lemma 4. Therefore, by
normalizing by a factor O(d), we retain feasibility and get
an O(d)-approximation algorithm. As SOS valuations are 1-
self-bounding, this implies a constant-factor approximation
EPIC-IR mechanism for SOS valuations, answering the open
question raised by Eden et al. [15] in the affirmative. Our
mechanism follows.

Randomized Candidate Filtering (RCF) Mechanism.
1) Elicit reported signals 8 = {8; € S;};c[n) and values
v = {’{)7 :S — IR-‘r}iE[n]'
2) Let n > 1 be a normalization parameter to be set later.
3) For each bidder i, define

E'r',ﬂ'[ci]
T =———,
Ui
where r is uniformly distributed on [0,1), 7 is a uni-
formly random permutation, and ¢; is an indicator vari-

able defined as follows:

. {1, if f(04(8)) > fr(0;(8-)) forall j #

0, otherwise

where f,.(w) := 2"+* such that 2"F < w < 27HF+ for
all w.

4) Allocate the item to bidder ¢ with probability z; for all
i€ n).

5) Charge prices using Equation (3).

We begin by showing the mechanism is truthful.
Lemma 1. The RCF Mechanism is EPIC-IR.

Proof. Fix bidder 7 and reported signals and valuations §_;,
v_; of the other bidders. We show that for every choice of r
and 7, ¢; is monotone in ©¥;(8). This immediately implies that
x; is monotone as well which implies the mechanism can be
implemented in an EPIC-IR manner by Proposition 1. Fix r
and 7. If we increase ¥;(§), then for every j, we can only get
[r(9:(8)) >x fr(0;(8-:)) to be satisfied if it wasn’t satisfied
before. This is since the left hand side of the inequality
increases while the right hand side is not affected. Therefore,
¢; is monotone in 9;(8) which proves the lemma. O



As the mechanism is truthful, from now on we assume
bidders bid their true valuations and signals, and write s and
v instead of § and V.

We next show that the mechanism obtains near-optimal
welfare.

Lemma 2. The RCF Mechanism obtains an (n-21n2)-
approximation to the optimal welfare.

Proof. Fix valuations and signals v,s and consider the ran-
dom choice of r and o. Consider the bidder i* such that
fr(vi<(s)) >= fr(vj(s)) for every j. For bidder i* it must
be the case that c;» = 1 as f.(v;(s)) > fr(v;(s—i+)) for
every j. Moreover, we have that

vir(8) 2 fr(vi+ (s)) = fr(maxvi(s)).

Therefore, for every v,s,r, 7, we have that > c; - v;(s) >
vix (8) > fr(max; v;(s)), and

Yalves)uls) = 3 E;M - vi(s)
_ ET,W[Zi c;i - vi(s)]
n

2 E[fy(maxvi(s))]/n. )

To finish the proof, we show that for a positive real v € Ry,
Er[fr(v)] > 71%5. Let v = 27 for some k € N and a €
[0, 1], and let r be the random number sampled in step (3) of
RCEF. If r is chosen such that » < «, then v is rounded down
to 25*7. On the converse, if » > «, then v is rounded down

to 25171, Overall,

Elfr(v)] = /a 2kt dr + /1 ok+r=1qy
' 2?c+a _ ok 4 2ka7 ok+a—1
- . In2
- §1n2 - 211;12' ©
Combining Equations (5) and (6) gives the desired bound.
O

A. The RCF Mechanism is Feasible for n = O(d)

In this section we show that the RCF mechanism is feasible
when the valuations are d-self-bounding when using a normal-
ization factor n = O(d). We first consider the setting where
d is known, and extend the result to the setting where d is
unknown in Section IV-C. In our proof, we use the following
notation for convinience.

Definition 7. For any o > 0,
logg(a) = max (0, min(1, log, a)).
The following property of logg is used in our proofs.

Lemma 3. For any o, 3 > 0,

logh (v - B) < logh(a) + log}(8B).

Proof. For any z,y € R, we have max(0,z + y) <
max(0,z) + max(0,y) and min(l,z + y) < min(1l,z) +
min(1, y). Therefore,

1og§ (a-PB)

max (0, min(1,logy « - 8))
= max(0, min(1,log, o + log, B))
max(0, min(1,log, &) + min(1,log, 8))

VANVAN

max(0, min(1,log, @))
+max(0, min(1, log, 3))
logg o+ logg B.

O

The following lemma shows it is enough to normalize the
allocation by a factor n = O(d) in order to maintain feasibility.

Lemma 4. For every single-item auction with d-self-bounding
valuations, the RCF Mechanism with n = 2(d+ 1) is feasible.

Proof. We show that the expected number of candidates
> Errlci] is at most 2(d + 1). By the definition of z;
this implies that > . x; < 1 for n = 2(d + 1), thus proving
feasibility.

First, we rename the bidders such that vq(s) > wva(s) >
-+« > vp(s). We set k to be the number of bidders 7 whose
value are larger than v1(s)/2, that is k¥ = max{i|v;(s) >
v1(s)/2}. This parameter distinguishes the analysis for large
valued bidders (numbered 1 through k), and small valued
bidders (numbered k + 1 to n). By Lemma 9 we get the
following bound on the probability of being a candidate,

. 1 logh(2vi(s) /v, (s—s))
viell  Elals e
logh (vi(s)/v;(s—s))
AP ES

Next, using Lemma 3, we write

1 log} (v1(s) /vy (s—4))
Elel < * k1
logs (v;(s)/;(s-1))
" %;] iG+D)
A 7)
N log} (2v:(s) /v1(s)) (
*<k<+>1/ (s)
logy (vi(s)/v;(s
MDD oy

JE[K]

B;
Recall that we want to show that

>l

1
< I A; B, < 2(d+1).
< S DA Ta < e
First, observe that 2?21 L —_ < 1. To conclude the

i=1
iG+1)  ntl

proof, we use Lemma 7 which shows that ZZ A; < 2d, and

Lemma 8 which shows that ). B; < 1. O



In our proofs, we use the following technical lemma.

Lemma 5. For any a,b € RT, we have that
Pr{fu(0) > £, (1)) = maax(0, min(1, logs(a/5)) = logh(e/).

Proof. First, note that if a < b, then Pr[f.(a) > f-(b)] =0
and log,(a/b) < 0; and if a > 2b, then Pr[f,(a) > fr(b)] =1
and logy(a/b) > 1. Thus, we consider two cases:
ea = 2t p = 28 for B < o < 1. For this case,
Pr{f,(a) > f-(b)] if r € (B,«]. This happens with
probability o — 8 = logy a — log, b = logs(a/b).
ea = 2t p = 27148 o < B < 1. In this
case, fr(a) > f-(b) if (@) r < «, which implies
fila) = 20F7 > 271 — f.(b) or () r > B,
which implies f.(a) = 207177 > 202247 = £ ().
These events are disjoint, and happen with probability
a+1—p8=logya—log,b=1log,(a/b).
O

The following lemma establishes a useful property of d-self-
bounding functions. Namely, that by the random discretization
the expected number of bidders who can decrease some bidder
i’s value to a lower discretization point is O(d). Indeed, the left
hand side of Equation (8) is the expected number of bidders
who can decrease the discretized value at a signal profile to
the next (lower) power of 2.

Lemma 6. For any d-self-bounding function v, it holds that

s (7
Proof. We define the function ¢(x) =
write "
: u(s)
logT (
2% (5
i) 1
where y; := min (1 _ us) ) )

Because ¢ is convex, it lies below its chord between ¢(0) = 0
and ¢(1/2) = 1, thus

Vyi S [0,1/2},

) < 2d. (8)

i

—log,(1 — ) and we

Using the d-self-bounding property to derive the second in-
equality, we have that

zyz<z ) <
h summing A
> logh (U(S))) = > o) <

We first bound the A; terms.

over all ¢ we conclude that

zn:Zyi < 2d. O

Therefore,

Lemma 7. Given an instance with d-self-bounding valuations,

we have that N
i=1

where A;’s are defined in the proof of Lemma 4.

Proof. Recall definition from Equation (7)

4, LoBb01(5)/11(5-1)
k+1

Z IOgE(Uj(S)/Qj(Sfi))

1 .
foerrd j+1)
Moreover, by Lemma 6 we have Y " | 1og;(vj(s)/yj(s_i)) <
2d for all bidders j. Hence, summing A; over all i and
swapping the summation of ¢ and j we get,

i nlg’UlS v1(8—;
Zl“‘i:zlog( (5)/n(5-0)

log}( vy /v (S—'))
+ Z

jelk] i=1

2d 2d
< ——+ Z YR
“k+1 1

+ je[k]](JJr )
+2d-

2d

= :2d.
E+1

k+1

Next, we bound the B; terms.

Lemma 8. Given an instance, we have that

n
ZB <1
=1

where B;’s are defined in the proof of Lemma 4.

Proof. Recall that k = max{i|v;(s) > v1(s)/2}. Therefore,
for every i > k,

log (2v:(s)/v1(s)) < logh(1) = 0.

For i < k, we first observe that

log,(2i(s)/v1(s)) < 1

Moreover for i < j < k, we have.

logy (vi(s)/v;(s)) < logy(vi(s)/(v1(s)/2)) <1

hence we can replace log;r with log, for these terms. Thus,

Y

= 10521}1'5 vi(s klogvis v;(s
Z g5(20i(s)/ ())+Z g2(vi(s)/vi(s))

= Rl = G0+
_ Z logy 21}:+ 1/111 X;jz logs ( vzj +/1vj (s))
_ 2 1+ 10gz(vz(k)i : log, (v1(s))

+ ZZ Loga(ti(s oy ﬁ;’f““j (s)), ©)

=1 j=1



We now bound the second sum.

lo Uz lo UilS
E;Z o +1)g2( .
k k
1 2(Vi(S
—ZlOgg Uz — X;Zw
_ 0gs(v;i(8)) - 11 y_ y Ml
k 1 1 1
:;logg(w(s))'(z‘_kﬂrl_m)

— 7ZilogQ(vi(S)) : <z(zi1) - kil) '

Plugging back into Equation (9), we get

=1

.M*

)

where the first equivalence follows by the definition of ¢;, the
second follows by the definition of > and last follows by the
definition of f,.

To simplify this condition with two cases, we sort agents by
decreasing low estimates, and we let o(¢) denote the bidder j
with /-th highest v;(s—;). In particular, we have
i) 2 Vg(z)(s-i) = -

V(1) (S— 2> Ug(no1)(8=4)-

Next, we define
Tit = maX(Qa(é)(S—i)aya(l)(s—i)/2)

and Tin = yo(l) (S,Z)/2

Finally, we let ¢(7) = min{¢ € [n — 1] | n(i) < 7(c(¥))}
if m ranks some j above i, and ¢(w) = n otherwise. Recall
that if i is a candidate then f.(vi(s)) > fr(v;(s—;)) for
all j # 4. Hence, observe that if ¢ is a candldate then

fr(vi(s)) > fr(v,

k L Lo o)) 200 o (o) 2 7). T ives e
+) log,(vs(s)) - ( N — > whether w(o(1)) > w(¢) or w(o m(z). This gives the
; 2(vi(s)) k+1 i(i+1) k+1 simplified condition
k
=T 1( —log,(vi(s))) + Zlogg (vi(s Z( ) =1 & f0i3)> frlTiam).
k
k 1 We compute the expected value of ¢;
— —1 1
— k+1 OgQ(Ul(S)) k+1 + Og2 Ul l:Zl Z .
_ ko Elei) =) Prlt(m) ={] Elci[#(m) =]
E+17 ’ =1 '
- = > " Prft(m) = {] - Pr[fy (vi(s)) > ()]
Finally, we prove the upper bound on the probability of 421
being a candidate which is used in Lemma 4. = Z Pr[t(n) = /] - 10g£(vi(s)/n 0,
=1

Lemma 9. The probability of each bidder i being a candidate
is bounded by

1 log} (2v;(s) /v (s_;))
EllSimn ™= ket
logh (vi(s)/v;(s—:))
+ .
]G%{ 3 1+

Proof. Fix the random choices » and m of Mechanism RCF.
We observe that the following conditions are equivalent for
bidder ¢ to a candidate:

C;, = 1
= V] 7é i, f?‘(vz(s)) >r fr(ﬂj(s_i))
i fr(’Uz'(S)) > fr(yj(s—i)) if 7T(Z) > 7'((])
& Vj#i, {fr(vi(s)) > frlv(s—q)) if (i) < w(j
i £ fr(’Uz'(S)) > fr(ﬂj(s—i)/2> if 7T(’L > 71'(_])
- VJ 7& , {f'r(vl(s)) > fr(yj(sfi)) if ’/T(Z < 7r(] ’

where the second equality follows from simplified condition
above and the last equality follows by Lemma 5.

Now, remains to compute the probability that ¢(7) = ¥,
induced by the uniformly random ordering 7. Observe that
t(r) > ¢ if and only if ¢ is ranked before all bidders

( ),...,0(£), which happens with probability le, for any
[n —1]. In partlcular this implies that (7 ) = { with
probablhty 2= iy +1)’ hence
log} (vs(s)/Tin) | N~ logd(vi(s)/7i0)
] = : L 10
Elc;] - +; W) (10)

To conclude the proof, we will permute terms in the sum using
the rearrangement inequality*. We define o(n) = 4, such that

4The rearrangement states that for every choice of real numbers z1 <
.. < &n,y1 > ...> yn and permutation p : [n] — [n], we have z,y1 +
ot Ziyn S THYLF - Tpn)Yne



o : [n] — [n] is a permutation, and we denote o~ its inverse.

_ logl(vi(s)/7in) log} (vi(s)/7i.0)
Eled == EEZ:M (0+1)
IOgg(’Ui(S)/T'L,n) 1Og2(vl(s)/ Ti,o=1(5) )
= n+1 " J;M JjG+1)

< OB 0(E)/7in) | g 0B (0(3) T )

(
JjG+1)

- k+l J€E(k]
logh (v:(8)/7in) 1
S TS R oy
log}(vi(s)/v;(s—;))
+
jElkIN} ‘7( +1)
_ logh(us)/um(s ) | 1
= k1 (it 1)
10%2 i(s)/v;(s-4))
+ > = 7
jelbNi} 3G+

where the equality simply follows by rewriting 1/n as
1/(n+1)+1/(n(n+ 1)), the first inequality follows by the
rearrangement inequality, the second inequality holds because
Tiin < Ty o-1(4) for all j, the third inequality follows because
v;(s—i) < Tio-1(;) and the last inequality holds because
v,(s—;)/2 < T;p. The last inequality corresponds to the
statement of the Lemma. O

B. Polynomial Time Implementation

In this section, we show how to implement Mechanism RCF
in polynomial time. The main technical challenge is to avoid
enumerating all possible tie breaking permutation 7 in Mecha-
nism RCF. The polynomial time implementation is illustrated
in Mechanism PRCF. The mechanism makes n? queries to
bidders. In general, it queries bidders for their low estimates,
that is {0,(8_,)}; ;. Note that when valuation functions are
monotone, it suffices to query valuations on the minimum sig-
nals, that is {0;(0;,8_,)}; ;. The mechanism queries bidders
for their value on polynomially many signal profiles, which
relates to the different values each bidder’s value has to pass
in order for the bidder to be a candidate, the thresholds 7; . It
then computes the probability of each bidder to be a candidate
using the logg function, and the corresponding payment using
Equation (3).

Figure 3 illustrates some of the components used in the
proof of Lemma 10.

Lemma 10. Mechanism RCF can be
polynomial-time.

implemented in

Proof. We show that Mechanism PRCF is a polynomial time
implementation of Mechanism RCF. First, Mechanism RCF is
truthful, thus we assume bidders bid their true valuations and
signals, and write s and v instead of § and V.

Polynomial-time Randomized Candidate Filtering (PRCF)
Mechanism.
1) Elicit reported signals § = {3; € S;},c|,), and query each
bidder ¢ on:

« its value v;(8) for signal profile §; and
« for every bidder j # i, query i’s lowest possible value
©;(8_,) for signals §_;.
2) Let n > 1 be identical to n in Mechanism RCF.
3) For each bidder i, we define the following:
o Let 74, = max;4; 0 (s_ )/2, and let 7; ;, be the (-th

value in {max(2;(8_ ) Ln)}HgL
10g2(’[’ (8) /Tz n 10g2 /Tz ¢)
0L6t11n< +Z £+1) )

n

maX(O, min Tin, UZ (S) Tzv”

o Lt i =
‘L nnln 2
n—1

max (0, min(7; ¢, 0;(8

L3 max(0.min(r, 09

p L+ 1)nln2

4) Allocate the item to bidder ¢ with probability x;.
5) Charge price p; to bidder i.

— Tie))

1.04

0.8

0.6 9

FEEEES

Fig. 3: The blue piece-wise linear curve denotes the log-scale
plot of the allocation probability x; as a function of wv;(s).
In particular, z; is the weighted average of I, »[c;|t(m) = /]
for all ¢, weighted by the probability that ¢(7) = ¢. The log-
scale plot of E, [c;|t(w) = ¢] is denoted by the different
colored piece-wise linear curves. The lower estimates of
bidders are represented with dashed lines at v;(s_;) = 1,
vy(s_s) = e 6, wa(s_y) = e /3 and vy(s_;) = e~ /2

The mechanism queries the bidder’s valuations on O(n?)
many signal profiles. In particular, after eliciting signals s,
each bidder ¢ is then asked to report v;(s) and v;(s_;) for all
j # i. For extending the mechanism to the case where d is
unknown (as discussed in the next section), we also ask the
bidders to report the minimum d; such that their valuation
function v;(-) is d;-self-bounding. The mechanism runs in
polynomial time as it gives a tractable formula to compute
each bidder’s allocation probability and payment as a function
of n different thresholds 7; ¢. First, notice that the probabilities
in mechanisms RCF and PRCF are equal, as demonstrated in
Equation (10).

It remains to show that the payment formula implements



Equation (3) for the given allocation rule. We first make the
following observations towards computing logh(v/c) - v —
I log} (t/c)dt for all v >0 and constant ¢ > 0.

o If v <, then [ logh,(t/c)dt = 0.
o If ¢ < v < 2¢ then

v v
/ logh(t/c)dt = 0+ / log, (t/c)dt
0 c

v—cC

vlog,(v/c) — 7

o If v > 2¢, then

v

v 2c
/ logh (t/c)dt = 0 + / log, (t/c)dt + / dt
0 c 2

C

2 —
= <2clog2(2c/c) — fn2c) + (v —2¢)
- ©
B In2’

Plugging in the above observations we immediately get

logg(v/c) ‘v — / logg(t/c)dt
0
0, ifv<e
=<q(v—2¢)/In2, ife<wv<2e
¢/In2, if v>2¢
_ max (0, min(c,v — c)) (11
In2

We are now ready to compute the payments for our allo-
cation rule x; according to Equation (3). For any fixed v_,,
s_;, and for all v > 0 we have

1 logf(v/nm) nillogT(v/n,g)
_n< SR Py Ty )'”

(=1
~ logl(t/7i0) | .
U+ 1)

) (el / )

n—1
1 (logh(v/7is) - / t/Tze
+Z77 ( l+1)

i)
ri))

—Ti) ) . By (1)

max (0, min(7; 5, v

nln2

n—1 .
max (0, min(7; ¢, v
* Zl ( (1) n2

which is exactly the payment p; for v;(s) = v defined in
Mechanism PRCF.
O

C. Unknown d

In this section we show how to extend our results for the
case where the value of d is unknown. Recall that Mechanism
RCF uses a bound on d to set the normalization factor
7. However, in order to keep the mechanism truthful, the
allocation of ¢ cannot rely on ¢’s valuation function v,(.), and
hence on d;. To address this challenge, we define personalized
normalization factors for each bidder 7 that doesn’t use d;.
In particular, for each bidder i, we use the smallest value d
such that all bidders j # i are d-self-bounding. This way, all
bidders except at most a single bidder (the one with the largest
d) have the correct normalization factor 7. Thus, by scaling
the allocation probabilities by another factor of 2, feasibility is
guaranteed and the O(d)-approximation is preserved. We note
that this modification requires asking each bidder to report the
smallest value d; such that their valuation function is d;-self-
bounding.

This is formalized in the following lemma.

Lemma 11. For every instance with d-self-bounding valu-
ations, where d is unknown, one can compute personalized
normalization factors n; such that by setting x; = By [c;]/n;
in the RCF mechanism we get a feasible, truthful, O(d)-
approximation to the optimal welfare.

Proof. Given reported signals § and valuations ¥V, we set
N = 4((2_1' + 1) with d_; = max;; d; where each 9, is
d;-self-bounding (which means d; < d). Observe that d_,
doesn’t depend on §; or ©;. Moreover, by the same arguments
as Lemma [, ¢; is monotone in ¢;(§) and doesn’t depend on
7’s information. This implies that the allocation z; is also
monotone in ¥;(8) and doesn’t depend on §; or ¥;. Hence,
by Proposition | the allocation is EPIC-IR implementable.

Next, we show that the resulting allocation is feasible.
Recall that in Lemma 4 we showed that when 1 = 2(d + 1)
we have ), |, [c;]/n < 1. Suppose n; = n; for all bidders
i,7, we observe that 7; = 2n. This is because we have
cz_i = dA_j = max; d; = d. Hence by Lemma 4 we have
> wi =y, Blei]/2n < 1/2, which is a feasible allocation.
Suppose 7; # 7; for some bidders i # j, then we have
a unique bidder ¢ = argmax;d; with d; = d. Hence we
have n; = 27 for all § # ¢, and by Lemma 4 we have
Z#Z— x; < 1/2. Moreover, since n; > 2, we have x; < 1/2.
This implies Y ;i <L and thus proving feasibility.

Finally, we show that the we obtain a O(d)-approximation.
Observe that n; < 2n for all bidders i, so by the same
arguments Lemma 2 we have that the mechanism is a 27-2In 2
approximation to the optimal welfare.

O

D. Putting it All Together
We now have all the ingredients to prove our main theorem.

The full proof follows.

Proof of Theorem . Lemma | shows the mechanism is truth-
ful, Lemma 2 and Lemma 4 show the mechanism is fea-
sible and gets 4(d + 1)In2 = O(d)-approximation for d-



self-bounding valuations. By Proposition 4, every EPIC-IR
mechanism cannot have a better than §2(d)-approximation for
d-self-bounding valuations, even if the valuations are public.
By Proposition 2, this gives a 81n 2 ~ 5.55-approximation for
monotone SOS functions, and a 121n 2 ~ 8.32-approximation
for non-monotone SOS functions. By Lemma 11, all the results
generalize to the case where the bound on d is unknown by
losing another factor of 2 in the approximation. Finally, by
Lemma 10, the mechanism can be implemented in polynomial
time. O

V. MULTI-UNIT AUCTIONS WITH UNIT-DEMAND BIDDERS

In this section we extend results from Section IV to multi-
unit auctions with n unit-demand bidders and m identical
items. We assume that 1 < m < n; otherwise, trivially
we could give each bidder one of the items. We consider
the following small adjustment of RCF and show that this
gives a truthful and feasible mechanism that obtains an O(d)-
approximation when allocating m identical items to n unit-
demand bidders.

a) Adjusted RCF Mechanism:

1) In step (3) of the mechanism we set ¢; = 1 if
fr(vi(s)) >x fr(v;(s—;)) for at least n—m bidders j # i,
and O otherwise.

2) In step (4) of the mechanism we allocate items using
Proposition 5 such that the allocation is ex-post feasible.

Theorem 2. Given an instance with n unit-demand bidders
and m identical items, there exist an EPIC-IR mechanism
which obtains O(d)-approximation for d-self-bounding valua-
tions.

Proof. We first observe that the resulting mechanism is truth-
ful following the same arguments as Lemma 1. Next, in
Lemma 12 we claim that for n = 4(d + 1) the resulting
allocation is fractionally feasible, i.e., Zl z; < m. We further
use a randomized rounding procedure following Proposition 5
to obtain a randomized allocation such that each bidder 7 is
allocated an item with probability x;, while making sure the
allocation is ex-post feasible, that is, at most m bidders are
allocated.

Finally, we show that the mechanism obtains an O(d)-
approximation to the optimal welfare. Fix valuations and sig-
nals v, s and consider any random choice of r and . Wlog we
rename bidders such that v1(s) > va(s) > - -+ > v, (s). Let I*
denote the top m bidders according to f.(v;(s)) breaking ties
according to priority in 7. We denote I* = {i1,i2, - ,im}
where

[r(viy (8)) >r fr(viy(8)) >x oo >x fr(vi, (8)).

For each i, € I* it must be the case that ¢;, = 1. This is
because

fr(iy(8)) > fr(vi(s)) = fr(v;(s-i))

for every j ¢ I* (thus, for at least n —m many bidders, which
implies that i, is a candidate). Moreover, we have that

vig(8) = fr(viy(8)) = fr(ve(s))-

Therefore, for every v,s,r, m we have that

n
> cwils) >
i=1

igel* =1
Hence, we have
Z Ty - Ui(s) = Z E[CZ] Uz(s) Z ]E Clvi(S)]
i=1 P -
fr(ve(s)) (s
> >
2B ; n - ; n-2ln2’

where for the last inequality we recall, from the proof of
Lemma 2, that |, [f-(v)] > v/(n-21In2). For n = 4(d + 1)
this provides the desired O(d)-approximation. O

We also observe that the same extension can be made to
the case where the mechanism is oblivious of the value d.

Observation 1. The adjusted RCF mechanism can be made
oblivious to d by losing an additional factor of 2, by using
personalized normalization parameters 1; = 8 max;;(d;+1).

A. Fractional Feasibility

In this section we show that the adjusted RCF provides a
fractionally feasible allocation for any multi-unit auction in-
stance. In particular, we show that the allocation probabilities,
x;, always sum up to at most m.

Lemma 12. Let x; = E[c;]/n be the allocation probability
from the adjusted RCF with 1 = 4(d+1). Then the allocation
is fractionally feasible, that is,

n
E T; < m.
i=1

Proof. We will show that the expected number of candidates
> Elc;] is at most 4m(d+1). Thus for n = 4(d+1) we have
>; i < m as desired. Wlog we rename the bidders such that
v1(8) > va(s) > ... > v,(s). Let k be the number of bidders
whose values are larger that v,,, /2. Similar to the single item
settings, we distinguish the bidders as large values (numbered
1 through k) and small valued (numbered k + 1 through n)
for the analysis.

We first consider the highest m — 1 bidders. Since the
probability that each one of them is a candidate is at most
1, we get S Elei] <m — 1.

Second, we consider the low bidders i € {k + 1,...,n}.
We observe that for each one of them to be a candidate it is
necessary that there are at most m — 1 bidders j # i such that
fr(v;(s—i)) > fr(vi(s)). Hence, there exists some j € [m]
such that f,.(vi(s)) > fr(v;(s—i)) > fr(v;(s—:)/2). With



this we bound the probability that a small valued bidder i is
a candidate as follows,

E [¢;] < Pr[3j € [m] such that f(vi(s)) > fr(v

( s_»)’ a2

where the last inequality follows by definition of small valued.
Using Lemma 6, it follows that Y7, | E[e;] < 2dm.

Finally, it remains to bound the probability that bidders ¢ €
{m,...,k} are candidates. In Lemma 15 (below) we show
that,

j(s-i)/2)]

IA

IN

v
2w

k
' m m m_ ogl vi(s)
Elel < i TR Jrz;j(j—kl) logz (vj(Si)> '

By Lemma 3 we get the following bound,
Bl < -
( ) k41
: 0;(s)
+ S > (13)
it e (S
A;
k
Z logg <vz(s))
= v;(s)
(14
B;
We observe that
k
m m m k+1—m
" 4 ) =1 s
;n(i(i+1)+k+1) el TR

<1l4+m.

We next show that Z
Z B; <m (in Lemma 14), implying that Z
2dm +2m+ 1.
Overall, we get > | Blc;] < 4dm + 3m < 4(d + 1)m
O

A; < 2dm (in Lemma 13), and
Elc] <

Lemma 13. Given an instance with d-self-bounding valua-
tions, we have that

k

>

i=m

where A;’s are defined in the proof of Lemma 12

Proof. Recall definition of A; for large valued bidders i € [k]
from Equation (13),

) j: j(jnl 1) o} (Jéi)) ’

Hence, summing over ¢ and swapping the summation of @
and j we get,

Lemma 14. For B;’s defined in Equation (14), we have that

k
ZB <m

i=m

Proof. We first re-write the sum by first observing that for all
j < i we have log} (v;(s)/v;(s)) = 0, then group together all
terms corresponding to any bidder 1.

= 2 loga(vils)) (i(infn N le) '

We then upper bound (and lower bound) all v;(s) by v,,(s)
(and v (s) respectively) for all large valued bidders i > m,
and note that v, (s) < 2vi(s) in order to obtain the desired



inequality.

ZZ ]+1

< _Z log, (v;(s)) - <l(znjr 1) le)

k
< Z logg(vm(s)) (i + 1 Z logs (v (s k+ 1
= logy(vm(s)) - (m kAt 1>

~ logy(vi(s)) - g - (k+1—m)
= 10g2(vm(s)) (1 k:r—l 1)

— logy (vk(s)) - m (1 B 767—7:1>
=m - (logy(vim(s)) — logy(vk(s))) - (1 - kj‘ll)
< m.
L]

Lemma 15. For any i, the probability that i is a candidate

(ie, c; =1)is
m v;(8)
LY .( )
A 0G D g0
Proof. For any choice of r and w, we observe that the

following conditions are all necessary for bidder ¢ to be a
candidate in the adjusted RCF mechanism:

m . m
k+1

Eled < i(i+1)

1) there exists at most m — 1 bidders j # 4 such that

fr(v;(s=)) > fr(vi(s)), and
2) if there are at least m bidders j with w(j) > w (i), then
there are at most m — 1 of these bidders j such that

fr( (S—l)) > fr(vv(s))

To s1mp11fy these conditions we introduce the following nota-
tions. We first order all the other bidder j # i in decreasing
order of yj(s_i) as follows

Uo(1)(8=i) = Ug(a)(8=i) = - oo > Vp(n_1)(8-4)-
We define the following “critical thresholds”,
Ti,e = max(v, (2)( ),ya(m)(s,i)/Q) VW<n-—1
and Tzn = 'Ua.(m)(s_i)/2.

Finally, for any permutation 7, we define t(7) = n if = (i) >
n — m, otherwise we define t(w) = ¢ such that 7(c(¢)) >
(i) and there exists exactly m — 1 many ¢ < ¢ such that
w(o(€)) > 7 (3).

Therefore, the necessary conditions for ¢ to be a candidate
can be simplified as,

ci=1—= f7-(’l)i(S)) > f,-(Ti,t(ﬂ-)).

Hence we have,

E [ci[t(m) = {]

T

<ZH |- Pilf, (0i(s) > fo(mse))- (15)

Observe that ¢(wm) = n is the event that ¢ has top m
rank according to 7w, which happens with probability m /n.
Moreover, for each £ € {m,m + 1,...,n — 1}, t(m) = £ is
the event that ¢ is exactly ranked m + 1 amongst the ¢ + 1
bidders {i,0(1),0(2),...,0(f)} and o(¥) is in the top m rank
amongst the other ¢ bidders. Thus we have,

Prlt(r) = ] = —— . i

1 and Prlt(r) =n] =

m
n

~

Hence, plugging this into Equation (15) and using Lemma 5
we get,

3

+ 3 g B G) /)
(vi(8)/Tin)

% e

Because o orders the bidders in decreasing order of lower
estimates, we have that log}(v;(s)/7; ) are increasing in /.
Moreover, since 1/(¢(¢ + 1)) are decreasing in ¢, by the
rearrangement inequality we have

Ele] < 2 -102< )
T, n+1 Tin

maX
logg (vl(S) ) 5
Tin

where we reshuffle the log}(vi(s)/7:¢)) terms and recall by
definition 7, , = max(yg(é)(s_i),mn).

)

J#Z

TGy



Next, we bound the log; terms by using 7; , for j > k and
yj(s_i) for 7 < k to obtain,

Ble] < (-7 b M) log) (U
T ! B n+ 1 ( + 1) 82 Tin

", e (i)

setmnay 7
m V(S
e (i)
v 52, 10+ 1) Tin
i#

< m_,_m Lol v;(8)
= \k+1 i(i—i—l) 827,

p> orh (245,

jelk\{i }

(.7+)

B. Ex-post Feasibility

Finally, using a folklore randomized rounding procedure,
that follows from Birkhoff decomposition, we obtain an ex-
post feasible allocation where at most m items are allocated
while preserving the marginal probability of allocation for
each bidder.

Birkhoff decomposition states that doubly stochastic ma-
trices (square matrices, with each row/columns summing to
1) are convex combinations of permutations matrices (with
exactly one 1 per row/column). Proposition 5 is a folklore
generalization of Birkhoff decomposition, which we use to
turn the probability vector (x1,...,z,) € [0,1]™ such that
>, x; < m into a distribution over feasible allocations such
that each bidder 7 either receives no items or a single item,
and the marginal probability of receiving an item is exactly z;.

Proposition 5. Let M be the set of n X m matrices with non-
negative values, such that each row and each column sums to
at most 1. Any matrix in M can be decomposed (in polynomial
time) into a convex combination of matrices from M with
{0, 1} coefficients.

To prove Proposition 5, we use the following folklore
generalization of K&nig’s line coloring theorem [21].

Proposition 6. Given a weighted bipartite graph (positive
edge weights) with at least one edge, there is a matching
which covers all maximum-degree vertices (sum of weights
of incident edges).

We now prove Proposition 5.

Proof of Proposition 5. Consider a matrix My € M. We see
My as a weighted bipartite graph, where nodes are rows and
columns, and edges corresponds to cells with positive values.
Let A(Mp) be the maximum degree of a vertex. If A(My) =0
the proof is finished. Otherwise, by Proposition 6, there exists
a matching pp € M N {0,1}™*™ which covers all maximum
degree vertices, and which can be computed in polynomial
time (with a maximum weight matching algorithm). Let

vg > 0 be the difference between the highest and second
highest degrees, and let wy > 0 be the minimum weight of
an edge in pg. Define zg = min(vg, wp), add zg - po to the
decomposition, and define M; = My — zg - 1. Notice that M,
contains less edges (strictly, if wy < vg) and more maximal-
degree vertices (strictly, if vy < vg) than Mjy. Additionally,
A(My) = A(My) — zo. Apply inductively the same argument
to define M;, Ms, until reaching M} = 0. We obtained
a decomposition of M, as a positive linear combination of
matchings, with a sum of coefficients equal to A(My) < 1.
We conclude by adding the empty matching with a coefficient
of 1 — A(MQ) O]
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