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1. Introduction

Cancer is the result of somatic evolution during which cells
accumulate driver mutations required for malignant transforma-
tion (Vogelstein and Kinzler, 2004; Jones et al., 2008). While some
leukemias and pediatric cancers may be initiated with a single
driver mutation, initiation of solid cancers typically requires mul-
tiple driver mutations (Vogelstein et al., 2013). Colorectal cancer
(CRC) is one of the most common cancers in the United States
(Siegel et al., 2021); it has been shown that mutations in three
driver genes are sufficient to initiate the development of CRC
(Tomasetti et al., 2015; Fearon, 2011; Paterson et al., 2020). Typ-
ically, this involves inactivation of two tumor suppressor genes
and activation of an oncogene. As inactivation of a tumor suppres-
sor gene (TSG) requires inactivation of both alleles, and activation
of an oncogene only requires a mutation in one allele of the
gene (Sherr, 2004), this leads to a total of five genetic alterations
required for CRC initiation.

Multi-type branching processes, with types corresponding to
genotypes or cell states (Antal and Krapivsky, 2011; Durrett and
Moseley, 2010), have emerged as a viable model for studying
cancer evolution. Multiple aspects of cancer evolution have been
modeled, including initiation (Paterson et al., 2020; Meza et al,,
2008), progression (Durrett and Moseley, 2010; Bozic et al., 2010;
Reiter et al., 2013; Bozic et al.,, 2019), metastasis (Foo and Leder,
2013; Avanzini and Antal, 2019; Danesh et al., 2012), and resis-
tance to therapy (Komarova and Wodarz, 2005; Komarova, 2006;
Bozic et al., 2013; Bozic and Nowak, 2014; Nicholson and Antal,
2019). Evolutionary dynamics are closely related to the relative
fitness advantages conferred by individual mutations. Durrett
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and Moseley (2010) analyzed a scenario in which the clonal
growth rate strictly increases after each mutation, and computed
distributions for clonal sizes and waiting times. Nicholson and
Antal (2019) studied a general framework wherein wild-type
individuals have the largest fitness (growth rate), which could
be applied to cases involving drug resistance. Random fitness
advantages have also been investigated (Durrett et al., 2010; Foo
et al.,, 2014).

Recent work (Paterson et al.,, 2020) studied a branching pro-
cess model for the initiation of colorectal cancer that involves the
three most commonly mutated driver genes in colorectal cancer:
tumor suppressors APC and TP53 and oncogene KRAS. The study
found that, in the majority of cases, the driver mutations accrue in
a specific order, with inactivation of APC followed by activation of
KRAS and inactivation of the TP53 gene. Following Paterson et al.
(2020), we study the mutational pathway to colorectal cancer in
which the genetic alteration order is given by APC, KRAS and TP53.
We model the dynamics using a multi-type branching process
that starts from N wild-type crypts, small tubular assemblies
of cells that line the intestinal epithelium (Vermeulen et al,
2013b; Barker et al., 2009). As the process evolves, individual
crypts stochastically obtain driver mutations, with mutation rates
determined by the genotype of the crypt and the driver gene in
question. All mutants are initially derived from a large popula-
tion of non-dividing wild-type crypts through genetic alterations
which may have neutral or advantageous effects on the growth
rates of the resulting subpopulations.

In this work, we precisely estimate the time it takes for each
altered genotype to occur, and compare the analytic results for
the waiting time distributions to exact computer simulations of
the process. In addition to studying the case where subsequent
types are not strictly increasing in fitness, and presenting multi-
ple approximations that can be useful for the study of waiting
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Table 1 Table 2
Pathway to CRC initiation. Parameter values for the model of CRC initiation.
Step Rate Biological process (a) Non-decreasing crypt growth rates
No — Ny Uy Inactivation of 1st copy of APC Crypts No Ny N, N3 Ny
N1 — N, Uy lnagtlvgtlon of 2nd copy of APC Birth rate 2o =0 =0 7 >0 A > Ao ha = A3
N, — N3 us Activation of KRAS - -
N3 — N, us Inactivation of 1st copy of TP53 (b) Biologically reasonable range of parameter values
Ny — Ns us Inactivation of 2nd copy of TP53 Number of wild-type crypts N 107 — 108
Birth rates A Ay =02/y,A3 =0.27/y
Transition rates u; 1077 —1074)y

times, our work also differs from previous works in another
significant way. In particular, related previous works (Durrett
and Moseley, 2010; Cheek and Antal, 2018) consider the case
where the model is initiated by an advantageous population that
grows exponentially. In contrast, our model’s initial populations
do not grow in size, as they correspond to healthy tissue that
has not yet collected a functional driver alteration that would
lead to uncontrolled growth. We also derive exact expressions
for the limiting random variables that are used in calculating
waiting time distributions, and provide insight into the accuracy
of approximating the size of a premalignant population with its
corresponding long-time limit.

The approach presented here can be extended to other multi-
type branching process models in which the growth rates of
subsequent types are non-decreasing. For colorectal cancer, one
can use a similar approach to compute the waiting time dis-
tributions for other mutational pathways. Our results are also
applicable to other multi-hit models of carcinogenesis, as many
cancer types are thought to be initiated through a multi-step
process that involves inactivation of tumor suppressor genes and
activation of oncogenes.

2. Model and parameters

Let Nj(t) be the stochastic process that counts the population
of type-i crypts at time t. The process is started at time 0 with
all crypts being type-0, which corresponds to healthy crypts with
no driver gene mutations. A type-i crypt can transform into a
type-(i+ 1) crypt by obtaining a driver alteration, which occurs at
rate u;. For simplicity, we consider a specific mutational pathway
on the way to colorectal cancer (see Table 1) reported in recent
work (Paterson et al., 2020). Type-5 crypts represent the final,
malignant state.

We note that our model does not account for genetic het-
erogeneity within individual crypts. This simplifying assumption
is a reasonable approximation, as new mutations are either lost
or fixated in the crypt, resulting in crypt stabilization (Campbell
et al., 1996). Crypt stabilization times have been reported to be
one year or less in the colon (Campbell et al., 1996; Vermeulen
et al,, 2013a).

We assume that independently from mutations, type-i crypts
follow a pure birth process with rate A;. When A; > 0, this
corresponds to crypt division (fission). The division rate of a
crypt is determined by its genotype. For wild-type crypts, crypt
fissions are very rare (Nicholson et al., 2018), so we set their
division rates to zero. It has been shown that inactivation of
APC and/or activation of KRAS provides a fitness advantage to
mutated crypts, leading to clonal expansion though increased
crypt division rates (Lamlum et al., 2000; Snippert et al., 2014).
In contrast, under normal conditions TP53 inactivation alone does
not provide a fitness advantage (Vermeulen et al., 2013b). It was
recently reported that, in addition to crypt fission, crypt fusion
also occurs in human colonic crypts (Baker et al., 2019). In wild-
type (healthy) tissue, crypt fission and fusion are in balance, with
both being very rare (Nicholson et al., 2018; Baker et al., 2019). In
mutated crypts, the rate of crypt fission increases, while the rate
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of crypt fusion remains very small (Olpe et al., 2021), allowing us
to neglect crypt fusion. These findings are reflected in the choice
of growth parameters in our model (see Table 2).

This branching process model can be summarized as

odivide at rate A,
Ny(t)

wa OA3

2 5 Na(t) 4

No(t) =5 Ny(t) =2
13)\4 = )\,3

Na(t)  —2> Ns(t).

Let Z() represent a single type-i crypt. All type-i crypts indepen-

dently follow the transition scheme:

S 2020,
Z(I-H),

birth rate A;
mutation rate ;.

The system initially consists of N wild-type (type-0) crypts, and
we seek to estimate the waiting times for the first type-i crypt
which is defined by

T = inf{t > O|Ni(t) > 0}.

To verify our analytic results, we developed Monte Carlo sim-
ulations of a multi-type branching process model based on the
Gillespie algorithm (Gillespie, 1977). Parameter values for our
model come from Paterson et al. (2020), and their typical ranges
are listed in Table 2.

3. Population dynamics and waiting time for type-i crypts

In this section we analyze the growth dynamics of the pre-
malignant subpopulations on a specific path to CRC initiation,
and use these results to derive expressions for the waiting times
of premalignant types and as well as the waiting time for the
final, malignant, type. We compare results obtained from exact
computer simulations of the multi-type branching process with
our analytic results. For all figures in this section, parameter
values are given in Table 3, and follow estimates from Paterson
et al. (2020).

3.1. Type-0 and waiting time to type-1

The process of somatic evolution that can lead to colorectal
cancer is started with a population of N initially healthy (type-
0) crypts. These crypts are wild-type for all three driver genes
of interest. Healthy human crypts rarely divide (Nicholson et al.,
2018), hence we set the division rate of the type-0 crypts to zero
(Ao = 0). Type-0 crypts can inactivate one copy of the APC gene
and become type-1 crypts, which occurs with rate u;.

In other words, the number of type-0 crypts, No(t), follows
a pure death process with death rate u; and initial condition
No(0) N. The expectation and variance for the number of
healthy crypts in the process are E[Nyg(t)] = Ne *“1* ~ N and
Var[No(t)] = N(e7¥1f — e~2"1f) ~ Nuyt, where the approx-
imations are made in the u;t <« 1 limit. Due to the small
variance, we approximate the population of the healthy crypts
by its expectation

No(t) ~ E[No(t)] ~ N.
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Fig. 1. (A) Comparison of the analytic cumulative distribution function of 7, the waiting time to the first type-2 crypt (Eq. (1)), and the simulated distribution
of 7, across 5 x 10° runs. (B) Dashed line shows the standard error of the mean obtained from simulations. Solid line is the relative error of the analytic result.
The relative error at time t is defined by |Ps(t2 < t) — Ps(12 < t)|/|Ps(72 < t)|, where P is obtained from exact computer simulations of the process, and P, is the

approximation in Eq. (1).

Table 3
Estimates of parameter values for colorectal cancer initiation from Paterson et al. (2020).
Cl'ypt Ni N[) N] N2 N3 N4
Initial population (crypts) N=1x10% 0 0 0 0
Birth rate A; (per year) 0 0 0.2 0.27 0.27
Transition rate u;; (per year) 2.86 x 1074 1.06 x 107> 9.00 x 1077 1.36 x 10~* 4.56 x 1077

It follows that the waiting time for the first type-1 crypt, t; ~
Exponential(uN).

3.2, Type-1 and waiting time to type-2

Type-1 crypts have a single copy of the APC gene inactivated.
This genetic alteration does not immediately lead to increase in
crypt division rate (Lamlum et al., 2000), so the division rate of
type-1 crypts A; = 0. A type-1 crypt can incur inactivation of the
second allele of the APC gene and become a type-2 crypt, which
occurs at rate u,. Initially, there are no type-1 crypts, i.e., N1(0)
=0.

Assuming that the loss of type-1 crypts to transition to type-
2 is negligible (since u, is very small), we can approximate the
number of type-1 crypts by Ny(t) &~ N — Ny(t). In the small uqt
limit, we can obtain the expectation and variance of type-1 crypts
as E[Nq(t)] ~ Var[Nq(t)] ~ Nuyt. For typical parameter values,

/Var[Nq(t)] 1 <1
E[N;(t)] JuiNt ’

so we can approximate N1(t) by a deterministic function
Nq(t) ~ uqNt.

Thus the waiting time distribution of type-2 crypts can be ob-
tained as

t
P(r; <t)=1—E [exp (—uZ/ N1(5)d5>j|
0

1 2
~ 1—exp —Euluth .
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We compare the last expression with the probability distri-
bution of waiting time to type-2 crypts obtained from exact
computer simulations of the process in Fig. 1. Our results pre-
dict that the first crypt that has both copies of the APC gene
inactivated will appear within the first five years of life.

3.3. Type-2 and waiting time to type-3

Type-2 crypts have both copies of the APC gene inactivated.
The APC inactivation provides a fitness advantage to type-2 crypts
(Lamlum et al., 2000), leading to an increased division rate A, >
0. At time ¢t = 0, there are no type-2 crypts, i.e N,(0) = 0. We
begin with the expectation of N,(t). The expected value of Nj(t)
can be computed recursively:

t
BINGO) = us [ EINC (s s @)
0
This follows from the martingale result in Lemma 4.1 (see also
equation (18) in Durrett and Moseley (2010)). Using the recur-
sion, we compute

Nujquy(e*2t — at — 1
E[Ny(£)] ~ 1Ua( —h )
A3

The approximation is obtained by noting that u; <« A, ~ 107!
and u it < 1.
The following large-time asymptotic limit exists for Ny(t).

Theorem 3.1. e *2!N,(t) — W, as. and in L' with
Nuquy

N Nuquy
Ao(Ay +uq)

2
)‘2

E[W,] =
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Fig. 2. (A) Comparison of the analytic cumulative distribution functions of t3, the waiting time to the first type-3 crypt ((4) and (5)), and the distribution of
73 across 5 x 10° simulation runs. In (4), fo(t) is set to be the exponential function foo(t) = e*2!, while in (5), fo(t) = fu(t) = E[N,(t)]/E[W;]. (B) Dashed
line shows the standard error of the mean of the simulation. Solid lines are the relative errors of the analytic results. The relative error at time t is defined by
|Ps(t3 < t) — Po(t3 < t)|/|Ps(73 < t)|, where Ps is obtained from exact computer simulations of the process, and P, represents the approximation in Eq. (4) or (5).

The Laplace transform of W, is given by

115 [75)
Ly, (0) = uFi (1, — 14+ —; -0
w,(6) |:u1—u2<121< I +A2 )
U uq N
—uy oF 177;14-7;—9 , (3)
2 2

where ,Fi(a, b; c, z) is the Gauss hypergeometric function (DLMF,
2022, 15.2.1).

Na(t)

fa(t)
fa(t) € B :=={f € C(R)] :ILTO e 2 f(t) = 1, f(t) = 0},

Corollary 3.2. — W, a.s. and in L' for all

where C(R) is the space of continuous functions on R.

The goal of allowing f>(t) to be potentially different from e*2!
in Theorem 3.1 is that a suitably chosen f>(t) can lead to increased
accuracy when computing the waiting time to the next type.

Recall that a type-2 crypt can activate the KRAS oncogene
with rate uz, becoming a type-3 crypt. We can compute the
distribution for the waiting time to the first type-3 crypt, 13, using

t
P(rs <t)~ 1— Ly, <U3/ fz(S)d5>, fr €h.
0

To compute the waiting time to the first type-3 crypt, we will
consider two candidate functions for f5:

E[NZ(t)] 2
faolt) = €, fr(t) = 2= =e
20 21 E[W, ]

The two candidate functions f,9 and f5; correspond to the follow-
ing approximate distributions of waiting time to type-3:
) . (4)

p3o(t) =1Ly, <U3/ fzo(S)dS) =1-Ly, <U3
0

and

t
p31(t) == 1— Ly, (u3/ f21(5)d5>
0

e“t—l )\2
:l—ﬁwz Uus | ——— —

2t ot — 1.

g2t — 1
A2

A2 2

e-t)).
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Here we use pj; to represent a specific approximation, distinguish-
ing it from the exact waiting time distribution. We note that, by
design, the first moment of f,1(t)W, is identical to that of N,(t).

Both (4) and (5) agree with the simulated distributions for
t > 40 (Fig. 2). However, in the intermediate regime where t
is small, one can observe that p3; is more accurate than psq.

At the end of this section, we present an approximation of
the random variable W, which is denoted by V,. We present a
detailed description of V, including its construction, properties
and show that it is in excellent agreement with W, in Section 6.
Compared with Ly, (), the Laplace transform of V; is simpler in
its form and easier to obtain. Here we present Ly,(6) so that the
reader can compare the formula with Ly, (8) (3).

Ly,(0) =E[e?2] = exp ( )

In the above expression, PolyLog(n,z),n € Z,n > 2,z €
C represents the polylogarithm function defined by the series
PolyLog(n,z) = Z,f; ,% when |z| < 1 and the analytic con-
tinuation of the series when |z| > 1 (DLMF, 2022, 25.12.

10).

Nuju,PolyLog(2, —6)
}\'2
2

(6)

3.4. Type-3 and waiting time to type-4

Type-3 crypts are produced by type-2 crypts through acti-
vation of the KRAS oncogene, which increases the division rate
of mutated crypts (Snippert et al., 2014). Thus the division rate
has a positive increment, i.e. A3 > X,. The initial population is
N3(0) = 0. From Eq. (2), the expected value of N5(t) is given by

 Nugupus (35 (€3 — At — 1) — A3 (€2 — Jot — 1))
A3 (k3 = 22) 23

E[Ns(t)]

’

where the approximation is made by observing A; + u; =~ X; and
1 — exp(—uqt) ~ uqt.

Theorem 3.3. e *3!N;3(t) — Ws as. and in L' with

Nuquyus Nuquyus

Al = (A3 — Ak + 1) (hs — A3
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Fig. 3. (A) Comparison of analytic cumulative distribution functions of 74, the waiting time to the first type-4 crypt (Eqs. (8) and (9)), and the distribution of 74
across 5 x 10° simulation runs. Eq. (8) is derived using the Laplace transform Vs. Eq. (9) is derived via skipping V3 and using the Laplace transform of V5. (B) Dashed
line shows the standard error of the mean of the simulation. Solid lines are the relative errors of the analytic results. The relative error at time t is defined by
|Ps(74 < t) — Po(T4 < t)|/|Ps(74 < t)|, where PP is obtained from exact computer simulations of the process, and P, represents the approximation in Eq. (8) or (9).

The Laplace transform of W3 is given by

e ([

Here U is the limiting random variable of the type-3 population
e *3tM;(t) — U in a two-type process (My(t), Ms(t)) started with
a single type-2 crypt at time 0.

_ uqlp
Ly(fe™ %) ———
Uy — Uy

N
(e7"1* — e’”z")dx> . (7)

We derive the Laplace transform of the limiting random vari-
able U in Appendix C.

N3(t)

0
f(t) € F = {f € C(R)] lim e () = 1, f3(t) > 0}.

Corollary 3.4. — W3 a.s. and in L' for all

We use the above result to derive the waiting time of type-4
crypts. Recall that type-4 crypts are produced by type-3 crypts
with a small rate uy. We consider the following approximation
for the waiting time:

Pz <t)~1— Ly, <U4/ f3(5)d5> , fz3eF.
0

Note that evaluating the Laplace transform of W5 (7) requires nu-
merical integration of a relatively complicated function. Therefore
we find V3, which is easier to manipulate, as the approximation
of W3. We present the construction of V3 in Section 6. The Laplace
transform of V3 is given by (B.6). We compare Ly, () and Ly,(60)
in Section 6. As the two Laplace transforms are in excellent
agreement, we employ Ly,(6) to compute P(t4 < t).

: E[N;
Using fi; ]é[m(,f]ﬂ

tion of waiting times compared to the more simple fijy = exp(A;t).
We illustrate this phenomenon in Fig. 5. For that reason, we will
use f, = fo1 to compute Ly,(0) (since Ly,(6) depends on the
choice of f,. See Lemma 6.4). In particular, we have

E[N3(t)] At )‘g Aot
t)=——F— =" — A3t —1— =(e"* — At —1).
f3(t) E[Ws] 3 )\%( 2 )
This leads to the following approximation for the cumulative
distribution of the waiting time to type-4 crypts:

pai(t) == 1— Ly, (U4/ f31(5)d5> .
0

typically leads to more accurate computa-

(8)

48

We note that p4; has a closed form expression, which is shown
in Eq. (B.3). The comparison of analytic and simulation results for
waiting time to type-4 are shown in Fig. 3. The relative error of
the approximation (8) is on the order of 20%, showing a tendency
to decrease even lower for t > 70 years.

We also find that increased accuracy in computing the waiting
time of type-(i + 1) crypts, in particular at early times, can be
achieved by skipping the long-time limit of the entire type-i
subpopulation and instead using a long-time limit of individual
type-i lineages. Note that a type-i lineage is the type-i offspring
of a single type-i crypt that has been mutated from a type-(i — 1)
crypt. Mathematically, a type-i lineage is the number of type-i
crypts in a system initiated by a single type-i crypt. The skipping
process is described in more detail in Section 4.3. In the case of
waiting time to type-4, we can use this methodology to “skip”
the long time limit of type-3 crypts, leading to the following
expression for the cumulative distribution for the waiting time
of type-4 crypts

t
PO =1— Ly, <u4 f Pas)(1 = P34, r))ds> . 9
0
Here pg”“(s, t) is the probability that no type-4 crypt is produced
by time t by a lineage started with a single a type-3 crypt at time
s. We note that the closed form version of p$} is presented in
Eq. (B.11). We observe that skipping V3 improves the accuracy
of the results at intermediate times (Fig. 3).

3.5. Type-4 and waiting time to type-5

Type-4 crypts have fully inactivated APC, activated KRAS, and
a single inactivated copy of TP53. Compared to type-3 crypts,
each of the type-4 crypts has one inactivated copy of a tumor
suppressor TP53. This mutation does not lead to an increment
of the crypt division rate. Thus the division rate of type-4 crypts
A4 = 3. The initial condition for type-4 crypts is N4(0) = 0. The
fact that the division rates of type-4 and type-3 crypts are the
same leaves us unable to confirm the existence of a large-time
limiting random variable for the population of type-4 crypts.

Instead, for s, the waiting time to the first type-5 crypt, we
consider an alternative approach: we compute the distribution
using the large-time limit of type-3 crypts, Ly,(6), and pg (s, t)
(effectively skipping the large-time limit of type-4 crypts). Here



R. Zhang, O.A. Ukogu and I. Bozic

‘ )

% simulated distribution of 5

10731 analytic distribution i

T of , (Eq. (10))

analytic distribution
of 7 (Eg. (11))

> —1-SEM
E
T 10 ]
o
o
10 1
55 60 65 70 75 80
age

Theoretical Population Biology 151 (2023) 44-63

1 ®) |
—Eq. (10)
Eq. (11)
---SEM
0.8
o6
(0]
(0] [—
2
04
0.2}
55 60 65 70 75 80
age

Fig. 4. (A) Comparison of the analytic cumulative distribution functions of 75, the waiting time to the first type-5 crypt (Eqs. (10) and (11)), and the distribution
of 75 across 5 x 10° simulation runs. Eq. (10) is derived via skipping type-4 and using the Laplace transform of V5. Eq. (11) is derived via using the Laplace
transform of V, and skipping the Laplace transforms of type-4 and type-3. The error bars represent the standard error of the mean of the simulation. (B) Dashed
line shows the standard error of the mean of the simulation. Solid lines are the relative errors of the analytic results. The relative error at time t is defined by
|Ps(t5 < t) — Po(t5 < t)|/|Ps(75s < t)|, where Ps is obtained from exact computer simulations of the process, and P, represents the approximation in Eq. (10) or

(11).

pg"S(s, t) is the probability that no type-5 crypt is produced by
time t by a lineage started with a single type-4 crypt at time s.
pg~>(s, t) can be computed using Lemma 4.4 as

1
1+ us exp(kaing))ﬁ

Py (s, t) =

The corresponding approximation of the distribution of ts
resulting from this approach is

p5i(t) = 1— Ly, (u4/ Fa(s)(1 = pg~°(s, f))dS) .
0

The above expression has an explicit form given by Eq. (B.12).
Comparison of formula (10) with the waiting time for the first
type-5 crypt obtained from exact computer simulations (Fig. 4)
shows good agreement at intermediate times, but increasing de-
viation (approaching 0.2 relative error) at t > 75. We find that
increased accuracy is achieved by skipping large-time limits of
both type-4 and type-3 crypts, and computing the distribution
using Ly, (0) and p3~>(s,t). pg~>(s, t), the probability that no
type-5 crypt is produced by time t by a lineage started with a
single type-3 crypt at time s, is given by (using Lemma 4.4)

Py (s, 1)

(10)

k3e)‘3(r_s)

Uglls (A; — ug 4 e*3lt=s) (us — A3+ Azlog (W

(A3 —us)?hs

1+

The corresponding approximation of the distribution of s
resulting from the latter approaches is

pEi(t) = 1— Ly, <u3 f Fu(s)X(1—p3 ™G, t))ds>. (11)
0

The result p$3* (explicitly given by Eq. (B.14)), to the best
of our knowledge, is not an elementary function or a standard
special function. In Fig. 4, we observe that p§314 achieves higher
accuracy compared to pg‘ﬁ, especially at later times (above age
70). In other words, compared with the result incorporating the
long-time limit of type-4 crypts, skipping this stage gives more

D
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accurate results. The intuition behind this is that approximat-
ing each subclone by its large time limit is more accurate than
approximating the total population by its overall large time limit.

4. Multi-type branching process results

In this section we establish a martingale convergence lemma
to get possible large time limiting random variables. Next, we
state the results needed for approximating the waiting time dis-
tribution of type-i using the large time limit of type-(i — 1).
We generalize these results by employing an approximation that
allows us to derive type-i results directly from type-j results and
skip intermediate limiting behaviors between i and j.

4.1. General results for large time limits

Lemma 4.1. Consider a multi-type branching process (No(t),
Nq(t), ...) in which Nj(t) is the population of type-i crypts. In this
process, a single type-i crypt can divide into two crypts with rate
Ai > 0 and mutate into a type-(i + 1) crypt with rate u;,; > O.
Then

t
M(t) = e *ENi(t) —/ u;iN;_1(s)e™*%ds
0
is a martingale. If

(o]
I = / uiN;_1(s)e™*ds
0
has a finite expectation, then
e HINK(t) 23 Wi, EIW| < oo,

as t — oo. Additionally, if {e=**N;(t); t > 0} is uniform integrable,
then

1
e‘”ftNi(t) i) W;.
This implies

E[e HN()] — EIWi] = B[]
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If the first condition from the statement of the Lemma holds
(i.e. if I; has finite expectation) Lemma 4.1 provides a method
of obtaining the long-term behavior of N; using the limiting
random variable W;. In that case, we have e *‘Nj(t) — W;, and
for large time t, e*‘W; should be a good approximation of the
stochastic process Nj(t). The importance of N(t) ~ e*'W; is that
it separates a stochastic process into a deterministic function e
and a time-independent random variable W;.

If, in addition, the second condition ({e™*N;(t);t > 0} is
uniform integrable) holds, then the expected value of the lim-
iting random variable W; is obtainable. In that case, we have
E[e %N;(t)] — E[W;], which makes the large time approxima-
tion Nj(t) ~ e*i'W; reasonable in terms of the first moment.

Proof of Lemma 4.1.

Proof. The proof follows that of Theorem 2 in Durrett and
Moseley (2010). The only difference is that we want to include
the cases when A;_1 = X; or A; = 0. By Lemma 1 in (Durrett and
Moseley, 2010),

t
M(t):e’“Ni(t)—/ u;iN;_1(s)e™*%ds
0

is a martingale. If [; has a finite expectation, then by the martin-
gale convergence theorem (Theorem 4.2.11 in Durrett (2019)), the
submartingale X(t) = —M(t) converges a.s. to some integrable
limit X as t — oo. Since

t
e) / uiNr(s)eds 5 1,
0

we also have

e MIN(E) 5 W

The martingale starts at zero (i.e. M(0) = 0), which implies
E[e " Ni(t)] = E[I(t)].

Suppose {e~*‘Nj(t); t > 0} is uniform integrable, we have (Theo-
rem 4.6.3 in Durrett (2019))

eHN(E) B W,

which guarantees

E[li(t)] = E[e % Ni(t)] — E[W].

Thus, we have

E[li(t)] — E[I],

and

E[W;] =E[;]. O

4.2. Estimating waiting times using large time limits

Let 7;,(1 < i < n) be the waiting time of the first type-i
individual in a multi-type branching process. At time s > 0, the
arrival rate of type-i individuals is u;N;_1(s). Conditional on the
trajectory of N;_(s) for 0 < s < t, the probability that t; is greater
than ¢ is:

t
P(ti > t | Ni_1(s),0 <s <t)=-exp (—u,-/ Ni_l(s)ds> .
0

The functional form of N;_;(s) is generally unknown and po-
tentially complicated. One way of evaluating this integral is to
approximate N;_1(s) by the product of a deterministic time-
dependent growth and a time independent random variable. For
example, let No(t) = Zy(t), a pure birth two-type branching
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process that starts with a single individual. It is well-known that
e *0tZy(t) = Wy ~ Exponential(1) (Durrett and Moseley, 2010).
A classical approximation is Ny(s) e*o'W, where the deter-
ministic time-dependent growth is characterized by e*o! and time
independent random variable is Wy. Applying this approximation
yields

N

t
P(t; > t)~E [exp (—u1/ ekosWods>] (12)
0
erot — 1
_ tw, <u1 ) , (13)
Ao

where Ly, (0) = ﬁ is the Laplace transform of Wy. Let fo(t) =

e! be the time deterministic function. Then the above approxi-
mation also holds if a sub-exponential term is added to fy. In other
words, we have many reasonable options for fy. In later sections,
we consider two specific deterministic functions,
fo(t) = €*', and
E[Ni(t)]

fult) = ——=.

E[Wi]
In the example mentioned above, we have

E[Zo(¢)]
Jou(t) = ="

E[Wo]

= foo(t)-

However, in our model when i > 1, fip # f;;. We observe in Fig. 5

that an approximation with fj; is typically more precise than that
with fig.

ot

Proposition 4.2. Let (N;_1(t), Ni(t)) be a two-type process such
that N;(0) = 0 and N;_+(t) > 0 is right-continuous with E|N;_1(t)| <
oo. In this process, type-i crypts are being produced at rate u;N;_(t) >
0. A single type-i crypt can divide into two crypts with rate A; > 0.
Suppose there exists a continuous function f;_1(t) > 0 and a random
variable Wi_; such that as t — oo, (fi_1(t))"'Ni_1(t) — Wi_;
almost surely and in L. Then the waiting time distribution of the
first type-i individual can be approximated by

t
P(t; > t) ~ Lw,_, (ui/ ﬁ_l(s)ds>
0

where Ly, ,(0) is the Laplace transform of random variable W;_,.

Proof. The right continuity and the integrability of N;_¢(t) al-
low us to write P(t; > t) = E [exp (— fot u,-N,-_l(s)ds>]. Since

(fi1(£))"'Ni_1(t) = W;_1, we employ the approximation N;_1(t)
~ fi_1(t)W;_1. Plugging in this approximation gives us

t
P(ti > t)~ E [exp (—W,-_lui/ f,-_l(s)ds>]
0
=Lw,_, (Uj/ fi_l(s)ds> . O
0

We note that the accuracy of the approximate waiting time
distribution in Proposition 4.2 depends on the accuracy of the
long-time approximation N;_i(t) ~ fi_1(t)W;_1. To provide in-
sight into the accuracy of this approximation, we investigate
the difference N;_¢(t) — fi_1(t)W;_1 in the case when i — 1 =
2, 3. In particular, we present a representation of Ny(t) — e*2!W,
(Theorem 5.1) in the case of the type-2 population. This repre-
sentation allows us to estimate N,(t) — e*2!W, in the long-time
regime as t — oo (Corollary 5.4) and in the short-time regime
as t — 0 (Corollary 5.5). Using these results, in Section 5, we
show the reason that the scaling function f51(t) obtained from
the ratio E[N,]/E[W,] leads to greater accuracy compared to the
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Fig. 5. Relative errors of the waiting time distributions of 7, obtained using different scaling functions f;. (A) Using f,1, the distribution function has a higher accuracy
compared to the result derived using f5. (B) Using f31, the distribution function has a higher accuracy compared to the result derived using f3.

exponential scaling function foo(t) = e*2!, when approximating
populations at short time. Similarly, we develop the representa-
tion theorem for N3(t) — e*3'W; (Theorem 5.6) and discuss its
consequences in Section 5.2.

4.3. An inhomogeneous Poisson process approximation

Proposition 4.2 provides an estimate of the arrival time of
type-i individuals using the large time limit of the previous type
(Wi_1). However, there are situations when the existence of ran-
dom variable W;_; cannot be directly inferred from the martin-
gale result. In our model, we are unable to show the existence
of Wy due to the fact that A3 = 4. When dealing with type-
4, we found that E[N,(t)] ~ O(te*3!). Thus, one should expect
that a non-degenerate limiting distribution may exist when the
population is scaled by t~'e=*3!. However, establishing a square
integrable martingale in this case is non-trivial. Therefore, we
would like to employ the existing limits of other types to calculate
the waiting time to type-5. More generally, we may only have
the explicit Laplace transform of the large time limit W; for some
type-j where j < i, and we do not have reliable limits for type-(j+
1) through type-(i— 1). To deal with this situation, we introduce a
method that uses the large time limit of each independent lineage
to “skip” Wi, through W;_;.

First, let Zi,4(t) denote a type-(j + 1) lineage started with a
single type-(j + 1) individual at time 0. In other words, taking
advantage of small mutation rates to neglect outflow, a type-
(j + 1) lineage is a simple birth process initiated by a single
type-(j + 1) individual that grows at rate Aj.;. The well-known
fact that for each type-(j + 1) lineage
e *+1tZ;4(t) 33 v ~ Exponential(1) (14)
allows us to make an approximation Z(t) ~ e* 1tV Next, we
want to find the likelihood of each type-(j + 1) lineage producing
at least a single type-i individual. Suppose we have a type-(j + 1)
lineage that was started with a single type-(j + 1) individual at
time s. We define pgﬂ)ﬁ'(s, t) to be the probability that no type-i
individual is produced by time t by this type-(j + 1) lineage. This
implies the following proposition.
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Proposition 4.3. Let (Nj(t), Niz1(t), ..., Ni(t)) be a (i—j+1)-type
process in which Ni(0) = 0 for j < k < i, and Nj(t) > O is right-
continuous with E|Nj(t)| < oc. In this process, type-(j 4+ 1) crypts
are produced at rate uj1Nj(t) > 0. A single type-k crypt can divide
into two crypts with rate A, > 0 and mutate into a type-(i + 1)
crypt with rate u;1 > 0 for k, j < k < i. Suppose that there exists
a continuous function fi(t) > 0 and a random variable W; such that
as t — oo, fi(t)"'Nj(t) — W; almost surely and in L'. Then the
waiting time distribution of type-i crypts can be approximated by

t . .
P(zi>t)~ Ly, <Uj+1/ fi(s) (1 — pItIi, t)) ds) ,
0

where £Wj(9) is the Laplace transform of W;.

Proof. At time s, type-(j + 1) crypts are being produced at rate
uj11N;(s) ~ uj1fi(s)W;. Each type-(j + 1) lineage (present at time
.1 (j+1)—i :
s) has a probability 1 — p; (s, t) to produce at least a single
type-i crypt (at time t). Therefore, for fixed t, we approximate
the process of producing type-i individuals as an inhomogeneous
Poisson process with rate uj;.1N;(s)(1 —pgﬁ)ﬁ'_(s, t))attimes < t.
The multiplication of rates uj;1Nj(s) and 1 —pg‘q)ﬂ'(s, t)is due to
the thinning property of inhomogeneous Poisson processes. Thus
we have

P(ri > [)~ E [exp (—W,-u,-ﬂ / i) (1= 9§65, ) ds)]
0

= Lw, <uHl / £(s) (1 — pUtIis, t)) ds) . O
0

Proposition 4.2 is consistent with Proposition 4.3, and one
can treat Proposition 4.2 as a special case of Proposition 4.3
when j = i — 1. The approximation error in the distribution
of 7; in Proposition 4.3 comes from the approximation Nj(t) ~
fi(t)W;, j < i. In other words, the waiting time approximation in
Proposition 4.3 relies on the long-time limiting random vari-
able W;, “skipping” the long-time limits of subsequent type j +
1,...,i—1 populations via the nonhomogeneous Poisson approx-
imation. Our numerical results demonstrate that the approximate
waiting time distribution function obtained from “skipping” two-
steps (i.e. i —j 3) leads to better accuracy compared with
“skipping” one-step (i.e. i—j = 2). Namely, in Fig. 4 we show two
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approximations for the distribution function of the waiting time
75, obtained from either W5 (one-step skipping approximation),
or W, (two-step skipping approximation). As the two panels in
Fig. 4 demonstrate, the two-step skipping approximation has a
higher accuracy for most times on the interval t € [0, 80].
Therefore, our results imply that skipping more long-time limits
of intermediate populations, i.e. relying on an earlier Wj, leads to
better accuracy.

To compute p’0 s,t),j < i, we use the iterative relation-
ship between pl,”'(s, t) and p{*"(s, t). This is provided by the
following proposition.

Lemma 4.4. Consider a multi-type branching process (No(t), N1(t),

..) in which Nj(t) is the population of type-i crypts. In this process,
a single type-i crypt can divide into two crypts with rate A; > 0 and
mutate into a type-(i + 1) crypt with rate u;1; > 0. Suppose that
Aj > 0. Then for i > j we have

o t t
Ploﬁl(&f)%/ e’ exp (—U/ uj €0
0 s

x (1 —pHi t)) dr) dv

with p""(s, t)=0.

Proof. The population at time r > s of a single type-j lineage that
appeared at time s can be approximated using its long time limit
Zj(r) ~ 4"V, where V ~ Exponential(1). Thus, type-(j + 1)
individuals are produced from this lineage at rate

Ui 1Zi(r) ~ uj 150V,

The probability for a new type-(j + 1) individual at time r to
produce at least one type-i individual by time t is 1— po“)_"(r t).
Thus, conditional on V, the expected number of type-i individuals
that were produced by a type-j lineage that appeared at time s is

t
A7, t, V)=/ uij(r)( —pUtir ,t)) dr
N

t . .
~ / Uy (1 —pIt7ir, t)) dr.

S

Let X/~i(s, t) be the number of type-i individuals that are pro-
duced by a type-j subclone which appeared at time s. In the time
period [s, t], X~(-, t) follows an inhomogeneous Poisson process
with mean A(-, t, V). Thus the probability that no type-i crypt is
produced from this particular type-(j + 1) crypt by time t is

P(XI7 (s, ) = OV) = exp(— A (s, £, V)

t
~ exp (—V/ ujy €0
N
X ( pg“)ﬂl( ,t)) dr).

P(X™(s, ) = 0)
=E[P(X~(s,t) = 0|V)]

t
/ v exp (—v / UM
S
x (1 — pUtIir r)) dr) dv.

Finally, for i = j, notice that the founding individual of a type-j
lineage is of type-j. This guarantees that at any time ¢ greater than
the founding time s, the probability of having at least one type-j
individual is 1. Thus p), (s, t) = 0. O

This implies

Py (s, 1) =
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In the case thati = j + 1, by Lemma 4.4 we have

o 1

1) 1y A

P 5O RO
Aj

The right hand side obtained from Lemma 4.4 is in excellent
agreement with the exact pH('H)( , t), the probability of zero
type-(i + 1) crypts at time t in a two type process initiated by a
single type-i crypt at time s (the right hand side above is equal to
ph” (s, t) in the limit of u;;1 < A;). In Appendix C.1 we derive
p5~>(0, t), the exact probability that no type-3 crypt is produced
by time t by a type-2 lineage started at time 0 (C.6). The exact
i—(i+1)

Py (s, t) can be derived by plugging in us Ui, A2 = Aj,
and t =t — s into (C.6).

5. Accuracy of long-time approximations and derivation of
Wi

In this section, we establish results to measure the distance
between the exact process and its long-time approximations em-
ploying limiting random variables W;, which we have applied in
Section 3. Recall that we have shown that e *iN;(t) — W; as
t — oo for i = 2, 3. Thus, in this section we mainly focus on the
approximations made for the type-2 and type-3 population. As
the waiting time formulas we derived in Section 3 rely on these
approximations, the following analysis can provide insight into
the discrepancy between the actual waiting time and the waiting
times obtained using long-time approximations. Along the way,
we also obtain exact expressions for Laplace transforms of W, and
Wjs. The only assumption (or approximation) we keep here is that,
when considering the behavior of the type-2 (type-3) population,
we ignore the population loss due to the mutations from type-2
to type-3 (from type-3 to type-4). This assumption is referred to
as “neglecting outflows”, which is reasonable since mutation rates
are much smaller compared to division rates, i.e. U3 < Ay, Uy K
A3.

5.1. Error of type-2 approximation

To measure the distance between the population N,(t) and
its approximation e*2'W,, we rely on the additive property of
the branching processes (Athreya and Ney, 2004, p. 201). This
property allows us to derive a decomposition of Ny(t) — e*2W,
and calculate the Laplace transform of W5. In addition, we use
a generalized central limit theorem to give a long time error
estimate of the approximation. We also provide a short time
error formula which explains why the scaling function f>1(t) =

e’2t — ot — 1 outperforms fo(t) = e*2t,

Before giving the main results, we briefly recap related results
of a one-dimensional process and their consequences (Athreya
and Ney, 2004). For a one-dimensional pure birth process Z(t)
with birth rate » > 0, we have e *Z(t) = V ~ Exponential(1).
Athreya and Ney’s representation theorem (Athreya and Ney,
2004, p. 123, Theorem 1) implies that Z(t) — eV has the
property

Z(t)
Z(t)— v = Z (l — Vt(’)) forall t > 0 as.
j=1

(15)

where {V[U);j = 1,2,3...,Z(t, w)} are independent identically
distributed copies of V ~ Exponential(1) when conditioned on
Z(t). The consequence of this result is that one can get a central-
limit-type corollary by scaling both sides properly, i.e. (Athreya
and Ney, 2004 Chapter III, Section 10, p. 124, Theorem 3.)

Z(t) — MV g

— N(0,1
70 (0,1)
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where A0, 1) is the standard normal distribution. In the fol-
lowing, we will show that similar properties hold for the type-2
population in our process.

Consider the sub-process (Ng(t), N1(t), Nx(t)) with birth rates
and mutation rates as described in Section 2. The transition
scheme can be summarized by

odivide at rate A,

N(t)
Recall that in Theorem 3.1 we have established the large time
limit for type-2 population, i.e. e *2tNy(t) = W,. We present a
decomposition of Ny(t) — e*2!W, in the following theorem.

No(t) — Ny(t) —2

Theorem 5.1. There exists a family of random variables {Vt(i’j), j=
1,2,...,Nit); i 0,1,2) U (TS, j 1,2,...,Nit); i
0, 1; k = 0, 1} such that

(a) when conditioned on Ny(t), N1(t), Na(t), the random variables
in the family are independent; N

(b) when conditioned on No(t), Ny(t), Ny(t), {(V} are distributed
as V ~ Exp(1), and {T(”)} are distributed as Ty ~ Exp(Uis1);

and
(c) this family satisfies
Na(t) ) Nq(t) w .
Na(t) — e2'W, = Z(l — Vt(Z’])) — Z e 2l V[“’])
j=1 j=1

(16)

No(t)
Z Ot Dy )V}O,j).

where the equality holds for all t > 0 almost surely.

The proof of this theorem is in Section 7. Roughly speaking, the
intuition behind this representation theorem is that the limiting
random variable can be obtained by stopping the process at
a fixed time t and gathering the “contributions” from existing
lineages to the limiting random variable. The jth type-i lineage is
marked by superscript (i, j). k represents the mutation from type-
k to type-(k+1) and t represents the time correlation between the
“contribution” from lineages and the total population. The first
consequence of Theorem 5.1 is that we can also represent W, by
the independent copies of waiting times Ty, T; and exponential
random variable V. Ty represents the waiting time for a single
type-0 to mutate to type-1. Similarly, T; represents the waiting
time for a single type-1 to mutate to type-2.

Corollary 5.2 (Representation of W,). There exists a family of

independent random variables ‘{Té’-), TY), v0) j=1,2,..., N}such
that for all j, Té’) ~ Exp(uy), Tl(’) ~ Exp(uy), V& ~ Exp(1) and

N
0 rly g
W, = Ze’*ﬂo YW g,
=1

(17)

Proof. Evaluating the result from Theorem 5.1(c) at t = 0 gives
us the equality (17). O

Corollary 5.3. The Laplace transform of W, is given by

Ly, (0) = |: (Ul 2F (1 o P 9)
N
—Uup 2F] (l )\2 9))] .

Proof. To derive the Laplace transform, we use the reéaresenta—
tion of W, to write W, = Z XU) where X(’ e~ 2(Tp J4rd )VU)

1_‘_7
up —up

142

e (18)
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Let To ~ Exp(u1), Ty ~ Exp(uy), V ~ Exp(1). Note that Xg) are in-

dependent and identically distributed with common distribution
X, = e~ *2(lo+tTy [t follows that

n
N () ()
E (e*e 2=1% ) =E|[[e™
j=1
n

[1e (e‘exg)) = (L))"

j=1

‘CWZ (9)

Hence, our goal becomes calculating Lx,(@). Our first step is to
compute the probability density of Ty + T;. We note that they
are independent exponentially distributed random variables with
parameters uq, U, respectively. Therefore we write

X
Pro+1; (X) =/ ure 1y 2V dy =
0

It follows that the joint probability density of To + T; and V is

uqy (e71¥ — e*”zx)

Uy — Uy

Pro+y,v(%,y) = ;2 (e7!1¥ — e7"2X)e™Y. Next we compute
Lx,(68) = E(e ™27
= / / ge—raxy Uil (e—u1x _ e—ng)e—de dy
Uy — Uy
= uF1 (1, —; 1 —I— —; —0
u1—u2<121( /\2 )»2 )
—UxoF |1, —; 1 + —;—0])). O
22k ( W )\2 ))

The second consequence of Theorem 5.1 is that the long time
accuracy of the type-2 approximation e*2fW, follows a central-
limit-type theorem.

Corollary 5.4 (Type-2 Long Time Error). Ast — oo,
Ny(t) — e’2'W, g

N,(t)

where N(0, 1) is a standard Gaussian random variable with mean 0
and variance 1.

= N0, 1), (19)

Proof. Ast — oo, both type-0 population and type-1 population
go extinct because they do not divide and can only mutate to
further types. This means that

N.
Nz(t) — C)LZ[WZ 2()

Na(t)

Due to Anscombe’s generalization of the central limit theorem
(see related descriptions in Athreya and Ney (2004)) , the weak
convergence to a normal distribution holds and its variance is
given by the variance of 1 —V, ) whichis 1. O

: (2.)
= lim —— 1-V, )
t—00 /Nz(t) ; ¢

t—o00

The third consequence of Theorem 5.1 is that we can estimate
the short time behavior of the difference N,(t) — e*2!W, near
t=0.

Corollary 5.5 (Type-2 Short Time Error). In the limit of Ayt — O,
we have

No(t) . .
Ot +140(t) Ze**ﬂn i +3 *AZ(Téf’z””fi”)Vt(o,j).
j=1
(20)
Proof. In Theorem 5.1, the right hand side of equality (16)

consists of three sums. As At — 0, the process approaches
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its initial condition. Before the first type-2 is produced, we can
neglect the term Z’Eg”(l - Vt(z‘])). Then it follows that

Mat) (109109 (0,
MW, = ZeWTH Vi a9 4 Z - 2 o thi )Vr(o’n

(as At — O).

Writing out the Taylor expansion of the left hand side gives us
the desired equality. O

Plugging (20) into the right hand side of equality (16) gives
us the following short time error estimations of the two scaling
functions. In the sense that A,t — 0 (not necessarily before the
production of the first type-2 crypt), we have

Na(t)

No() = oW ~ 3 (1= V) = Giat + 15, 1)
j=1
Na(t) ‘

No(t) = oWz ~ Y (1= V). (22)

j=1

This indicates that, if we use the exponential as the scaling
function, the difference (21) has a nonzero expected value. On
the other hand, if we add the lower order terms, the difference
(22) has a zero expected value and the variance is also lower. This
provides insight into the observation that the scaling function
f1(t) = e*' — X, — 1 makes a better approximation than the
scaling function f,o(t) = €2t at short times. When solely using the
exponential scaling function, the contribution made from type-0
and type-1 lineages to the limiting random variable is ignored,
especially in the short-time regime when type-3 lineages are not
dominating the whole population.

5.2. Error of type-3 approximations

In this section, we measure the difference N;(t) — e*3!Ws,
i.e the distance between type-3 population and its large time
approximation. The methodology we use is same as what we have
used to measure the error of type-2 approximations. We recall
that the transition scheme from type-0 to type-3 is :

cdivide at rate A3
Ns(t) ,

odivide at rate A,
Ny(t)

uz

No(t) — Ny(t) -2

us
RN
where we have used the “neglecting outflows” assumption for
type-3. In Theorem 3.3 we have shown that e™*3¢Ns(t) = Ws.

Before presenting a decomposition of N3(t) — e*3!Ws, we will
first state basic properties of a two-type birth process, which
will be needed for the analysis of the behavior of the type-3
population in our model. We consider a two-type supercritical
birth process with transition scheme

odivide at rate A3
Ms(t)

odivide at rate X,
Ms(t)

u
—

It is well known that there exists a limiting random variable U
such that e *3!M;(t) — U almost surely (Durrett and Moseley,
2010). Adapting the results from Antal and Krapivsky (2011),
we obtain the Laplace transform of U, denoted by Ly(6) (see
Appendix C.). An explicit formula of £y(6) is presented in
Eq. (C.8).

We present a decomposition of N5(t) — e*3¢ in the following
theorem:

Theorem 5.6. There exists a family of random variables {Vc(’), j=
1,2, Ns(OUU j= 1,2, Nt i = 0,1, 230(T{) . j =
1,2,.. ()l_Olk_Ol}suchthat
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(a) when conditioned on Ng(t), N1(t), Na(t), N3(t), the random
variables in the family are independent; )

(b) when conditioned on No(t), Ny(t), No(t), N3(t), (V!} are
distributed as V ~ Exp(1), {U('j)} are distributed as U with
known Laplace transform (C.8), and {Tk”)} are distributed as
Tie ~ Exp(ug1); and

(c) this family satisfies

N3(t)

. (1))
Na(t) — €3 W5 = > (1 - V") — Z U — Z e e U

j=1 j=1
No(t) i .

_ (0.j)_, +(0.)) .

_ E e )‘3(T0.r T )Ut(o'j),

j=1

(1.J)

(23)
where the equality holds for all t > 0 almost surely.

Decomposition (23) provides insight into the accuracy of ap-
proximation N3(t) & e*3'Ws. The right hand side of (23) can be
demarcated in the following way:

N3(t)

~
=~

Na(t)

_ .
>0
j=1 j=1
(A) (B)
Ny(1) No(t)
(0.j) , (0. .
_Zewﬁtf U Z (i) s

(9]
In the above expression, only (A) has a zero mean value. (B) and
C have non-positive first moments at any time ¢t > 0. The scaling
function f3; is designed to cancel the first moment of (B) and
(C). We have some knowledge for the behaviors of (A), (B) and
(C) in the long-time limit. No(t) and Nq(t) are expected to go
extinct for sufficient large t. Therefore, the term (C) is expected to
vanish. Due to Anscombe’s generalized central limit theorem, (A)
and (B), when scaled by /Ns(t) and +/N(t) respectively, behave
like Gaussian distributions as t — o0. Since A3 > A,, the second
moment of (A) + (B) is dominated by the type-3 population and
the first moment is dominated by the type-2 population.
The following corollary gives us a representation of Wj.

Corollary 5.7 (Representation of W3) There exists a family of

independent random variables {T T LU j=1,2,...,N}such

that for all j, T ~ Exp(uy), TU) ~ Exp(uz) U9 are mdependent

and identically dlstrlbuted with Laplace transform (C.8) and
N . .

W3 = Ze*woU HTyo) g, (24)

j=1

Proof. Evaluating the equality in (c) of Theorem 5.6 at t = 0
gives us Eq. (24). O

Corollary 5.8. The Laplace transform of W3 is given by

1l2

Ly (6) = ( / Lo 12
0 Uy — Uy

Proof. Let Tg := T\" ~ Exp(uy), Ty := T\" ~ Exp(u,), U := U

To compute the Laplace transform we use the representatlon
theorem and write W3 = 2_1 X3 , Where {X ,j=1,2,...,N}
is a collection of 1ndependent and identically dlstnbuted random
variables with common distribution X5 := e *3TotTy. Then it

N
(e71* — e’”z")dx> . (25)
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Fig. 6. (A) Comparison of Lw,(0) (Eq. (3)) and £Ly,(6) (Eq. (6)) on the interval [0, 10]. (B) Relative difference of Lw,(0) and Ly,(6) which is defined by
[L£w,(0) — Lv,(0)|/]Lw,(#)I]. (C) Comparison of the numerical probability density functions of W, and V, as well as the simulated histogram of W,.

follows that

1=

L (0) = Ble™) = [ ] £,0(0) = (x(6)".

1

i

Next, we evaluate the Laplace transform of Xs.

Lx,(0) = E (E(exp(—0U exp(—A3(To + T1)))|To + T1))
= E (Ly(0 exp(—Ar3(To + T1))))

o0
_ Uiy _
:/ Ly(fe 3% —=_(e7™¥ —
0 Uy — Uy

e "2%)dx

Finally, the Laplace transform of W5 can be written as

Ly (0) = ( / " Lypeion itz
0

N
(eT"* —e™™X)dx ) . O
Uy — Uy

6. Approximating the limiting random variables

In this Section, we formally derive random variables V;, which
serve as approximations of long-time limiting random variables
W;. The usefulness of random variables V; comes from the fact
that their Laplace transforms are easier to obtain and manipulate
when evaluating expressions for waiting times. To obtain V;,
we use auxiliary processes N;* ; and N;, which approximate the
original processes N;_; and N;. For example, for i = 2, we show
in Section 3 that Nj(t) = u;Nt is a reasonable approximation for
N;(t). Thus, we construct an auxiliary process Ny, in which new
type-2 crypts are produced with rate u,Nj(t). Then, we obtain
V, as the limiting random variable of the process No, namely we
show that e 2N, — V, as t — oo. Similarly, we start with
Ny = e*2tV, as the process that produces the auxiliary type-3
process, N3, and obtain V3 as the limiting random variable of Ng.
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We start by considering Nz(t), the population of type-2 crypts
produced by Ni(t) := u;yNt with mutation rate uy, and its long
time behavior. Recall that type-2 crypts can divide with rate X,.

Theorem 6.1. e *2!Ny(t) — V, as. and in L! with

Nuqu,
2
A5

E[V2] =

and
Nuqu,PolyLog(2, —0)
A

Ly,(0) =E[e?2] = exp ( (26)

We recall that PolyLog(n,z),n € Z,n > 2,z € C represents
the polylogarithm function (DLMF, 2022, 25.12.10).

Ny(t)

o — V2 as.and in L! for all f5(t) € F.

Corollary 6.2.

We recall that F, =
0}.

To measure the distance between W, and V,, we present
Lw,(0), Lv,(0) and their relative difference on 6 € [0, 10] in
panels (A) and (B) of Fig. 6. We choose this domain for 6 since the
functions values are negligible when 6 > 10 (panel (A) of Fig. 6).
Furthermore, we numerically compare the density functions of
W, V, and the histogram of e *2!N,(t) at t = 60 obtained from
exact computer simulations of the type-2 process (panel (C) of
Fig. 6). The densities are obtained through a numerical inverse
Laplace transform using the Talbot method (Abate and Whitt,
2006), and are in good agreement.

Next, we discuss the construction of V3. Consider a system
(N3(t), N3(t)) with N>(t) := fo(t)V2, o(t) € F, and N(t) denoting
the number of type-3 crypts. In the process, the type-3 crypts are

{f € CR)NIM; 00 e™*2fo(t) = 1, fo(t) =


https://dlmf.nist.gov/25.12
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Ly, (0) — Lw,(9) ‘

Lw,(6)
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Fig. 7. (A) Comparison of Lw,(#) (Eq. (7)) and £v,(0) (Eq. (B.6)) on the interval [0, 10°]. (B) Relative difference of Lw,;(0) and Ly,(6) which is defined by

[Lw3(6) = Lv;(0)]/1Lw; (0)].

produced at rate usN; (t) and a single type-3 crypt can divide with
rate A3. The following large-time limit holds:

Ns(t)

Theorem 6.3. (%G

— V3 as. and in L' with

Nujupu *
E[Vs] = it / fs)e5%ds,
2 o

and

Ly, (0) =E[e™"] = Ly, (u,. / 02(s)
0

0 + e*is

ds) s
for all fs(t) € F3 = {f € C(R)|lim;_, o, e7"3'f3(t) = 1, f5(t) > 0}.

As we have mentioned in Section 3, we employ the scaling
function f,4(t) to compute Ly,(6). In Fig. 7, we numerically com-
pare this Laplace transform with Ly;(6) on 6 € [0, 10°]. This
domain of 0 results from evaluating P(t4 < t), the distribution
function of the waiting time to the first type-4 crypt, in the
lifespan t € [0, 80]. We recall that when approximating P(t4 < t),
we need to evaluate Ly,(0) at 0(t) = uy fotfg,(s)ds. Plugging in the
parameters in our model results in (t) € [0, 10°] for t € [0, 80].
Both panels (A) and (B) in Fig. 7 show that £y, (6) and Ly,(0) are
in a good agreement on the domain of interest.

The previous discussions imply that there is a recursive rela-
tionship involved in the sequence of (N ;, N;) approximations.
After obtaining the limiting random variable V; in (Ni*_l,ﬂli),
Nj(t) = fi(t)V; can be employed when moving to the next two-
type process (Nj(t), Niﬂ(t)). This recursion allows us to present
an iterative method for computing the Laplace transforms of
random variables V;.

Lemma 6.4. Consider Ni(t), the population of type-i individuals
produced by N} ,(t) = fi_1(t)Vi_; with mutation rate u; > 0. Each

type-i individual can divide with rate A; > 0. Suppose e‘*itﬂli(t) =

V; and fi_;(t)e™* is integrable on [0, co), then
3  0fi_a(s)
W -6V _ ) i
Ly(0) =E[e™] =ry,, (uf/o e ds ).
Proof. We start with a lemma that provides the Laplace trans-
form of Nj(t) conditional on the population of its precursor,
Ni—1(£).
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Lemma 6.5. Let Z;(t) be the number of type-i individuals in a pure-
birth process that starts with Z;(0) = 1 individuals at time t = 0.
Then

E [e‘eN"(t) Ni_q(s),s < t]

= exp (—u,-

where ¢i(6,t) = E [e*GZi(t)].

/ NS — 6 £ — s))ds) , (27)
0

One can prove the above lemma by following the procedure of
Lemma 2 in Durrett and Moseley (2010), replacing the start time
with s = 0.

Now going back to the proof of Lemma 6.4, we consider the
star process approximation
N (t) = fioa(E)Viea.

Applying Lemma 6.5 the 2-type process (N{L(t), Nj(t)) gives
us

~ t
Ele"MO|V,_;] = exp (—ui f fica(s)Via(1 — ¢4(0, ¢ — S))dS> :
0

Replacing 6 with ge it

Ele~* MO,y

t
= exp (—Ui/ fira(s)Viea(1 = gi(e™'6, t — S))d5> ; (28)
0

then for each subclone of Nj, by Eq. (14), we have
Zi(t — s)e =) 5 Exponential(1) a.s.
Thus, it follows that

—Ajt

Zi(t — s)e~"* — Exponential(e**).

Considering the following limit involving terms on the right hand
side of (28), we have

o0
lim 1— gi(6e ™t —5)=1— / e~ exp(—xe)dx
0

t—o00

o0
= f (1 — e %%)es exp(—xe**)dx
0
_ 0
SO teks
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Note that as t — oo, the left hand side of (28) yields

lim E[e~%¢ "NOy,_,] = E[ lim e~ 0Ny ]

t—o00

= E[e*”wvm],

as switching the limit and the integration is allowed by the
dominated convergence theorem. Thus, we can write

—ov: 0fi—1(s)
0Vi|y/. — —u:V: !
Ele |V,,1]_exp< u,VH/O 7 ekisds .

Taking expectation on both sides gives

Ele ?"1] = cy,_, <ui 0fi1(5) ds) . O
0

0 + ekis
In this section, we prove Theorems 3.1, 3.3, 5.1, 5.6, 6.1, 6.3
and Corollaries 3.2, 3.4, 6.2.

7. Proofs

Proof of Theorem 3.1. By Lemma 4.1, consider

o0
I =/ u;N1(s)e™2%ds.
0

E[l,] =E [/ uze“SN](s)ds]
0

[o,]
(By Tonelli’s theorem) = / W E[N;(s)]e *2°ds
0

Since

o0
< / Usu;Nse*25ds
0

o0
:Nuluz/. se™*25ds
0

Nuqu,
=72
)\‘2

there exists W s.t.

e 2Ny (t) > W, a.s. ast — oo.

Next, we show uniform integrability so that E[W,] is well-defined.

We prove this for N1, N, and N3 in Lemma A.1. Since L' conver-
gence is guaranteed, E[W,] = E[,], so that

E[W,] = /oo U, E[N1(s)]e *25ds
0

o0
/ u;N(1 — e7H15)e™*25ds
0

Nll1ll2
Aa(ha +up)
The Laplace transform of Wj is derived in Corollary 5.3.

Proof of Corollary 3.2. The proof follows directly from Theo-
rem 3.1. Observe that

Voélw: lim e 2N, (w, t) = Wh(w)},
—00
we have
Ny(w, t) Ny(w, t)

. _ —pt .
A Thny e T ROMD e

Then since f, € F, for t > 0 sufficiently large, we have f>(t) > 0
and e*2!/f,(t) < M. Thus, without loss of generality, we can

= Vz(a)).
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assume that f5(t) > 0 for t > 0. In this case, we have

SUpE (Nz(t)>2 < (Sup (ekzt/fz(t))>2 supE I:(Nz(t)eszt)z] .
t f(t) RN t

By Lemma A.1 sup, E (Nz(t)e*"zf)2 is bounded. Therefore the

expression on the left hand side is bounded. Hence
{Nz(t)/fz ), t > 0} is square integrable and the convergence is
in L1,

Proof of Theorem 3.3. By Lemmas 4.1 and A.1, we need to verify
that I3 has finite expectation,

o0
E[l5] = f usE[Ny(s)]e *3%ds
0
/oou3 u1u2N( Aas
0 )»%
NU1U2U3 _ _
( (Ay—A3)s __ Aose A3S )»33)d$

NU1U2L[3
= — <<
(A3 — A2)A3

<

— Aas — 1)e™*3%ds

And the expected value of W3 is given by the expected value of
I,

E[W3] = E[I5]

= / usE[Ny(s)]e *3ds
0

o0 u1(e*2¥ — 1) + Ay(e™¥15 — 1
- / usNuy il ) ¥ Aol ) gisgs
0 Aa(Aa + 1)
_ Nuquyus
(A3 — A2)As(As +uyg)

The Laplace transform of Wjs is derived in Corollary 5.8.

Proof of Corollary 3.4. The outline of this proof is similar to the
proof of Corollary 3.2. Almost sure convergence holds since for
fixed w,

lim N3/f5(t) = lim e™3'f5(t) lim N3/f3(t) = lim e 3'Nj.

t—o0 t—00 t—o00 t—o00

Convergence in L! is a consequence of the square integrability of

{Ns3(t)/f5(t), t = 0O}

Proof of Theorem 5.1. Before proving the theorem, we first
introduce some new notations. Let N("bc)(t) be the population
of type-i crypts in the multi-type branching process

odivide at rate A,
Ny(t) ,

where initially (Np(0), N1(0), N2(0)) = (a, b, c). We observe that
the N;(t) in the model (without the superscript) can be written as
Ni(t) = N,.(N ’0'0)(t). Then we define the type-2 lineage which was

initiated by a single type-i crypt as:

No(t) — Ny(t) -2

Zpo(t) = Nél’o’o)(f) t >0,
Zio(t) = N&e) >0,
Zo(t) = N>"V(e) ¢ > 0.

For our convenience, we allow these lineages to be defined on the
negative time axis, i.e. Z;»(t) = 0, Vt < 0. Then {Z,,(t), t > 0}
is a supercritical pure birth process with birth rate A,. Thus it
follows that

e 27, 5(t) = V ~ Exp(1).
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The other type-2 lineages can be represented by the following
lemma.
Lemma 7.1. There exist Ty ~ Exp(u1) and T; ~ Exp(u;) such that

(a) To, Ty and {Z, »(t)} are independent;
(b) Z15(t) = Z25(t — T1), Zoa(t) = Zp5(t — To — Tq); and
(c) the following equations hold almost surely

lim e™*2Z; 5(t) = e™*2" lim e *2("T)z, »(t — T))
t—o00 t—o00

—e 2Ny, (29)
lim e~*2'Zy 5(t) = e 270411 [im e=*2(t=To=T1)
t—o00 t—00
X Zyo(t —To —Ty)
= e P2(To+Ty | (30)

where V ~ Exp(1).

Proof. We use the minimal process to construct our multi-type
branching process. For a detailed description of the construction
of minimal process, please refer to Chapter V, Section 7 of Athreya
and Ney (2004). In our model, a type-1 crypt can only mutate into
a type-2 crypt. Thus, after the process Z; 5(t) = Néo‘l‘o)(t) incurs
its first mutation after an exponentially distributed waiting time
To, it corresponds to Z, 5(t) = Ngo‘o’”(t). This enables us to write

Zy5(t)

Similarly, for Zp ,(t), we need one mutation for this process to
become Z; »(t). Thus it follows that Zy(t) = Zy2(t — To — T1),
where T; ~ Exp(u,) is the waiting time of the mutation from
type-1 to type-2. For (c), note that P(T; < 00) = 1,P(T1 + T2 <
o0) = 1. Thus t — T{ — oo almost surely and t — Tp — T; — oo
almost surely. Therefore (29) and (30) holds almost surely. O

=7 (t — Ty).

Now we return to the proof of Theorem 5.1.

Proof. Since e *2!N,(t) — W2 almost surely, there exists A such
that limy_, o0 €2 No(t, @) = Ws(w) for all » € A and P(A) = 1.
This limit remains if we shift the time by a finite value, thus

lim e 2N, (t + 5, ) = Wa(w) (31)
§—>00
lim e 2°Ny(t +5, ) = €2 Ws(w), Yo € A. (32)
5—>00

On the other hand, given the information at time t, i.e. (No(t),
N1(t), Na(t)), we can represent the population N,(t + s) by the
additive property of a multi-type branching process (Athreya and

Ney, 2004),

(No(t),N1(t),Na(t))
— N2 0 1 2 (S)
Na(t) No(t)
()
=z ZZo 2(s
j=1

in which {Zi(”z),t(s), i =0, 1, 2}, when conditioned on Ny(t), N{(t),
No(t) are independent copies of lineages Z; »(s),i = 0, 1, 2. Then
we can use another approach to compute the left hand side
of Eq. (32). For fixed t, we multiply both sides of the above
decomposition by e*2% and take limit as s — oo.

+sz

Nz(f + S)
Nq(1)

s)+ ZZ%IZt(S

Na(t)
Nt +5) = | 3 20 (9)
j=1

No(t)

+Zzgzr(5
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N(t) Nq(t)
(by (29) and (30)) 25 Zv(” + Ze‘*ﬂn vt

No(f)

where (V{7,i = 0,1,2) U{T{Y.i = 0,1,k = 0,1}, when
conditioned on No(t), N1(t), No(t) is a family of independent ran-
dom variables in which {Vt(i’j),i 0, 1,2} are distributed as
V ~ Exp(1), {TO") i = 0,1} are distributed as T, ~ Exp(u;)
and {T. 1'3),1 = 0, 1} are distributed as Ty ~ Exp(u;). Since the
convergence holds almost surely, for each t we can find A; such

that P(A;) = 1 and

N (t.0) Ni(t.0) )
lim e 25Ny (t + 5, @) Z V(ZJ Z ef'\ZTlf (“’)V(”( )
5—>00
No(t.)
(OJ) (0.)
+ esz (T @115 (w))v(o D)
j=1

for all w € A;. Now let {t;; k = 1,2,. ..} be the set of non-
negative rationals and define A; = AN (N2, A ). Then it follows
that P(A;) = 1 and on A; we have

Ny(t,w) Nq(t,w)
er2t W Z V(Zj) () + Z e*AZT” (11)( )
No(t.0)
_ (0.4) .
n U YAOy (“’))Vfo’”(w)
j=1

for all non-negative rational times. Finally, by the right-continuity
of the process, for all t > 0 the equality holds almost surely. This
implies

Ny(1)

(

j=1

11)

No(t) — e*2tw, =

Z“
2(: o (160417, ”)V(on

where the equality holds for all t > 0 almost surely. O

Proof of Theorem 5.6. The outline of proving this theorem
is similar to the proof of Theorem 5.1. Let Nl.(a’b'c‘d)(t) be the
population of type-i (i < 3) crypts in the multi-type branching

process

odivide at rate A, odivide at rate X3

Ny(t) Ns(t) ,

where initially (Ng(0), N1(0), N2(0), N3(0)) = (a, b, c, d). By using
this notation, N;(t) can be written as Nj(t) = N}N’O’O’O)(t). To
describe the type-3 population initiated by a single type-i crypt,
we define Z;3(t) to be the type-3 lineage started with a type-i
crypt. Note that these lineages are allowed to be defined on the
negative time axis, i.e. Zj3(t) = 0, Vt < 0. The behavior of each
type-3 lineage is clear: {Z3 5(t), t > 0} is a supercritical pure birth
process with birth rate As; Z, 3(t) is the second type in a two-type
process which we discuss in Appendix C; Z; 3(t) and Z 3(t) can be
treated as Z, 3(t) after one jump or two jumps respectively. Thus,
it follows that there exist T ~ Exp(ui) and T; ~ Exp(u;) such
that

e Z35(t) =V
e_)‘3t22,3(t) =U

u

No(t) — Ny(t) -2 =N

~ Exp(1)
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e‘*3[22,3(t) = e_)‘ﬂl U

737, 5(t) = ey,

In the above equations, U has an explicit Laplace transform (C.8).
Now we go back to the proof for Theorem 5.6.

Proof. Since e *3¢N5(t) — W3 almost surely, lim,_, o, e *3*N3(t +
s) = e*!'W;s for a fixed t. Instead of taking the limit as t — oo
directly, given (Ng(t), N1(t), Nx(t), N3(t)), we can represent the
population N3(t + s) by the additive property of a multi-type
branching process:

Na(t +5) = NOMOMON50)
N3 (1) Na(t)
=27 Z 23.405)
:1 :
Ny ( No(t)

+sz ZZSLI

in which {ZU) (8),1 0, 1, 2, 3}, when conditioned on Ny(t),
Ni(t), Nx(t), N3( ) are independent copies of type-3 lineages
Zi3(s),i =0, 1, 2, 3. Multiplying both sides of the above decom-
position by e~*3% and taking limit as s — oo gives us

N3(t) N(t)

Z vO + Z Ul 4 Zefwlf u'?
+l§?e7“ (6" + T(OJ))Ut(O’j),

RETVY:

where VI, U™, T,E"t“, when conditioned on Ny(t), N1(t), No(t) are
independent copies with known Laplace transforms. Finally, by
the right-continuity of the process, we are able to find a measure-
1 set in the sample space such that the equality holds almost
surely forallt > 0. O

Proof of Theorem 6.1. By Lemmas 4.1 and A.2, we need to
verify that I3 has finite expectation. We note Lemma 4.1 still holds
true if the initial type Ny(t) is replaced by Nj(t), a non-negative
right continuous process with E[N;(t)] < oo. In this case, I3 is
deterministic and has a finite expected value

Nuﬂ,lz
2
)\2

o0
E]1=1 = / Upu;Nse *25ds = < 00
0

By Lemma 4.1, we must have e *2(Ny(t) =3 V,. Next, we show

uniform integrability which guarantees L' convergence. It is

shown in Lemma A.2 that all “tilde” processes in this paper are
~ 1

uniform integrable. This implies e~*2!N,(t) L V, and E[V,] =

E[I;] = M2 Finally, to compute the Laplace transform of V,,

we plug fo(t ) = e*2! into the formula in 6.4.

Proof of Corollary 6.2. The convergence directly follows Theo-
rem 6.1 by the fact that for fixed

w € {o: lim e 2Ny (w, t) = Va(w)},
—00

No(w, t No(w, t
im No(w, 1) _ = lim e *2'f(t) li ﬂ = Vy(w).
t—00 f2(t) t—00 [*)OO fz(t)
Similar to the proof of Corollary 3.2, Lemma A.2 and that fact f, €

F, together imply the square integrability of {Nz(t)/fz(t), t > 0}.
Thus the convergence is in L.
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Proof of Theorem 6.3. Consider a system with N;(t) := f>(t)V,
and let N3(t) denote the number of type-3 crypts in this system.
In the beginning we compute

E[1§]:f usE[N;(s)]le **°ds
0

o0
N
f ugu”‘j fs)eds

=N”1”2“3/ Fals)e3%ds.

By observing that
fo(s)e™?ss

JRrrry =f(s)e™* > 1 < o0,

we see that the improper integral f0°° f2(s)e™*3%ds converges. It
follows that E[I;] < oo. Then by Lemmas 4.1 and A.2, we see
that there exists a random variable V3 such that e*“tﬂl‘—.;(t) — Vs
as.and in L1,

Next, we have

Voe{o: lim e 3 Ns(w, t) = V(o))
Ns(w, N;
Jim }Z(E)r)t) = Jlim ¢”(0) lim f?(o)t) = V()

Lemma 6.4 approximates the Laplace transform of V5. Here
we note that changing the scaling function f, does not change
the limiting random variable V3. However, the approximation in
Lemma 6.4 is made using f,. Hence f, changes the approximation
of the Laplace transform of V3.
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Appendix A. Auxiliary lemmas

Lemma A.1. Fori <3, sup, E [(e *‘N(t))*] < oo.

Proof. By Lemma 5 in Durrett and Moseley (2010), we know
inductively that if sup, E[e’Nj(t)]> < oo and A; < Aiq holds,
then sup,(e *+1N;;1)?> < oo. In this case, since 0 = Ay = Ay <
Ay < Az, we only need to show that

sup E(No(t))? < oo and, sup E(N;(t))* < oo.
t t

Note that by our transition scheme, one can have
No(t) + Nq(t) < N.

Therefore

max (sup NZ(t), sup Nf(t)) <N?’<o00. O
t t

Lemma A.2. Forie {2,3}, sup,E [(e*“fﬂl,-(t))z] < o0.



R. Zhang, O.A. Ukogu and I. Bozic

Proof. Fori = 2, recall that Nz(t) is the second type in a two-type
branching process where the first type is Nj(t) = u;Nt. And N,(t)
is produced at rate u;N{(t). By manipulating the master equation
of this two—ty[pe process, we obtain the following differential

equation of E Nz(t)z],

dE [Nz(t)z]

m = 20K [Nz(t)z] + (A2 + 2uus NEE[N(£)] + upu Nt

subject to E [NZ(O)Z] = 0. The solution is

[Nz(t) ] pPhat /Otezxzs

X ((Az + 2u2u1Ns)E[N2(s)] + uzule) ds.

Note that
Nulllz( L Aot — 1) uu1N )L t
E[No(t)] = < 2
A3 A3
Thus,
t 2,202
[Nz(t)] zxzr/ <2”2”21N se25 4 “1“2Ne—kzs
0 }"2 A2

+ uzulee’zx”) ds

_ oot <2u§qu2 1—e 2! (At + 1) N UiuN 1 —e~%2t

A3 ¥ A2 A2
4)3
It follows that
E[(e‘*zfﬁz(t))z] < 2N Nty
bE 23 a2

Since the right hand side is not time-dependent, we get sup, E

[(e*“tﬁz(t))z] < .

the master equation we get the following differential equation:

For i = 3, N5(t) is produced at rate usN;(t) = uze*2'V,. From Pio(t) =1— Ly, <u4/ Jaols)
2%}

dE [Ns(eR Vs |
dt
+ (A3 + 2u3e"2'V,)E[N3(0)| V] + uze’2'V,

= 2)3E [N3(f)2|V2]

subject to E [N3(0)2|V2] = 0. The solution is

t
E[Ry(ep1v, ] = 2 / e
0

X ((}\3 + ZU3€A25V2)E[N3(S)|V2] + U3€)L25V2> ds.

Note that
N u V u V
E[N3(0)[Va] = —2—(eh3t — g2l) < 22 ghat
)»3 — )»2 )\.3 — )»2
Thus, we have
t 2y/2
E [N3(t)2|vz] - ezxgt/ <ﬂe—0~3—k2)s n AsusVy
B 0 )“3 - )‘-2 )\3 — )\,2
+u3e’(2*3’k2’5V2> ds
< 23t ( 2u3V;3 AsuzVy n usVy ) .
B (A3 — 222 | As(hs — ) (2h3 — Ap)
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By Lemma 6.4, one can compute the moments of V, from its
Laplace transform. Then we get

Nuquy(2Nuquy + A2 )
)\,4

Nuqu,
2
A5

E[V,] = , E[Vi]=

Hence, we conclude that sup, E [(e‘*3‘N3(t))2] <oo. O
Appendix B. Closed form formulas of analytic distributions

In the main text, we have omitted a few cumbersome for-
mulas to increase readability. Here we present their closed form
expressions. We begin with the analytic probability distribution
functions of z4:

pao(t) =1— Ly, <u4/ fao(S)dS> =1-_Ly, <%(ek3t - 1)) ,
0 3

(B.1)
t
pai(t) =1— Ly, <U4/ f31(5)d5> (B.2)
0
1 22
=1-¢ —(eMt—1)— 22—t
V3 <u4 (A3(e ) 5
VESE BN A2
21— =2 -t B.3
Az(kz(e ) > ) (B.3)
where
o0
_ f(s)0
LVg(G) = £V2 <U3 A 0+ ehss ds (B4)
=ex Nurty PolyLog | 2, —u !
- p )\'g y g ) 3 A,3 — )\'2
A2 A2
0,F(1— —=,1;2——; -0 B.5
x 0F( s s ) (B.5)
PolyLog(2, —0) 1
—Ap———— — —log(1+6 . B.6
= 1 log(1+0) (B6)
The two results of skipping type-4 are
X1 —p3~"Gs, t))ds) (B.7)
A A
=1—2Ly, | ——— | —us + A3 2F(1,
Vs <A2(u4—k3)< 4+ A3 2Fq( 2 A
-
41, T (B8)
Uy
Ay A A
+e*(uy — A3 oFi(1, 22, *2 +1,1- i)))) ,
)\3 Uy
(B.9)
t
pit) =1- Ly, <u4 / Fa(s)(1 = pg~Gs, r))d> (B.10)
0
=1-1y, (u4 (L(;;’(r) — 2l (e) — L(C“)(t))) , (B.11)
where
Pis ) = !

1+ u, 20 Aa([ s)—

PolyLog(2, —6)
Ly,(0) = exp (Nuluz)\iz s
2

t
) 1
10 = / e25(1 = pi (s, £))ds
0

" ha(us — 23)
A Ug — A ;s
X < Ug + A3 2F1(1 i i+] 73€_A3t)
Uy
)\. A A
+e*2(uy — A3 2F1(1, *2 24— 3))>,
)» Uy
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19() = /rs(] — 3 4(s, t))ds
tzo
2
7A3t log(2 A3 ) + PolyLog(2, M) -
A3(hs — ug)

A
PolyLog(2, 1 — i)

Gy = /(1 pa~4(s, t))ds

_ log(ug(e?s' — 1)+ A3) —
- A3 — Uy

log(A3) — ugt

For waiting time distributions of the first type-5 crypt, our es-
timations are p$(t) and p*(t). p§}(t) can be expressed explicitly

pi(t) =1— Ly, (U4/ f(s)(1 = pg (s, t))ds) (B.12)

=1- 1y, (u4 (Lf;(t) —al

—(h3 — CL(E) + (C — 1)L<C5>(t))) , (B.13)

where
t

19(0) = / &35(1 — ptS(s, D)ds
0

Us

~ 2a(hs —us)?
+13 log(Ase3') — A3 log(As + us(e*' — 1)),

t
L) = / e25(1 — pg (s, £))ds =
0

()\.3 — Us + eht (—)»3 + Us

A
X < Us + A3 2F](1 )\

+€*2(us — A3 ZFl(]

L;S)(t) = /[s(l — pi3(s, t))ds
tzo
2
—A3tlog(

%) + PolyLog(2, PolyLog(2, 1 — —)

—(A3—uy)e” A3t )
Ugq

Az(As — ug)

(t)—f(l— 52 (s, t))ds

_ log(us(e’' — 1)+ A3) — log(hs) — ust
- }\.3 — Uy ’

2
}‘3

C:=—=.
3

Define

t
I(f):/(Azs has—=1) |1
0

3¢ A3(t—s)
23+us(e*3(—5)

ugus(rs — us + 3 (us — A3 + A3 log( -
— 1+
(A3 —us A3

))))
ds.

(B.14)

Then we can have

Py () == 1= Ly, (u3l(t)).

Unfortunately, we cannot provide an explicit solution to the inte-
gral I(t). Nevertheless, we have computed this value numerically.
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Appendix C. Exact solution of a supercritical two-type pure
birth model and its consequences

To measure the distance between N3 and its approximations,
it is important to understand the two-type system initiated by
a single type-2 crypt. In this section, we consider the branching
process generated by the following transition scheme

odivide at rate A, us
Mz(t) —>

odivide at rate A3
Ms(t)

subject to the initial condition (M,(0), M3(0)) = (1, 0). To for-
mulate the backward Kolmogorov equations, we define the joint
probability generating functions as

Gi(x, y, t) 1= ExMyMs0)(M,(0), M3(0)) =
Ga(x, y, t) := E(xM0yMs0)(M,(0), M3(0)) =

(1,0)),
(0, 1)).

The corresponding system of ordinary differential equations with
respect to variable t is

d

acl = 22G% — (ha + u3)Gy + 3Gy, Gi(x,y,t =0) =x,
d
acz = A3G3 — 3Gy, Gyx,y,t=0)=y.

We first rescale the time by A,. Let t(s) = i and gi(x,y,s) =
Gi(x, y, t(s)). Then under the new variables, the equations become

d

38 =g} — (14 v)g1 + vg. gsix,y,s=0)=x,  (C1)
d

s = 11285 — 14282, &x,y,s=0)=y, (C2)
where v = ;—; Uy = ;—; The solution of the second equation is
found to be

y
&(x,y,8) =

(1—y)eras 4y’

The solution to the first equation has a rather complex form.
Similar equations have been previously considered (Kessler and
Levine, 2013, 2015). The most general model with death rates is
solved by Antal and Krapivsky (AK) (Antal and Krapivsky, 2011).
We adapt AK’s solution and take into account that the death rates
are zero in our model. AK’s solution to (C.1) reads

gix,y,s)=1+ ? + %W(G(x, 20(0)), z1(y, 5)), (C.3)
2 2

where

W(C.7) = Z°F3(z) + C(1 — ¢)Fy(z) + Czp4(z)’

27 1F1(z) + CFy(2)
1 7 _i,
z21(y,8) = [1———|e *7,

c—1(a—b(x — 1)) Fi(zo) + zoF3(20)
(b — b(x — 1))Fx(20) — zoFa(20)
1
2(y)=1- mv
Fi(z) :== »Fi(a, b; ¢; 2),

Ci(x, 20) =2,

Fy(z) :== 2Fi(—a, —=b; 2 — c; 2),

ab
F3(Z) = ?2F1(1 +a,1+b;1+4c; Z),
ab
2 i
with constants

Fy(z) = 2Fi(1—a,1—-b;3 —c;2),
c

u A A u
a=Bp=2 g2t

A3 A3 A3
We are interested in the probability generating function of the
second type G(y, t) := EyM(O|M,(0) = 1, M5(0) = 0) on the
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original time scale. We find that
Gy, t) = limg(x, y, s(t))

=142 + 2W(C(x, 200)), 21y, 5(1))),  s(£) = Aot
Ay

As x — 1, we observe that

c—10F1(20) + 2oF3(20)
C](X, Zo) — C(Z()) =2z, l—bFz(ZO) — ZOF4(ZO) .

Next, the time rescaling only affects z;(y, s). Hence we define
z(y,t) = z1(y,s(t)) = [1 — ﬂfy] e~?3t, Finally G(y, t) can be
written as

us A3
Gy, ) =14 = + ~¥(C(2y). 2(y. 1)). (C5)
2 2

C.1. The probability of having no type-3 crypts at fixed time

Here we investigate the probability of having no type-3 at time
t, which we denoted as po(t) := P(Ms(t) = 0). By the definition of
the generating function po(t) = lim,_,o G(0, t). We observe that
asy — 0, zp — 0. First, we compute lim,,_,o C(zp). We recall that
the definition of hypergeometric function gives us that

ab_ a(a+ 1)b(b+ 1)

Fi(a,b;c:z)=1+—z 2240(z%), asz— 0.
2Fi( ) +c + c+1)2! +0(z”) -

Therefore as zg — 0

B ab aa+1)b(b+1) ,
Fi(zo) =1+ PR + Wzo
ab a(l —a)b(1 —b)
R@)=1+3— a0+ 5 55- C)Z!zé +0(z5),
_ab  ala+ 1)b(b+ 1)
F3(z0) = = + WZO
a(a + 1)(a+ 2)b(b + 1)(b + 2)

c(c+ 1)c +2)2!

+ 0(z3).

z2t +0(z3),

__ab  a(—a)b(1-b)
Fa(z0) = ¢ + 2=0G =0
a(1 — a)2 — a)b(1 — b)2 — b) , 3
2-c)3—c)4—1c)2! zy + 0(zp),

aFy(z 2oF5(z a
Clao) = 25! 1(20) + 20F3(20) _ a5
bFy(z0) — zoF4(z0) b
Note that z(y, t) = zo(y)e 3L, As zg — 0, we have
(1 —¢)+ 0(z0)

e—(c—l)kgt + % + O(Zo)

u3(A + us3)
A3(hge~(atuslt 4 yg)’

14 0(z).

W(C(20), 206 "3") =

— —

Thus, we conclude that

u3(Az +u3) 1
Po(f)—l-i‘*— Gy ~ 03 )
Ay Ag(AgeU2tusd y3) 14 7 exp(Aat)

(C.6)
where the approximation is the result of u; < A,.
C.2. The Laplace transform of the limiting scaled type-3 population

We note that there exists a limiting random variable U such
that e *3!M3(t) — U almost surely (Durrett and Moseley, 2010).
To find the Laplace transform of U we consider the Laplace
transform of the scaled population, which is

£5(0.6) =F (e—ee—A3tM3(t)) _ G(e—ee—’m’ 0,
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_ee—)gt

Lety(6,t)=e . We have that

Ly(8) :=E(e"Y) = lim G(y(8, t), t).

t—o00
Here we recall that
A3
Gy, t)=1 i 2W(Clzoy)), 2(y, 1)). (C7)
A2 A

We adapt AK’s solution (see equation (56) in Antal and Krapivsky
(2011)) and take into account that there is no death in our model.
This results in the following Laplace transform

Ly@) =1+ = + w( —7)
A2

where

. asb () [I(=b)7]?
€ = Jim Clab(0, ) = (=1 555 [ @ } :
We note that I'(z) represents the Gamma function. Here the
expression is undefined for &6 = 0 and also involves evaluating
complex numbers in the intermediate steps. These two facts
make it hard to compute its value precisely especially when doing
related numerical integration, which motivates us to do some
transformations and use an alternative expression.

Firstly, we employ the Pfaff transformations (DLMF, 2022, (15.

8.1)):

z
2Fi(a, bi¢;2) = (1 -2y Fi(a, ¢ = bic: ——),
z
=(1=2)"F(c—a,bic; —),
=(1-2) %P F(c—a,c—b;c;z).

The above equations holds if arg(1 — z) < m where arg(z) is
the argument of the complex number z. We note that here in
the limiting process —1/6 is negative and real so the criterion
is satisfied. We transform all the four hypergeometric functions.
The strategy here is to choose the transformation such that the
last argument in the hypergeometric function has the form of %5
and Re(c) > Re(a + b). We find that

z
Fiz)=(1 -2k 1+ac —)
R@)=(1-2f2F(-b. 1 - b2 — ¢ ——),
ab g
F(z) = C(l—z) oFi(14+a,1+a;1+c; _1),
b
Fa(z) = —2 s—-(1=2 LR -b1-bi3—c ).

2— . z—1
It follows that

1 1+6\7"°
Fi(—=)= —— F 1
1( 0) ( 9 > 21((1, +a;c 1+9>
ey
b
F(— 1+6 —b,1—b;2
e 1+9
b
(5
1. ab [1+6\ 1
)= = 1 1 1
3( 9) C( 7 ) (+a +al+c 1+9>
1+0 —1—a
E(T Hs(0),
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1 ab [(1+6\"! 1
Fy(—=) = —_— FF{1-b,1-b;3—c; ——
(=) 2—c< 0 ) “( ¢ 1+9>

b—1
= <10;0> Hy(6).

By plugging them into the ¥(C, z) function, we find

wHO) = w(C*, —%)
(—=1)°H3(0) — C*(a+ b)(1+ 6) Ha(0) — C*(1+ 0)*PHy(6)
(=) 1(1 + 0)Hy() + C*(1 + 0 Ha ()

Secondly, we would like to cancel all the complex parts in the
numerator and the denominator. Let

2
b I(o) [F(—b)] R
I'(a)

T ar@-o
Then ¥* can be rewritten as
_ —H3(8) — d(a+ b)(1+ 6) Hy(6) — d(1+ 6)*PH,(6)
(14 60)H:1(0) + d(1 4 0)°Hz(0)

In the end, the Laplace transform of the limiting random variable
U reads

v (0)

u A
Lu(0) =1+ = + Z2w*0) (C8)
R

which is real and well defined at & = 0.
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