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We study a multi-stage model for the development of colorectal cancer from initially healthy tissue.
The model incorporates a complex sequence of driver gene alterations, some of which result in
immediate growth advantage, while others have initially neutral effects. We derive analytic estimates
for the sizes of premalignant subpopulations, and use these results to compute the waiting times to
premalignant and malignant genotypes. This work contributes to the quantitative understanding of
colorectal tumor evolution and the lifetime risk of colorectal cancer.
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1. Introduction

Cancer is the result of somatic evolution during which cells
ccumulate driver mutations required for malignant transforma-
ion (Vogelstein and Kinzler, 2004; Jones et al., 2008). While some
eukemias and pediatric cancers may be initiated with a single
river mutation, initiation of solid cancers typically requires mul-
iple driver mutations (Vogelstein et al., 2013). Colorectal cancer
CRC) is one of the most common cancers in the United States
Siegel et al., 2021); it has been shown that mutations in three
river genes are sufficient to initiate the development of CRC
Tomasetti et al., 2015; Fearon, 2011; Paterson et al., 2020). Typ-
cally, this involves inactivation of two tumor suppressor genes
nd activation of an oncogene. As inactivation of a tumor suppres-
or gene (TSG) requires inactivation of both alleles, and activation
f an oncogene only requires a mutation in one allele of the
ene (Sherr, 2004), this leads to a total of five genetic alterations
equired for CRC initiation.

Multi-type branching processes, with types corresponding to
enotypes or cell states (Antal and Krapivsky, 2011; Durrett and
oseley, 2010), have emerged as a viable model for studying
ancer evolution. Multiple aspects of cancer evolution have been
odeled, including initiation (Paterson et al., 2020; Meza et al.,
008), progression (Durrett and Moseley, 2010; Bozic et al., 2010;
eiter et al., 2013; Bozic et al., 2019), metastasis (Foo and Leder,

2013; Avanzini and Antal, 2019; Danesh et al., 2012), and resis-
tance to therapy (Komarova and Wodarz, 2005; Komarova, 2006;
Bozic et al., 2013; Bozic and Nowak, 2014; Nicholson and Antal,
2019). Evolutionary dynamics are closely related to the relative
fitness advantages conferred by individual mutations. Durrett
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and Moseley (2010) analyzed a scenario in which the clonal
growth rate strictly increases after each mutation, and computed
distributions for clonal sizes and waiting times. Nicholson and
Antal (2019) studied a general framework wherein wild-type
individuals have the largest fitness (growth rate), which could
be applied to cases involving drug resistance. Random fitness
advantages have also been investigated (Durrett et al., 2010; Foo
et al., 2014).

Recent work (Paterson et al., 2020) studied a branching pro-
cess model for the initiation of colorectal cancer that involves the
three most commonly mutated driver genes in colorectal cancer:
tumor suppressors APC and TP53 and oncogene KRAS. The study
found that, in the majority of cases, the driver mutations accrue in
a specific order, with inactivation of APC followed by activation of
KRAS and inactivation of the TP53 gene. Following Paterson et al.
(2020), we study the mutational pathway to colorectal cancer in
which the genetic alteration order is given by APC, KRAS and TP53.
We model the dynamics using a multi-type branching process
that starts from N wild-type crypts, small tubular assemblies
of cells that line the intestinal epithelium (Vermeulen et al.,
2013b; Barker et al., 2009). As the process evolves, individual
rypts stochastically obtain driver mutations, with mutation rates
etermined by the genotype of the crypt and the driver gene in
uestion. All mutants are initially derived from a large popula-
ion of non-dividing wild-type crypts through genetic alterations
hich may have neutral or advantageous effects on the growth
ates of the resulting subpopulations.

In this work, we precisely estimate the time it takes for each
ltered genotype to occur, and compare the analytic results for
he waiting time distributions to exact computer simulations of
he process. In addition to studying the case where subsequent
ypes are not strictly increasing in fitness, and presenting multi-
le approximations that can be useful for the study of waiting
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Pathway to CRC initiation.
Step Rate Biological process

N0 → N1 u1 Inactivation of 1st copy of APC
N1 → N2 u2 Inactivation of 2nd copy of APC
N2 → N3 u3 Activation of KRAS
N3 → N4 u4 Inactivation of 1st copy of TP53
N4 → N5 u5 Inactivation of 2nd copy of TP53

times, our work also differs from previous works in another
significant way. In particular, related previous works (Durrett
and Moseley, 2010; Cheek and Antal, 2018) consider the case
where the model is initiated by an advantageous population that
grows exponentially. In contrast, our model’s initial populations
do not grow in size, as they correspond to healthy tissue that
has not yet collected a functional driver alteration that would
lead to uncontrolled growth. We also derive exact expressions
for the limiting random variables that are used in calculating
waiting time distributions, and provide insight into the accuracy
of approximating the size of a premalignant population with its
corresponding long-time limit.

The approach presented here can be extended to other multi-
type branching process models in which the growth rates of
subsequent types are non-decreasing. For colorectal cancer, one
can use a similar approach to compute the waiting time dis-
tributions for other mutational pathways. Our results are also
applicable to other multi-hit models of carcinogenesis, as many
cancer types are thought to be initiated through a multi-step
process that involves inactivation of tumor suppressor genes and
activation of oncogenes.

2. Model and parameters

Let Ni(t) be the stochastic process that counts the population
of type-i crypts at time t . The process is started at time 0 with
all crypts being type-0, which corresponds to healthy crypts with
no driver gene mutations. A type-i crypt can transform into a
type-(i+1) crypt by obtaining a driver alteration, which occurs at
rate ui. For simplicity, we consider a specific mutational pathway
on the way to colorectal cancer (see Table 1) reported in recent
work (Paterson et al., 2020). Type-5 crypts represent the final,
malignant state.

We note that our model does not account for genetic het-
erogeneity within individual crypts. This simplifying assumption
is a reasonable approximation, as new mutations are either lost
or fixated in the crypt, resulting in crypt stabilization (Campbell
et al., 1996). Crypt stabilization times have been reported to be
one year or less in the colon (Campbell et al., 1996; Vermeulen
et al., 2013a).

We assume that independently from mutations, type-i crypts
follow a pure birth process with rate λi. When λi > 0, this
corresponds to crypt division (fission). The division rate of a
crypt is determined by its genotype. For wild-type crypts, crypt
fissions are very rare (Nicholson et al., 2018), so we set their
division rates to zero. It has been shown that inactivation of
APC and/or activation of KRAS provides a fitness advantage to
mutated crypts, leading to clonal expansion though increased
crypt division rates (Lamlum et al., 2000; Snippert et al., 2014).
In contrast, under normal conditions TP53 inactivation alone does
not provide a fitness advantage (Vermeulen et al., 2013b). It was
recently reported that, in addition to crypt fission, crypt fusion
also occurs in human colonic crypts (Baker et al., 2019). In wild-
type (healthy) tissue, crypt fission and fusion are in balance, with
both being very rare (Nicholson et al., 2018; Baker et al., 2019). In
mutated crypts, the rate of crypt fission increases, while the rate
45
Table 2
Parameter values for the model of CRC initiation.
(a) Non-decreasing crypt growth rates

Crypts N0 N1 N2 N3 N4

Birth rate λ0 = 0 λ1 = 0 λ2 > 0 λ3 > λ2 λ4 = λ3

(b) Biologically reasonable range of parameter values

Number of wild-type crypts N 107
− 108

Birth rates λi λ2 = 0.2/y, λ3 = 0.27/y
Transition rates ui 10−7

− 10−4/y

of crypt fusion remains very small (Olpe et al., 2021), allowing us
to neglect crypt fusion. These findings are reflected in the choice
of growth parameters in our model (see Table 2).

This branching process model can be summarized as

N0(t)
u1
−→ N1(t)

u2
−→

⟲divide at rate λ2
N2(t)

u3
−→

⟲λ3
N3(t)

u4
−→

⟲λ4 = λ3
N4(t)

u5
−→ N5(t).

Let Z (i) represent a single type-i crypt. All type-i crypts indepen-
dently follow the transition scheme:

Z (i)
→

{
Z (i) Z (i), birth rate λi

Z (i+1), mutation rate ui+1.

The system initially consists of N wild-type (type-0) crypts, and
we seek to estimate the waiting times for the first type-i crypt
which is defined by

τi = inf{t ≥ 0|Ni(t) > 0}.

To verify our analytic results, we developed Monte Carlo sim-
ulations of a multi-type branching process model based on the
Gillespie algorithm (Gillespie, 1977). Parameter values for our
model come from Paterson et al. (2020), and their typical ranges
are listed in Table 2.

3. Population dynamics and waiting time for type-i crypts

In this section we analyze the growth dynamics of the pre-
malignant subpopulations on a specific path to CRC initiation,
and use these results to derive expressions for the waiting times
of premalignant types and as well as the waiting time for the
final, malignant, type. We compare results obtained from exact
computer simulations of the multi-type branching process with
our analytic results. For all figures in this section, parameter
values are given in Table 3, and follow estimates from Paterson
et al. (2020).

3.1. Type-0 and waiting time to type-1

The process of somatic evolution that can lead to colorectal
cancer is started with a population of N initially healthy (type-
0) crypts. These crypts are wild-type for all three driver genes
of interest. Healthy human crypts rarely divide (Nicholson et al.,
2018), hence we set the division rate of the type-0 crypts to zero
(λ0 = 0). Type-0 crypts can inactivate one copy of the APC gene
and become type-1 crypts, which occurs with rate u1.

In other words, the number of type-0 crypts, N0(t), follows
pure death process with death rate u1 and initial condition
0(0) = N . The expectation and variance for the number of
ealthy crypts in the process are E[N0(t)] = Ne−u1t ≈ N and

Var[N0(t)] = N(e−u1t − e−2u1t ) ≈ Nu1t , where the approx-
imations are made in the u1t ≪ 1 limit. Due to the small
variance, we approximate the population of the healthy crypts
by its expectation

N (t) ≈ E[N (t)] ≈ N.
0 0
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Fig. 1. (A) Comparison of the analytic cumulative distribution function of τ2 , the waiting time to the first type-2 crypt (Eq. (1)), and the simulated distribution
f τ2 across 5 × 105 runs. (B) Dashed line shows the standard error of the mean obtained from simulations. Solid line is the relative error of the analytic result.
he relative error at time t is defined by |Ps(τ2 ≤ t)− Pa(τ2 ≤ t)|/|Ps(τ2 ≤ t)|, where Ps is obtained from exact computer simulations of the process, and Pa is the
pproximation in Eq. (1).
Table 3
Estimates of parameter values for colorectal cancer initiation from Paterson et al. (2020).
Crypt Ni N0 N1 N2 N3 N4

Initial population (crypts) N = 1× 108 0 0 0 0
Birth rate λi (per year) 0 0 0.2 0.27 0.27
Transition rate ui+1 (per year) 2.86× 10−4 1.06× 10−5 9.00× 10−7 1.36× 10−4 4.56× 10−7
E

It follows that the waiting time for the first type-1 crypt, τ1 ∼

xponential(u1N).

3.2. Type-1 and waiting time to type-2

Type-1 crypts have a single copy of the APC gene inactivated.
his genetic alteration does not immediately lead to increase in
rypt division rate (Lamlum et al., 2000), so the division rate of
ype-1 crypts λ1 = 0. A type-1 crypt can incur inactivation of the
econd allele of the APC gene and become a type-2 crypt, which
ccurs at rate u2. Initially, there are no type-1 crypts, i.e., N1(0)

= 0.
Assuming that the loss of type-1 crypts to transition to type-

2 is negligible (since u2 is very small), we can approximate the
number of type-1 crypts by N1(t) ≈ N − N0(t). In the small u1t
imit, we can obtain the expectation and variance of type-1 crypts
s E[N1(t)] ≈ Var[N1(t)] ≈ Nu1t . For typical parameter values,
√
Var[N1(t)]
E[N1(t)]

≈
1

√
u1Nt

≪ 1,

o we can approximate N1(t) by a deterministic function

N1(t) ≈ u1Nt.

Thus the waiting time distribution of type-2 crypts can be ob-
tained as

P(τ2 ≤ t) = 1− E
[
exp

(
−u2

∫ t

0
N1(s)ds

)]
≈ 1− exp

(
−

1
2
u1u2Nt2

)
. (1)
46
We compare the last expression with the probability distri-
bution of waiting time to type-2 crypts obtained from exact
computer simulations of the process in Fig. 1. Our results pre-
dict that the first crypt that has both copies of the APC gene
inactivated will appear within the first five years of life.

3.3. Type-2 and waiting time to type-3

Type-2 crypts have both copies of the APC gene inactivated.
The APC inactivation provides a fitness advantage to type-2 crypts
(Lamlum et al., 2000), leading to an increased division rate λ2 >

0. At time t = 0, there are no type-2 crypts, i.e N2(0) = 0. We
begin with the expectation of N2(t). The expected value of Ni(t)
can be computed recursively:

E [Ni(t)] = ui

∫ t

0
E[Ni−1(s)]eλi(t−s) ds. (2)

This follows from the martingale result in Lemma 4.1 (see also
equation (18) in Durrett and Moseley (2010)). Using the recur-
sion, we compute

E[N2(t)] ≈
Nu1u2(eλ2t − λ2t − 1)

λ2
2

.

The approximation is obtained by noting that u1 ≪ λ2 ∼ 10−1

and u1t ≪ 1.
The following large-time asymptotic limit exists for N2(t).

Theorem 3.1. e−λ2tN2(t) → W2 a.s. and in L1 with

[W2] =
Nu1u2

≈
Nu1u2

2 .

λ2(λ2 + u1) λ2
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Fig. 2. (A) Comparison of the analytic cumulative distribution functions of τ3 , the waiting time to the first type-3 crypt ((4) and (5)), and the distribution of
τ3 across 5 × 105 simulation runs. In (4), f2(t) is set to be the exponential function f20(t) = eλ2 t , while in (5), f2(t) := f21(t) = E[N2(t)]/E[W2]. (B) Dashed
line shows the standard error of the mean of the simulation. Solid lines are the relative errors of the analytic results. The relative error at time t is defined by
|Ps(τ3 ≤ t)− Pa(τ3 ≤ t)|/|Ps(τ3 ≤ t)|, where Ps is obtained from exact computer simulations of the process, and Pa represents the approximation in Eq. (4) or (5).
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The Laplace transform of W2 is given by

LW2 (θ ) =
[

1
u1 − u2

(
u1 2F1

(
1,

u2

λ2
; 1+

u2

λ2
;−θ

)
−u2 2F1

(
1,

u1

λ2
; 1+

u1

λ2
;−θ

))]N

, (3)

where 2F1(a, b; c, z) is the Gauss hypergeometric function (DLMF,
2022, 15.2.1).

Corollary 3.2. N2(t)
f2(t)

→ W2 a.s. and in L1 for all

f2(t) ∈ F2 := {f ∈ C(R)| lim
t→∞

e−λ2t f2(t) = 1, f2(t) ≥ 0},

where C(R) is the space of continuous functions on R.

The goal of allowing f2(t) to be potentially different from eλ2t
in Theorem 3.1 is that a suitably chosen f2(t) can lead to increased
accuracy when computing the waiting time to the next type.

Recall that a type-2 crypt can activate the KRAS oncogene
with rate u3, becoming a type-3 crypt. We can compute the
distribution for the waiting time to the first type-3 crypt, τ3, using

P(τ3 ≤ t) ≈ 1− LW2

(
u3

∫ t

0
f2(s)ds

)
, f2 ∈ F2.

To compute the waiting time to the first type-3 crypt, we will
consider two candidate functions for f2:

f20(t) := eλ2t , f21(t) :=
E[N2(t)]
E[W2]

= eλ2t − λ2t − 1.

he two candidate functions f20 and f21 correspond to the follow-
ing approximate distributions of waiting time to type-3:

p30(t) := 1−LW2

(
u3

∫ t

0
f20(s)ds

)
= 1−LW2

(
u3

eλ2t − 1
λ2

)
, (4)

and

p31(t) := 1− LW2

(
u3

∫ t

0
f21(s)ds

)
= 1− LW2

(
u3

(
eλ2t − 1

λ2
−

λ2

2
t2 − t

))
. (5)
47
Here we use pij to represent a specific approximation, distinguish-
ing it from the exact waiting time distribution. We note that, by
design, the first moment of f21(t)W2 is identical to that of N2(t).

Both (4) and (5) agree with the simulated distributions for
> 40 (Fig. 2). However, in the intermediate regime where t

s small, one can observe that p31 is more accurate than p30.
At the end of this section, we present an approximation of

he random variable W2 which is denoted by V2. We present a
etailed description of V2 including its construction, properties
nd show that it is in excellent agreement with W2 in Section 6.
ompared with LW2 (θ ), the Laplace transform of V2 is simpler in

its form and easier to obtain. Here we present LV2 (θ ) so that the
reader can compare the formula with LW2 (θ ) (3).

LV2 (θ ) = E
[
e−θV2

]
= exp

(
Nu1u2PolyLog(2,−θ )

λ2
2

)
(6)

In the above expression, PolyLog(n, z), n ∈ Z, n ≥ 2, z ∈

C represents the polylogarithm function defined by the series
PolyLog(n, z) =

∑
∞

k=1
zk
kn when |z| ≤ 1 and the analytic con-

inuation of the series when |z| > 1 (DLMF, 2022, 25.12.
0).

.4. Type-3 and waiting time to type-4

Type-3 crypts are produced by type-2 crypts through acti-
ation of the KRAS oncogene, which increases the division rate
f mutated crypts (Snippert et al., 2014). Thus the division rate
as a positive increment, i.e. λ3 > λ2. The initial population is
3(0) = 0. From Eq. (2), the expected value of N3(t) is given by

[N3(t)] ≈
Nu1u2u3

(
λ2
2

(
eλ3t − λ3t − 1

)
− λ2

3

(
eλ2t − λ2t − 1

))
λ2
2 (λ3 − λ2) λ

2
3

,

where the approximation is made by observing λi + u1 ≈ λi and
− exp(−u1t) ≈ u1t .

heorem 3.3. e−λ3tN3(t) → W3 a.s. and in L1 with

[W3] =
Nu1u2u3

≈
Nu1u2u3

2 .
(λ3 − λ2)λ3(λ3 + u1) (λ3 − λ2)λ3

https://dlmf.nist.gov/15.2
https://dlmf.nist.gov/25.12
https://dlmf.nist.gov/25.12
https://dlmf.nist.gov/25.12
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Fig. 3. (A) Comparison of analytic cumulative distribution functions of τ4 , the waiting time to the first type-4 crypt (Eqs. (8) and (9)), and the distribution of τ4
across 5×105 simulation runs. Eq. (8) is derived using the Laplace transform V3 . Eq. (9) is derived via skipping V3 and using the Laplace transform of V2 . (B) Dashed
line shows the standard error of the mean of the simulation. Solid lines are the relative errors of the analytic results. The relative error at time t is defined by
|Ps(τ4 ≤ t)− Pa(τ4 ≤ t)|/|Ps(τ4 ≤ t)|, where Ps is obtained from exact computer simulations of the process, and Pa represents the approximation in Eq. (8) or (9).
The Laplace transform of W3 is given by

LW3 (θ ) =
(∫

∞

0
LU (θe−λ3x)

u1u2

u2 − u1
(e−u1x − e−u2x)dx

)N

. (7)

ere U is the limiting random variable of the type-3 population
−λ3tM3(t) → U in a two-type process (M2(t),M3(t)) started with
single type-2 crypt at time 0.

We derive the Laplace transform of the limiting random vari-
ble U in Appendix C.

orollary 3.4. N3(t)
f3(t)

→ W3 a.s. and in L1 for all

f3(t) ∈ F3 := {f ∈ C(R)| lim
t→∞

e−λ3t f3(t) = 1, f3(t) ≥ 0}.

We use the above result to derive the waiting time of type-4
crypts. Recall that type-4 crypts are produced by type-3 crypts
with a small rate u4. We consider the following approximation
for the waiting time:

P(τ4 ≤ t) ≈ 1− LW3

(
u4

∫ t

0
f3(s)ds

)
, f3 ∈ F3.

Note that evaluating the Laplace transform of W3 (7) requires nu-
merical integration of a relatively complicated function. Therefore
we find V3, which is easier to manipulate, as the approximation
of W3. We present the construction of V3 in Section 6. The Laplace
transform of V3 is given by (B.6). We compare LW3 (θ ) and LV3 (θ )
in Section 6. As the two Laplace transforms are in excellent
agreement, we employ LV3 (θ ) to compute P(τ4 ≤ t).

Using fi1 =
E[Ni(t)]
E[Wi]

typically leads to more accurate computa-

ion of waiting times compared to the more simple fi0 = exp(λit).
e illustrate this phenomenon in Fig. 5. For that reason, we will
se f2 = f21 to compute LV3 (θ ) (since LV3 (θ ) depends on the
hoice of f2. See Lemma 6.4). In particular, we have

31(t) =
E[N3(t)]
E[W3]

= eλ3t − λ3t − 1−
λ2
3

λ2
2
(eλ2t − λ2t − 1).

This leads to the following approximation for the cumulative
distribution of the waiting time to type-4 crypts:

p41(t) := 1− LV3

(
u4

∫ t

f31(s)ds
)
. (8)
0

48
We note that p41 has a closed form expression, which is shown
in Eq. (B.3). The comparison of analytic and simulation results for
waiting time to type-4 are shown in Fig. 3. The relative error of
the approximation (8) is on the order of 20%, showing a tendency
to decrease even lower for t > 70 years.

We also find that increased accuracy in computing the waiting
time of type-(i + 1) crypts, in particular at early times, can be
achieved by skipping the long-time limit of the entire type-i
subpopulation and instead using a long-time limit of individual
type-i lineages. Note that a type-i lineage is the type-i offspring
of a single type-i crypt that has been mutated from a type-(i− 1)
crypt. Mathematically, a type-i lineage is the number of type-i
crypts in a system initiated by a single type-i crypt. The skipping
process is described in more detail in Section 4.3. In the case of
waiting time to type-4, we can use this methodology to ‘‘skip’’
the long time limit of type-3 crypts, leading to the following
expression for the cumulative distribution for the waiting time
of type-4 crypts

ps341(t) := 1− LV2

(
u4

∫ t

0
f21(s)(1− p3→4

0 (s, t))ds
)
. (9)

Here p3→4
0 (s, t) is the probability that no type-4 crypt is produced

by time t by a lineage started with a single a type-3 crypt at time
s. We note that the closed form version of ps341 is presented in
Eq. (B.11). We observe that skipping V3 improves the accuracy
of the results at intermediate times (Fig. 3).

3.5. Type-4 and waiting time to type-5

Type-4 crypts have fully inactivated APC, activated KRAS, and
a single inactivated copy of TP53. Compared to type-3 crypts,
each of the type-4 crypts has one inactivated copy of a tumor
suppressor TP53. This mutation does not lead to an increment
of the crypt division rate. Thus the division rate of type-4 crypts
λ4 = λ3. The initial condition for type-4 crypts is N4(0) = 0. The
fact that the division rates of type-4 and type-3 crypts are the
same leaves us unable to confirm the existence of a large-time
limiting random variable for the population of type-4 crypts.

Instead, for τ5, the waiting time to the first type-5 crypt, we
consider an alternative approach: we compute the distribution
using the large-time limit of type-3 crypts, LV3 (θ ), and p4→5

0 (s, t)
(effectively skipping the large-time limit of type-4 crypts). Here
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Fig. 4. (A) Comparison of the analytic cumulative distribution functions of τ5 , the waiting time to the first type-5 crypt (Eqs. (10) and (11)), and the distribution
f τ5 across 5 × 105 simulation runs. Eq. (10) is derived via skipping type-4 and using the Laplace transform of V3 . Eq. (11) is derived via using the Laplace
ransform of V2 and skipping the Laplace transforms of type-4 and type-3. The error bars represent the standard error of the mean of the simulation. (B) Dashed
ine shows the standard error of the mean of the simulation. Solid lines are the relative errors of the analytic results. The relative error at time t is defined by
Ps(τ5 ≤ t)− Pa(τ5 ≤ t)|/|Ps(τ5 ≤ t)|, where Ps is obtained from exact computer simulations of the process, and Pa represents the approximation in Eq. (10) or
11).
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4→5
0 (s, t) is the probability that no type-5 crypt is produced by
ime t by a lineage started with a single type-4 crypt at time s.
4→5
0 (s, t) can be computed using Lemma 4.4 as

4→5
0 (s, t) =

1

1+ u5
exp (λ3(t−s))−1

λ3

.

The corresponding approximation of the distribution of τ5
esulting from this approach is

s4
51(t) := 1− LV3

(
u4

∫ t

0
f31(s)(1− p4→5

0 (s, t))ds
)
. (10)

The above expression has an explicit form given by Eq. (B.12).
Comparison of formula (10) with the waiting time for the first
type-5 crypt obtained from exact computer simulations (Fig. 4)
shows good agreement at intermediate times, but increasing de-
viation (approaching 0.2 relative error) at t > 75. We find that
increased accuracy is achieved by skipping large-time limits of
both type-4 and type-3 crypts, and computing the distribution
using LV2 (θ ) and p3→5

0 (s, t). p4→5
0 (s, t), the probability that no

type-5 crypt is produced by time t by a lineage started with a
single type-3 crypt at time s, is given by (using Lemma 4.4)

p3→5
0 (s, t)

=

⎛⎝1+
u4u5

(
λ3 − u5 + eλ3(t−s)

(
u5 − λ3 + λ3 log

(
λ3eλ3(t−s)

λ3+u5(eλ3(t−s)
−1)

)))
(λ3 − u5)2λ3

⎞⎠−

The corresponding approximation of the distribution of τ5
esulting from the latter approaches is

s34
51 (t) := 1− LV2

(
u3

∫ t

0
f21(s)(1− p3→5

0 (s, t))ds
)
. (11)

The result ps3451 (explicitly given by Eq. (B.14)), to the best
f our knowledge, is not an elementary function or a standard
pecial function. In Fig. 4, we observe that ps3451 achieves higher
ccuracy compared to ps451, especially at later times (above age
0). In other words, compared with the result incorporating the
ong-time limit of type-4 crypts, skipping this stage gives more
49
ccurate results. The intuition behind this is that approximat-
ng each subclone by its large time limit is more accurate than
pproximating the total population by its overall large time limit.

. Multi-type branching process results

In this section we establish a martingale convergence lemma
o get possible large time limiting random variables. Next, we
tate the results needed for approximating the waiting time dis-
ribution of type-i using the large time limit of type-(i − 1).
e generalize these results by employing an approximation that

llows us to derive type-i results directly from type-j results and
kip intermediate limiting behaviors between i and j.

.1. General results for large time limits

emma 4.1. Consider a multi-type branching process (N0(t),
1(t), . . .) in which Ni(t) is the population of type-i crypts. In this
rocess, a single type-i crypt can divide into two crypts with rate
i ≥ 0 and mutate into a type-(i + 1) crypt with rate ui+1 > 0.
hen

(t) = e−λitNi(t)−
∫ t

0
uiNi−1(s)e−λisds

is a martingale. If

Ii =
∫

∞

0
uiNi−1(s)e−λisds

as a finite expectation, then

−λitNi(t)
a.s.
→ Wi, E|Wi| < ∞,

as t → ∞. Additionally, if {e−λitNi(t); t ≥ 0} is uniform integrable,
then

e−λitNi(t)
L1
→ Wi.

This implies

E[e−λitN (t)] → E[W ] = E[I ].
i i i
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If the first condition from the statement of the Lemma holds
(i.e. if Ii has finite expectation) Lemma 4.1 provides a method
of obtaining the long-term behavior of Ni using the limiting
random variable Wi. In that case, we have e−λitNi(t) → Wi, and
for large time t , eλitWi should be a good approximation of the
stochastic process Ni(t). The importance of Ni(t) ≈ eλitWi is that
it separates a stochastic process into a deterministic function eλit
and a time-independent random variable Wi.

If, in addition, the second condition ({e−λitNi(t); t ≥ 0} is
uniform integrable) holds, then the expected value of the lim-
iting random variable Wi is obtainable. In that case, we have
E[e−λitNi(t)] → E[Wi], which makes the large time approxima-
tion Ni(t) ≈ eλitWi reasonable in terms of the first moment.

Proof of Lemma 4.1.

Proof. The proof follows that of Theorem 2 in Durrett and
Moseley (2010). The only difference is that we want to include
the cases when λi−1 = λi or λi = 0. By Lemma 1 in (Durrett and
oseley, 2010),

(t) = e−λitNi(t)−
∫ t

0
uiNi−1(s)e−λisds

is a martingale. If Ii has a finite expectation, then by the martin-
gale convergence theorem (Theorem 4.2.11 in Durrett (2019)), the
submartingale X(t) = −M(t) converges a.s. to some integrable
limit X as t → ∞. Since

Ii(t) =
∫ t

0
uiNi−1(s)e−λisds

a.s.
→ Ii,

we also have

e−λitNi(t)
a.s.
→ Wi.

The martingale starts at zero (i.e. M(0) = 0), which implies

E[e−λitNi(t)] = E[Ii(t)].

Suppose {e−λitNi(t); t ≥ 0} is uniform integrable, we have (Theo-
rem 4.6.3 in Durrett (2019))

−λitNi(t)
L1
→ Wi,

hich guarantees

[Ii(t)] = E[e−λitNi(t)] → E[Wi].

hus, we have

[Ii(t)] → E[Ii],

nd

[Wi] = E[Ii]. □

.2. Estimating waiting times using large time limits

Let τi, (1 ≤ i ≤ n) be the waiting time of the first type-i
ndividual in a multi-type branching process. At time s ≥ 0, the
rrival rate of type-i individuals is uiNi−1(s). Conditional on the
rajectory of Ni−1(s) for 0 ≤ s ≤ t , the probability that τi is greater
han t is:

(τi > t | Ni−1(s), 0 ≤ s ≤ t) = exp
(
−ui

∫ t

0
Ni−1(s)ds

)
.

he functional form of Ni−1(s) is generally unknown and po-
entially complicated. One way of evaluating this integral is to
pproximate Ni−1(s) by the product of a deterministic time-
ependent growth and a time independent random variable. For
xample, let N (t) = Z (t), a pure birth two-type branching
0 0

50
rocess that starts with a single individual. It is well-known that
−λ0tZ0(t) → W0 ∼ Exponential(1) (Durrett and Moseley, 2010).
classical approximation is N0(s) ≈ eλ0tW0 where the deter-
inistic time-dependent growth is characterized by eλ0t and time

ndependent random variable is W0. Applying this approximation
ields

(τ1 > t) ≈ E
[
exp

(
−u1

∫ t

0
eλ0sW0ds

)]
(12)

= LW0

(
u1

eλ0t − 1
λ0

)
, (13)

where LW0 (θ ) =
1

1+θ
is the Laplace transform of W0. Let f0(t) =

eλ0t be the time deterministic function. Then the above approxi-
mation also holds if a sub-exponential term is added to f0. In other
words, we have many reasonable options for f0. In later sections,
we consider two specific deterministic functions,

fi0(t) = eλit , and

fi1(t) =
E[Ni(t)]
E[Wi]

.

In the example mentioned above, we have

f01(t) =
E[Z0(t)]
E[W0]

= eλ0t

= f00(t).

However, in our model when i > 1, fi0 ̸= fi1. We observe in Fig. 5
that an approximation with fi1 is typically more precise than that
ith fi0.

roposition 4.2. Let (Ni−1(t),Ni(t)) be a two-type process such
hat Ni(0) = 0 and Ni−1(t) ≥ 0 is right-continuous with E|Ni−1(t)| <
∞. In this process, type-i crypts are being produced at rate uiNi−1(t) >
0. A single type-i crypt can divide into two crypts with rate λi ≥ 0.
Suppose there exists a continuous function fi−1(t) ≥ 0 and a random
variable Wi−1 such that as t → ∞, (fi−1(t))−1Ni−1(t) → Wi−1
almost surely and in L1. Then the waiting time distribution of the
first type-i individual can be approximated by

P(τi > t) ≈ LWi−1

(
ui

∫ t

0
fi−1(s)ds

)
where LWi−1 (θ ) is the Laplace transform of random variable Wi−1.

Proof. The right continuity and the integrability of Ni−1(t) al-
low us to write P(τi > t) = E

[
exp

(
−
∫ t
0 uiNi−1(s)ds

)]
. Since

(fi−1(t))−1Ni−1(t) → Wi−1, we employ the approximation Ni−1(t)
≈ fi−1(t)Wi−1. Plugging in this approximation gives us

P(τi > t) ≈ E
[
exp

(
−Wi−1ui

∫ t

0
fi−1(s)ds

)]
= LWi−1

(
ui

∫ t

0
fi−1(s)ds

)
. □

We note that the accuracy of the approximate waiting time
distribution in Proposition 4.2 depends on the accuracy of the
long-time approximation Ni−1(t) ≈ fi−1(t)Wi−1. To provide in-
sight into the accuracy of this approximation, we investigate
the difference Ni−1(t) − fi−1(t)Wi−1 in the case when i − 1 =

2, 3. In particular, we present a representation of N2(t)− eλ2tW2
(Theorem 5.1) in the case of the type-2 population. This repre-
sentation allows us to estimate N2(t) − eλ2tW2 in the long-time
regime as t → ∞ (Corollary 5.4) and in the short-time regime
as t → 0 (Corollary 5.5). Using these results, in Section 5, we
show the reason that the scaling function f21(t) obtained from
the ratio E[N ]/E[W ] leads to greater accuracy compared to the
2 2
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c

Fig. 5. Relative errors of the waiting time distributions of τ4 obtained using different scaling functions fi . (A) Using f21 , the distribution function has a higher accuracy
ompared to the result derived using f20 . (B) Using f31 , the distribution function has a higher accuracy compared to the result derived using f30 .
exponential scaling function f20(t) = eλ2t , when approximating
populations at short time. Similarly, we develop the representa-
tion theorem for N3(t) − eλ3tW3 (Theorem 5.6) and discuss its
consequences in Section 5.2.

4.3. An inhomogeneous Poisson process approximation

Proposition 4.2 provides an estimate of the arrival time of
type-i individuals using the large time limit of the previous type
(Wi−1). However, there are situations when the existence of ran-
dom variable Wi−1 cannot be directly inferred from the martin-
gale result. In our model, we are unable to show the existence
of W4 due to the fact that λ3 = λ4. When dealing with type-
4, we found that E[N4(t)] ∼ O(teλ3t ). Thus, one should expect
that a non-degenerate limiting distribution may exist when the
population is scaled by t−1e−λ3t . However, establishing a square
integrable martingale in this case is non-trivial. Therefore, we
would like to employ the existing limits of other types to calculate
the waiting time to type-5. More generally, we may only have
the explicit Laplace transform of the large time limit Wj for some
type-j where j < i, and we do not have reliable limits for type-(j+
1) through type-(i−1). To deal with this situation, we introduce a
method that uses the large time limit of each independent lineage
to ‘‘skip’’ Wj+1 through Wi−1.

First, let Zj+1(t) denote a type-(j + 1) lineage started with a
single type-(j + 1) individual at time 0. In other words, taking
advantage of small mutation rates to neglect outflow, a type-
(j + 1) lineage is a simple birth process initiated by a single
type-(j + 1) individual that grows at rate λj+1. The well-known
fact that for each type-(j+ 1) lineage

e−λj+1tZj+1(t)
a.s.
→ V ∼ Exponential(1) (14)

allows us to make an approximation Zj+1(t) ≈ eλj+1tV . Next, we
want to find the likelihood of each type-(j+1) lineage producing
at least a single type-i individual. Suppose we have a type-(j+ 1)
lineage that was started with a single type-(j + 1) individual at
time s. We define p(j+1)→i

0 (s, t) to be the probability that no type-i
individual is produced by time t by this type-(j+ 1) lineage. This
implies the following proposition.
51
Proposition 4.3. Let (Nj(t),Nj+1(t), . . . ,Ni(t)) be a (i− j+1)-type
process in which Nk(0) = 0 for j < k ≤ i, and Nj(t) ≥ 0 is right-
continuous with E|Nj(t)| < ∞. In this process, type-(j + 1) crypts
are produced at rate uj+1Nj(t) > 0. A single type-k crypt can divide
into two crypts with rate λk ≥ 0 and mutate into a type-(i + 1)
crypt with rate ui+1 > 0 for k, j < k ≤ i. Suppose that there exists
a continuous function fj(t) ≥ 0 and a random variable Wj such that
as t → ∞, fj(t)−1Nj(t) → Wj almost surely and in L1. Then the
waiting time distribution of type-i crypts can be approximated by

P (τi > t) ≈ LWj

(
uj+1

∫ t

0
fj(s)

(
1− p(j+1)→i

0 (s, t)
)
ds
)
,

where LWj (θ ) is the Laplace transform of Wj.

Proof. At time s, type-(j + 1) crypts are being produced at rate
uj+1Nj(s) ≈ uj+1fj(s)Wj. Each type-(j+ 1) lineage (present at time
s) has a probability 1 − p(j+1)→i

0 (s, t) to produce at least a single
type-i crypt (at time t). Therefore, for fixed t , we approximate
the process of producing type-i individuals as an inhomogeneous
Poisson process with rate uj+1Nj(s)(1−p(j+1)→i

0 (s, t)) at time s < t .
The multiplication of rates uj+1Nj(s) and 1−p(j+1)→i

0 (s, t) is due to
the thinning property of inhomogeneous Poisson processes. Thus
we have

P(τi > t) ≈ E
[
exp

(
−Wjuj+1

∫ t

0
fj(s)

(
1− p(j+1)→i

0 (s, t)
)
ds
)]

= LWj

(
uj+1

∫ t

0
fj(s)

(
1− p(j+1)→i

0 (s, t)
)
ds
)
. □

Proposition 4.2 is consistent with Proposition 4.3, and one
can treat Proposition 4.2 as a special case of Proposition 4.3
when j = i − 1. The approximation error in the distribution
of τi in Proposition 4.3 comes from the approximation Nj(t) ≈

fj(t)Wj, j < i. In other words, the waiting time approximation in
Proposition 4.3 relies on the long-time limiting random vari-
able Wj, ‘‘skipping’’ the long-time limits of subsequent type j +
1, . . . , i−1 populations via the nonhomogeneous Poisson approx-
imation. Our numerical results demonstrate that the approximate
waiting time distribution function obtained from ‘‘skipping’’ two-
steps (i.e. i − j = 3) leads to better accuracy compared with
‘‘skipping’’ one-step (i.e. i− j = 2). Namely, in Fig. 4 we show two
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pproximations for the distribution function of the waiting time
5, obtained from either W3 (one-step skipping approximation),
r W2 (two-step skipping approximation). As the two panels in
ig. 4 demonstrate, the two-step skipping approximation has a
igher accuracy for most times on the interval t ∈ [0, 80].
herefore, our results imply that skipping more long-time limits
f intermediate populations, i.e. relying on an earlier Wj, leads to
etter accuracy.
To compute pj→i

0 (s, t), j < i, we use the iterative relation-
hip between pj→i

0 (s, t) and p(j+1)→i
0 (s, t). This is provided by the

ollowing proposition.

emma 4.4. Consider a multi-type branching process (N0(t),N1(t),
. .) in which Ni(t) is the population of type-i crypts. In this process,
single type-i crypt can divide into two crypts with rate λi ≥ 0 and
utate into a type-(i + 1) crypt with rate ui+1 > 0. Suppose that
j > 0. Then for i > j we have

j→i
0 (s, t) ≈

∫ t

0
e−v exp

(
−v

∫ t

s
uj+1eλj(r−s)

×

(
1− p(j+1)→i

0 (r, t)
)
dr
)
dv

ith pi→i
0 (s, t) = 0.

roof. The population at time r > s of a single type-j lineage that
ppeared at time s can be approximated using its long time limit
j(r) ≈ eλj(r−s)V , where V ∼ Exponential(1). Thus, type-(j + 1)
ndividuals are produced from this lineage at rate

j+1Zj(r) ≈ uj+1eλj(r−s)V .

he probability for a new type-(j + 1) individual at time r to
roduce at least one type-i individual by time t is 1−p(j+1)→i

0 (r, t).
hus, conditional on V , the expected number of type-i individuals
hat were produced by a type-j lineage that appeared at time s is

j→i(s, t, V ) =
∫ t

s
uj+1Zj(r)

(
1− p(j+1)→i

0 (r, t)
)
dr

≈

∫ t

s
uj+1eλj(r−s) V

(
1− p(j+1)→i

0 (r, t)
)
dr.

et X j→i(s, t) be the number of type-i individuals that are pro-
uced by a type-j subclone which appeared at time s. In the time
eriod [s, t], X j→i(·, t) follows an inhomogeneous Poisson process
ith mean Λ(·, t, V ). Thus the probability that no type-i crypt is
roduced from this particular type-(j+ 1) crypt by time t is

(X j→i(s, t) = 0|V ) = exp(−Λj→i(s, t, V ))

≈ exp
(
−V

∫ t

s
uj+1eλj(r−s)

×

(
1− p(j+1)→i

0 (r, t)
)
dr
)
.

his implies
j→i
0 (s, t) := P(X j→i(s, t) = 0)

= E
[
P(X j→i(s, t) = 0|V )

]
≈

∫ t

0
e−v exp

(
−v

∫ t

s
uj+1eλj(r−s)

×

(
1− p(j+1)→i

0 (r, t)
)
dr
)
dv.

Finally, for i = j, notice that the founding individual of a type-j
lineage is of type-j. This guarantees that at any time t greater than
the founding time s, the probability of having at least one type-j

j→j
individual is 1. Thus p0 (s, t) = 0. □

52
In the case that i = j+ 1, by Lemma 4.4 we have

pi→(i+1)
0 (s, t) ≈

1

1+ ui+1
exp (λi(t−s))−1

λi

.

The right hand side obtained from Lemma 4.4 is in excellent
greement with the exact pi→(i+1)

0 (s, t), the probability of zero
type-(i + 1) crypts at time t in a two type process initiated by a
single type-i crypt at time s (the right hand side above is equal to
i→(i+1)
0 (s, t) in the limit of ui+1 ≪ λi). In Appendix C.1 we derive
2→3
0 (0, t), the exact probability that no type-3 crypt is produced
y time t by a type-2 lineage started at time 0 (C.6). The exact
i→(i+1)
0 (s, t) can be derived by plugging in u3 = ui+1, λ2 = λi,
nd t = t − s into (C.6).

. Accuracy of long-time approximations and derivation of
i

In this section, we establish results to measure the distance
between the exact process and its long-time approximations em-
ploying limiting random variables Wi, which we have applied in
Section 3. Recall that we have shown that e−λiNi(t) → Wi as
→ ∞ for i = 2, 3. Thus, in this section we mainly focus on the
pproximations made for the type-2 and type-3 population. As
he waiting time formulas we derived in Section 3 rely on these
pproximations, the following analysis can provide insight into
he discrepancy between the actual waiting time and the waiting
imes obtained using long-time approximations. Along the way,
e also obtain exact expressions for Laplace transforms ofW2 and
3. The only assumption (or approximation) we keep here is that,
hen considering the behavior of the type-2 (type-3) population,
e ignore the population loss due to the mutations from type-2
o type-3 (from type-3 to type-4). This assumption is referred to
s ‘‘neglecting outflows’’, which is reasonable since mutation rates
re much smaller compared to division rates, i.e. u3 ≪ λ2, u4 ≪

3.

.1. Error of type-2 approximation

To measure the distance between the population N2(t) and
ts approximation eλ2tW2, we rely on the additive property of
he branching processes (Athreya and Ney, 2004, p. 201). This
roperty allows us to derive a decomposition of N2(t) − eλ2tW2
nd calculate the Laplace transform of W2. In addition, we use
generalized central limit theorem to give a long time error

stimate of the approximation. We also provide a short time
rror formula which explains why the scaling function f21(t) =
λ2t − λ2t − 1 outperforms f20(t) = eλ2t .
Before giving the main results, we briefly recap related results

f a one-dimensional process and their consequences (Athreya
nd Ney, 2004). For a one-dimensional pure birth process Z(t)
ith birth rate λ > 0, we have e−λtZ(t)

a.s
→ V ∼ Exponential(1).

threya and Ney’s representation theorem (Athreya and Ney,
004, p. 123, Theorem 1) implies that Z(t) − eλtV has the
roperty

(t)− eλtV =

Z(t)∑
j=1

(
1− V (j)

t

)
for all t ≥ 0 a.s. (15)

here {V (j)
t ; j = 1, 2, 3 . . . , Z(t, ω)} are independent identically

istributed copies of V ∼ Exponential(1) when conditioned on
(t). The consequence of this result is that one can get a central-
imit-type corollary by scaling both sides properly, i.e. (Athreya
nd Ney, 2004 Chapter III, Section 10, p. 124, Theorem 3.)

Z(t)− eλtV
√

d.
→ N (0, 1)
Z(t)
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here N (0, 1) is the standard normal distribution. In the fol-
owing, we will show that similar properties hold for the type-2
opulation in our process.
Consider the sub-process (N0(t),N1(t),N2(t)) with birth rates

and mutation rates as described in Section 2. The transition
scheme can be summarized by

N0(t)
u1
−→ N1(t)

u2
−→

⟲divide at rate λ2
N2(t) .

ecall that in Theorem 3.1 we have established the large time
limit for type-2 population, i.e. e−λ2tN2(t)

a.s.
→ W2. We present a

decomposition of N2(t)− eλ2tW2 in the following theorem.

Theorem 5.1. There exists a family of random variables {V (i,j)
t , j =

1, 2, . . . ,Ni(t); i = 0, 1, 2} ∪ {T (i,j)
k,t , j = 1, 2, . . . ,Ni(t); i =

0, 1; k = 0, 1} such that

(a) when conditioned on N0(t),N1(t),N2(t), the random variables
in the family are independent;

(b) when conditioned on N0(t),N1(t),N2(t), {V
(i,j)
t } are distributed

as V ∼ Exp(1), and {T (i,j)
k,t } are distributed as Tk ∼ Exp(uk+1);

and
(c) this family satisfies

N2(t)− eλ2tW2 =

N2(t)∑
j=1

(1− V (2,j)
t )−

N1(t)∑
j=1

e−λ2T
(1,j)
1,t V (1,j)

t

−

N0(t)∑
j=1

e−λ2

(
T (0,j)0,t +T (0,j)1,t

)
V (0,j)
t . (16)

where the equality holds for all t ≥ 0 almost surely.

The proof of this theorem is in Section 7. Roughly speaking, the
intuition behind this representation theorem is that the limiting
random variable can be obtained by stopping the process at
a fixed time t and gathering the ‘‘contributions’’ from existing
lineages to the limiting random variable. The jth type-i lineage is
marked by superscript (i, j). k represents the mutation from type-
k to type-(k+1) and t represents the time correlation between the
‘‘contribution’’ from lineages and the total population. The first
consequence of Theorem 5.1 is that we can also represent W2 by
the independent copies of waiting times T0, T1 and exponential
random variable V . T0 represents the waiting time for a single
type-0 to mutate to type-1. Similarly, T1 represents the waiting
time for a single type-1 to mutate to type-2.

Corollary 5.2 (Representation of W2). There exists a family of
independent random variables {T (j)

0 , T (j)
1 , V (j), j = 1, 2, . . . ,N} such

that for all j, T (j)
0 ∼ Exp(u1), T

(j)
1 ∼ Exp(u2), V (j)

∼ Exp(1) and

W2 =

N∑
j=1

e−λ2(T
(j)
0 +T (j)1 )V (j) a.s. (17)

Proof. Evaluating the result from Theorem 5.1(c) at t = 0 gives
us the equality (17). □

Corollary 5.3. The Laplace transform of W2 is given by

LW2 (θ ) =
[

1
u1 − u2

(
u1 2F1

(
1,

u2

λ2
; 1+

u2

λ2
;−θ

)
−u2 2F1

(
1,

u1

λ2
; 1+

u1

λ2
;−θ

))]N

. (18)

roof. To derive the Laplace transform, we use the representa-
ion of W to write W =

∑N X (j), where X (j)
= e−λ2(T

(j)
0 +T (j)1 )V (j).
2 2 j=1 2 2
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Let T0 ∼ Exp(u1), T1 ∼ Exp(u2), V ∼ Exp(1). Note that X (j)
2 are in-

dependent and identically distributed with common distribution
X2 = e−λ2(T0+T1)V . It follows that

LW2 (θ ) = E
(
e−θ

∑N
j=1 X (j)

2

)
= E

⎛⎝ n∏
j=1

e−θX (j)
2

⎞⎠
=

n∏
j=1

E
(
e−θX (j)

2

)
=

(
LX2 (θ )

)N
.

Hence, our goal becomes calculating LX2 (θ ). Our first step is to
compute the probability density of T0 + T1. We note that they
are independent exponentially distributed random variables with
parameters u1, u2 respectively. Therefore we write

pT0+T1 (x) =
∫ x

0
u1e−u1(x−y)u2e−u2ydy =

u1u2

u2 − u1
(e−u1x − e−u2x).

t follows that the joint probability density of T0 + T1 and V is
T0+T1,V (x, y) =

u1u2
u2−u1

(e−u1x − e−u2x)e−y. Next we compute

LX2 (θ ) = E(e−θe−λ2(T0+T1)V )

=

∫
∞

0

∫
∞

0
e−θe−λ2xy u1u2

u2 − u1
(e−u1x − e−u2x)e−ydx dy

=
1

u1 − u2

(
u1 2F1

(
1,

u2

λ2
; 1+

u2

λ2
;−θ

)
−u2 2F1

(
1,

u1

λ2
; 1+

u1

λ2
;−θ

))
. □

The second consequence of Theorem 5.1 is that the long time
ccuracy of the type-2 approximation eλ2tW2 follows a central-
imit-type theorem.

orollary 5.4 (Type-2 Long Time Error). As t → ∞,

N2(t)− eλ2tW2
√
N2(t)

d.
→ N (0, 1), (19)

here N (0, 1) is a standard Gaussian random variable with mean 0
nd variance 1.

roof. As t → ∞, both type-0 population and type-1 population
o extinct because they do not divide and can only mutate to
urther types. This means that

lim
→∞

N2(t)− eλ2tW2
√
N2(t)

= lim
t→∞

1
√
N2(t)

N2(t)∑
j=1

(
1− V (2,j)

t

)
ue to Anscombe’s generalization of the central limit theorem
see related descriptions in Athreya and Ney (2004)) , the weak
convergence to a normal distribution holds and its variance is
given by the variance of 1− V (2,1)

t , which is 1. □

The third consequence of Theorem 5.1 is that we can estimate
the short time behavior of the difference N2(t) − eλ2tW2 near
t = 0.

Corollary 5.5 (Type-2 Short Time Error). In the limit of λ2t → 0,
we have

(λ2t+1+ o(t))W2 =

N1(t)∑
j=1

e−λ2T
(1,j)
1,t V (1,j)

t +

N0(t)∑
j=1

e−λ2

(
T (0,j)0,t +T (0,j)1,t

)
V (0,j)
t .

(20)

Proof. In Theorem 5.1, the right hand side of equality (16)
consists of three sums. As λ t → 0, the process approaches
2
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ts initial condition. Before the first type-2 is produced, we can
eglect the term

∑N2(t)
j=1 (1− V (2,j)

t ). Then it follows that

λ2tW2 =

N1(t)∑
j=1

e−λ2T
(1,j)
1,t V (1,j)

t +

N0(t)∑
j=1

e−λ2

(
T (0,j)0,t +T (0,j)1,t

)
V (0,j)
t

(as λ2t → 0).

riting out the Taylor expansion of the left hand side gives us
he desired equality. □

Plugging (20) into the right hand side of equality (16) gives
us the following short time error estimations of the two scaling
functions. In the sense that λ2t → 0 (not necessarily before the
production of the first type-2 crypt), we have

N2(t)− f20(t)W2 ∼

N2(t)∑
j=1

(
1− V (2,j)

t

)
− (λ2t + 1)W2, (21)

N2(t)− f21(t)W2 ∼

N2(t)∑
j=1

(
1− V (2,j)

t

)
. (22)

This indicates that, if we use the exponential as the scaling
function, the difference (21) has a nonzero expected value. On
the other hand, if we add the lower order terms, the difference
(22) has a zero expected value and the variance is also lower. This
provides insight into the observation that the scaling function
f21(t) = eλ2t − λ2 − 1 makes a better approximation than the
scaling function f20(t) = eλ2t at short times. When solely using the
exponential scaling function, the contribution made from type-0
and type-1 lineages to the limiting random variable is ignored,
especially in the short-time regime when type-3 lineages are not
dominating the whole population.

5.2. Error of type-3 approximations

In this section, we measure the difference N3(t) − eλ3tW3,
i.e the distance between type-3 population and its large time
approximation. The methodology we use is same as what we have
used to measure the error of type-2 approximations. We recall
that the transition scheme from type-0 to type-3 is :

N0(t)
u1
−→ N1(t)

u2
−→

⟲divide at rate λ2
N2(t)

u3
−→

⟲divide at rate λ3
N3(t) ,

where we have used the ‘‘neglecting outflows’’ assumption for
type-3. In Theorem 3.3 we have shown that e−λ3tN3(t)

a.s.
→ W3.

Before presenting a decomposition of N3(t)− eλ3tW3, we will
first state basic properties of a two-type birth process, which
will be needed for the analysis of the behavior of the type-3
population in our model. We consider a two-type supercritical
birth process with transition scheme

⟲divide at rate λ2
M2(t)

u3
−→

⟲divide at rate λ3
M3(t) .

It is well known that there exists a limiting random variable U
such that e−λ3tM3(t) → U almost surely (Durrett and Moseley,
2010). Adapting the results from Antal and Krapivsky (2011),
we obtain the Laplace transform of U , denoted by LU (θ ) (see
Appendix C.). An explicit formula of LU (θ ) is presented in
Eq. (C.8).

We present a decomposition of N3(t) − eλ3t in the following
theorem:

Theorem 5.6. There exists a family of random variables {V (j)
t , j =

1, 2, . . . ,N3(t)}∪{U
(i,j)
t , j = 1, 2, . . . ,Ni(t); i = 0, 1, 2}∪{T (i,j)

k,t , j =

1, 2, . . . ,Ni(t); i = 0, 1; k = 0, 1} such that

54
(a) when conditioned on N0(t),N1(t),N2(t),N3(t), the random
variables in the family are independent;

(b) when conditioned on N0(t),N1(t),N2(t),N3(t), {V j
t } are

distributed as V ∼ Exp(1), {U (i,j)
t } are distributed as U with

known Laplace transform (C.8), and {T (i,j)
k,t } are distributed as

Tk ∼ Exp(uk+1); and
(c) this family satisfies

N3(t)− eλ3tW3 =

N3(t)∑
j=1

(1− V (j)
t )−

N2(t)∑
j=1

U (2,j)
t −

N1(t)∑
j=1

e−λ3T
(1,j)
1,t U (1,j)

t

−

N0(t)∑
j=1

e−λ3

(
T (0,j)0,t +T (0,j)1,t

)
U (0,j)
t ,

(23)

where the equality holds for all t ≥ 0 almost surely.

Decomposition (23) provides insight into the accuracy of ap-
proximation N3(t) ≈ eλ3tW3. The right hand side of (23) can be
demarcated in the following way:
N3(t)∑
j=1

(1− V (j)
t )  

(A)

−

N2(t)∑
j=1

U (2,j)
t  

(B)

−

N1(t)∑
j=1

e−λ3T
(1,j)
1,t U (1,j)

t −

N0(t)∑
j=1

e−λ3

(
T (0,j)0,t +T (0,j)1,t

)
U (0,j)
t  

(C)

.

In the above expression, only (A) has a zero mean value. (B) and
C have non-positive first moments at any time t > 0. The scaling
function f31 is designed to cancel the first moment of (B) and
(C). We have some knowledge for the behaviors of (A), (B) and
C) in the long-time limit. N0(t) and N1(t) are expected to go
xtinct for sufficient large t . Therefore, the term (C) is expected to

vanish. Due to Anscombe’s generalized central limit theorem, (A)
and (B), when scaled by

√
N3(t) and

√
N2(t) respectively, behave

ike Gaussian distributions as t → ∞. Since λ3 > λ2, the second
oment of (A) + (B) is dominated by the type-3 population and

he first moment is dominated by the type-2 population.
The following corollary gives us a representation of W3.

orollary 5.7 (Representation of W3). There exists a family of
ndependent random variables {T (j)

0 , T (j)
1 , U (j), j = 1, 2, . . . ,N} such

hat for all j, T (j)
0 ∼ Exp(u1), T

(j)
1 ∼ Exp(u2), U (j) are independent

nd identically distributed with Laplace transform (C.8) and

3 =

N∑
j=1

e−λ3(T
(j)
0 +T (j)1 )U (j) a.s. (24)

roof. Evaluating the equality in (c) of Theorem 5.6 at t = 0
gives us Eq. (24). □

Corollary 5.8. The Laplace transform of W3 is given by

LW3 (θ ) =
(∫

∞

0
LU (θe−λ3x)

u1u2

u2 − u1
(e−u1x − e−u2x)dx

)N

. (25)

roof. Let T0 := T (1)
0 ∼ Exp(u1), T1 := T (1)

1 ∼ Exp(u2), U := U (1).
o compute the Laplace transform, we use the representation
heorem and write W3 =

∑N
j=1 X

(j)
3 , where {X (j)

3 , j = 1, 2, . . . ,N}
is a collection of independent and identically distributed random
variables with common distribution X := e−λ3(T0+T1)U . Then it
3
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Fig. 6. (A) Comparison of LW2 (θ ) (Eq. (3)) and LV2 (θ ) (Eq. (6)) on the interval [0, 10]. (B) Relative difference of LW2 (θ ) and LV2 (θ ) which is defined by
LW2 (θ )− LV2 (θ )|/|LW2 (θ )|. (C) Comparison of the numerical probability density functions of W2 and V2 as well as the simulated histogram of W2 .
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ollows that

W3 (θ ) = E(e−θW3 ) =
N∏
j=1

LX (j)
3
(θ ) =

(
LX3 (θ )

)N
.

ext, we evaluate the Laplace transform of X3.

X3 (θ ) = E (E(exp(−θU exp(−λ3(T0 + T1)))|T0 + T1))
= E (LU (θ exp(−λ3(T0 + T1))))

=

∫
∞

0
LU (θe−λ3x)

u1u2

u2 − u1
(e−u1x − e−u2x)dx

Finally, the Laplace transform of W3 can be written as

LW3 (θ ) =
(∫

∞

0
LU (θe−λ3x)

u1u2

u2 − u1
(e−u1x − e−u2x)dx

)N

. □

. Approximating the limiting random variables

In this Section, we formally derive random variables Vi, which
serve as approximations of long-time limiting random variables
Wi. The usefulness of random variables Vi comes from the fact
that their Laplace transforms are easier to obtain and manipulate
when evaluating expressions for waiting times. To obtain Vi,
e use auxiliary processes N∗

i−1 and Ñi, which approximate the
riginal processes Ni−1 and Ni. For example, for i = 2, we show
n Section 3 that N∗

1 (t) = u1Nt is a reasonable approximation for
N1(t). Thus, we construct an auxiliary process Ñ2, in which new
ype-2 crypts are produced with rate u2N∗

1 (t). Then, we obtain
2 as the limiting random variable of the process Ñ2, namely we
how that e−λ2t Ñ2 → V2 as t → ∞. Similarly, we start with
∗

2 = eλ2tV2 as the process that produces the auxiliary type-3
rocess, Ñ , and obtain V as the limiting random variable of Ñ .
3 3 3

55
We start by considering Ñ2(t), the population of type-2 crypts
roduced by N∗

1 (t) := u1Nt with mutation rate u2, and its long
ime behavior. Recall that type-2 crypts can divide with rate λ2.

heorem 6.1. e−λ2t Ñ2(t) → V2 a.s. and in L1 with

[V2] =
Nu1u2

λ2
2

and

LV2 (θ ) = E
[
e−θV2

]
= exp

(
Nu1u2PolyLog(2,−θ )

λ2
2

)
. (26)

We recall that PolyLog(n, z), n ∈ Z, n ≥ 2, z ∈ C represents
he polylogarithm function (DLMF, 2022, 25.12.10).

orollary 6.2. Ñ2(t)
f2(t)

→ V2 a.s. and in L1 for all f2(t) ∈ F2.

We recall that F2 = {f ∈ C(R)| limt→∞ e−λ2t f2(t) = 1, f2(t) ≥
}.
To measure the distance between W2 and V2, we present

W2 (θ ), LV2 (θ ) and their relative difference on θ ∈ [0, 10] in
anels (A) and (B) of Fig. 6. We choose this domain for θ since the
unctions values are negligible when θ > 10 (panel (A) of Fig. 6).
urthermore, we numerically compare the density functions of
2, V2 and the histogram of e−λ2tN2(t) at t = 60 obtained from

exact computer simulations of the type-2 process (panel (C) of
Fig. 6). The densities are obtained through a numerical inverse
Laplace transform using the Talbot method (Abate and Whitt,
2006), and are in good agreement.

Next, we discuss the construction of V3. Consider a system
(N∗

2 (t), Ñ3(t)) with N∗

2 (t) := f2(t)V2, f2(t) ∈ F2 and Ñ3(t) denoting
the number of type-3 crypts. In the process, the type-3 crypts are

https://dlmf.nist.gov/25.12
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Fig. 7. (A) Comparison of LW3 (θ ) (Eq. (7)) and LV2 (θ ) (Eq. (B.6)) on the interval [0, 105
]. (B) Relative difference of LW3 (θ ) and LV3 (θ ) which is defined by
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roduced at rate u3N∗

2 (t) and a single type-3 crypt can divide with
ate λ3. The following large-time limit holds:

heorem 6.3. Ñ3(t)
f3(t)

→ V3 a.s. and in L1 with

[V3] =
Nu1u2u3

λ2
2

∫
∞

0
f2(s)e−λ3sds,

and

LV3 (θ ) = E[e−θV3 ] = LV2

(
ui

∫
∞

0

θ f2(s)
θ + eλis

ds
)
,

for all f3(t) ∈ F3 = {f ∈ C(R)| limt→∞ e−λ3t f3(t) = 1, f3(t) ≥ 0}.

As we have mentioned in Section 3, we employ the scaling
function f21(t) to compute LV3 (θ ). In Fig. 7, we numerically com-
pare this Laplace transform with LW3 (θ ) on θ ∈ [0, 105

]. This
domain of θ results from evaluating P(τ4 ≤ t), the distribution
function of the waiting time to the first type-4 crypt, in the
lifespan t ∈ [0, 80]. We recall that when approximating P(τ4 ≤ t),
we need to evaluate LV3 (θ ) at θ (t) = u4

∫ t
0 f3(s)ds. Plugging in the

parameters in our model results in θ (t) ∈ [0, 105
] for t ∈ [0, 80].

Both panels (A) and (B) in Fig. 7 show that LW3 (θ ) and LV3 (θ ) are
in a good agreement on the domain of interest.

The previous discussions imply that there is a recursive rela-
tionship involved in the sequence of (N∗

i−1, Ñi) approximations.
After obtaining the limiting random variable Vi in (N∗

i−1, Ñi),
N∗

i (t) = fi(t)Vi can be employed when moving to the next two-
type process (N∗

i (t), Ñi+1(t)). This recursion allows us to present
an iterative method for computing the Laplace transforms of
random variables Vi.

Lemma 6.4. Consider Ñi(t), the population of type-i individuals
produced by N∗

i−1(t) = fi−1(t)Vi−1 with mutation rate ui > 0. Each
type-i individual can divide with rate λi > 0. Suppose e−λit Ñi(t)

a.s.
→

Vi and fi−1(t)e−λit is integrable on [0,∞), then

LVi (θ ) := E
[
e−θVi

]
= LVi−1

(
ui

∫
∞

0

θ fi−1(s)
θ + eλis

ds
)
.

roof. We start with a lemma that provides the Laplace trans-
orm of Ni(t) conditional on the population of its precursor,

(t).
i−1

56
Lemma 6.5. Let Zi(t) be the number of type-i individuals in a pure-
birth process that starts with Zi(0) = 1 individuals at time t = 0.
Then

E
[
e−θNi(t)

⏐⏐⏐Ni−1(s), s ≤ t
]

= exp
(
−ui

∫ t

0
Ni−1(s)(1− φi(θ, t − s))ds

)
, (27)

here φi(θ, t) := E
[
e−θZi(t)

]
.

One can prove the above lemma by following the procedure of
emma 2 in Durrett and Moseley (2010), replacing the start time
ith s = 0.
Now going back to the proof of Lemma 6.4, we consider the

tar process approximation
∗

i−1(t) = fi−1(t)Vi−1.

pplying Lemma 6.5 the 2-type process
(
N∗

i−1(t), Ñi(t)
)

gives
s

[e−θ Ñi(t)|Vi−1] = exp
(
−ui

∫ t

0
fi−1(s)Vi−1(1− φi(θ, t − s))ds

)
.

eplacing θ with θe−λit ,

[e−θe−λi t Ñi(t)|Vi−1]

= exp
(
−ui

∫ t

0
fi−1(s)Vi−1(1− φi(e−λitθ, t − s))ds

)
, (28)

hen for each subclone of Ni, by Eq. (14), we have

i(t − s)e−λi(t−s)
→ Exponential(1) a.s.

hus, it follows that

i(t − s)e−λit → Exponential(eλis).

onsidering the following limit involving terms on the right hand
ide of (28), we have

lim
→∞

1− φi(θe−λit , t − s) = 1−
∫

∞

0
e−θxeλis exp(−xeλis)dx

=

∫
∞

0
(1− e−θx)eλis exp(−xeλis)dx

=
θ

θ + eλis
.
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ote that as t → ∞, the left hand side of (28) yields

lim
→∞

E[e−θe−λi t Ñi(t)|Vi−1] = E[ lim
t→∞

e−θe−λi t Ñi(t)|Vi−1]

= E[e−θVi |Vi−1],

as switching the limit and the integration is allowed by the
dominated convergence theorem. Thus, we can write

E[e−θVi |Vi−1] = exp
(
−uiVi−1

∫
∞

0

θ fi−1(s)
θ + eλis

ds
)
.

Taking expectation on both sides gives

E[e−θVi ] = LVi−1

(
ui

∫
∞

0

θ fi−1(s)
θ + eλis

ds
)
. □

. Proofs

In this section, we prove Theorems 3.1, 3.3, 5.1, 5.6, 6.1, 6.3
and Corollaries 3.2, 3.4, 6.2.

Proof of Theorem 3.1. By Lemma 4.1, consider

I2 =
∫

∞

0
u2N1(s)e−λ2sds.

Since

E[I2] =E
[∫

∞

0
u2e−λ2sN1(s)ds

]
(By Tonelli’s theorem) =

∫
∞

0
u2E[N1(s)]e−λ2sds

≤

∫
∞

0
u2u1Nse−λ2sds

= Nu1u2

∫
∞

0
se−λ2sds

=
Nu1u2

λ2
2

< ∞,

there exists W2 s.t.

e−λ2tN2(t) → W2 a.s. as t → ∞.

Next, we show uniform integrability so that E[W2] is well-defined.
e prove this for N1,N2 and N3 in Lemma A.1. Since L1 conver-

gence is guaranteed, E[W2] = E[I2], so that

E[W2] =

∫
∞

0
u2E[N1(s)]e−λ2sds

=

∫
∞

0
u2N(1− e−u1s)e−λ2sds

=
Nu1u2

λ2(λ2 + u1)
.

The Laplace transform of W3 is derived in Corollary 5.3.

roof of Corollary 3.2. The proof follows directly from Theo-
em 3.1. Observe that

ω ∈ {ω : lim
t→∞

e−λ2tN2(ω, t) = W2(ω)},

e have

lim
→∞

N2(ω, t)
f2(t)

= lim
t→∞

e−λ2t f2(t) lim
t→∞

N2(ω, t)
f2(t)

= V2(ω).

Then since f2 ∈ F2, for t > 0 sufficiently large, we have f2(t) > 0
and eλ2t/f (t) < M . Thus, without loss of generality, we can
2

57
assume that f2(t) > 0 for t ≥ 0. In this case, we have

up
t

E
(
N2(t)
f2(t)

)2

≤

(
sup
t

(
eλ2t/f2(t)

))2

sup
t

E
[(

N2(t)e−λ2t
)2]

.

y Lemma A.1 supt E
[(

N2(t)e−λ2t
)2] is bounded. Therefore the

xpression on the left hand side is bounded. Hence
N2(t)/f2(t), t ≥ 0} is square integrable and the convergence is
n L1.

roof of Theorem 3.3. By Lemmas 4.1 and A.1, we need to verify
hat I3 has finite expectation,

[I3] =
∫

∞

0
u3E[N2(s)]e−λ3sds

≤

∫
∞

0
u3

u1u2N
λ2
2

(eλ2s − λ2s− 1)e−λ3sds

=
Nu1u2u3

λ2
2

∫
∞

0
(e(λ2−λ3)s − λ2se−λ3s − e−λ3s)ds

=
Nu1u2u3

(λ3 − λ2)λ2
3
< ∞.

And the expected value of W3 is given by the expected value of
I3,

E[W3] = E[I3]

=

∫
∞

0
u3E[N2(s)]e−λ3sds

=

∫
∞

0
u3Nu2

u1(eλ2s − 1)+ λ2(e−u1s − 1)
λ2(λ2 + u1)

e−λ3sds

=
Nu1u2u3

(λ3 − λ2)λ3(λ3 + u1)
.

The Laplace transform of W3 is derived in Corollary 5.8.

roof of Corollary 3.4. The outline of this proof is similar to the
roof of Corollary 3.2. Almost sure convergence holds since for
ixed ω,

lim
→∞

N3/f3(t) = lim
t→∞

e−λ3t f3(t) lim
t→∞

N3/f3(t) = lim
t→∞

e−λ3tN3.

onvergence in L1 is a consequence of the square integrability of
N3(t)/f3(t), t ≥ 0}.

roof of Theorem 5.1. Before proving the theorem, we first
ntroduce some new notations. Let N (a,b,c)

i (t) be the population
f type-i crypts in the multi-type branching process

0(t)
u1
−→ N1(t)

u2
−→

⟲divide at rate λ2
N2(t) ,

here initially (N0(0),N1(0),N2(0)) = (a, b, c). We observe that
he Ni(t) in the model (without the superscript) can be written as
i(t) = N (N,0,0)

i (t). Then we define the type-2 lineage which was
nitiated by a single type-i crypt as:

0,2(t) := N (1,0,0)
2 (t) t ≥ 0,

1,2(t) := N (0,1,0)
2 (t) t ≥ 0,

2,2(t) := N (0,0,1)
2 (t) t ≥ 0.

or our convenience, we allow these lineages to be defined on the
egative time axis, i.e. Zi,2(t) = 0, ∀t < 0. Then {Z2,2(t), t ≥ 0}

is a supercritical pure birth process with birth rate λ2. Thus it
ollows that
−λ2tZ (t) = V ∼ Exp(1).
2,2
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he other type-2 lineages can be represented by the following
emma.

emma 7.1. There exist T0 ∼ Exp(u1) and T1 ∼ Exp(u2) such that

(a) T0, T1 and {Z2,2(t)} are independent;
(b) Z1,2(t) = Z2,2(t − T1), Z0,2(t) = Z2,2(t − T0 − T1); and
(c) the following equations hold almost surely

lim
t→∞

e−λ2tZ1,2(t) = e−λ2T1 lim
t→∞

e−λ2(t−T1)Z2,2(t − T1)

= e−λ2T1V , (29)

lim
t→∞

e−λ2tZ0,2(t) = e−λ2(T0+T1) lim
t→∞

e−λ2(t−T0−T1)

× Z2,2(t − T0 − T1)

= e−λ2(T0+T1)V , (30)

where V ∼ Exp(1).

Proof. We use the minimal process to construct our multi-type
branching process. For a detailed description of the construction
of minimal process, please refer to Chapter V, Section 7 of Athreya
and Ney (2004). In our model, a type-1 crypt can only mutate into
a type-2 crypt. Thus, after the process Z1,2(t) = N (0,1,0)

2 (t) incurs
its first mutation after an exponentially distributed waiting time
T0, it corresponds to Z2,2(t) = N (0,0,1)

2 (t). This enables us to write

Z1,2(t) = Z2,2(t − T1).

Similarly, for Z0,2(t), we need one mutation for this process to
become Z1,2(t). Thus it follows that Z0,2(t) = Z2,2(t − T0 − T1),
where T1 ∼ Exp(u2) is the waiting time of the mutation from
type-1 to type-2. For (c), note that P(T1 < ∞) = 1,P(T1 + T2 <

∞) = 1. Thus t − T1 → ∞ almost surely and t − T0 − T1 → ∞

almost surely. Therefore (29) and (30) holds almost surely. □

Now we return to the proof of Theorem 5.1.

Proof. Since e−λ2tN2(t) → W2 almost surely, there exists Â such
that limt→∞ e−λ2tN2(t, ω) = W2(ω) for all ω ∈ Â and P(Â) = 1.
his limit remains if we shift the time by a finite value, thus

lim
→∞

e−λ2(t+s)N2(t + s, ω) = W2(ω) (31)

lim
s→∞

e−λ2sN2(t + s, ω) = eλ2tW2(ω), ∀ω ∈ Â. (32)

n the other hand, given the information at time t , i.e. (N0(t),
1(t),N2(t)), we can represent the population N2(t + s) by the
dditive property of a multi-type branching process (Athreya and
ey, 2004),

2(t + s) = N (N0(t),N1(t),N2(t))
2 (s)

=

N2(t)∑
j=1

Z (j)
2,2,t (s)+

N1(t)∑
j=1

Z (j)
1,2,t (s)+

N0(t)∑
j=1

Z (j)
0,2,t (s),

n which {Z (j)
i,2,t (s), i = 0, 1, 2}, when conditioned on N2(t),N1(t),

0(t) are independent copies of lineages Zi,2(s), i = 0, 1, 2. Then
e can use another approach to compute the left hand side
f Eq. (32). For fixed t , we multiply both sides of the above
ecomposition by e−λ2s and take limit as s → ∞.

e−λ2sN2(t + s) = e−λ2s

⎛⎝N2(t)∑
j=1

Z (j)
2,2,t (s)+

N1(t)∑
j=1

Z (j)
1,2,t (s)

+

N0(t)∑
Z (j)
0,2,t (s)

⎞⎠

j=1

58
(by (29) and (30))
a.s.
→

N2(t)∑
j=1

V (2,j)
t +

N1(t)∑
j=1

e−λ2T
(1,j)
1,t V (1,j)

t

+

N0(t)∑
j=1

e−λ2

(
T (0,j)0,t +T (0,j)1,t

)
V (0,j)
t ,

where {V (i,j)
t , i = 0, 1, 2} ∪ {T (i,j)

k,t , i = 0, 1, k = 0, 1}, when
conditioned on N0(t),N1(t),N2(t) is a family of independent ran-
dom variables in which {V (i,j)

t , i = 0, 1, 2} are distributed as
V ∼ Exp(1), {T (i,j)

0,t , i = 0, 1} are distributed as T0 ∼ Exp(u1)
and {T (i,j)

1,t , i = 0, 1} are distributed as T1 ∼ Exp(u2). Since the
convergence holds almost surely, for each t we can find At such
that P(At ) = 1 and

lim
s→∞

e−λ2sN2(t + s, ω) =
N2(t,ω)∑
j=1

V (2,j)
t (ω)+

N1(t,ω)∑
j=1

e−λ2T
(1,j)
1,t (ω)V (1,j)

t (ω)

+

N0(t,ω)∑
j=1

e−λ2

(
T (0,j)0,t (ω)+T (0,j)1,t (ω)

)
V (0,j)
t (ω)

for all ω ∈ At . Now let {tk; k = 1, 2, . . . } be the set of non-
negative rationals and define Aq = Â∩

(⋂
∞

k=1 Atk

)
. Then it follows

that P(Aq) = 1 and on Aq we have

eλ2tW2(ω) =
N2(t,ω)∑
j=1

V (2,j)
t (ω)+

N1(t,ω)∑
j=1

e−λ2T
(1,j)
1,t (ω)V (1,j)

t (ω)

+

N0(t,ω)∑
j=1

e−λ2

(
T (0,j)0,t (ω)+T (0,j)1,t (ω)

)
V (0,j)
t (ω)

for all non-negative rational times. Finally, by the right-continuity
of the process, for all t ≥ 0 the equality holds almost surely. This
implies

N2(t)− eλ2tW2 =

N2(t)∑
j=1

(1− V (2,j)
t )−

N1(t)∑
j=1

e−λ2T
(1,j)
1,t V (1,j)

t

−

N0(t)∑
j=1

e−λ2

(
T (0,j)0,t +T (0,j)1,t

)
V (0,j)
t

where the equality holds for all t ≥ 0 almost surely. □

Proof of Theorem 5.6. The outline of proving this theorem
is similar to the proof of Theorem 5.1. Let N (a,b,c,d)

i (t) be the
population of type-i (i ≤ 3) crypts in the multi-type branching
process

N0(t)
u1
−→ N1(t)

u2
−→

⟲divide at rate λ2
N2(t)

u3
−→

⟲divide at rate λ3
N3(t) ,

where initially (N0(0),N1(0),N2(0),N3(0)) = (a, b, c, d). By using
this notation, Ni(t) can be written as Ni(t) = N (N,0,0,0)

i (t). To
describe the type-3 population initiated by a single type-i crypt,
we define Zi,3(t) to be the type-3 lineage started with a type-i
crypt. Note that these lineages are allowed to be defined on the
negative time axis, i.e. Zi,3(t) = 0, ∀t < 0. The behavior of each
type-3 lineage is clear: {Z3,3(t), t ≥ 0} is a supercritical pure birth
process with birth rate λ3; Z2,3(t) is the second type in a two-type
process which we discuss in Appendix C; Z1,3(t) and Z0,3(t) can be
treated as Z2,3(t) after one jump or two jumps respectively. Thus,
it follows that there exist T0 ∼ Exp(u1) and T1 ∼ Exp(u2) such
that

e−λ3tZ3,3(t) = V ∼ Exp(1)

e−λ3tZ (t) = U
2,3
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−λ3tZ2,3(t) = e−λ3T1U
−λ3tZ1,3(t) = e−λ3(T0+T1)U .

n the above equations, U has an explicit Laplace transform (C.8).
ow we go back to the proof for Theorem 5.6.

roof. Since e−λ3tN3(t) → W3 almost surely, lims→∞ e−λ3sN3(t+
) = eλ3tW3 for a fixed t . Instead of taking the limit as t → ∞

irectly, given (N0(t),N1(t),N2(t),N3(t)), we can represent the
opulation N3(t + s) by the additive property of a multi-type
ranching process:

3(t + s) = N (N0(t),N1(t),N2(t),N3(t))
3 (s)

=

N3(t)∑
j=1

Z (j)
3,3,t (s)+

N2(t)∑
j=1

Z (j)
2,3,t (s)

+

N1(t)∑
j=1

Z (j)
1,3,t (s)+

N0(t)∑
j=1

Z (j)
0,3,t (s),

n which {Z (j)
i,3,t (s), i = 0, 1, 2, 3}, when conditioned on N0(t),

1(t),N2(t),N3(t) are independent copies of type-3 lineages
i,3(s), i = 0, 1, 2, 3. Multiplying both sides of the above decom-
osition by e−λ3s and taking limit as s → ∞ gives us

λ3tW3
a.s.
=

N3(t)∑
j=1

V (j)
t +

N2(t)∑
j=1

U (2,j)
t +

N1(t)∑
j=1

e−λ3T
(1,j)
1,t U (1,j)

t

+

N0(t)∑
j=1

e−λ3

(
T (0,j)0,t +T (0,j)1,t

)
U (0,j)
t ,

where V j
t ,U

(i,j)
t , T (i,j)

k,t , when conditioned on N0(t),N1(t),N2(t) are
independent copies with known Laplace transforms. Finally, by
the right-continuity of the process, we are able to find a measure-
1 set in the sample space such that the equality holds almost
surely for all t ≥ 0. □

Proof of Theorem 6.1. By Lemmas 4.1 and A.2, we need to
verify that I∗2 has finite expectation. We note Lemma 4.1 still holds
rue if the initial type N0(t) is replaced by N∗

0 (t), a non-negative
ight continuous process with E|N∗

0 (t)| < ∞. In this case, I∗2 is
eterministic and has a finite expected value

[I∗2 ] = I∗2 =

∫
∞

0
u2u1Nse−λ2sds =

Nu1u2

λ2
2

< ∞.

By Lemma 4.1, we must have e−λ2t Ñ2(t)
a.s.
→ V2. Next, we show

uniform integrability which guarantees L1 convergence. It is
shown in Lemma A.2 that all ‘‘tilde’’ processes in this paper are

uniform integrable. This implies e−λ2t Ñ2(t)
L1
→ V2 and E[V2] =

E[I∗2 ] =
Nu1u2
λ22

. Finally, to compute the Laplace transform of V2,

e plug f2(t) = eλ2t into the formula in 6.4.

roof of Corollary 6.2. The convergence directly follows Theo-
em 6.1 by the fact that for fixed

ω ∈ {ω : lim
t→∞

e−λ2t Ñ2(ω, t) = V2(ω)},

lim
→∞

Ñ2(ω, t)
f2(t)

= lim
t→∞

e−λ2t f2(t) lim
t→∞

Ñ2(ω, t)
f2(t)

= V2(ω).

Similar to the proof of Corollary 3.2, Lemma A.2 and that fact f2 ∈
F2 together imply the square integrability of {Ñ2(t)/f2(t), t ≥ 0}.
Thus the convergence is in L1.
59
Proof of Theorem 6.3. Consider a system with N∗

2 (t) := f2(t)V2

and let Ñ3(t) denote the number of type-3 crypts in this system.
In the beginning we compute

E[I∗3 ] =
∫

∞

0
u3E[N∗

2 (s)]e
−λ3sds

=

∫
∞

0
u3

u1u2N
λ2
2

f2(s)e−λ3sds

=
Nu1u2u3

λ2
2

∫
∞

0
f2(s)e−λ3sds.

y observing that

f2(s)e−λ3s

e−(λ3−λ2)s
= f2(s)e−λ2s → 1 < ∞,

we see that the improper integral
∫
∞

0 f2(s)e−λ3sds converges. It
follows that E[I∗3 ] < ∞. Then by Lemmas 4.1 and A.2, we see
that there exists a random variable V3 such that e−λ3t Ñ3(t) → V3
a.s. and in L1.

Next, we have

ω ∈ {ω : lim
t→∞

e−λ3t Ñ3(ω, t) = V3(ω)},

lim
t→∞

Ñ3(ω, t)
f3(t)

= lim
t→∞

e−λ3t f3(t) lim
t→∞

Ñ3(ω, t)
f3(t)

= V3(ω).

Lemma 6.4 approximates the Laplace transform of V3. Here
e note that changing the scaling function f2 does not change
he limiting random variable V3. However, the approximation in
emma 6.4 is made using f2. Hence f2 changes the approximation
f the Laplace transform of V3.
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ppendix A. Auxiliary lemmas

emma A.1. For i ≤ 3, supt E
[
(e−λitNi(t))2

]
< ∞.

roof. By Lemma 5 in Durrett and Moseley (2010), we know
nductively that if supt E[e−λitNi(t)]2 < ∞ and λi < λi+1 holds,
hen supt (e−λi+1tNi+1)2 < ∞. In this case, since 0 = λ0 = λ1 <

2 < λ3, we only need to show that

up
t

E(N0(t))2 < ∞ and, sup
t

E(N1(t))2 < ∞.

ote that by our transition scheme, one can have

0(t)+ N1(t) ≤ N.

herefore

ax
(
sup
t

N2
0 (t), sup

t
N2

1 (t)
)
≤ N2 < ∞. □

emma A.2. For i ∈ {2, 3}, sup E
[
(e−λit Ñ (t))2

]
< ∞.
t i
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roof. For i = 2, recall that Ñ2(t) is the second type in a two-type
branching process where the first type is N∗

1 (t) = u1Nt . And Ñ2(t)
is produced at rate u2N∗

1 (t). By manipulating the master equation
of this two-type process, we obtain the following differential
equation of E

[
Ñ2(t)2

]
,

dE
[
Ñ2(t)2

]
dt

= 2λ2E
[
Ñ2(t)2

]
+ (λ2 + 2u2u1Nt)E[Ñ2(t)] + u2u1Nt

subject to E
[
Ñ2(0)2

]
= 0. The solution is

E
[
Ñ2(t)2

]
= e2λ2t

∫ t

0
e−2λ2s

×

(
(λ2 + 2u2u1Ns)E[Ñ2(s)] + u2u1Ns

)
ds.

Note that

E[Ñ2(t)] =
Nu1u2(eλ2t − λ2t − 1)

λ2
2

≤
u2u1N
λ2
2

eλ2t .

Thus,

E
[
Ñ2(t)2

]
≤ e2λ2t

∫ t

0

(
2u2

2u
2
1N

2

λ2
2

se−λ2s +
u1u2N
λ2

e−λ2s

+ u2u1Nse−2λ2s
)
ds

= e2λ2t
(
2u2

2u
2
1N

2

λ2
2

1− e−λ2t (λ2t + 1)
λ2
2

+
u1u2N
λ2

1− e−λ2t

λ2

+u2u1
1− e−2λ2t (2λ2t + 1)

4λ2
2

)
.

It follows that[
(e−λ2t Ñ2(t))2

]
≤

2u2
2u

2
1N

2

λ4
2

+
u1u2N
λ2
2

+
u2u1

4λ2
2
.

ince the right hand side is not time-dependent, we get supt E
(e−λ2t Ñ2(t))2

]
< ∞.

For i = 3, Ñ3(t) is produced at rate u3N∗

2 (t) = u3eλ2tV2. From
he master equation we get the following differential equation:

dE
[
Ñ3(t)2|V2

]
dt

= 2λ3E
[
Ñ3(t)2|V2

]
+ (λ3 + 2u3eλ2tV2)E[Ñ3(t)|V2] + u3eλ2tV2

subject to E
[
Ñ3(0)2|V2

]
= 0. The solution is

E
[
Ñ3(t)2|V2

]
= e2λ3t

∫ t

0
e−2λ3s

×

(
(λ3 + 2u3eλ2sV2)E[Ñ3(s)|V2] + u3eλ2sV2

)
ds.

Note that

E[Ñ3(t)|V2] =
u3V2

λ3 − λ2
(eλ3t − eλ2t ) ≤

u3V2

λ3 − λ2
eλ3t .

hus, we have[
Ñ3(t)2|V2

]
≤ e2λ3t

∫ t

0

(
2u2

3V
2
2

λ3 − λ2
e−(λ3−λ2)s +

λ3u3V2

λ3 − λ2
e−λ3s

+u3e−(2λ3−λ2)sV2

)
ds

≤ e2λ3t
(

2u2
3V

2
2

(λ3 − λ2)2
+

λ3u3V2

λ3(λ3 − λ2)
+

u3V2

(2λ3 − λ2)

)
.

60
By Lemma 6.4, one can compute the moments of V2 from its
aplace transform. Then we get

[V2] =
Nu1u2

λ2
2

, E[V 2
2 ] =

Nu1u2(2Nu1u2 + λ2
2)

λ4
2

.

Hence, we conclude that supt E
[
(e−λ3t Ñ3(t))2

]
< ∞. □

Appendix B. Closed form formulas of analytic distributions

In the main text, we have omitted a few cumbersome for-
mulas to increase readability. Here we present their closed form
expressions. We begin with the analytic probability distribution
functions of τ4:

p40(t) = 1− LV3

(
u4

∫ t

0
f30(s)ds

)
= 1− LV3

(
u4

λ3
(eλ3t − 1)

)
,

(B.1)

41(t) = 1− LV3

(
u4

∫ t

0
f31(s)ds

)
(B.2)

= 1− LV3

(
u4

(
1
λ3

(eλ3t − 1)−
λ2
3

2
t2 − t

−
λ2
3

λ2
2
(
1
λ2

(eλ2t − 1)−
λ2

2
t2 − t)

))
(B.3)

where

LV3 (θ ) = LV2

(
u3

∫
∞

0

f21(s)θ
θ + eλ3s

ds
)

(B.4)

= exp
(
Nu1u2

λ2
2

PolyLog
(
2,−u3

(
1

λ3 − λ2

× θ2F1(1−
λ2

λ3
, 1; 2−

λ2

λ3
;−θ ) (B.5)

−λ2
PolyLog(2,−θ )

λ2
3

−
1
λ3

log(1+ θ )
)))

. (B.6)

The two results of skipping type-4 are

ps340(t) = 1− LV2

(
u4

∫ t

0
f20(s)(1− p3→4

0 (s, t))ds
)

(B.7)

= 1− LV2

(
u4

λ2(u4 − λ3)

(
−u4 + λ3 2F1(1,

λ2

λ3
,
λ2

λ3

+ 1,
u4 − λ3

u4
e−λ2t ) (B.8)

+eλ2t (u4 − λ3 2F1(1,
λ2

λ3
,
λ2

λ3
+ 1, 1−

λ3

u4
))
))

,

(B.9)

ps341(t) = 1− LV2

(
u4

∫ t

0
f21(s)(1− p3→4

0 (s, t))ds
)

(B.10)

= 1− LV2

(
u4

(
L(4)λ2

(t)− λ2L
(4)
l (t)− L(4)c (t)

))
, (B.11)

where

p3→4
0 (s, t) =

1

1+ u4
exp (λ3(t−s))−1

λ3

,

LV2 (θ ) = exp
(
Nu1u2

PolyLog(2,−θ )
λ2
2

)
,

L(4)λ2
(t) :=

∫ t

0
eλ2s(1− p3→4

0 (s, t))ds =
1

λ2(u4 − λ3)

×

(
−u4 + λ3 2F1(1,

λ2

λ3
;
λ2

λ3
+ 1;

u4 − λ3

u4
e−λ3t )

+eλ2t (u4 − λ3 2F1(1,
λ2

;
λ2

+ 1; 1−
λ3 ))

)
,

λ3 λ3 u4
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L(4)l (t) :=
∫ t

0
s(1− p3→4

0 (s, t))ds

=
t2

2

+

−λ3t log(
λ3
u4

)+ PolyLog(2, −(λ3−u4)e−λ3 t

u4
)− PolyLog(2, 1− λ3

u4
)

λ3(λ3 − u4)
,

L(4)c (t) :=
∫ t

0
(1− p3→4

0 (s, t))ds

=
log(u4(eλ3t − 1)+ λ3)− log(λ3)− u4t

λ3 − u4
.

For waiting time distributions of the first type-5 crypt, our es-
imations are ps451(t) and ps3451 (t). ps451(t) can be expressed explicitly

s4
51(t) = 1− LV3

(
u4

∫ t

0
f31(s)(1− p4→5

0 (s, t))ds
)

(B.12)

= 1− LV3

(
u4

(
L(5)λ3

(t)− CL(5)λ2
(t)

−(λ3 − Cλ2)L
(5)
l (t)+ (C − 1)L(5)c (t)

))
, (B.13)

here

(5)
λ3
(t) :=

∫ t

0
eλ3s(1− p4→5

0 (s, t))ds

=
u5

λ3(λ3 − u5)2
(
λ3 − u5 + eλ3t (−λ3 + u5

+λ3 log(λ3eλ3t )− λ3 log(λ3 + u5(eλ3t − 1))
))
,

L(5)λ2
(t) :=

∫ t

0
eλ2s(1− p4→5

0 (s, t))ds =
1

λ2(u5 − λ3)

×

(
−u5 + λ3 2F1(1,

λ2

λ3
;
λ2

λ3
+ 1;

u5 − λ3

u5
e−λ2t )

+eλ2t (u5 − λ3 2F1(1,
λ2

λ3
;
λ2

λ3
+ 1; 1−

λ3

u5
))
)
,

(5)
l (t) :=

∫ t

0
s(1− p4→5

0 (s, t))ds

=
t2

2

+

−λ3t log(
λ3
u4
)+ PolyLog(2, −(λ3−u4)e−λ3 t

u4
)− PolyLog(2, 1− λ3

u4
)

λ3(λ3 − u4)
,

(5)
c (t) :=

∫ t

0
(1− p4→5

0 (s, t))ds

=
log(u4(eλ3t − 1)+ λ3)− log(λ3)− u4t

λ3 − u4
,

C :=
λ2
3

λ2
2
.

Define

I(t) =
∫ t

0
(eλ2s − λ2s− 1)

⎛⎜⎝1

−

⎛⎝1+
u4u5(λ3 − u5 + eλ3(t−s)(u5 − λ3 + λ3 log(

λ3eλ3(t−s)

λ3+u5(eλ3(t−s)
−1)

)))

(λ3 − u5)2λ3

⎞⎠−1⎞⎟⎠ ds.

Then we can have

ps3451 (t) := 1− LV2 (u3I(t)). (B.14)

Unfortunately, we cannot provide an explicit solution to the inte-
gral I(t). Nevertheless, we have computed this value numerically.
61
Appendix C. Exact solution of a supercritical two-type pure
birth model and its consequences

To measure the distance between N3 and its approximations,
it is important to understand the two-type system initiated by
a single type-2 crypt. In this section, we consider the branching
process generated by the following transition scheme

⟲divide at rate λ2
M2(t)

u3
−→

⟲divide at rate λ3
M3(t)

ubject to the initial condition (M2(0),M3(0)) = (1, 0). To for-
ulate the backward Kolmogorov equations, we define the joint
robability generating functions as

1(x, y, t) := E(xM2(t)yM3(t)|(M2(0),M3(0)) = (1, 0)),

2(x, y, t) := E(xM2(t)yM3(t)|(M2(0),M3(0)) = (0, 1)).

he corresponding system of ordinary differential equations with
espect to variable t is
d
dt

G1 = λ2G2
1 − (λ2 + u3)G1 + u3G2, G1(x, y, t = 0) = x,

d
dt

G2 = λ3G2
2 − λ3G2, G2(x, y, t = 0) = y.

We first rescale the time by λ2. Let t(s) =
s
λ2

and gi(x, y, s) :=

Gi(x, y, t(s)). Then under the new variables, the equations become
d
ds

g1 = g2
1 − (1+ ν)g1 + νg2, g1(x, y, s = 0) = x, (C.1)

d
ds

g2 = µ2g2
2 − µ2g2, g2(x, y, s = 0) = y, (C.2)

where ν =
u3
λ2
, µ2 =

λ3
λ2
. The solution of the second equation is

found to be

g2(x, y, s) =
y

(1− y)eµ2s + y
.

The solution to the first equation has a rather complex form.
Similar equations have been previously considered (Kessler and
Levine, 2013, 2015). The most general model with death rates is
solved by Antal and Krapivsky (AK) (Antal and Krapivsky, 2011).

e adapt AK’s solution and take into account that the death rates
re zero in our model. AK’s solution to (C.1) reads

1(x, y, s) = 1+
u3

λ2
+

λ3

λ2
Ψ (C1(x, z0(y)), z1(y, s)), (C.3)

where

Ψ (C, z) :=
zcF3(z)+ C(1− c)F2(z)+ CzF4(z)

zc−1F1(z)+ CF2(z)
,

z1(y, s) :=
[
1−

1
1− y

]
e−

λ3
λ2

s
,

C1(x, z0) := zc−1
0

(a− b(x− 1)) F1(z0)+ z0F3(z0)
(b− b(x− 1))F2(z0)− z0F4(z0)

,

0(y) := 1−
1

1− y
,

F1(z) := 2F1(a, b; c; z), F2(z) := 2F1(−a,−b; 2− c; z),

3(z) :=
ab
c 2F1(1+ a, 1+ b; 1+ c; z),

F4(z) :=
ab

2− c 2F1(1− a, 1− b; 3− c; z),

with constants

a =
u3

λ3
, b =

λ2

λ3
, c = 1+

λ2 + u3

λ3
.

We are interested in the probability generating function of the
second type G(y, t) := E(yM3(t)|M (0) = 1,M (0) = 0) on the
2 3
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riginal time scale. We find that

(y, t) = lim
x→1

g(x, y, s(t))

= 1+
u3

λ2
+

λ3

λ2
Ψ (C(x, z0(y)), z1(y, s(t))), s(t) = λ2t.

(C.4)

s x → 1, we observe that

1(x, z0) → C(z0) := zc−1
0

aF1(z0)+ z0F3(z0)
bF2(z0)− z0F4(z0)

.

ext, the time rescaling only affects z1(y, s). Hence we define
(y, t) = z1(y, s(t)) =

[
1− 1

1−y

]
e−λ3t . Finally G(y, t) can be

ritten as

(y, t) = 1+
u3

λ2
+

λ3

λ2
Ψ (C(z0(y)), z(y, t)). (C.5)

C.1. The probability of having no type-3 crypts at fixed time

Here we investigate the probability of having no type-3 at time
t , which we denoted as p0(t) := P(M3(t) = 0). By the definition of
the generating function p0(t) = limy→0 G(0, t). We observe that
as y → 0, z0 → 0. First, we compute limz0→0 C(z0). We recall that
he definition of hypergeometric function gives us that

F1(a, b; c; z) = 1+
ab
c
z+

a(a+ 1)b(b+ 1)
c(c + 1)2!

z2+O(z3), as z → 0.

herefore as z0 → 0

1(z0) = 1+
ab
c
z0 +

a(a+ 1)b(b+ 1)
c(c + 1)2!

z20 + O(z30 ),

2(z0) = 1+
ab

2− c
z0 +

a(1− a)b(1− b)
(2− c)(3− c)2!

z20 + O(z30 ),

3(z0) =
ab
c

+
a(a+ 1)b(b+ 1)

c(c + 1)
z0

+
a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

c(c + 1)(c + 2)2!
z20 + O(z30 ),

F4(z0) =
ab

2− c
+

a(1− a)b(1− b)
(2− c)(3− c)

z0

+
a(1− a)(2− a)b(1− b)(2− b)

(2− c)(3− c)(4− c)2!
z20 + O(z30 ),

C(z0) = zc−1
0

aF1(z0)+ z0F3(z0)
bF2(z0)− z0F4(z0)

=
a
b
zc−1
0 + O(zc0).

ote that z(y, t) = z0(y)e−λ3t . As z0 → 0, we have

Ψ (C(z0), z0e−λ3t ) =
a
b (1− c)+ O(z0)

e−(c−1)λ3t + a
b + O(z0)

→ −
u3(λ2 + u3)

λ3(λ2e−(λ2+u3)t + u3)
.

hus, we conclude that

0(t) = 1+
u3

λ2
−

u3(λ2 + u3)
λ2(λ2e−(λ2+u3)t + u3)

≈
1

1+ u3
λ2

exp(λ2t)
, (C.6)

where the approximation is the result of u3 ≪ λ2.

C.2. The Laplace transform of the limiting scaled type-3 population

We note that there exists a limiting random variable U such
that e−λ3tM3(t) → U almost surely (Durrett and Moseley, 2010).
To find the Laplace transform of U we consider the Laplace
ransform of the scaled population, which is

(θ, t) := E
(
e−θe−λ3tM3(t)

)
= G(e−θe−λ3t

, t).
3

62
Let y(θ, t) = e−θe−λ3t . We have that

LU (θ ) := E(e−θU ) = lim
t→∞

G(y(θ, t), t).

Here we recall that

G(y, t) = 1+
u3

λ2
+

λ3

λ2
Ψ (C(z0(y)), z(y, t)). (C.7)

We adapt AK’s solution (see equation (56) in Antal and Krapivsky
(2011)) and take into account that there is no death in our model.
This results in the following Laplace transform

LU (θ ) = 1+
u3

λ2
+

λ3

λ2
Ψ (C∗,−

1
θ
)

where

C∗
= lim

t→∞
C(z0(y(θ, t))) = (−1)a+b b

a
Γ (c)

Γ (2− c)

[
Γ (−b)
Γ (a)

]2

.

We note that Γ (z) represents the Gamma function. Here the
expression is undefined for θ = 0 and also involves evaluating
complex numbers in the intermediate steps. These two facts
make it hard to compute its value precisely especially when doing
related numerical integration, which motivates us to do some
transformations and use an alternative expression.

Firstly, we employ the Pfaff transformations (DLMF, 2022, (15.
8.1)):

2F1(a, b; c; z) = (1− z)−a
2F1(a, c − b; c;

z
z − 1

),

= (1− z)−b
2F1(c − a, b; c;

z
z − 1

),

= (1− z)c−a−b
2F1(c − a, c − b; c; z).

he above equations holds if arg(1 − z) < π where arg(z) is
he argument of the complex number z. We note that here in
he limiting process −1/θ is negative and real so the criterion
s satisfied. We transform all the four hypergeometric functions.
he strategy here is to choose the transformation such that the
ast argument in the hypergeometric function has the form of z

z−1
and Re(c) > Re(a+ b). We find that

F1(z) = (1− z)−a
2F1(a, 1+ a; c;

z
z − 1

),

F2(z) = (1− z)b2F1(−b, 1− b; 2− c;
z

z − 1
),

F3(z) =
ab
c
(1− z)−1−a

2F1(1+ a, 1+ a; 1+ c;
z

z − 1
),

F4(z) =
ab

2− c
(1− z)b−1

2F1(1− b, 1− b; 3− c;
z

z − 1
).

It follows that

F1(−
1
θ
) =

(
1+ θ

θ

)−a

2F1

(
a, 1+ a; c;

1
1+ θ

)
≡

(
1+ θ

θ

)−a

H1(θ ),

F2(−
1
θ
) =

(
1+ θ

θ

)b

2F1

(
−b, 1− b; 2− c;

1
1+ θ

)
≡

(
1+ θ

θ

)b

H2(θ ),

F3(−
1
θ
) =

ab
c

(
1+ θ

θ

)−1−a

2F1

(
1+ a, 1+ a; 1+ c;

1
1+ θ

)
≡

(
1+ θ

)−1−a

H3(θ ),

θ

https://dlmf.nist.gov/15.8
https://dlmf.nist.gov/15.8
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4(−
1
θ
) =

ab
2− c

(
1+ θ

θ

)b−1

2F1

(
1− b, 1− b; 3− c;

1
1+ θ

)
≡

(
1+ θ

θ

)b−1

H4(θ ).

y plugging them into the Ψ (C, z) function, we find

∗(θ ) := Ψ (C∗,−
1
θ
)

=
(−1)cH3(θ )− C∗(a+ b)(1+ θ )cH2(θ )− C∗(1+ θ )a+bH4(θ )

(−1)c−1(1+ θ )H1(θ )+ C∗(1+ θ )cH2(θ )
.

econdly, we would like to cancel all the complex parts in the
umerator and the denominator. Let

=
b
a

Γ (c)
Γ (2− c)

[
Γ (−b)
Γ (a)

]2

∈ R.

hen Ψ ∗ can be rewritten as

∗(θ ) =
−H3(θ )− d(a+ b)(1+ θ )cH2(θ )− d(1+ θ )a+bH4(θ )

(1+ θ )H1(θ )+ d(1+ θ )cH2(θ )
.

In the end, the Laplace transform of the limiting random variable
U reads

LU (θ ) = 1+
u3

λ2
+

λ3

λ2
Ψ ∗(θ ) (C.8)

hich is real and well defined at θ = 0.
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