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Abstract

Groundwater hydrology plays an important role in coastal marsh biogeochemical function, in part because groundwater
dynamics drive the zonation of macrophyte community distribution. Changes that occur over time, such as sea level rise
and shifts in habitat structure are likely altering groundwater dynamics and eco-hydrological zonation. We examined tidal
flooding and marsh water table dynamics in 1999 and 2019 and mapped shifts in plant distributions over time, at Piermont
Marsh, a brackish tidal marsh located along the Hudson River Estuary near New York City. We found evidence that the
marsh surface was flooded more frequently in 2019 than 1999, and that tides were propagating further into the marsh in
2019, although marsh surface elevation gains were largely matching that of sea level rise. The changes in groundwater
hydrology that we observed are likely due to the high tide rising at a rate that is greater than that of mean sea level. In
addition, we report changes in plant cover by P. australis, which has displaced native marsh vegetation at Piermont Marsh.
Although P. australis has increased in cover, wrack deposition and plant die off associated Superstorm Sandy allowed for
native vegetation to rebound in part of our focus area. These results suggest that climate change and plant community
composition may interact to shape ecohydrologic zonation. Considering these results, we recommend that habitat models
consider tidal range expansion and groundwater hydrology as metrics when predicting the impact of sea level rise on
marsh resilience.

Keywords Groundwater hydrology - Eco-hydrological zonation - Marsh macrophyte - Climate change - Sea level rise -
Coastal wetland

Introduction

Groundwater hydrology plays an important role in coastal
marsh biogeochemical and ecological function (Nuttle and
Hemand 1988; Harvey and Odum 1990; Allen 2000; Mon-
talto and Steenhuis 2004; Charette 2007; Wilson and Morris
2012; Shi et al. 2019; Guimond et al. 2020a), in large part
because groundwater dynamics drive the zonation of marsh
macrophyte community distribution (Moffett et al. 2012;
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Cao et al. 2012; Xin et al. 2013; Wilson et al. 2015b; Mof-
fett and Gorelick 2016; Xie et al. 2020). Temporal dynam-
ics such as sea level rise (SLR), shifts in plant community
composition, and climate change are altering marsh ground-
water dynamics.

(Smith and Medeiros 2013; Wang et al. 2017; Knott et al.
2019; Guimond et al. 2020a) which consequently changes
marsh macrophyte habitat suitability and spatial zonation
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(Chui et al. 2011; D’Alpaos and Marani 2016; White and
Madsen 2016; Guimond et al. 2020b) and is likely contribut-
ing to marsh loss due to marsh macrophyte die-back (Smith
et al. 2012; Hughes et al. 2012). However, while there has
been extensive investigation of how groundwater impacts
spatial dynamics in marshes, there is little research into how
groundwater function changes over time in the context of
shifting environmental conditions. This study addresses this
gap in scientific knowledge by examining both spatial and
temporal changes in hydrology and plant species distribu-
tion at a brackish tidal marsh in the Hudson River Estuary.

Major hydrological influences on coastal marshes are
(semi-)diurnal tides, groundwater flow from terrestrial
uplands, precipitation, and evapotranspiration (Xin et al.
2017). Tides produce daily fluctuations in groundwater
table elevation as seawater is forced into and drains out of
the marsh platform through tidal creeks. While the mean
marsh water table is near the marsh surface, at high tides
areas of the marsh may flood and at low tides water may
only flow subterraneously (Xin et al. 2022). The amplitude
of tidally influenced groundwater fluctuations in each marsh
is determined by the tidal range, the hydraulic conductivity
of the marsh sediments and creek morphology. For instance,
coastal areas with a greater tidal range and sediments with
high conductivity allow water to flow faster and further into
the marsh platform. The morphology of tidal creeks influ-
ences subsurface flow due to gravitational forces. Creeks
with steep banks push more water into marshes at high tide
and flush out more completely at low tide because of the
steep tidal gradient to the marsh interior (Mazda and Ikeda
2000).

Due to the restricted length of a tidal period and the low
permeability of marsh sediments, water exchange through
the marsh platform decreases with distance from tidal creeks
(Harvey and Odum 1990; Williams et al. 2002; Wilson et al.
2011; Watson et al. 2022). Generally, the marsh platform
at the creek edge is flooded and drained during each tidal
cycle, resulting in fluctuations in water table elevation and
tidal-groundwater exchange (Montalto et al. 2006; Watson
et al. 2022). The water table elevation in the marsh interior
is primarily driven by terrestrial groundwater inputs, pre-
cipitation, evapotranspiration, and neap and spring tides.
Freshwater flows into the marsh from the terrestrial uplands
and converges with saltwater inputs tidally forced from
ocean systems. This flow convergence results in an upward
flow, i.e. vertical forcing (Wilson et al. 2015b). This results
in a relatively high water table in the marsh interior which
rarely drains, so salts produced during evaporation and bio-
logical processes are not flushed out of the sediment. Con-
sequently, the groundwater in the high marsh is higher in
elevation and relatively saline compared to the creek edges
(Xin et al. 2022).
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This complex hydrological regime results in the eco-
hydrological zonation of coastal marshes, i.e. the formation
of distinct ‘hydro-redox zones’ which structure marsh mac-
rophyte spatial distribution (Guimond et al. 2020b; Moffett
etal. 2012; Wilson et al. 2015b; Fig. 1). For plants to survive
in areas of the marsh interior with vertical flow, they must be
adapted to highly saline, commonly sulfidic, conditions with
little sediment flushing (DeLaune et al. 1983). Thus, interior
marsh zones often support more stress tolerant and/or less
productive ecotypes of marsh macrophytes (Mendelssohn
and McKee 1988), or are zones of low biodiversity (Tang et
al. 2022). As water washes in and out of the marsh, nutrients
enter and leave the system and salts are washed out, and as
such, areas near tidal channels are more conducive to plant
growth. Channel edges are often sites of greater biomass
production (Valiela et al. 1978) or more biodiverse plant
communities (Sanderson et al. 2000).Wilson et al. (2015b)
identified four primary eco-hydrological zones in Atlantic
salt marshes, characterized by 1) tall form Spartina alterni-
flora in the low marsh, 2) short form Spartina alterniflora in
the mid-marsh, 3) a Salicornia zone in the high marsh, and
4) a Juncus zone adjacent to the uplands.! These zones are
characterized by distinct hydrologic patterns, with the tall
form S. alterniflora associated with more drained soils and
net downward flow, while the short-form S. alferniflora and
Salicornia zones are characterized by more saturated soils
and periods of net upward flow. The Juncus zone is like the
short form S. alterniflora and Salicornia zones but is char-
acterized by upwelled water of reduced salinity. While these
hydrologic zones were described for Carolina marshes, sim-
ilar hydro-ecological zonation has been reported for the US
Northeast (e.g., Guimond et al. 2020b; Watson et al. 2022).

While conventional evaluations of wetland susceptibil-
ity to SLR have primarily focused on wetland elevation
change or using modeled biophysical feedbacks to predict
ecosystem state changes (Raposa et al. 2016; Cole Ekberg
et al. 2017; Elsey-Quirk et al. 2022), this study investigates
alterations in the marsh’s groundwater table and the impact
of tides by utilizing historical data to evaluate temporal
changes. Understanding how eco-hydrologic zonation is
evolving with increasing sea level is an important research
question. On one hand, modeling studies have suggested that
relative SLR will initially cause the poorly aerated interior
groundwater zone to contract considerably (Xin et al. 2022),
and positive SLR anomalies in Massachusetts have been
positively correlated with increased plant biomass produc-
tion (Morris et al. 2013). However, other work suggests that
once the marsh platform is excessively inundated, sediment
flushing will likely decrease (Wilson et al. 2015a; Guimond

! Arevision of the Spartina genus, recognized by most floras, has led
to renaming of Spartina alterniflora to.Sporobulous alterniflorus and
Spartina patens to Sporobulous pumilus.
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et al. 2020b; Guimond and Tamborski 2021). In addition,
there is widespread evidence that poorly drained areas in
the upper marsh are expanding across the US Atlantic Coast
leading to widespread loss of high marsh plant taxa (Smith
et al. 2013; Smith 2015; Raposa et al. 2017; Rippel et al.
2023) and the formation of bare areas in the upper marsh
(Watson et al. 2017; Schepers et al. 2020). Thus, document-
ing how the water table has evolved in situ at a marsh over
the last two decades with SLR and in concert with vertical
elevation change is of considerable interest.

A potentially confounding factor in this study is the effect
of the invasion of Phragmites australis. Piermont Marsh is
a mesohaline marsh (5-10 psu) (Yozzo and Osgood 2013),
and as such is vulnerable to P. australis invasion. Examina-
tion of the area of P. australis at Piermont marsh (Lathrop
et al. 2003) found it present, but at low abundances from
1965 to 1980 (< 15%). After 1980, it expanded to cover
60—70% of the marsh in the 1990s to approximately 90% by
2013. Marsh plants are known to influence the water table
through evapotranspiration (Dacey and Howes 1984; Mof-
fett et al. 2012; Xin et al. 2017), and to even help create
eco-hydrologic zonation due to varied evapotranspiration
rates, root penetration profiles, and salinity zones (Mof-
fett et al. 2012). In this case, although studies report varied
evapotranspiration rates, high plant coefficients (the ratio
of evapotranspiration to pan evaporation) are consistently
reported for P. australis in comparison with salt marsh spe-
cies more generally (Borin et al. 2011; Milani and Toscano
2013), with daily rates of evapotranspiration that average
2-9 mm (Burba et al. 1999; Zhou and Zhou 2009; Headley
et al. 2012; Anda et al. 2017). Thus, if P. australis invaded
our study transect after 1999, we may expect its increased
presence to reduce water table levels, especially during the
spring and early summer growing season (Fig. 1).

tides and rainfall
tides =
tides, evapotranspiration, rainfall sss ===
tides and evapotranspiration s

Hydraullic head

0 10 20 30 40 50 60

Distance along transect from channel (m)

Fig. 1 Comparison of the annually averaged hydraulic head across
a marsh transect perpendicular to a tidal channel. Simulations were
based on realistic values for tides, precipitation, rainfall, and evapo-
ration. Precipitation puts the water table at a shallower depth, while
evapotranspiration deepens it. Adapted from Xin et al. 2017

The goal of this study was to quantify how the marsh
water table has evolved over a 20-year period at Piermont
Marsh, just outside of New York City, in response to SLR
acceleration, and potentially in combination with P. australis
invasion. In 1999 Montalto et al. (2006) mapped the hydrol-
ogy of a brackish tidal marsh within the Hudson River estu-
ary by assessing a variety of variables including topography,
water table elevation, and hydroperiod and found low levels
of tidal influence and an increase in water table elevation
within the marsh interior. Twenty years later this study revis-
ited the site and methods used by Montalto et al. to evaluate
the change in marsh hydrology over time due to SLR and
its relation to marsh macrophyte distribution. We installed
and instrumented groundwater wells along a transect per-
pendicular to a large tidal creek, at locations nearly identi-
cal to their position 20 years earlier (Montalto et al. 2006),
measured water levels through the spring months, and con-
ducted topographic surveys. We additionally examined tide
gauge data from the Battery, NY, to help contextualize these
values relative to astronomical cycles (the 18.6 lunar nodal
cycle and 8.85 lunar perigee cycle), and analyzed vegetation
change maps to understand the potential role of P. australis
invasion in shaping groundwater dynamics.

Materials and Methods
Study Site

Piermont Marsh is a 417-hectare tidal marsh located within
the Hudson River Estuary in New York, United States
(Fig. 2) which experiences diurnal mesohaline tides and is
bisected by tidal creeks and channels. The marsh is located
at the southernmost edge of the Hudson River National
Estuarine Research Reserve (HRNERR) and is designated
as a Significant Coastal Fish and Wildlife Habitat by the
New York State Department of State (NYDOS 2012) and
a Critical Environmental Area by Piermont Village (NYS-
DEC 1985). The site’s vegetation is dominated by P. austra-
lis but retains some small patches of native marsh species
in the interior. Local land managers and residents anecdot-
ally report that species diversity on the marsh has decreased
over the last few decades (NYSDEC 2017). Salinity typi-
cally ranges from 3%o during spring to 10%o during summer
(Osborne et al. 2015).

Study Design
Hydrologic measurements were collected over the summer
of 2019 on Piermont Marsh. These data were compared to

hydrological measurements made in 1999, which focused
on describing the marsh water elevation across a transect
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Fig.2 Map of study area showing (a) the Hudson River Valley with the
location of Piermont Marsh; (b) Vegetation cover at Piermont Marsh
in 2014 (provided by the HRNERR) which is dominated by the non-
native Phragmites australis; (¢) the location stream gauges (denoted

from a large tidal channel to the marsh interior (Montalto et
al. 2006). The aim of this study was to compare current tidal
flooding and groundwater table levels with measures made
in 1999, to compare tidal hydrology at these two time points
which are quite distinct in terms of marsh and water level
elevations (Fig. 3).

Water Table Measurements

To determine ground water levels and tidal flooding through-
out the marsh, seven water level loggers were installed along
a gradient from the tidal channel to the upland, replicating
the measures conducted by Montalto et al. (2006) (Fig. 2).
The locations of Montalto’s wells were established by geo-
referencing maps from Montalto et al. 2006 using Google
Earth (ver. 7.3.2.5776) and were confirmed visually by
Montalto in the field. Wells were constructed by suspending
a pressure transducer within a 7.5 cm diameter perforated
PVC pipe lined with screening to prevent sediment from
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as circles) as well as groundwater wells along the a transect perpen-
dicular to a tidal channel and in two areas of expanding ponded water
at Piermont Marsh. The location of map insets (marked ‘b’ on map a
and ‘¢’ on map b) is shown

entering the well. The wells sat 1-m below the marsh sur-
face, 0.6 m above the soil surface, was vented to the atmo-
sphere, and only the length below soil was perforated. A
concrete collar was installed at the marsh surface around the
well to prevent the preferential flow of water down the side
of the well. Seven wells were installed along the original
transect, perpendicular to the creek (Fig. 2).

Wells were installed 5 May 2019 and well water levels
were monitored from 5 May 2019-30 June 2019. We were
not able to match the exact timeline of 1999 observations,
but we compare 5 May — 30 June of 2019 with 6 April —26
May of 1999. The absolute elevation of the top of each well
was measured using RTK-enabled static GPS measurements
from Leica GNSS GS14 rover units and static measures
using an AX1202 GG base station unit to reference water
levels to the NAVDSS vertical datum. Reference water lev-
els were measured each time data was collected, as the dis-
tance of the top of the well to the water surface, which using
the well-top elevations was convert to elevation relative to
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Table 1 Locations and monitoring information for 1999 and 2019 water level monitoring. The location for groundwater wells indicates distance
from the tidal channel. The 2019 well data was compared with well data collected along the same transect 6 April 1999-26 May 1999

Creek distance (m) Latitude Longitude 1999 2019 Elevation Elevation 2019 deployment
elevation elevation change (cm) change
(m) (m) (mm yr~")
0 41.03606° -73.91050° 0.61 0.72 11+ 3 cm 55+ 1.7 5 May —30 June 2019
6 41.03602° -73.91046° 0.63 0.72 9+3cm 45+ 1.7 5 May — 30 June 2019
12 41.03598° -73.91041° 0.64 0.73 9+3cm 45+ 1.7 5 May — 30 June 2019
18 41.03594° -73.91036° 0.65 0.75 10 +3 cm 50+ 1.7 5 May — 30 June 2019
24 41.03590° -73.91032° 0.66 0.77 11 +3cm 55+ 1.7 5 May — 30 June 2019
36 41.03581° -73.91023° 0.68 0.72 4+3cm 20+ 1.7 5 May —30 June 2019
48 41.03572° -73.91014° 0.69 0.80 11 +3 cm 55+1.7 5 May — 30 June 2019

elevation
[m, NAVD88]
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>//</\ ;\\///(/ N
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\//////// /\ \
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20 30 40

Distance along transect from channel (m)

Fig. 3 Marsh elevation across the studied transect at Piermont Marsh
between 1999 and 2019, also showing the mean high water (MHW)
calculated for channel loggers deployed in 1999 and 2019 (5 May
—12 Aug). The section of the transect that appears to have not

the NAVDS88 datum. To relate marsh elevation with water
elevations, GPS surveys were also conducted along the tran-
sect using a Leica GNSS GS14 rover unit. Elevation control
for the 1999 wells and water levels were similarly measured
with survey-grade GPS, which was unusual for the time,
and which permits the level of comparison achieved by
this study. We report on marsh elevation change (Table 1),
which we report as the difference in marsh elevation at well
locations between 1999 and 2019. In addition to measuring
water levels at Piermont Marsh, we also downloaded and
analyzed data from the Battery tide gauge for these same
time periods (NOAA 2023).

There is a sometimes a significant lag in response times
for wells or piezometers with large diameter or narrow
screened intervals (Gardner 2009). As this lag can cause
large deviations between the aquifer head and measured

increased in elevation significantly overlaps with the area that expe-
rienced dieback after Hurricane Sandy, likely due to wrack deposi-
tion. Icons obtained courtesy of: https://ian.umces.edu/media-library/
phragmites-australis-common-reed-singular/

water table, we calculated the well time constant (7})
according to equation one, where:

RZ

T, = —
‘T K.L

(1

R is the well diameter, K is the saturated hydraulic con-
ductivity, and [ is the screened interval. For these calcu-
lations, we used mean saturated hydraulic conductivity of
7.75% 1073 cm s~ !, measured by Montalto et al. (2006).

Analysis of Environmental Drivers
Changes in the marsh water table were compared with

important potential hydrologic and vegetation changes that
have occurred over the past 20 years. We calculated rates
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of change in monthly water levels at the Battery, NY for
the 1999-2019 period using two different methods. We
modeled change over time in monthly highest water levels,
mean high water (MHW), mean tide level (MTL), and mean
low water (MLW) using an ordinary least squares regression
model with ARIMA errors to account for the autoregressive
structure of tide data, after first removing the annual cycle
using a curve with a 1-yr periodicity (Foster and Brown
2015). The ARIMA errors model was fit using the function
auto.arima using the package forecast (Hyndman and Khan-
dakar 2008). We calculated the squared correlation of fitted
to actual values to produce a pseudo-r2. For comparison,
we calculated trends generated using ordinary least squares
regression for the 1999-2019 period, although it is likely
that the temporal autocorrelation causes uncertainty to be
underestimated. Data and reproducible code for this proce-
dure can be found as supplemental material the Dryad Digi-
tal Repository.

We obtained vegetation maps from the HRNERR from
1997, 2005, 2014, and 2018 to help determine change over
time in the coverage of plant species, which may alter
evapotranspiration and water table patterns (NYSDEC
2023). A 20-m buffer was located around each of the points
where wells were located, and the composition of the veg-
etation in this buffer zone was quantified using QGISver.
3.30.2. Four time points is generally not sufficient for statis-
tical identification of trends (Yue et al. 2002), but changes
were interpreted.

Representativeness of Sampling Periods

To contextualize the time period of measures (i.¢., to ensure
that our chosen seasons were not anomalous), we used the
Battery tide gauge data to compare water levels in spring
1999 and 2019 relative to astronomical cycles that drive
interannual sea level variability, and we compared spring
high tide levels in 1999 and 2019 with surrounding years.
The principal astronomical cycles thought to influence tides
include the 18.6 year lunar nodal cycle, and the 4.4 year sub-
harmonic of the 8.85 year lunar perigee cycle (Haigh et al.,
2011). Because our 1999 and 2019 measures were collected
in slightly different time periods (April/May 1999 vs. May/
June 2019), we also examined mean monthly water levels
(1980-2022) from the NOAA Battery tidal gauge to identify
potential artifacts (NOAA 2023). We obtained rainfall data
from spring of 1999 and 2019 from the nearest precipita-
tion monitoring station (Westchester airport) to determine
whether measures were made during an usually wet or dry
period (NCEI 2023). The sampling periods were 20 years
apart so they took place at approximately at the same point
in the 18.6 year lunar nodal cycle.

@ Springer

Data Analysis

Pressure transducer data was post-processed using HOBO-
ware Pro (Ver. 3.7.16, Onset Computer Corporation,
Bourne, MA) using reference water levels collected in the
field and were corrected for atmospheric pressure using
the HOBOware barometric compensation assistant, using
data from the Hudson River National Estuarine Research
Reserve (NERRS 2019).

Raw water elevation data from 1999 was analyzed in
concert with the 2019 data. Water level data from 1999 were
converted from the NVGD29 to NAVD 88 datum using
NOAA VDatum v4.0.1 (NOAA 2019) prior to analysis. The
transducer in well seven experienced three brief malfunc-
tions from 30 May to 3 June 2019, which resulted in inaccu-
rate elevation measurements for a total of 19.5 h. These data
were excluded from the analysis. In 1999, Montalto also
experienced malfunctions at the well 48 m from the creek.
These data were corrected by Montalto into smoothed six-
hour increments using average water elevation measure-
ments and calculated error and calibrated using regression
(Montalto et al. 2006). No other well transducers appeared
to have malfunctioned.

Changes in surface flooding were estimated tide gauges
installed at Piermont Marsh in 1999 and 2019 (5 May — 12
August). Marsh flooding was calculated as the percentage of
time that water levels exceeded the average marsh elevation
(0.75 m NAVD in 2019 and 0.65 m NAVD in 1999). The
number of tides that flooded the marsh per month and the
average maximum flooding depth were identified for 1999
and 2019. However, because the 1999 tide gauge was not
operational for most of the period that the well loggers were
collecting data for, we also utilized data from the NOAA
tide gauge located at the Battery, NYC, 55 km distance (for
plotting purposes and tidal efficiency calculations, described
below), recognizing that the tidal regimes would not com-
pletely match. We used the Wilcoxon rank sum test to deter-
mine whether there were statistically significant differences
in central tendency and the F variance test to analyze for sta-
tistically significance differences in variance between 1999
and 2019 for the marsh ground water levels at high and low
tide. We partitioned the data by spring and neap tidal cycles,
considering both depth relative to the marsh surface as well
as elevation relative to the NGVDS88 datum.

Tidal efficiency (7E) is defined as the ratio of the ampli-
tude of the water level fluctuation in an inland well (s,,) to
the corresponding amplitude of sea level fluctuation (s,,)
(Van der Kamp 1972; Jiao and Post 2019), and while it is
generally utilized to examine horizontal movements of tides
in a confined coastal aquifer, here we adapted this metric
to examine change over time in groundwater fluctuations.
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Tidal efficiency (TE) was calculated for 1999 and 2019 well
data empirically according to Eq. 2 as:
Sw

TE= @

St

where S is the daily range of water-level fluctuation in a
well tapping the groundwater table and 4 refers to the daily
range of tide (Ferris et al. 1962). TE was calculated based on
the range of tide reported from the NOAA tide gauge at the
Battery, NY. Tidal efficiency between years was compared
using a two-sample Wilcoxon rank sum test.

To estimate uncertainty in water surface elevations
and elevation change we conducted an error analysis that
included uncertainty in GPS elevation surveys (2-cm)
and water level accuracy (3-cm) based on manufacturer
documentation, and conversion factors for NGVD29 vs.
NAVDS8S8 (2-cm) (Mulcare 2004). The error analysis was
conducted using the quadratic sum for independent uncer-
tainties (Taylor 1997). This uncertainty was then compared
with measured differences.

Data visualization and analysis were performed in R
4.1.3 (R Core Team 2022) using packages dplyr (Wickham
et al. 2022), forecast (Hyndman and Khandakar 2008), FSA
(Ogle et al. 2023), ggplot2 (Wickham 2016), ggpubr (Kas-
sambara 2023), ggsignif (Ahlmann-Eltze and Patil 2021),
Imtest (Zeileis and Hothorn 2002), sandwich (Zeileis 2004;
Zeileis et al. 2020), splines (Bates and Venables 2023)
tseries (Trapletti and Hornik 2023), TTR (Ulrich 2021), and
vioplot (Adler et al. 2022).

Results
Marsh Elevation

Marsh elevations increased at all stations at rates that ranged
from 2.0 to 5.5 mm yr~' (Table 1). Generally, the eleva-
tion was highest in the marsh interior, and lowest adjacent
to the tidal channel, in both 1999 and 2019. During both
time periods, the marsh elevation was 0.08 m higher in the
marsh interior than adjacent to the tidal channel and had a
gentle upward slope. Mean high water measured at channel
loggers was 0.52 m relative to the NAVDS88 datum in 1999
and 0.87 in 2019. This increase, estimated at 1.6 cm yr™ !, is
double the rate of increase in SLR measured at the Battery
tide gauge (1.6 cm yr ! vs. 0.82 cm yr'; Table 2) and may be
partly related to a deepened tidal channel that more effec-
tively conveys tides (Fig. 3).

Vegetation Change and sea Level rise

Vegetation cover along the studied transect changed
between 1997 and 2018, with salt meadow vegetation (e.g.,
high marsh species such as Spartina patens) declining near
the tidal channel but persisting further inland. In 1997, the
percent cover of salt meadow vegetation increased linearly
across the transect, from 0.3% adjacent to the tidal chan-
nel, to 2.7% at 6-m, to 5.9% at 12-m, to 9.0% at 18-m, to
12.9% at 24-m, to 14.1% at 36-m, to 36.7% at 48 m. In
2018, the percentage of salt meadow vegetation cover was
0% adjacent to the channel, and at 6-m, 12-m, 18-m and
24-m. At 36-m the cover by salt meadow vegetation was
13.5%, and at 48-m it was 43.2% cover (Fig. 4). Superstorm
Sandy, which affected the marsh in 2012, was associated
with a large wrack deposit adjacent to the tidal channel (e.g.,
20-30 m in from the tidal channel), which was responsible
for increased bare ground in 2012-2014. Although by 2014,
much of this wrack was no longer visible on aerial imagery,
the area along the transect lacking in vegetation was still
larger in 2014 than it was in 1997 or 2005. In summary,
salt meadow vegetation persisted around the furthest sta-
tions (36 and 48 m) but was not apparent closer to the tidal
channel, possibly due to the impact of Superstorm Sandy
in 2012.

Trends in the rate of rise in mean sea level, mean tide
level, mean high water and mean low water suggest signifi-
cant increases in water levels have occurred in New York
over the 20-year period centered on 1999-2019 (Table 2).
Using ordinary least squares regression, we found an
increase between 1999 and 2019 of monthly highest water
at the NYC Battery tide gauge of 10+2.2 mm yr !, an
increase in monthly mean high water of 8.2 +0.97 mm yr™ !,
an increase of monthly mean tide level of 5.6+0.93 mm
yr~!, and an increase of monthly mean low water of
3.1+0.95 mm yr~!. These rates were similar to those found
using linear models constructed with autoregressive and in
some cases moving average terms, although ordinary least
square modeling approach underestimates the uncertainty in
the rate of change due to serial autocorrelation.

Marsh Water Levels

Comparing the channel gauge records with marsh elevations
in 1999 and 2019 suggest that tidal flooding has increased.
The average marsh elevation along the transect in which the
wells were placed was flooded 3.2% of the time in 1999,
and 9.9% of the time in 2019. In 1999, the marsh flooded on
average 12 times per month between May and August. The
average flooding duration was 2.1 +0.80 h (mean =+ standard
deviation), and the marsh flooded on average to a depth
of 8.7+5.4 cm. In contrast in 2019, the marsh flooded on
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A vegetation cover along well transects
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Fig.4 Vegetation cover along a transect perpendicular to a tidal channel
at Piermont Marsh showing (a) spatial patterns in plant cover during
1997, 2005, 2014, and 2018 (b) percent cover of Phragmites australis

T
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2020

and salt meadow during those same time periods. Density of vegetation
reflects cover categories, with icons obtained courtesy of: https://ian.
umces.edu/media-library/phragmites-australis-common-reed-singular/

Table 2 Rates of change and uncertainties in water level datums. Uncertainties are the standard error of the coefficient estimates. WL signifies
monthly water level - highest, mean monthly high water (MHW), mean monthly tide level (MTL), or mean monthly low water (MLW). rWL signi-
fies a residual water level after removing the modeled seasonal oscillation

Modeling approach Highest (+SE) MHW (+SE) MTL (+SE) MLW (+SE)

Im (WL~ year) 10£2.2 mm yr~! 8.2+0.97 mm yr~! 5.6+0.93 mm yr~! 3.14£0.95 mm yr~!
#=0.081 ?=0.22 #=0.13 #=0.041
p=4.6e-06 p=23e-15 p=53¢e-09 p=0.0013

auto.arima 10+2.4 mm yr~! 7.5+1.5mmyr! 55+ 1.3 mmyr! 3.6+1.9 mmyr !

(rWL ~xreg=year) pseudo-?=0.092 pseudo-2=0.47 pseudo-=0.33 pseudo-r°=0.25
p=2.4¢e-05 p=1.2e-06 p=3.7e-05 p=0.063
ARIMA (1,0,0) errors ARIMA (2,0,3) errors ARIMA (2,0,2) errors ARIMA (1,0,2)

errors
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average 29 times per month between May and August. The
average flooding duration in 2019 was 2.6+ 1.1 h, and the
marsh flooded on average to a depth of 12 +8.8 cm. While
marsh flooding was limited to spring tides during both time
periods, high tides resulted in marsh flooding about 2.4
times more frequently in 2019 than 1999.

The groundwater table at Piermont Marsh was found to
vary with distance from the creek. The low tide water level
was lower below the marsh surface and experienced more
variability adjacent to tidal creeks (Figs. 5-7). In contrast,
the water table was more invariant and had a higher mean
position in the marsh interior. (Figs. 5-7; Tables S1-S7,
Supplemental material). Comparing low and high tide water
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Fig. 5 Water surface elevations across the full study period Piermont
Marsh (a) 1999 and (b) 2019 (c¢) and 14-day periods including both
spring and neap tides for (¢) 1999 and (d) 2019. Tidal signal from
the NOAA Battery gauge (~55 km away) is shown in black (NOAA
2023), and each Piermont Marsh well is represented by a gradient from

yellow to purple. Yellows are further from the tidal creek and purples
are closer to the creek. The range of marsh elevations found along the
transect are shown in grey. The elevations of individual stations are
shown at right. There is a gradient of lower elevations found channel-
side and higher elevations in the marsh interior
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Mean high and low tides relative to the marsh surface
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Fig.6 Mean water surface elevations at minimum low tide and maximum high tide across a transect perpendicular to a large tidal channel during

(a) spring and (b) neap tidal cycles in spring 1999 and 2019

levels during 1999 and 2019 revealed some significant dif-
ferences. Relative to the NAVDS8S8 datum, low tide water
levels were on average 7-cm higher in 2019 than in 1999
(Tables S1 and S2). Low tide water levels were on aver-
age further below the marsh surface in 2019 than in 1999
(2 cm lower during spring tides, 4 cm lower during neap
tides) (Tables S3 and S4, Supplemental Material). In addi-
tion, low tide water levels were less variant in 1999 than
2019 at the marsh edge (stations 0-m, 6 m) and in the marsh
interior (stations 36-m, 48 m) (Tables S5 and S6, Supple-
mental material). The low tide standard deviation was 4-cm
greater in 2019 than 1999 during neap tides and 2-cm during
spring tides.

Relative to the NAVDS88 datum, high tide water levels
measured in wells were on average 12-cm higher in 2019
than in 1999, 13-cm greater during neap tides and 11-cm
greater during neap tides (Fig. 7; Tables S7and S8, Supple-
mental Material). In contrast, neap tides were 4-cm higher
relative to the marsh surface in 2019 than in 1999 (Table S9,
Supplemental material) and spring tide water levels were at
a similar elevation (1-cm higher) (Table S10, Supplemental
material). Neap high tide water levels had a greater standard
deviation (7 cm) in 2019, while there was no significant dif-
ference for spring tides (Fig. 7; Tables S11 and S12, Supple-
mental Material).
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Tidal efficiency, as a metric that integrates changes in
both low and high tide water levels, was found to increase
between 1999 and 2019. On average the amount of the
fraction of tidal range observed at the tide station that was
apparent in the wells increased from 0.060 to 0.12, an
increase of 246%. The fraction of tidal efficiency increase
was greater adjacent to the tidal channel (e.g., from 0.15
to 0.23, an increase of 0.53 or 53%, at 0-m). However, the
relative increase was greater at the more inland sights (e.g.,
from 0.0062 to 0.078, a 1150% increase at 48-m) (Table 3).

Error and Uncertainty

Results suggested that relative to the NAVD88 datum, low
tide water levels measured in wells were 7-cm greater in
2019 than in 1999, and high tide water levels were 12-cm
greater in 2019 than 1999. Uncertainty from GPS measure-
ment error, pressure loggers, and conversions between the
NGVD29 toNAVDS8 datum sum to an estimate of +3.5 cm
using error propagation techniques for independent errors.
Thus, these finds are resilient to such uncertainties. How-
ever, we estimate that that low tide water levels were further
3-cm below the marsh surface in 2019 than in 1999, and
that neap high tides were 4-cm higher relative to the marsh
surface in 2019. These measurements are less clearly signif-
icant relative to uncertainty estimates. However, measures
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Low tide water surface elevation vs. distance from creek
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Fig.7 Box plots depicting the median (line), lower and upper quartiles
(box edges), and distribution (whiskers, showing 1.5x the inter-quar-
tile ranges), and outliers (points greater and less than 1.5x the IQR)
of in the minimum water surface elevation at low tide relative to the

distance from creek (m)

marsh surface (plot a and b) and relative to NAVDSS (plots ¢ and d)
during neap and spring cycles in 1999 and 2019 across a transect with
increasing distance from a tidal channel
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Table 3 Tidal efficiency along a transect with increasing distance from
a tidal channel platform in 1999 and 2019. Uncertainties are standard
deviations

Tidal Efficiency

Station 1999 2019 Difference
0-m 0.15 +£0.078 0.23 +£0.11 +52.6%
6-m 0.094 + 0.083 0.13 +0.098 +40.1%
12-m 0.056 + 0.060 0.10 + 0.084 +81.2%
18-m 0.044 + 0.052 0.10+ 0.083 +118%
24-m 0.042 + 0.044 0.088 + 0.078 +108%
36-m 0.027 + 0.043 0.077 £ 0.068 +186%
48-m 0.0062 + 0.0083 0.078 + 0.073 +1150%
average 0.060 + 0.053 0.12 + 0.085 +246%

of variance should not be subject to these uncertainties. Low
tide water levels varied less in 1999 than 2019, and high
tide water levels varied less in 1999 than 2019 during neap
tides, suggesting tidal regime shifts that are apparent despite
measurement errors.

The log well time constant was estimated at 1.2 s, which
is slightly higher than ideal (1.0 s), but lower than all the
measures reported by Gardner (2009) which encompass a
range of screened intervals and marsh soil hydraulic con-
ductivities. Thus, these results suggest only minor devia-
tions between measured and actual aquifer head.

Representativeness of Study Periods

A comparison of mean monthly high water and mean sea
level in April and May vs. May and June at the Battery tide
gauge, suggests that on average MHW is 1.9-cm higher, and
MSL is 1.8-cm higher in May-June than April-May (Fig. 7).
Thus, we feel that our comparison of April-May vs. May-
June contains a modest but not large artifact. A comparison
of MHW at the Battery during April-June of 1997-2001 and
2017-2021 found that conditions during 1999 were slightly
lower than the five-year mean (0.66 m vs. 0.68 m NAVDSS).
Conditions in 2019 were slightly above the five-year mean
(0.77 m vs. 0.76 m NAVDSS) (Fig. 8). Examination of water
levels at the Battery shows that measures (in spring 1999
and 2019) occurred during normal and not anomalous tidal
periods, although the 2019 sampling took place closer to an
astronomical peak or positive deviation in sea level (Fig. 8A
and C). Although we assumed that positioning the sampling
periods 20 years apart would mean that we were sampling
roughly at the same point in the 18.6 year lunar nodal cycle,
there appear to be shorter term cycles (e.g., a 4.4 year sub-
harmonic of the 8.85 year lunar perigee cycle) (Haigh et al.,
2011) or periods of positive and negative sea level anoma-
lies that emerge as a combination of the temporal autocor-
relation present in water level data (Foster and Brown 2015)

(Fig. 8).
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There was 14.8% lower precipitation for 1999 in winter
to early summer relative to the five-year mean, while there
was greater precipitation during the same time period in
2019 (26.5%) relative to the five-year mean. During 1999,
the rainfall from 1 January through 31 July 1999 summed
to 60.6 cm. In comparison, the five-year average for win-
ter and spring averaged 71.1 cm. During 2019, the rainfall
from 1 January through 31 July 2019 summed to 80.8 cm.
In comparison, the five-year average for winter and spring
during a period that spanned 2017-2021 averaged 63.9 cm.
There were no significant precipitation trends apparent in
annual precipitation totals between 1999 and 2019, although
generally precipitation has increased and become more vari-
able since the 1960s-era drought (Seager et al. 2012).

Discussion

Hydrology has changed in Piermont Marsh over the last 20
years. Tidal range has increased both in the marsh and at the
Battery tide gauge in the Hudson River, and tidal influence
extended farther into the marsh in 2019 than in 1999. Mean
sea level and marsh elevation have risen at similar rates, at
around 5 mm yr~!, but the frequency and magnitude of high
water flooding the marsh has increased, which is likely driv-
ing changes in hydrology and thus the ecological zonation
of marsh habitats. While marsh flooding has increased over
time, the water table at many wells was either similar to that
found in 1999 or lower relative to the marsh surface at low
tide. In addition to SLR, the coverage of P. australis has
expanded since 1999 into the marsh interior, which could
be a factor in in shaping altering soil porosity, hydraulic
conductivity, and evapotranspiration rates, although there is
no way to tell from current evidence. It appears that there
has been minimal directional change in precipitation, which
would affect the runoff or shallow underflows. However, it
is worth noting that that there has been an increase in pre-
cipitation and its interannual variability in New York City
area since the 1960s (Seager et al. 2012).

At Piermont Marsh, it appears that the high tide is
increasing at a faster rate than the low tide, and this appears
to be reflected in both tide gauge measurements at the Bat-
tery tide gauge in NYC, and water table measurements
made at Piermont Marsh. For example, low tide water levels
measured in wells were 7-cm greater in 2019 than in 1999,
and high tide water levels were 12-cm greater in 2019 than
1999 (Supplemental Material). At the Battery tide gauge in
NYC, we estimate an increase of 8.2 mm yr‘1 in MHW, but
an increase of only 3.1 mm yr~! of MLW. Over a period of
20 years, this suggests that the tide range has expanded by
10.2 cm. While the reason for this shift is not clear (Haigh et
al. 2020), increasing tidal ranges introduce more hydraulic
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reflected in the tide data (df=16), which may include the 18.6 year
nodal cycle, a 8.85 apogee-perigee cycle, and 9.3 and 4.4 year subhar-

energy in tidal creeks, which can result in deeper channels
with steeper banks (Allen 2000; Williams et al. 2002; Wil-
liams and Orr 2002). This creek geometry increases the tidal
gradient to the marsh interior, resulting in greater tidal influ-
ence on the marsh water table (Mazda and Ikeda 2006).
Increased tidal range driven by higher high tides are
contributing to another major trend observed in this study,
which is increased tidal influence on the marsh groundwater
table, particularly in the marsh interior. In 1999, tidal influ-
ence did not propagate more than 20 m into the marsh but
in 2019 tidal influence continued far into the marsh inte-
rior. In 1999, mean tidal efficiencies at the stations furtherst

2010 2015 2020

monics, (b) monthly averages of MSL and MHW at the Battery tide
gauge (1980-2022), with circles shown as outliers if they are outside
the interquartile range, and (c) violin plots of high tides at the Battery
during April-May-June from 1997-2022

from the tidal channel are 0.015. In 2019 tidal efficiencies
increased to 0.05 at this station. Because of the change in
tidal range and increased tidal efficiency in the marsh inte-
rior, the relatively high water table elevations present in
1999 in the marsh interior were less apparent in 2019. This
is because in 1999, only the highest tides were propagating
into the marsh interior, which caused the mean to increase
due to lack of influence from low tides. In 2019, more tides
of all magnitudes are propagating into the marsh interior,
causing the mean maximum tide to be consistent across the
entire transect; however, the mean minimum tides increase
in magnitude with distance from the creek both in 1999 and
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in 2019, resulting in a high water table in the marsh interior
in both years.

As the frequency and magnitude of water table fluctua-
tions determine the eco-hydrological zonation of marsh
macrophyte habitat (Moffett et al. 2012; Xin et al. 2013;
Wilson et al. 2015b), the observed changes in hydrology are
likely altering plant communities across the marsh. Another
potential factor is the expansion of P australis into the
marsh interior, which was observed to change in cover at the
transect studied at Piermont Marsh between 1999 and 2018.
P australis could have a compounding impact on changes
in marsh macrophyte community distribution, because not
only does it crowd out native competitors, but dense P. aus-
tralis populations also alter groundwater hydrology (Wind-
ham and Lathrop 1999; Chambers et al. 2003). While there
is not extensive research on the impact of P. australis on
groundwater hydrology, there is evidence that the P. aus-
tralis root mat generally increases hydraulic conductivity in
marsh sediments (Baird et al. 2004; Saaltink et al. 2019)
and that the presence of extensive stands of P. australis can
lower the water table due to increased evapotranspiration
(Windham and Lathrop 1999; Windham 2001). Although
we can’t draw any conclusions about the impact of P. aus-
tralis expansion on the marsh hydrology, it was notable that
cover of native grasses increased after Superstorm Sandy
led to large areas of plant dieback in 2012 (Fig. 4).

These results were somewhat unexpected in that we
anticipated that accelerated sea level rise might be causing
increased water table elevations leading to poor drainage.
Across the Northeastern US, there are widespread obser-
vations of high marsh vegetation dieback that might be
expected to result from increased water logging (Watson et
al. 2017; Krause et al. 2023), including at Piermont Marsh
(Courtney et al. 2020). Rather, we found that even though the
elevation of high tides increased significantly, the low tide
water table heights were at a similar level as 1999 or lower
below the marsh surface in 2019, which we presume is due
to the combination of marsh elevation gains keeping pace
with sea level rise, possibly in combination with P. australis
expansion, which may be expected to increase soil hydrau-
lic conductivity. These results point to the importance of
strong interactions between marsh vegetation and the marsh
water table in the context of climate change. While previous
research has strongly demonstrated the role of plant patches
in salt marshes creating patterns of eco-hydrologic zonation
and geochemical function in through varied evapotranspira-
tion rates and soil rooting depths (Moffett et al. 2012), the
implications of this coupling in light of climate change have
not been fully realized. Plant evapotranspiration rates are
known to vary, but can sum to several cm a day (Borin et
al. 2011), in an environment where the water tables often
sit within 5—10 cm of the marsh surface. Where plant stress
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due to high inundation depresses evapotranspiration, marsh
water tables may become even more saturated, and thereby
exacerbate the effects of excessive inundation. Conversely,
plants supporting high evapotranspiration rates, such as P.
australis or the tall growth form of Spartina alterniflora
found in macrotidal salt marshes (Valiela et al. 1978), may
be less sensitive to excessive inundation.

A second finding of our study is that tidal range has
appeared to increase over the past 20 years at the Battery tide
gauge, in NYC, with monthly highest water and monthly
average high tide levels rising at faster rates than mean sea
level. Other studies have found similar trends globally and
locally (Pickering et al. 2012, 2017; Mawdsley et al. 2014;
Balke et al. 2016; Talke et al. 2018) and some tidal datums
have been updated to reflect changing tidal dynamics due to
accelerated SLR (Bamford 2013; Wang and Myers 2016);
however, a comprehensive review of mean high water and
mean low water trends in the United States has not been
published since 2003 (Flick et al. 2003). A more compre-
hensive analysis of regional tidal range and SLR should be
performed to understand changing tidal dynamics in the
Mid-Atlantic region and to inform coastal management into
the future.

Supplementary Information The online version  contains
supplementary material available at https://doi.org/10.1007/s13157-
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