

1 **Running Title: Regulation of Autophagy**

2 **Transcriptional and Post-translational Regulation of Plant Autophagy**

3 William Agbemafle^{1,2}, Min May Wong^{2,3}, Diane C Bassham^{2,*}

4 ¹Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University,
5 Ames, IA, USA

6 ²Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA

7 [#]These authors contributed equally to the work

8 Emails: willagbe@iastate.edu; minmay@iastate.edu; bassham@iastate.edu

9 *Correspondence: bassham@iastate.edu

10 Date of Submission: May 26, 2023

11 Number of Tables: One

12 Number of Figures: Four

13 Word Count: 6712

14

15 **Highlight**

16 Autophagy is tightly controlled by environmental and developmental cues. This review highlights key
17 regulatory mechanisms that modulate autophagy through post-translational modification or
18 transcriptional regulation.

19 **Abstract**

20 In response to changing environmental conditions, plants activate cellular responses to enable them to
21 adapt to these changes. One such response is autophagy, in which cellular components, for example
22 proteins and organelles, are delivered to the vacuole for degradation. Autophagy is activated by a wide
23 range of conditions, and the regulatory pathways controlling this activation are now being elucidated.
24 However, key insights into how these factors may function together to properly modulate autophagy in
25 response to specific internal or external signals are yet to be discovered. In this review we discuss
26 mechanisms for regulation of autophagy in response to environmental stress and disruptions in cell
27 homeostasis. These pathways include post-translational modification of proteins required for autophagy
28 activation and progression, control of protein stability of the autophagy machinery, and transcriptional
29 regulation, resulting in changes in transcription of genes involved in autophagy. In particular, we
30 highlight potential connections between the roles of key regulators and explore gaps in research, the
31 filling of which can further our understanding of the autophagy regulatory network in plants.

32 **Keywords:** Autophagy, ATG, gene expression, persulfidation, phosphorylation, post-translational
33 modification, starvation, stress, transcription factors, ubiquitination.

34 **Abbreviations:** ABA, abscisic acid; AMPK, AMP-ACTIVATED PROTEIN KINASE; ATG, autophagy-related;
35 ATAF1, ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR 1; BAK1, BRASSINOSTEROID INSENSITIVE 1-
36 ASSOCIATED RECEPTOR KINASE 1; BES1, BRASSINOSTEROID INSENSITIVE 1 (BRI1)-EMS-SUPPRESSOR 1;
37 BIN2, BRASSINOSTEROID-SENSITIVE 2; BR, brassinosteroid; BZR1, BRASSINAZOLE-RESISTANT 1; CDC55;
38 CELL DIVISION CONTROL PROTEIN 55; DES1, L-CYSTEINE DESULFHYDRASE; DSK2, DOMINANT
39 SUPPRESSOR OF KAR 2; ER, endoplasmic reticulum; ERF5, ETHYLENE RESPONSE FACTOR 5; FREE1, FYVE
40 DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1; GSNOR1, GSNO REDUCTASE 1; HSFA1A,
41 HEAT SHOCK TRANSCRIPTION FACTOR A1A; HDA9, HISTONE DEACETYLASE 9; HY5, ELONGATED
42 HYPOCOTYL 5; KIN10, SNF1 KINASE HOMOLOG 10; LST8, LETHAL WITH SEC THIRTEEN 8; LUX, LUX
43 ARRHYTHMO; NBR1, NEIGHBOR OF BRCA1 GENE; PI3K, PHOSPHATIDYLINOSITOL 3-KINASE; PP2A,
44 PROTEIN PHOSPHATASE 2A; PP2C, PROTEIN PHOSPHATASE 2C; RAPTOR, REGULATORY-ASSOCIATED
45 PROTEIN OF TOR; RTS1, ROX THREE SUPPRESSOR 1; SH3P2, SH3 DOMAIN-CONTAINING PROTEIN 2;
46 SINAT, SEVEN IN ABSENTIA OF ARABIDOPSIS THALIANA 1; SNRK, SNF-RELATED KINASE; SOC1,
47 SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1; TAP42, TYPE 2A PHOSPHATASE-ASSOCIATED
48 PROTEIN 42; TAP46, TYPE 2A PHOSPHATASE-ASSOCIATED PROTEIN 46; TGA9, TGACG MOTIF-BINDING
49 PROTEIN 9; TOC1, TIMING OF CAB EXPRESSION 1; TOPP, TYPE ONE SERINE/THREONINE PROTEIN
50 PHOSPHATASE; TORC, target of rapamycin complex; TRAF, TUMOR NECROSIS FACTOR RECEPTOR
51 ASSOCIATED FACTOR; ULK1, UNC51-LIKE AUTOPHAGY ACTIVATING KINASE 1.

53 **Introduction**

54 Plant macroautophagy (hereafter termed autophagy) is a catabolic pathway that degrades and recycles
55 unwanted cellular components such as aggregated proteins and dysfunctional organelles (Marshall and
56 Vierstra, 2018). Under optimal growth conditions, autophagy occurs at a low basal level and operates as
57 a housekeeping mechanism to maintain cellular homeostasis and promote plant development. Under
58 stressful conditions, where plant survival is threatened, autophagy is upregulated to relieve the burden
59 imposed by the stress. This stress-induced autophagy results in the bulk degradation and recycling of
60 different types of cytoplasmic cargo (Signorelli *et al.*, 2019). Autophagy can also be selective by targeting
61 specific cellular components. For example, autophagy facilitates the quality control of specific organelles
62 including mitochondria (Nakamura *et al.*, 2021), chloroplasts (Izumi *et al.*, 2017) and endoplasmic
63 reticulum (ER) (Liu *et al.*, 2012). Autophagy is induced by different types of stresses (Signorelli *et al.*,
64 2019) and is also a key mechanism for nutrient remobilization (Thompson *et al.*, 2005; Wada *et al.*,
65 2009, 2015; Guiboleau *et al.*, 2012, 2013) and pathogen defense (Liu *et al.*, 2005; Patel and Dinesh-
66 Kumar, 2008; Lenz *et al.*, 2011; Kwon *et al.*, 2013), emphasizing its importance in plant metabolism,
67 immunity and stress response.

68 Autophagy involves a series of molecular events mediated by a group of highly conserved genes termed
69 *Autophagy-related* (ATG) genes, which in plants often occur as gene families. The process begins with
70 the formation of a phagophore, a cup-shaped double-membrane structure which forms around the
71 cellular cargo. The phagophore matures to enclose and isolate the entire cargo, resulting in the
72 formation of a double-membrane vesicle called an autophagosome (Wun *et al.*, 2020). Autophagosome
73 biogenesis is facilitated by four functional groups of proteins: (a) the ATG1/ATG13 kinase complex
74 initiates phagophore formation (Suttangkakul *et al.*, 2011; Li *et al.*, 2014), (b) the phosphatidylinositol 3-
75 kinase (PI3K) complex facilitates vesicle nucleation by decorating the growing phagophore with
76 phosphatidylinositol-3-phosphate (PI3P) (Liu *et al.*, 2020; Bhati *et al.*, 2021), (c) an ATG2-ATG9-ATG18
77 complex may promote phagophore membrane expansion and modulate autophagosome progression
78 from the ER (Xiong *et al.*, 2005; Zhuang *et al.*, 2017; Kang *et al.*, 2018) and (d) the ATG8 and ATG12
79 ubiquitin-like conjugation systems mediate phagophore expansion and maturation (Marshall and
80 Vierstra, 2018). Once complete, the mature autophagosome fuses with a nearby lytic vacuole,
81 depositing the cargo into the vacuolar lumen to be degraded by hydrolases. The resulting products of
82 this digestion are transported from the vacuole into the cytoplasm to be reused (Soto-Burgos *et al.*,
83 2018) (Fig. 1).

84 Within the last decade, significant progress has been made in characterizing the functional and
85 structural roles of the various components of the plant autophagy process and in deciphering the
86 diverse roles autophagy plays in plant health, development and responses to biotic and abiotic stresses.
87 In addition, research focusing on understanding the mechanisms that facilitate autophagy regulation has
88 recently garnered attention with a number of regulatory factors being identified to function in response
89 to specific conditions and signals. However, the mechanisms by which these different factors are
90 coordinated to appropriately integrate specific signals with autophagy regulation and plant resilience to
91 stress is largely unexplored. This review aims to summarize recent advances in understanding key
92 regulatory factors that modulate plant autophagy at the transcriptional and post-translational levels and
93 further highlights the importance of their roles in the autophagy regulatory network.

94 **Post-Translational Regulation of Plant Autophagy**

95 Post-translational modification is a process in which the amino acids of target proteins are covalently
96 modified with chemical groups, for example phosphate, ubiquitin, persulfide, acetate or methyl, leading
97 to changes in the characteristics of the proteins. The process of autophagosome biogenesis is tightly
98 modulated by the core ATG proteins and the function, dynamics and stability of these proteins are
99 regulated through post-translational modifications (Fig. 1). Here, we discuss the various roles that such
100 modifications play in plant autophagy regulation.

101 **Regulation of autophagy by phosphorylation**

102 Protein phosphorylation is the most extensively studied post-translational modification that regulates
103 autophagy (Li *et al.*, 2022c; Licheva *et al.*, 2022). Modulation of protein phosphorylation can influence
104 protein activity, interactions, subcellular localization and stability (Seet *et al.*, 2006). Most
105 phosphorylation events in plants occur on serine and threonine residues, with a much smaller portion
106 on tyrosine (Champion *et al.*, 2004). Occasionally, histidine and arginine can also be phosphorylated
107 (Durek *et al.*, 2010; van Wijk *et al.*, 2014). As in other organisms, the conserved kinases TARGET OF
108 RAPAMYCIN COMPLEX (TORC) and SUCROSE NON-FERMENTING-RELATED KINASE 1 (SnRK1), an ortholog
109 of ADENOSINE MONOPHOSPHATE (AMP)-ACTIVATED PROTEIN KINASE (AMPK) in mammals and
110 SUCROSE NON-FERMENTING 1 (Snf1) in yeast, play a critical role in controlling plant autophagy (Liu and
111 Bassham, 2010; Chen *et al.*, 2017; Pu *et al.*, 2017a,b; Soto-Burgos and Bassham, 2017). In addition,
112 BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) (Zhang *et al.*, 2021) and
113 BRASSINOSTEROID-INSENSITIVE 2 (BIN2), which are involved in brassinosteroid (BR) signaling, can
114 phosphorylate autophagy-related substrates to regulate autophagy under stress (Nolan *et al.*, 2017;
115 Zhang *et al.*, 2021; Liao *et al.*, 2022; Montes *et al.*, 2022). While dephosphorylation by protein
116 phosphatases is also expected to be important in the regulation of autophagy, this is relatively less
117 studied in plants (Ahn *et al.*, 2011; Wang *et al.*, 2022).

118 ***TORC is a negative regulator of autophagy***

119 TORC is a central regulator in energy and nutrient sensing during plant growth and development
120 (Rodriguez *et al.*, 2019; Li *et al.*, 2021). *Arabidopsis thaliana* TORC is composed of the TOR kinase
121 catalytic subunit, REGULATORY-ASSOCIATED PROTEIN OF TOR (RAPTOR) and LETHAL WITH SEC13
122 PROTEIN 8 (LST8). RAPTOR recruits substrates for TOR to phosphorylate whereas LST8 promotes the
123 stability of the TOR complex (Mugume *et al.*, 2020).

124 TORC is a negative regulator of autophagy in yeast and animals (Noda and Ohsumi, 1998; González and
125 Hall, 2017), and this role is conserved in plants (Liu and Bassham, 2010; Soto-Burgos and Bassham,
126 2017). *Arabidopsis RNAi-TOR* knockdown lines and a *raptor1b* mutant exhibit constitutively active
127 autophagy and have increased expression of some ATG genes (Liu and Bassham, 2010; Pu *et al.*, 2017a;
128 Soto-Burgos and Bassham, 2017). Conversely, both TOR overexpression and auxin-mediated activation
129 of TOR represses autophagy under certain stress conditions but not others (Pu *et al.*, 2017a,b). Hence,
130 the repression of autophagy by TOR is dependent on the type of upstream stress. TOR represses
131 autophagy under normal conditions, but in some stresses, such as nutrient deprivation, salt stress, and
132 osmotic stress, this repression must be relieved for autophagy to be activated. In contrast, upon
133 oxidative stress or ER stress, autophagy can be activated even in the presence of high TOR activity
134 (Mahfouz *et al.*, 2006; Pu *et al.*, 2017a). It is unclear why TOR inactivation leads to autophagy activation
135 in certain stresses, whereas in other stresses, autophagy is activated regardless of TOR activity. It is

136 appealing to speculate that different stresses may give rise to distinct pathways which might activate
137 autophagy via TOR-dependent and TOR-independent mechanisms (Fig. 2).

138 In mammals, TOR blocks the activation of the ATG1 homolog UNC51-LIKE AUTOPHAGY ACTIVATING
139 KINASE 1 (ULK1) under nutrient-rich conditions through the phosphorylation of the ULK1 Ser757 residue
140 (Kim *et al.*, 2011) and in yeast, TOR hyperphosphorylates ATG13 to inhibit autophagy (Kamada *et al.*,
141 2010). Quantitative phosphoproteomics show that ATG1 and ATG13 are phosphotargets of the
142 Arabidopsis TORC (Van Leene *et al.*, 2019; Montes *et al.*, 2022). Under nutrient-rich conditions, RAPTOR
143 recruits ATG13 through the plant TOR-signaling (TOS) motif (Son *et al.*, 2018). This allows TOR to directly
144 phosphorylate ATG13, possibly reducing ATG1 activity, and leading to the suppression of autophagy
145 (Suttangkakul *et al.*, 2011; Van Leene *et al.*, 2019). The phosphorylation of ATG13 is reduced when the
146 TOS motif is disrupted (Son *et al.*, 2018), confirming the importance of TOR in ATG13 regulation. ATG13
147 is thus directly phosphorylated by TOR to inhibit autophagy in plants.

148 While a large number of upstream regulators of mammalian TORC are known (González and Hall, 2017),
149 the majority cannot be identified in plant genomes, suggesting distinct mechanisms for regulation of
150 plant TORC activity. Only a few factors have been shown to regulate TORC in plants (see below); the
151 identification of additional upstream regulators of TORC therefore remains a critical area for future
152 research.

153 ***SnRK1 is a positive regulator of autophagy***

154 Arabidopsis SnRK1 is a heterotrimeric complex consisting of a protein kinase/catalytic (α) subunit and
155 two regulatory (β and γ) subunits (Crozet *et al.*, 2014). The catalytic subunit of Arabidopsis SnRK1 is
156 encoded by *KIN10*, *KIN11* and *KIN12*. *KIN12* appears to be non-functional and poorly expressed while
157 *KIN10* and *KIN11* are partially redundant and well-expressed (Baena-González *et al.*, 2007). The majority
158 of SnRK1 function is associated with *KIN10* catalytic activity (Jossier *et al.*, 2009).

159 SnRK1 and TORC function antagonistically in the regulation of nutrient responses (Robaglia *et al.*, 2012;
160 Baena-González and Hanson, 2017). In yeast and mammals, autophagy is negatively regulated by TORC
161 and positively regulated by SnRK1 homologs (Kim *et al.*, 2011; González *et al.*, 2020), and this inverse
162 regulation is conserved in plants (Pu *et al.*, 2017a,b; Soto-Burgos and Bassham, 2017). SnRK1 is required
163 for autophagy in all the stress conditions indicated in Fig. 2, whether dependent upon TORC repression
164 or not. Overexpression of *KIN10* leads to constitutive activation of autophagy whereas autophagy is
165 blocked in a *kin10* mutant (Chen *et al.*, 2017; Soto-Burgos and Bassham, 2017). *KIN10* inhibits TORC
166 activity to induce autophagy (Soto-Burgos and Bassham, 2017). *KIN10* interacts with and directly
167 phosphorylates RAPTOR1B *in vitro* (Nukarinen *et al.*, 2016), suggesting that *KIN10*-mediated
168 phosphorylation of RAPTOR1B inactivates TORC to promote autophagy, possibly by blocking the ability
169 of RAPTOR1B to recruit autophagy-related substrates. Inhibiting TORC activity significantly activates
170 autophagy in the *kin10* mutant, in which otherwise autophagy is blocked under both normal and stress
171 conditions. In addition, increasing TORC activity suppresses *KIN10*-induced autophagy activation (Soto-
172 Burgos and Bassham, 2017). Together, these data suggest that TORC acts downstream of SnRK1 to
173 regulate autophagy in conditions in which autophagy is dependent on TORC repression.

174 AMPK promotes autophagy in mammalian cells under glucose deprivation by phosphorylating ULK1 at
175 Ser317 and Ser777 and the ATG6 homologue BECLIN-1 at Thr388 (Kim *et al.*, 2011; Zhang *et al.*, 2016a).
176 In plants, ATG1a is phosphorylated upon nutrient deficiency (Suttangkakul *et al.*, 2011) and this

177 phosphorylation event is enhanced in KIN10 overexpressing lines (Chen *et al.*, 2017), suggesting that
178 KIN10 most likely acts upstream of autophagy to directly or indirectly phosphorylate ATG1. Under
179 prolonged carbon starvation, KIN10 directly phosphorylates ATG6 to promote autophagy (Huang *et al.*,
180 2019), consistent with findings in mammalian cells (Zhang *et al.*, 2016a) and this regulation is
181 independent of TORC. Upon ER stress and oxidative stress, SnRK1 is required for autophagy but TORC
182 repression is not (Pu *et al.*, 2017a; Soto-Burgos and Bassham, 2017). Furthermore, the activation of
183 autophagy by phosphate deprivation, which is associated with ER stress, is mediated by a TORC-
184 independent pathway (Naumann *et al.*, 2019). Together, these results indicate that SnRK1 positively
185 regulates autophagy by phosphorylating RAPTOR1B, which blocks the TORC signaling pathway, and/or
186 through ATG1a and ATG6 phosphorylation which results in autophagy activation. The phosphorylation
187 sites targeted by KIN10 are however yet to be identified in these substrates.

188 ***Other kinases linked to autophagy regulation***

189 **SnRK2**

190 SnRK2s are plant-specific serine or threonine kinases that play a critical role in ABA signaling pathways
191 mediated by PYRABACTIN RESISTANCE 1/PYL1-LIKE (PYL) ABA receptors and protein phosphatase 2Cs
192 (PP2Cs) (Hasan *et al.*, 2022). The *Arabidopsis* SnRK2 family contains 10 members and is divided into
193 three subclasses, I, II and III, but only subclass II (SnRK2.7 and SnRK2.8) and III (SnRK2.2, SnRK2.3 and
194 SnRK2.6) are classified as ABA-responsive SnRK2s (Kamiyama *et al.*, 2021). When ABA accumulates
195 under stress such as drought, binding of ABA to its receptors inhibits PP2C family proteins, which include
196 ABI1, AB2, HAB1, HAB2, PP2CA and AHG1, and thus activates SnRK2 to phosphorylate downstream
197 effectors (Umezawa *et al.*, 2013; Wang *et al.*, 2013). Under stress, SnRK2s can phosphorylate RAPTOR
198 and inactivate TORC, which would be predicted to allow autophagy activation (Wang *et al.*, 2018). Under
199 non-stressed conditions, TORC kinase phosphorylates PYL ABA receptors, preventing the PYL receptors
200 from binding to ABA and PP2Cs. This allows PP2C to directly dephosphorylate ABA-activated SnRK2 and
201 inactivate its kinase activity (Wang *et al.*, 2018). The PP2C-SnRK2 interaction also causes the
202 sequestration of SnRK1, resulting in the formation of a trimeric SnRK1 suppressor complex. Together,
203 these events promote the TORC signaling pathway which increases plant growth and suppresses stress
204 responses (Wang *et al.*, 2018; Belda-Palazón *et al.*, 2020). Under stress conditions, ABA accumulates and
205 binds the PYL receptors, causing them to sequester PP2Cs from the PP2C-SnRK2-SnRK1 suppressor
206 complex, thus dissociating the complex. SnRK1 and SnRK2 are then free to inhibit TORC in a
207 phosphorylation-dependent manner to prevent growth and promote stress responses (Wang *et al.*,
208 2018; Belda-Palazón *et al.*, 2020). Autophagy can be activated during stress even when sugars are
209 abundant (Janse van Rensburg *et al.*, 2019), suggesting that inhibition of TORC by other kinases could
210 induce autophagy. Whether or not the key modulators in ABA signaling, including SnRK2 (and probably
211 PP2C), have emerged to induce autophagy under sugar excess or in response to stress-induced ABA
212 accumulation is of interest for future study (Signorelli *et al.*, 2019).

213 **BIN2**

214 BR is a phytohormone that plays important roles in plant growth, development and stress response
215 (Manghwar *et al.*, 2022). Increasing evidence links BR signaling and autophagy. The BRASSINOSTEROID
216 INSENSITIVE 1 (BRI1)-EMS-SUPPRESSOR 1 (BES1) is a positive transcriptional regulator of BR response
217 genes that promotes growth in *Arabidopsis* (Clouse, 2011). Upon carbon starvation or drought stress,
218 the BIN2 kinase, which functions as a negative regulator of BR signaling, phosphorylates DOMINANT

219 SUPPRESSOR OF KAR 2 (DSK2), a selective autophagy receptor for BES1. This promotes the interaction of
220 DSK2 with ATG8 and induces BES1 degradation via selective autophagy (Nolan *et al.*, 2017). BIN2 also
221 phosphorylates BRASSINAZOLE-RESISTANT 1 (BZR1), a paralog of BES1, to reduce its abundance and
222 suppress BR signaling (He *et al.*, 2002). TORC enhances BZR1 protein accumulation to promote growth in
223 Arabidopsis. However, TORC inactivation under carbon starvation causes autophagy-mediated
224 degradation of BZR1 to balance growth and carbon availability (Zhang *et al.*, 2016b). TORC promotes BR-
225 induced hypocotyl growth, and BR signaling suppresses autophagy, along with enhanced
226 phosphorylation of ATG13a. BIN2-mediated phosphorylation of RAPTOR1B at Ser916 significantly
227 activates autophagy and inhibits the phosphorylation of ATG13a by TORC (Liao *et al.*, 2022). In addition,
228 quantitative phosphoproteomics and transcriptomic analysis showed that *bin2* and *raptor1b* mutants
229 affect a common set of genes involved in growth and stress responses (Montes *et al.*, 2022). Collectively,
230 these results strongly suggest that BIN2-mediated phosphorylation can positively influence autophagy
231 activation in Arabidopsis in two main ways: (a) by destabilizing BES1/BZR1 leading to reduced BR
232 signaling and/or (b) by inhibiting TORC activity, which can decrease BZR1 abundance, reduce BR
233 signaling, and block ATG13a phosphorylation leading to autophagy activation.

234 **BAK1**

235 BAK1 is a receptor-like kinase which plays key roles in regulating BR signaling, programmed cell death
236 and immune responses. BAK1 is also a dual-specificity kinase and can therefore phosphorylate both
237 tyrosine and serine/threonine-containing substrates (He *et al.*, 2007; Kemmerling *et al.*, 2007; Wang *et*
238 *al.*, 2008; Oh *et al.*, 2009; Roux *et al.*, 2011; Shang *et al.*, 2021). The sustained expression of ATG18a is
239 required for autophagy induction (Xiong *et al.*, 2005) and plant resistance to the necrotrophic fungus
240 *Botrytis cinerea* (Lai *et al.*, 2011). BAK1 phosphorylates ATG18a at four sites, Thr241, Ser328, Ser361 and
241 Thr387, which in turn suppresses autophagy and resistance to *B. cinerea* infection (Zhang *et al.*, 2021). A
242 phosphomimic mutant of ATG18a at five sites, including Ser344 and all four BAK1 phosphosites,
243 suppresses autophagosome formation and results in reduced autophagic activity. In contrast,
244 overexpression of phosphonull ATG18a enhances autophagy activity and complements the decreased
245 resistance of *atg18a* mutants to *B. cinerea* (Zhang *et al.*, 2021). The phosphorylation of the fifth
246 phosphosite, Ser344, appears to be independent of BAK1 (Zhang *et al.*, 2021) and whether or not
247 another kinase phosphorylates this site remains to be investigated.

248 **Protein phosphatases regulate autophagy**

249 The PROTEIN PHOSPHATASE 2A (PP2A) is a serine/threonine protein phosphatase universally found in
250 eukaryotes. The active form of PP2A is a heterotrimeric complex consisting of a scaffold (A) subunit, a
251 regulatory (B) subunit and a catalytic (C) subunit. All three subunits can have multiple isoforms with the
252 catalytic subunit typically having the least (Máthé *et al.*, 2021). In yeast, PP2A, in complex with either
253 CELL DIVISION CYCLE 55 (CDC55) or ROX THREE SUPPRESSOR 1 (RTS1) regulatory subunit,
254 dephosphorylates ATG13 upon nutrient depletion or TORC inactivation to induce autophagy (Yeasmin *et*
255 *al.*, 2016). To inhibit autophagy, TORC1 phosphorylates another regulatory subunit called TYPE 2A
256 PHOSPHATASE-ASSOCIATED PROTEIN 42 (TAP42), which competitively binds to PP2A to repress PP2A-
257 CDC55 and PP2A-RTS1 complex formation and possibly change PP2A substrate specificity. TAP42 is
258 dephosphorylated upon TORC1 inactivation allowing the formation of the PP2A-CDC55 and PP2A-RTS1
259 complexes (Jiang and Broach, 1999; Yeasmin *et al.*, 2016). In plants, TAP46 (Arabidopsis homologue of
260 TAP42) is phosphorylated by TORC *in vitro* and functions as a downstream positive effector of the TORC

261 signaling pathway (Ahn *et al.*, 2011, 2015). Decreasing TAP46 expression mimics typical TORC
262 inactivation phenotypes including a decrease in global translation and an increase in autophagy activity
263 and nitrogen remobilization (Ahn *et al.*, 2011). Together, these findings demonstrate that TAP46 is
264 phosphorylated by TORC to inhibit autophagy and promote TORC-related downstream effects in plants.
265 However, unlike in yeast, the connections between TORC, TAP46, PP2A, ATG13 and autophagy are yet to
266 be established in plants. The TYPE ONE PROTEIN PHOSPHATASE (TOPP) is another serine/threonine
267 phosphatase involved in autophagy regulation. TOPP acts as an upstream component of autophagy and
268 directly dephosphorylates ATG13a in *Arabidopsis* (Wang *et al.*, 2022). Eighteen phosphorylation sites
269 were identified in ATG13a. Phosphonull mutation of all of these sites increases tolerance to carbon
270 starvation and facilitates ATG1/ATG13 complex formation. ATG13a dephosphorylation by TOPP
271 increases ATG1a phosphorylation (Wang *et al.*, 2022), suggesting that TOPP regulates autophagy by
272 controlling the phosphorylation status of ATG1 complex components, and thereby its complex
273 formation and activity.

274 **Persulfidation**

275 Over the past decade, emerging evidence suggests that hydrogen sulfide (H₂S) is an important signaling
276 molecule that regulates various molecular and developmental processes in plants (Dooley *et al.*, 2013;
277 Aroca *et al.*, 2018; Wang *et al.*, 2021; Li *et al.*, 2022a). One of the main signaling mechanisms by which
278 H₂S regulates protein function is through a cysteine-dependent post-translational modification called
279 persulfidation (also known as sulfhydration), in which cysteine thiols (R-SH) of a protein are modified to
280 persulfide (R-SSH) (Mustafa *et al.*, 2009; Aroca *et al.*, 2015). More than 5000 proteins can undergo
281 persulfidation in plants including those involved in the autophagy process (Aroca *et al.*, 2017; Jurado-
282 Flores *et al.*, 2021), indicating a role for persulfidation in the regulation of plant autophagy.

283 In *Arabidopsis*, a role for sulfide as a signaling molecule that negatively regulates autophagy has been
284 established over the past decade (Álvarez *et al.*, 2012; Laureano-Marín *et al.*, 2016, 2020; Aroca *et al.*,
285 2017, 2021). The enzyme L-CYSTEINE DESULFHYDRASE1 (DES1) is involved in sulfide metabolism in the
286 cytosol and catalyzes the production of H₂S from cysteine to maintain H₂S homeostasis in plant cells
287 (Álvarez *et al.*, 2010; Jin *et al.*, 2011; Álvarez *et al.*, 2012). *des1* mutants exhibit reduced endogenous
288 sulfide levels. This is accompanied by increased *ATG8b* and *ATG12a* transcripts along with increased
289 ATG8 protein abundance and lipidation (Álvarez *et al.*, 2012). Exogenous application of sulfide reverses
290 these effects in the *des1* mutant, suggesting that H₂S negatively regulates autophagy by suppressing
291 ATG gene expression and decreasing ATG8 lipidation (Álvarez *et al.*, 2012). Moreover, *DES1* expression is
292 significantly downregulated upon nitrogen starvation as a means to promote autophagy (Laureano-
293 Marín *et al.*, 2016). Since *des1* mutants possess low endogenous H₂S levels (Álvarez *et al.*, 2012),
294 persulfidation of ATG proteins such as ATG2, 3, 4, 5, 7, 11 and 13 (Jurado-Flores *et al.*, 2021) in the
295 cytosol is likely reduced in the mutant. Additional studies confirming this hypothesis will further indicate
296 the extent to which H₂S suppresses autophagy via the persulfidation of several ATG proteins in a DES1-
297 dependent manner.

298 The reversible modification of ATG4a at Cys170 and ATG18a at Cys103 by persulfidation inhibits
299 autophagosome formation and suppresses autophagy (Laureano-Marín *et al.*, 2020; Aroca *et al.*, 2021).
300 ATG4 is a protease that cleaves the C-terminus of the inactive ATG8 precursor to expose a glycine, prior
301 to ATG8 conjugation to PE (Yoshimoto *et al.*, 2004). ATG4a is highly persulfidated under normal growth
302 conditions, inhibiting its proteolytic activity. In response to abscisic acid (ABA), nitrogen starvation or

303 osmotic stress, the persulfidation of ATG4a at Cys170 is substantially reduced resulting in an increase in
304 its proteolytic activity and ATG8 maturation (Laureano-Marín *et al.*, 2020). Under ER stress,
305 persulfidation of ATG18a at Cys103 increases its membrane- and lipid-binding affinity, delaying its
306 release from the growing phagophore, and significantly suppressing autophagosome formation. In
307 contrast, abolishing persulfidation at Cys103 decreases the membrane- and lipid-binding affinity of
308 ATG18a, decreasing autophagosome size but increasing autophagosome number. Differential
309 persulfidation of ATG18a could therefore serve as a means to properly regulate autophagosome
310 biogenesis to facilitate an appropriate level of autophagic response to ER stress (Aroca *et al.*, 2021).

311 Recently, a report showed H₂S as a positive regulator of autophagy by upregulating the expression of
312 ATG genes upon submergence, thus alleviating cell death (Xuan *et al.*, 2022). The role of H₂S as a
313 positive or negative regulator might depend on the particular stress encountered, and possibly involve
314 other regulators in the autophagy signaling pathway. Indeed, in mammals, sulfide has been shown to
315 activate or suppress autophagy, depending on the context (Wu *et al.*, 2018). Therefore, it is not
316 surprising that sulfide could also exhibit opposing effects on plant autophagy.

317 **Ubiquitination**

318 Ubiquitination is a post-translational modification in which a 76 amino acid ubiquitin polypeptide,
319 around 8.6 kDa, is covalently bonded to a lysine residue of the target protein. In yeast and mammals,
320 ubiquitination of key components of autophagy, for instance ATG1 (ULK1 in mammals) (Nazio *et al.*,
321 2013) and ATG6 (BECLIN 1 in mammals) (Shi and Kehrl, 2010; Xia *et al.*, 2013), controls multiple steps in
322 autophagy. Several studies in *Arabidopsis* show that stability of ATG1/ATG13 complex subunits and
323 ATG6 are regulated by both autophagy and proteasomal degradation (Suttangkakul *et al.*, 2011; Qi *et al.*,
324 2017, 2020).

325 In mammals, the E3 ligase TUMOR NECROSIS FACTOR RECEPTOR ASSOCIATED FACTOR 6 (TRAF6)
326 functions as a signaling adaptor to mediate K63-linked ubiquitination of ULK1. This stabilizes ULK1 by
327 activating its self-association and kinase activity, thus activating autophagy (Nazio *et al.*, 2013). In
328 *Arabidopsis*, TRAF1a and TRAF1b recruit the RING-finger E3 ligases SEVEN IN ABSENTIA OF *ARABIDOPSIS*
329 *THALIANA* 1 (SINAT1) and SINAT2 under normal growth conditions to facilitate the ubiquitination and
330 degradation of ATG6 and ATG13 (Qi *et al.*, 2017, 2020), thereby maintaining low autophagy activity.
331 Conversely, under nutrient deprivation, SINAT6 disrupts the interaction between TRAF1a/1b and
332 SINAT1/2 by competitively associating with ATG6 and ATG13. This stabilizes ATG6 and the ATG1/ATG13
333 complex resulting in autophagy activation (Qi *et al.*, 2017, 2020). Together, these findings indicate that
334 plant TRAF proteins dynamically mediate autophagy by interacting with different SINAT proteins to
335 modulate ATG6 and ATG13 protein stability under normal or stress conditions. Moreover, ATG1a-
336 mediated phosphorylation of TRAF1a under nutrient starvation promotes TRAF1a stability, suggesting a
337 feedback regulatory mechanism between the ATG1/ATG13 kinase complex and TRAF1 proteins (Qi *et al.*,
338 2020).

339 The 14-3-3 proteins are a family of regulatory proteins that specifically recognize, bind and control the
340 activity of a wide array of phosphorylated target proteins in plants (Camoni *et al.*, 2018; Zhao *et al.*,
341 2021; Huang *et al.*, 2022). In autophagy, the 14-3-3 λ and 14-3-3 κ proteins function as adaptors to
342 mediate SINAT1/2-dependent ubiquitination and degradation of phosphorylated ATG13a under
343 nutrient-sufficient conditions (Qi *et al.*, 2022). This suggests that the formation of a TRAF1a/1b-
344 SINAT1/2-(14-3-3 λ/κ)-ATG13 complex is essential for ATG13 degradation and autophagy inhibition

345 while the formation of a trimeric TRAF1-SINAT6-ATG13 complex is required to stabilize the ATG1/ATG13
346 kinase complex for autophagy induction. An ATG13a phosphonull mutant, harboring alanine
347 substitutions in 18 putative phosphorylation sites, displays decreased interaction with 14-3-3 λ while its
348 phosphomimic variant exhibits increased interaction with 14-3-3 λ (Qi *et al.*, 2022). Interestingly, some of
349 the mutated sites such as Ser248, Ser397, Ser404, Ser406 and Ser407 are associated with the TORC
350 kinase (Van Leene *et al.*, 2019), suggesting that TORC-mediated phosphorylation may negatively
351 regulate ATG13 in a 14-3-3-dependent manner to suppress autophagy. In Arabidopsis, ATG6
352 accumulates under short-term carbon starvation, but its levels are reduced via the 26S proteasome
353 under long-term carbon starvation (Qi *et al.*, 2017). SnRK1 phosphorylates ATG6 during prolonged
354 carbon starvation to promote autophagy (Huang *et al.*, 2019). It is however not clear whether SnRK1-
355 mediated phosphorylation of ATG6 promotes its ubiquitination and degradation under long-term carbon
356 starvation and whether the 14-3-3 proteins have a role to play in this process.

357 The SH3 DOMAIN-CONTAINING PROTEIN 2 (SH3P2) is a BIN-AMPHIPHYSIN-RVS (BAR) domain-
358 containing protein that localizes to the phagophore assembly site (PAS) to engage in membrane
359 remodeling events during autophagosome biogenesis (Zhuang *et al.*, 2013). SH3P2 interacts with the
360 PI3K complex and ATG8 to promote autophagosome expansion and maturation and is required for the
361 delivery of autophagosomes to the vacuole (Zhuang *et al.*, 2013). In addition, SH3P2 interacts with the
362 ubiquitin-binding protein FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1) to
363 promote autophagosome–vacuole fusion and autophagic degradation (Gao *et al.*, 2014, 2015).
364 Interestingly, the bacterial effector E3 ligase XopL ubiquitinates SH3P2 and targets it for proteasomal
365 degradation to suppress autophagy and facilitate *Xanthomonas campestris* pv. *vesicatoria* (*Xcv*) infection
366 of plant hosts (Leong *et al.*, 2022). These results hint that the ubiquitination of SH3P2 by a plant E3
367 ligase and its subsequent proteasomal degradation could serve as a means to negatively regulate SH3P2
368 stability and autophagy induction under non-stressed conditions.

369 **Other potential post-translational modifications in autophagy regulation**

370 Other possible post-translational modifications may function in autophagy but have yet to be well
371 studied in plants. Nitric oxide acts as a signaling molecule through the post-translational modification S-
372 nitrosylation (Astier *et al.*, 2011), and regulates autophagy in animals (Montagna *et al.*, 2016; Tegeder,
373 2019; Ma *et al.*, 2020; Liu *et al.*, 2022). While regulation of autophagy by nitric oxide in plants is not
374 clear, autophagic substrate recognition has been shown to depend on S-nitrosylation. S-nitrosylation of
375 Arabidopsis GSNO REDUCTASE 1 (GSNOR1) induces a conformational change in its ATG8-interacting
376 motif (AIM) motif. This allows GSNOR1 to interact with ATG8 leading to its degradation via selective
377 autophagy in response to hypoxia (Zhan *et al.*, 2018). A role for protein acetylation in regulating
378 autophagy is well-established in yeast and mammals (Lee *et al.*, 2008; McEwan and Dikic, 2011; Yi *et al.*,
379 2012; Huang *et al.*, 2015; Su *et al.*, 2017). For example, in mammals, p300-mediated acetylation and
380 SIRTUIN1 (SIRT1)-mediated deacetylation of MICROTUBULE-ASSOCIATED PROTEIN 1A/1B-LIGHT CHAIN 3
381 (LC3), the mammalian homologue of ATG8, regulates its nucleocytoplasmic transport and activity to
382 either inhibit or stimulate autophagy respectively (Lee *et al.*, 2008; Huang & Liu, 2015; Huang *et al.*,
383 2015). In the silkworm *Bombyx mori*, p300-mediated acetylation of members of the ATG8 ubiquitin-like
384 conjugation system, BmATG3, BmATG4, BmATG7 and BmATG8, inhibits autophagy while HISTONE
385 DEACETYLASE 1 (HDAC1)-mediated deacetylation of these ATG proteins yields the opposite effect (Wu
386 *et al.*, 2021a). Interestingly, TORC1 directly phosphorylates and activates p300 to inhibit autophagy
387 under normal conditions in mammals (Wan *et al.*, 2007) while cholesterol-mediated inactivation of

388 TORC1 promotes the dephosphorylation of HDAC1 to stimulate autophagy in the silkworm (Wu et al.,
389 2021b), indicating a key role for TORC-dependent phosphorylation in acetylation-mediated regulation of
390 autophagy. Currently, studies on the role of acetylation in autophagy regulation in plants are scarce,
391 suggesting a knowledge gap that needs to be addressed. In particular, it will be interesting to know if
392 regulation of ATG proteins via acetylation and deacetylation mechanisms, as observed in other species,
393 is conserved in plants and whether plant TORC plays a role in mediating these events.

394 **Transcriptional Regulation of Plant Autophagy**

395 While the immediate and rapid activation of autophagy by stress is dependent on post-translational
396 events, under non-optimal conditions plants increase the expression of ATG genes to sustain autophagy
397 activity and improve stress tolerance (Xiong et al., 2005; Rose et al., 2006; Xia et al., 2011; Zhou et al.,
398 2013; Wang et al., 2015). Transcriptional control is therefore required to allow the proper expression of
399 ATG genes in response to stress and developmental changes. Some transcriptional regulators of ATG
400 genes have been identified and characterized (Yan et al., 2017; Wang et al., 2020; Yang et al., 2020;
401 Chen et al., 2022), providing a glimpse of the transcriptional mechanisms underlying autophagy gene
402 regulation in plants (Fig. 3; Table 1).

403 **WRKY transcription factors**

404 The WRKY proteins form one of the largest transcription factor families in plants. Members of this group
405 are well-studied and play important roles in regulating stress response pathways (Chen et al., 2019),
406 including the autophagy process. In Arabidopsis, WRKY53, in complex with HISTONE DEACETYLASE 9
407 (HDA9) and POWERDRESS (PWR), binds to the W-box motif in the ATG9 promoter and suppresses its
408 expression in an H3K27 deacetylation-dependent manner (Chen et al., 2016). This promotes leaf
409 senescence in Arabidopsis, consistent with the early leaf senescence phenotype of *atg9* mutants
410 (Hanaoka et al., 2002; Chen et al., 2016). Infection by the necrotrophic fungus *Botrytis cinerea* induces
411 autophagy in both infected and surrounding uninfected cells of Arabidopsis plants, along with increased
412 expression of WRKY33 and ATG genes (Zheng et al., 2006; Lai et al., 2011). Loss of WRKY33 enhances
413 susceptibility to *Botrytis* infection while WRKY33 overexpression has the opposite effect (Zheng et al.,
414 2006). To restrict the spread of the infection, WRKY33 is required for autophagy in cells that surround
415 the infected area (Lai et al., 2011). One way in which WRKY33 may achieve this is by promoting the
416 sustained expression of ATG18a (Lai et al., 2011), a key protein in autophagosome formation (Xiong et
417 al., 2005). In addition, WRKY33 physically interacts with ATG18a in the nucleus (Lai et al., 2011), possibly
418 regulating WRKY33 transcriptional activity during pathogen infection. However, the significance of this
419 interaction, and whether WRKY33 directly regulates ATG18a expression, is not clearly established. In
420 tomato (*Solanum lycopersicum*), silencing WRKY33 decreases the expression of ATG5, ATG7 and
421 NEIGHBOR OF BRCA1 GENE (NBR1). It also compromises autophagosome formation, leading to
422 increased accumulation of insoluble protein aggregates and decreased heat stress tolerance in tomato
423 plants (Zhou et al., 2014). Since NBR1 facilitates selective autophagy (Zhou et al., 2013), WRK33 may
424 promote selective degradation and recycling of heat-induced protein aggregates by enhancing NBR1
425 expression.

426 In cassava (*Manihot esculenta*), bacterial blight caused by *Xanthomonas axonopodis* pv. *manihotis* (*Xam*)
427 infection induces MeWRKY20, which then translocates to the nucleus to directly activate the expression
428 of ATG8a (Yan et al., 2017). This enhances autophagy activity and increases callose deposition in the cell
429 wall to reinforce a physical barrier, restricting the spread of the infection (Yan et al., 2017). Moreover,

430 MeWRKY20 physically interacts with MeATG8a/8f/8h (Yan *et al.*, 2017), suggesting a possible feedback
431 mechanism where the protein abundance of pathogen-induced MeWRKY20 is controlled via the
432 autophagy pathway. Similarly, in banana (*Musa acuminata*), *Fusarium oxysporum f. sp. cubense (Foc)*
433 infection induces WRKY24, which directly activates the expression of *MaATG8f* and *MaATG8g* by binding
434 to the W-box in their promoters (Liu *et al.*, 2019). Overexpressing *MaATG8f* and *MaATG8g* increases
435 autophagosome formation in *Foc*-inoculated Arabidopsis plants. However, overexpressing *MaWRKY24*,
436 *MaATG8f* and *MaATG8g* in Arabidopsis increases disease susceptibility to *Foc* (Liu *et al.*, 2019) and
437 transient expression of *MaATG8* in tobacco (*Nicotiana benthamiana*) leads to a hypersensitive-like cell
438 death phenotype (Wei *et al.*, 2017). This suggests that MaWRKY24-mediated *MaATG8f* and *MaATG8g*
439 expression may contribute to disease susceptibility to *Foc* by inducing autophagy-dependent cell death.

440 **ATAF1 and TGA9**

441 Transcription factors also play a key role in starvation-induced autophagic responses in plants.
442 Overexpression of the NAM, ATAF and CUC (NAC)-domain protein ARABIDOPSIS TRANSCRIPTION
443 ACTIVATION FACTOR1 (ATAF1) reprograms the Arabidopsis transcriptome to mimic carbon starvation,
444 with elevated expression of genes involved in starch and amino acid catabolism as well as autophagy
445 (Garapati *et al.*, 2015). ATAF1-induced *ATG* genes include *ATG7*, *ATG8a/8b/8e/8h*, *ATG9* and *ATG18a*. In
446 contrast, decreased ATAF1 levels result in the downregulation of these *ATG* genes (Garapati *et al.*,
447 2015). Interestingly, ATAF1 interacts with Arabidopsis SnRK1 catalytic subunits KIN10 and KIN11
448 (Kleinow *et al.*, 2009), suggesting that ATAF1 is a potential phosphorylation target for SnRK1-mediated
449 regulation. These findings together suggest that ATAF1 may play a role in the regulation of starvation-
450 induced autophagy, but further studies are required to confirm this. Recently, the basic leucine zipper
451 (bZIP) protein TGACG (TGA) MOTIF-BINDING PROTEIN 9 (TGA9), was identified as a positive modulator
452 of autophagy-dependent carbon starvation responses in Arabidopsis (Wang *et al.*, 2020). TGA9
453 promotes autophagy-dependent tolerance to carbon starvation by directly binding to the TGACG motif-
454 containing promoters of several *ATG* genes such as *ATG1a*, *ATG5*, *ATG8a/8f/8g* and *ATG18h*, and
455 upregulating their expression (Wang *et al.*, 2020). TGA9 also enhances the expression of several *ATG*
456 genes to stimulate autophagy upon osmotic stress (Wang *et al.*, 2020), but its contribution to osmotic
457 stress tolerance is yet to be established.

458 **HY5 and SOC1**

459 The ELONGATED HYPOCOTYL 5 (HY5) protein is a light-responsive bZIP transcription factor that
460 promotes photomorphogenesis (Wei *et al.*, 1994) and functions as a negative regulator of autophagy
461 (Yang *et al.*, 2020). HY5 inhibits autophagy under optimal growth conditions by downregulating *ATG5*
462 and *ATG8e*. HY5 controls *ATG* promoter activity by direct recruitment of HDA9 which, in turn, decreases
463 H3K9/K27 acetylation levels to silence gene expression (Yang *et al.*, 2020). In response to light-to-dark
464 conversion or nitrogen deficiency, HY5 is degraded via the 26S proteasome resulting in HDA9-promoter
465 dissociation. This elevates H3K9/K27 acetylation levels and upregulates *ATG* expression to activate
466 autophagy and enhance stress tolerance (Yang *et al.*, 2020). Another negative regulator of starvation
467 responses in plants is the MADS-box protein SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1),
468 a known modulator of flowering time (Onouchi *et al.*, 2000; Liu *et al.*, 2007). SOC1 suppresses autophagy
469 by downregulating *ATG4b*, *ATG7* and *ATG18c*, which decreases tolerance of carbon starvation. SOC1
470 expression is suppressed under carbon starvation as a means to promote autophagy-dependent plant
471 survival (Li *et al.*, 2022b). SOC1 also downregulates abiotic stress responses during the floral transition

472 process. Histone H4 acetylation of SOC1 chromatin by chromatin remodeling factor MORF-RELATED
473 GENE (MRG) activates SOC1 expression leading to the upregulation of floral regulator *LEAFY* (*LFY*) and
474 the downregulation of diverse stress-responsive genes. This results in decreased abiotic stress tolerance
475 in *Arabidopsis* (Barrero-Gil *et al.*, 2021). Based on these findings, MRG may modulate SOC1-dependent
476 regulation of autophagy and *ATG* gene expression. Interestingly, the MRG-SOC1 module bears some
477 similarities to the HDA9-HY5 module. The transcription factor units of both modules, i.e., SOC1 and HY5,
478 downregulate *ATG* expression to inhibit autophagy, and their protein levels are substantially reduced in
479 response to starvation (Yang *et al.*, 2020; Li *et al.*, 2022b). In contrast to the MRG-SOC1 module, the
480 HDA9-HY5 module negatively regulates flowering time by repressing *PHYTOCHROME INTERACTING*
481 *FACTOR 4* (*PIF4*) and *CONSTANS-LIKE 5* (*COL5*) in a histone deacetylation-dependent manner, possibly to
482 fine-tune the floral transition process (Chu *et al.*, 2022). Together, these findings suggest that an MRG-
483 SOC1/HDA9-HY5 signaling axis may exist to transcriptionally coordinate autophagy with flowering time.

484 **LUX and TOC1**

485 Circadian regulation plays essential roles in plant responses to different biotic and abiotic signals (Salter
486 *et al.*, 2003; Fowler *et al.*, 2005; Wang *et al.*, 2011; Lai *et al.*, 2012; Mizuno *et al.*, 2014; Box *et al.*, 2015)
487 and helps to modulate plant growth and metabolism in response to changes in the environment
488 (Buckley *et al.*, 2023). Autophagy is influenced by the circadian clock and is rhythmically activated under
489 both constant light and light/dark conditions through the rhythmic expression of *ATG* genes (Yang *et al.*,
490 2022; Chen *et al.*, 2022). In turn, a functional autophagy pathway is required to maintain the stability of
491 the endogenous circadian rhythm in plants (Chen *et al.*, 2022). Under light/dark conditions, autophagy
492 activity is highest at night. To prevent overactivation of autophagy, which could result in cell death (Kang
493 *et al.*, 2007), the circadian clock transcription factor LUX ARRHYTHMO (LUX) represses *ATG2*, *ATG8a* and
494 *ATG11* genes, thereby promoting tolerance of dark-induced starvation (Yang *et al.*, 2022). Moreover,
495 LUX-mediated repression of *ATG* genes is required to maintain a normal autophagy rhythm, fine-tune
496 autophagic response to carbon deficiency, and enhance survival under carbon starvation (Yang *et al.*,
497 2022). Another circadian clock transcription factor, TIMING OF CAB EXPRESSION 1 (TOC1), moderates
498 the extent of autophagy under nutritional stress by suppressing *ATG1a*, *ATG2*, and *ATG8d* genes.
499 Importantly, TOC1 activity contributes to starvation tolerance in *Arabidopsis* (Chen *et al.*, 2022).
500 Interestingly, both LUX and TOC1 are evening-expressed genes that are co-regulated by the circadian
501 clock with similar expression patterns under light/dark conditions (Hazen *et al.*, 2005). LUX and TOC1
502 may therefore work together to moderate autophagy levels at night and during nutritional deficiency to
503 promote plant survival.

504 **BZR1**

505 The brassinolide (BL) activated BZR1 transcription factor positively regulates BR signaling and autophagy
506 in tomato plants. BZR1 is dephosphorylated and activated in response to cold treatment and nitrogen
507 starvation in tomato, where it upregulates the expression of *ATG2* and *ATG6* to promote autophagy
508 (Wang *et al.*, 2019; Chi *et al.*, 2020). BZR1-mediated autophagy decreases stress-induced accumulation
509 of insoluble protein aggregates, thereby increasing the tolerance of tomato plants to cold stress and
510 nitrogen starvation (Wang *et al.*, 2019; Chi *et al.*, 2020). Moreover, BZR1 enhances the expression of
511 *NBR1* under cold stress to facilitate the selective autophagy of accumulated protein aggregates (Chi *et*
512 *al.*, 2020). It is also worth noting that BR alone elevates autophagy activity in non-stressed tomato plants
513 and causes the enrichment of BZR1 in the promoters of *ATG2*, *ATG6* and *NBR1* (Wang *et al.*, 2019; Chi *et*

514 *al.*, 2020). This indicates an important function for BZR1-mediated BR signaling in plant autophagy. In
515 Arabidopsis, BZR1 appears to play an antithetical role in autophagy compared to its tomato counterpart.
516 For instance, TORC promotes BZR1 stability to stimulate growth and upon TORC inactivation or carbon
517 starvation, BZR1 and its paralog BES1 are degraded to promote stress response and tolerance (Zhang *et*
518 *al.*, 2016b; Nolan *et al.*, 2017). This is in contrast to its tomato homolog which accumulates in response
519 to nitrogen starvation (Wang *et al.*, 2019). The activation and role of BZR1 in autophagy regulation may
520 therefore be dependent on the type of stress and plant species, and further studies are required to shed
521 light on this.

522 **HSFA1a and ERF5**

523 The HEAT SHOCK TRANSCRIPTION FACTOR A1a (HSFA1a) and the ETHYLENE RESPONSE FACTOR 5 (ERF5)
524 are induced by drought stress to activate autophagy in tomato (Pan *et al.*, 2012; Wang *et al.*, 2015; Zhu
525 *et al.*, 2018). HSFA1a directly binds heat-shock elements (HSE) (GAANNTTC) in *ATG10* and *ATG18f*
526 promoters to activate their expression (Wang *et al.*, 2015) while ERF5 activates *ATG8d* and *ATG18h*
527 expression by binding to drought-responsive elements (DRE) (ACCGAC) in their promoters (Zhu *et al.*,
528 2018). HSFA1a-mediated autophagy reduces the accumulation of insoluble ubiquitinated protein
529 aggregates to enhance drought resistance while ERF5-mediated autophagy contributes to ethylene-
530 mediated drought tolerance in tomato (Wang *et al.*, 2015; Zhu *et al.*, 2018). In addition, HSFA1a
531 promotes pollen thermotolerance in tomato by upregulating *ATG10* expression to stimulate autophagy
532 and reduce heat stress-induced aggregated proteins (Xie *et al.*, 2022). In rice, ethylene-precursor
533 treatment significantly increases HSFA1a expression under heat stress (Wu and Yang, 2019), suggesting
534 a possible role for HSFA1a in ethylene-mediated autophagy induction under both heat and drought
535 stress conditions.

536 **Conclusions and Perspectives**

537 Recent studies have established that plants possess a transcriptional and post-translational network of
538 proteins that potentially work together in a context-dependent manner to fine-tune and regulate the
539 plant autophagy process. Transcriptional regulation provides a means for plant cells to replenish the
540 autophagy machinery, especially under prolonged starvation or stress periods, and also control the
541 supply of autophagy proteins to maintain an appropriate level of stress response. Post-translational
542 modifications control ATG protein abundance, stability and function in response to upstream signals.
543 Interestingly, studies have shown that changes in the levels of the two main upstream regulators of
544 plant autophagy, i.e., SnRK1 and TORC, reprograms the plant transcriptome, with significant changes in
545 genes involved in the autophagy process. This indicates a potential connection between transcriptional
546 and post-translational regulation of autophagy (Fig. 4). Exploring this connection using large-scale
547 approaches such as phosphoproteomics combined with genome-wide transcriptome analysis can
548 provide a platform to further identify new regulators and more importantly to build a comprehensive
549 network of how plant autophagy is regulated. In addition, a better understanding of such a regulatory
550 network can enhance food security by accelerating future agronomic improvements, especially in
551 tolerance of different types of stress conditions.

552 **Acknowledgement**

553 Figures created with BioRender.com.

554 **Author Contributions**

555 DCB conceptualized the topic. WA and MMW wrote the initial draft. DCB, WA and MMW revised the
556 manuscript.

557 **Conflict of interest**

558 No conflict of interest declared.

559 **Funding**

560 This work was supported by the National Science Foundation [grant # MCB-2040582 to DCB].

References

Ahn CS, Ahn H-K, Pai H-S. 2015. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth numbers through stimulation of the TOR signalling pathway. *Journal of Experimental Botany* **66**, 827–840.

Ahn CS, Han J-A, Lee H-S, Lee S, Pai H-S. 2011. The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. *The Plant Cell* **23**, 185–209.

Alvarez C, Calo L, Romero LC, García I, Gotor C. 2010. An O-acetylserine(thiol)lyase homolog with L-cysteine desulphhydrase activity regulates cysteine homeostasis in *Arabidopsis*. *Plant Physiology* **152**, 656–669.

Álvarez C, García I, Moreno I, Pérez-Pérez ME, Crespo JL, Romero LC, Gotor C. 2012. Cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile in *Arabidopsis*. *The Plant Cell* **24**, 4621–4634.

Aroca A, Benito JM, Gotor C, Romero LC. 2017. Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in *Arabidopsis*. *Journal of Experimental Botany* **68**, 4915–4927.

Aroca A, Gotor C, Romero LC. 2018. Hydrogen sulfide signaling in plants: emerging roles of protein persulfidation. *Frontiers in Plant Science* **9**, 1369.

Aroca Á, Serna A, Gotor C, Romero LC. 2015. S-sulfhydration: a cysteine posttranslational modification in plant systems. *Plant Physiology* **168**, 334–342.

Aroca A, Yruela I, Gotor C, Bassham DC. 2021. Persulfidation of ATG18a regulates autophagy under ER stress in *Arabidopsis*. *Proceedings of the National Academy of Sciences* **118**, e2023604118.

Astier J, Rasul S, Koen E, Manzoor H, Besson-Bard A, Lamotte O, Jeandroz S, Durner J, Lindermayr C, Wendehenne D. 2011. S-nitrosylation: an emerging post-translational protein modification in plants. *Plant Science* **181**, 527–533.

Baena-González E, Hanson J. 2017. Shaping plant development through the SnRK1–TOR metabolic regulators. *Current Opinion in Plant Biology* **35**, 152–157.

Baena-González E, Rolland F, Thevelein JM, Sheen J. 2007. A central integrator of transcription networks in plant stress and energy signalling. *Nature* **448**, 938–942.

Barrero-Gil J, Mouriz A, Piqueras R, Salinas J, Jarillo JA, Piñeiro M. 2021. A MRG-operated chromatin switch at SOC1 attenuates abiotic stress responses during the floral transition. *Plant Physiology* **187**, 462–471.

Belda-Palazón B, Adamo M, Valerio C, Ferreira LJ, Confraria A, Reis-Barata D, Rodrigues A, Meyer C, Rodriguez PL, Baena-González E. 2020. A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth. *Nature Plants* **6**, 1345–1353.

Bhati KK, Luong AM, Batoko H. 2021. VPS34 complexes in plants: untangled enough? *Trends in Plant Science* **26**, 303–305.

Box MS, Huang BE, Domijan M, et al. 2015. ELF3 controls thermoresponsive growth in *Arabidopsis*. *Current Biology* **25**, 194–199.

Buckley CR, Li X, Martí MC, Haydon MJ. 2023. A bittersweet symphony: metabolic signals in the circadian system. *Current Opinion in Plant Biology* **73**, 102333.

Camoni L, Visconti S, Aducci P, Marra M. 2018. 14-3-3 proteins in plant hormone signaling: doing several things at once. *Frontiers in Plant Science* **9**, 297.

Champion A, Kreis M, Mockaitis K, Picaud A, Henry Y. 2004. *Arabidopsis* kinome: after the casting. *Functional & Integrative Genomics* **4**, 163–187.

Chen W, Hu Z, Yu M, Zhu S, Xing J, Song L, Pu W, Yu F. 2022. A molecular link between autophagy and circadian rhythm in plants. *Journal of Integrative Plant Biology* **64**, 1044–1058.

Chen X, Li C, Wang H, Guo Z. 2019. WRKY transcription factors: evolution, binding, and action. *Phytopathology Research* **1**, 13.

Chen X, Lu L, Mayer KS, Scalf M, Qian S, Lomax A, Smith LM, Zhong X. 2016. POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in *Arabidopsis*. *eLife* **5**, e17214.

Chen L, Su Z-Z, Huang L, Xia F-N, Qi H, Xie L-J, Xiao S, Chen Q-F. 2017. The AMP-activated protein kinase KIN10 is involved in the regulation of autophagy in *Arabidopsis*. *Frontiers in Plant Science* **8**, 1201.

Chi C, Li X, Fang P, Xia X, Shi K, Zhou Y, Zhou J, Yu J. 2020. Brassinosteroids act as a positive regulator of NBR1-dependent selective autophagy in response to chilling stress in tomato. *Journal of Experimental Botany* **71**, 1092–1106.

Chu L, Yang C, Zhuang F, Gao Y, Luo M. 2022. The HDA9-HY5 module epigenetically regulates flowering time in *Arabidopsis thaliana*. *Journal of Cellular Physiology* **237**, 2961–2968.

Clouse SD. 2011. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. *The Plant Cell* **23**, 1219–1230.

Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-González E. 2014. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. *Frontiers in Plant Science* **5**, 190.

Dooley FD, Nair SP, Ward PD. 2013. Increased growth and germination success in plants following hydrogen sulfide administration. *PLoS ONE* **8**, e62048.

Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D, Nagel A, Kersten B, Schulze WX. 2010. PhosPhAt: the *Arabidopsis thaliana* phosphorylation site database. An update. *Nucleic Acids Research* **38**, D828–D834.

Fowler SG, Cook D, Thomashow MF. 2005. Low temperature induction of *Arabidopsis* CBF1, 2, and 3 is gated by the circadian clock. *Plant Physiology* **137**, 961–968.

Gao C, Luo M, Zhao Q, Yang R, Cui Y, Zeng Y, Xia J, Jiang L. 2014. A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth. *Current Biology* **24**, 2556–2563.

Gao C, Zhuang X, Cui Y, Fu X, He Y, Zhao Q, Zeng Y, Shen J, Luo M, Jiang L. 2015. Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation. *Proceedings of the National Academy of Sciences* **112**, 1886–1891.

Garapati P, Feil R, Lunn JE, Van Dijck P, Balazadeh S, Mueller-Roeber B. 2015. Transcription factor Arabidopsis activating factor1 integrates carbon starvation responses with trehalose metabolism. *Plant Physiology* **169**, 379–390.

González A, Hall MN. 2017. Nutrient sensing and TOR signaling in yeast and mammals. *The EMBO Journal* **36**, 397–408.

González A, Hall MN, Lin S-C, Hardie DG. 2020. AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. *Cell Metabolism* **31**, 472–492.

Guiboileau A, Avila-Ospina L, Yoshimoto K, Soulay F, Azzopardi M, Marmagne A, Lothier J, Masclaux-Daubresse C. 2013. Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability. *The New Phytologist* **199**, 683–694.

Guiboileau A, Yoshimoto K, Soulay F, Bataillé M-P, Avice J-C, Masclaux-Daubresse C. 2012. Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. *The New Phytologist* **194**, 732–740.

Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y. 2002. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. *Plant Physiology* **129**, 1181–1193.

Hasan MM, Liu X-D, Waseem M, Guang-Qian Y, Alabdallah NM, Jahan MS, Fang X-W. 2022. ABA activated SnRK2 kinases: an emerging role in plant growth and physiology. *Plant Signaling & Behavior* **17**, 2071024.

Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA. 2005. LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. *Proceedings of the National Academy of Sciences* **102**, 10387–10392.

He J-X, Gendron JM, Yang Y, Li J, Wang Z-Y. 2002. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. *Proceedings of the National Academy of Sciences* **99**, 10185–10190.

He K, Gou X, Yuan T, Lin H, Asami T, Yoshida S, Russell SD, Li J. 2007. BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. *Current Biology* **17**, 1109–1115.

Huang R, Liu W. 2015. Identifying an essential role of nuclear LC3 for autophagy. *Autophagy* **11**, 852–853.

Huang Y, Wang W, Yu H, Peng J, Hu Z, Chen L. 2022. The role of 14-3-3 proteins in plant growth and response to abiotic stress. *Plant Cell Reports* **41**, 833–852.

Huang R, Xu Y, Wan W, et al. 2015. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. *Molecular Cell* **57**, 456–466.

Huang X, Zheng C, Liu F, et al. 2019. Genetic analyses of the *Arabidopsis* ATG1 kinase complex reveal both kinase-dependent and independent autophagic routes during fixed-carbon starvation. *The Plant Cell* **31**, 2973–2995.

Izumi M, Ishida H, Nakamura S, Hidema J. 2017. Entire photodamaged chloroplasts are transported to the central vacuole by autophagy. *The Plant Cell* **29**, 377–394.

Janse van Rensburg HC, Van den Ende W, Signorelli S. 2019. Autophagy in plants: both a puppet and a puppet master of sugars. *Frontiers in Plant Science* **10**, 14.

Jiang Y, Broach JR. 1999. Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. *The EMBO Journal* **18**, 2782–2792.

Jin Z, Shen J, Qiao Z, Yang G, Wang R, Pei Y. 2011. Hydrogen sulfide improves drought resistance in *Arabidopsis thaliana*. *Biochemical and Biophysical Research Communications* **414**, 481–486.

Jossier M, Bouly J-P, Meimoun P, Arjmand A, Lessard P, Hawley S, Grahame Hardie D, Thomas M. 2009. SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in *Arabidopsis thaliana*. *The Plant Journal* **59**, 316–328.

Jurado-Flores A, Romero LC, Gotor C. 2021. Label-free quantitative proteomic analysis of nitrogen starvation in *Arabidopsis* root reveals new aspects of H2S signaling by protein persulfidation. *Antioxidants* **10**, 508.

Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, Yonezawa K, Ohsumi Y. 2010. Tor directly controls the Atg1 kinase complex to regulate autophagy. *Molecular and Cellular Biology* **30**, 1049–1058.

Kamiyama Y, Katagiri S, Umezawa T. 2021. Growth promotion or osmotic stress response: how SNF1-related protein kinase 2 (SnRK2) kinases are activated and manage intracellular signaling in plants. *Plants* **10**, 1443.

Kang S, Shin KD, Kim JH, Chung T. 2018. Autophagy-related (ATG) 11, ATG9 and the phosphatidylinositol 3-kinase control ATG2-mediated formation of autophagosomes in *Arabidopsis*. *Plant Cell Reports* **37**, 653–664.

Kang C, You Y, Avery L. 2007. Dual roles of autophagy in the survival of *Caenorhabditis elegans* during starvation. *Genes & Development* **21**, 2161–2171.

Kemmerling B, Schwedt A, Rodriguez P, et al. 2007. The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. *Current Biology* **17**, 1116–1122.

Kim J, Kundu M, Viollet B, Guan K-L. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. *Nature Cell Biology* **13**, 132–141.

Kleinow T, Himbert S, Krenz B, Jeske H, Koncz C. 2009. NAC domain transcription factor ATAF1 interacts with SNF1-related kinases and silencing of its subfamily causes severe developmental defects in Arabidopsis. *Plant Science* **177**, 360–370.

Kwon SI, Cho HJ, Kim SR, Park OK. 2013. The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. *Plant Physiology* **161**, 1722–1736.

Lai AG, Doherty CJ, Mueller-Roeber B, Kay SA, Schippers JHM, Dijkwel PP. 2012. CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. *Proceedings of the National Academy of Sciences* **109**, 17129–17134.

Lai Z, Wang F, Zheng Z, Fan B, Chen Z. 2011. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. *Plant Journal* **66**, 953–968.

Laureano-Marín AM, Aroca Á, Pérez-Pérez ME, Yruela I, Jurado-Flores A, Moreno I, Crespo JL, Romero LC, Gotor C. 2020. Abscisic acid-triggered persulfidation of the cys protease ATG4 mediates regulation of autophagy by sulfide. *The Plant Cell* **32**, 3902–3920.

Laureano-Marín AM, Moreno I, Romero LC, Gotor C. 2016. Negative regulation of autophagy by sulfide is independent of reactive oxygen species. *Plant Physiology* **171**, 1378–1391.

Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T. 2008. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. *Proceedings of the National Academy of Sciences of the United States of America* **105**, 3374–3379.

Lenz HD, Haller E, Melzer E, et al. 2011. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. *The Plant Journal* **66**, 818–830.

Leong JX, Raffeiner M, Spinti D, et al. 2022. A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. *The EMBO Journal* **41**, e110352.

Li H, Chen H, Chen L, Wang C. 2022a. The role of hydrogen sulfide in plant roots during development and in response to abiotic stress. *International Journal of Molecular Sciences* **23**, 1024.

Li F, Chung T, Vierstra RD. 2014. AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis. *The Plant Cell* **26**, 788–807.

Li X, Liao J, Bai H, Bei J, Li K, Luo M, Shen W, Yang C, Gao C. 2022b. Arabidopsis flowering integrator SOC1 transcriptionally regulates autophagy in response to long-term carbon starvation. *Journal of Experimental Botany* **73**, 6589–6599.

Li H, Liao Y, Zheng X, Zhuang X, Gao C, Zhou J. 2022c. Shedding light on the role of phosphorylation in plant autophagy. *FEBS Letters* **596**, 2172–2185.

Li L, Liu K, Sheen J. 2021. Dynamic nutrient signaling networks in plants. *Annual Review of Cell and Developmental Biology* **37**, 341–367.

Liao C-Y, Pu Y, Nolan TM, Montes C, Guo H, Walley JW, Yin Y, Bassham DC. 2022. Brassinosteroids modulate autophagy through phosphorylation of RAPTOR1B by the GSK3-like kinase BIN2 in *Arabidopsis*. *Autophagy* **0**, 1–18.

Licheva M, Raman B, Kraft C, Reggiori F. 2022. Phosphoregulation of the autophagy machinery by kinases and phosphatases. *Autophagy* **18**, 104–123.

Liu Y, Bassham DC. 2010. TOR is a negative regulator of autophagy in *Arabidopsis thaliana*. *PLoS ONE* **5**, e11883.

Liu Y, Burgos JS, Deng Y, Srivastava R, Howell SH, Bassham DC. 2012. Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in *Arabidopsis*. *The Plant Cell* **24**, 4635–4651.

Liu F, Hu W, Li F, Marshall RS, Zarza X, Munnik T, Vierstra RD. 2020. AUTOPHAGY-RELATED14 and its associated phosphatidylinositol 3-kinase complex promote autophagy in *Arabidopsis*. *The Plant Cell* **32**, 3939–3960.

Liu K, Liu Z, Liu Z, Ma Z, Deng Y, Liu W, Xu B. 2022. Manganese induces S-nitrosylation of PINK1 leading to nerve cell damage by repressing PINK1/Parkin-mediated mitophagy. *The Science of the Total Environment* **834**, 155358.

Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar SP. 2005. Autophagy regulates programmed cell death during the plant innate immune response. *Cell* **121**, 567–577.

Liu G, Zeng H, Li X, Wei Y, Shi H. 2019. Functional analysis of MaWRKY24 in transcriptional activation of autophagy-related gene 8f/g and plant disease susceptibility to soil-borne *Fusarium oxysporum* f. sp. *cubense*. *Pathogens* (Basel, Switzerland) **8**, 264.

Liu C, Zhou J, Bracha-Drori K, Yalovsky S, Ito T, Yu H. 2007. Specification of *Arabidopsis* floral meristem identity by repression of flowering time genes. *Development* **134**, 1901–1910.

Ma Z, Wang C, Liu C, Yan D-Y, Tan X, Liu K, Jing M-J, Deng Y, Liu W, Xu B. 2020. Manganese induces autophagy dysregulation: the role of S-nitrosylation in regulating autophagy related proteins in vivo and in vitro. *The Science of the Total Environment* **698**, 134294.

Mahfouz MM, Kim S, Delauney AJ, Verma DPS. 2006. *Arabidopsis* TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. *The Plant Cell* **18**, 477–490.

Manghwar H, Hussain A, Ali Q, Liu F. 2022. Brassinosteroids (BRs) role in plant development and coping with different stresses. *International Journal of Molecular Sciences* **23**, 1012.

Marshall RS, Vierstra RD. 2018. Autophagy: the master of bulk and selective recycling. *Annual Review of Plant Biology* **69**, 173–208.

Máthé C, M-Hamvas M, Freytag C, Garda T. 2021. The protein phosphatase PP2A plays multiple roles in plant development by regulation of vesicle traffic—facts and questions. *International Journal of Molecular Sciences* **22**, 975.

McEwan DG, Dikic I. 2011. The three musketeers of autophagy: phosphorylation, ubiquitylation and acetylation. *Trends in Cell Biology* **21**, 195–201.

Mergner J, Frejno M, List M, et al. 2020. Mass-spectrometry-based draft of the *Arabidopsis* proteome. *Nature* **579**, 409–414.

Mizuno T, Nomoto Y, Oka H, Kitayama M, Takeuchi A, Tsubouchi M, Yamashino T. 2014. Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in *Arabidopsis thaliana*. *Plant & Cell Physiology* **55**, 958–976.

Montagna C, Rizza S, Maiani E, Piredda L, Filomeni G, Cecconi F. 2016. To eat, or not to eat: S-nitrosylation signaling in autophagy. *The FEBS Journal* **283**, 3857–3869.

Montes C, Wang P, Liao C-Y, et al. 2022. Integration of multi-omics data reveals interplay between brassinosteroid and target of rapamycin complex signaling in *Arabidopsis*. *The New Phytologist* **236**, 893–910.

Mugume Y, Kazibwe Z, Bassham DC. 2020. Target of rapamycin in control of autophagy: puppet master and signal integrator. *International Journal of Molecular Sciences* **21**, 8259.

Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH. 2009. H2S signals through protein S-sulphydrylation. *Science Signaling* **2**, 72.

Nakamura S, Haghara S, Otomo K, Ishida H, Hidema J, Nemoto T, Izumi M. 2021. Autophagy contributes to the quality control of leaf mitochondria. *Plant & Cell Physiology* **62**, 229–247.

Naumann C, Müller J, Sakhonwasee S, Wieghaus A, Hause G, Heisters M, Bürstenbinder K, Abel S. 2019. The local phosphate deficiency response activates endoplasmic reticulum stress-dependent autophagy. *Plant Physiology* **179**, 460–476.

Nazio F, Strappazzon F, Antonioli M, et al. 2013. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. *Nature Cell Biology* **15**, 406–416.

Noda T, Ohsumi Y. 1998. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. *Journal of Biological Chemistry* **273**, 3963–3966.

Nolan TM, Brennan B, Yang M, Chen J, Zhang M, Li Z, Wang X, Bassham DC, Walley J, Yin Y. 2017. Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. *Developmental Cell* **41**, 33–46.

Nukarinen E, Nägele T, Pedrotti L, et al. 2016. Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. *Scientific Reports* **6**, 31697.

Oh M-H, Wang X, Kota U, Goshe MB, Clouse SD, Huber SC. 2009. Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in *Arabidopsis*. *Proceedings of the National Academy of Sciences* **106**, 658–663.

Onouchi H, Igeño MI, Périlleux C, Graves K, Coupland G. 2000. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among *Arabidopsis* flowering-time genes. *The Plant Cell* **12**, 885–900.

Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G. 2012. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. *Plant Cell Reports* **31**, 349–360.

Patel S, Dinesh-Kumar SP. 2008. *Arabidopsis* ATG6 is required to limit the pathogen-associated cell death response. *Autophagy* **4**, 20–27.

Pu Y, Luo X, Bassham DC. 2017a. TOR-dependent and -independent pathways regulate autophagy in *Arabidopsis thaliana*. *Frontiers in Plant Science* **8**, 1204.

Pu Y, Soto-Burgos J, Bassham DC. 2017b. Regulation of autophagy through SnRK1 and TOR signaling pathways. *Plant Signaling & Behavior* **12**, e1395128.

Qi H, Lei X, Wang Y, et al. 2022. 14-3-3 proteins contribute to autophagy by modulating SINAT-mediated degradation of ATG13. *The Plant Cell* **34**, 4857–4876.

Qi H, Li J, Xia F-N, Chen J-Y, Lei X, Han M-Q, Xie L-J, Zhou Q-M, Xiao S. 2020. *Arabidopsis* SINAT proteins control autophagy by mediating ubiquitylation and degradation of ATG13. *The Plant Cell* **32**, 263–284.

Qi H, Xia F-N, Xie L-J, et al. 2017. TRAF family proteins regulate autophagy dynamics by modulating AUTOPHAGY PROTEIN6 stability in *Arabidopsis*. *The Plant Cell* **29**, 890–911.

Robaglia C, Thomas M, Meyer C. 2012. Sensing nutrient and energy status by SnRK1 and TOR kinases. *Current Opinion in Plant Biology* **15**, 301–307.

Rodriguez M, Parola R, Andreola S, Pereyra C, Martínez-Noél G. 2019. TOR and SnRK1 signaling pathways in plant response to abiotic stresses: do they always act according to the 'yin-yang' model? *Plant Science: An International Journal of Experimental Plant Biology* **288**, 110220.

Rose TL, Bonneau L, Der C, Marty-Mazars D, Marty F. 2006. Starvation-induced expression of autophagy-related genes in *Arabidopsis*. *Biology of the Cell* **98**, 53–67.

Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A, Holton N, Malinovsky FG, Tör M, de Vries S, Zipfel C. 2011. The *Arabidopsis* leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. *The Plant Cell* **23**, 2440–2455.

Salter MG, Franklin KA, Whitelam GC. 2003. Gating of the rapid shade-avoidance response by the circadian clock in plants. *Nature* **426**, 680–683.

Seet BT, Dikic I, Zhou M-M, Pawson T. 2006. Reading protein modifications with interaction domains. *Nature Reviews. Molecular Cell Biology* **7**, 473–483.

Shang Y, Yang D, Ha Y, Lee JY, Kim JY, Oh M-H, Nam KH. 2021. Open stomata 1 exhibits dual serine/threonine and tyrosine kinase activity in regulating abscisic acid signaling. *Journal of Experimental Botany* **72**, 5494–5507.

Shi C-S, Kehrl JH. 2010. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. *Science Signaling* **3**, 42.

Signorelli S, Tarkowski ŁP, Van den Ende W, Bassham DC. 2019. Linking autophagy to abiotic and biotic stress responses. *Trends in Plant Science* **24**, 413–430.

Son O, Kim S, Kim D, Hur Y-S, Kim J, Cheon C-I. 2018. Involvement of TOR signaling motif in the regulation of plant autophagy. *Biochemical and Biophysical Research Communications* **501**, 643–647.

Soto-Burgos J, Bassham DC. 2017. SnRK1 activates autophagy via the TOR signaling pathway in *Arabidopsis thaliana*. *PLoS ONE* **12**, e0182591.

Soto-Burgos J, Zhuang X, Jiang L, Bassham DC. 2018. Dynamics of autophagosome formation. *Plant Physiology* **176**, 219–229.

Su H, Yang F, Wang Q, et al. 2017. VPS34 acetylation controls its lipid kinase activity and the initiation of canonical and non-canonical autophagy. *Molecular Cell* **67**, 907–921.

Suttangkakul A, Li F, Chung T, Vierstra RD. 2011. The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in *Arabidopsis*. *The Plant Cell* **23**, 3761–3779.

Tegeder I. 2019. Nitric oxide mediated redox regulation of protein homeostasis. *Cellular Signalling* **53**, 348–356.

Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD. 2005. Autophagic nutrient recycling in *Arabidopsis* directed by the ATG8 and ATG12 conjugation pathways. *Plant Physiology* **138**, 2097–2110.

Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K. 2013. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in *Arabidopsis thaliana*. *Science Signaling* **6**, rs8.

Van Leene J, Han C, Gadeyne A, et al. 2019. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. *Nature Plants* **5**, 316–327.

Wada S, Hayashida Y, Izumi M, et al. 2015. Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. *Plant Physiology* **168**, 60–73.

Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A. 2009. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. *Plant Physiology* **149**, 885–893.

Wan W, You Z, Xu Y, et al. 2017. mTORC1 Phosphorylates Acetyltransferase p300 to Regulate Autophagy and Lipogenesis. *Molecular Cell* **68**, 323–335.e6.

Wang W, Barnaby JY, Tada Y, Li H, Tör M, Caldelari D, Lee D, Fu X-D, Dong X. 2011. Timing of plant immune responses by a central circadian regulator. *Nature* **470**, 110–114.

Wang Y, Cai S, Yin L, Shi K, Xia X, Zhou Y, Yu J, Zhou J. 2015. Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy. *Autophagy* **11**, 2033–2047.

Wang Y, Cao J-J, Wang K-X, Xia X-J, Shi K, Zhou Y-H, Yu J-Q, Zhou J. 2019. BZR1 mediates brassinosteroid-induced autophagy and nitrogen starvation in tomato. *Plant Physiology* **179**, 671–685.

Wang P, Fang H, Gao R, Liao W. 2021. Protein persulfidation in plants: function and mechanism. *Antioxidants* **10**, 1631.

Wang X, Kota U, He K, Blackburn K, Li J, Goshe MB, Huber SC, Clouse SD. 2008. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. *Developmental Cell* **15**, 220–235.

Wang P, Nolan TM, Yin Y, Bassham DC. 2020. Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis. *Autophagy* **16**, 123–139.

Wang P, Xue L, Batelli G, Lee S, Hou Y-J, Van Oosten MJ, Zhang H, Tao WA, Zhu J-K. 2013. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. *Proceedings of the National Academy of Sciences* **110**, 11205–11210.

Wang Q, Qin Q, Su M, Li N, Zhang J, Liu Y, Yan L, Hou S. 2022. Type one protein phosphatase regulates fixed-carbon starvation-induced autophagy in Arabidopsis. *The Plant Cell* **34**, 4531–4553.

Wang P, Zhao Y, Li Z, et al. 2018. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. *Molecular Cell* **69**, 100–112.

Wei N, Kwok SF, von Arnim AG, Lee A, McNellis TW, Piekos B, Deng XW. 1994. Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness. *The Plant Cell* **6**, 629–643.

Wei Y, Liu W, Hu W, Liu G, Wu C, Liu W, Zeng H, He C, Shi H. 2017. Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt. *Plant Cell Reports* **36**, 1237–1250.

van Wijk KJ, Friso G, Walther D, Schulze WX. 2014. Meta-analysis of *Arabidopsis thaliana* phosphoproteomics data reveals compartmentalization of phosphorylation motifs. *The Plant Cell* **26**, 2367–2389.

Wu W, Li K, Guo S, et al. 2021a. P300/HDAC1 regulates the acetylation/deacetylation and autophagic activities of LC3/Atg8-PE ubiquitin-like system. *Cell Death Discovery* **7**, 128.

Wu W, Luo M, Li K, Dai Y, Yi H, Zhong Y, Cao Y, Tettamanti G, Tian L. 2021b. Cholesterol derivatives induce dephosphorylation of the histone deacetylases Rpd3/HDAC1 to upregulate autophagy. *Autophagy* **17**, 512–528.

Wu D, Wang H, Teng T, Duan S, Ji A, Li Y. 2018. Hydrogen sulfide and autophagy: a double edged sword. *Pharmacological Research* **131**, 120–127.

Wu Y-S, Yang C-Y. 2019. Ethylene-mediated signaling confers thermotolerance and regulates transcript levels of heat shock factors in rice seedlings under heat stress. *Botanical Studies* **60**, 23.

Wun C-L, Quan Y, Zhuang X. 2020. Recent advances in membrane shaping for plant autophagosome biogenesis. *Frontiers in Plant Science* **11**, 565.

Xia K, Liu T, Ouyang J, Wang R, Fan T, Zhang M. 2011. Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (*Oryza sativa* L.). *DNA Research* **18**, 363–377.

Xia P, Wang S, Du Y, et al. 2013. WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. *The EMBO Journal* **32**, 2685–2696.

Xie D-L, Huang H-M, Zhou C-Y, Liu C-X, Kanwar MK, Qi Z-Y, Zhou J. 2022. HsfA1a confers pollen thermotolerance through upregulating antioxidant capacity, protein repair, and degradation in *Solanum lycopersicum* L. *Horticulture Research* **9**, 163.

Xiong Y, Contento AL, Bassham DC. 2005. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in *Arabidopsis thaliana*. *The Plant Journal* **42**, 535–546.

Xuan L, Wu H, Li J, Yuan G, Huang Y, Lian C, Wang X, Yang T, Wang C. 2022. Hydrogen sulfide reduces cell death through regulating autophagy during submergence in *Arabidopsis*. *Plant Cell Reports* **41**, 1531–1548.

Yan Y, Wang P, He C, Shi H. 2017. MeWRKY20 and its interacting and activating autophagy-related protein 8 (MeATG8) regulate plant disease resistance in cassava. *Biochemical and Biophysical Research Communications* **494**, 20–26.

Yang C, Shen W, Yang L, et al. 2020. HY5-HDA9 module transcriptionally regulates plant autophagy in response to light-to-dark conversion and nitrogen starvation. *Molecular Plant* **13**, 515–531.

Yang M-K, Zhu X-J, Chen C-M, et al. 2022. The plant circadian clock regulates autophagy rhythm through transcription factor LUX ARRHYTHMO. *Journal of Integrative Plant Biology* **64**, 2135–2149.

Yeesmin AM, Waliullah TM, Kondo A, Kaneko A, Koike N, Ushimaru T. 2016. Orchestrated action of PP2A antagonizes Atg13 phosphorylation and promotes autophagy after the inactivation of TORC1. *PLoS ONE* **11**, e0166636.

Yi C, Ma M, Ran L, et al. 2012. Function and molecular mechanism of acetylation in autophagy regulation. *Science* **336**, 474–477.

Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y. 2004. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. *The Plant Cell* **16**, 2967–2983.

Zhan N, Wang C, Chen L, et al. 2018. S-nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants. *Molecular Cell* **71**, 142–154.

Zhang B, Shao L, Wang J, Zhang Y, Guo X, Peng Y, Cao Y, Lai Z. 2021. Phosphorylation of ATG18a by BAK1 suppresses autophagy and attenuates plant resistance against necrotrophic pathogens. *Autophagy* **17**, 2093–2110.

Zhang D, Wang W, Sun X, et al. 2016a. AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. *Autophagy* **12**, 1447–1459.

Zhang Z, Zhu J-Y, Roh J, Marchive C, Kim S-K, Meyer C, Sun Y, Wang W, Wang Z-Y. 2016b. TOR signaling promotes accumulation of BZR1 to balance growth with carbon availability in *Arabidopsis*. *Current Biology* **26**, 1854–1860.

Zhao X, Li F, Li K. 2021. The 14-3-3 proteins: regulators of plant metabolism and stress responses. *Plant Biology* **23**, 531–539.

Zheng Z, Qamar SA, Chen Z, Mengiste T. 2006. *Arabidopsis* WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. *The Plant Journal* **48**, 592–605.

Zhou J, Wang J, Cheng Y, Chi Y-J, Fan B, Yu J-Q, Chen Z. 2013. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. *PLoS Genetics* **9**, e1003196.

Zhou J, Wang J, Yu J-Q, Chen Z. 2014. Role and regulation of autophagy in heat stress responses of tomato plants. *Frontiers in Plant Science* **5**, 174.

Zhu T, Zou L, Li Y, Yao X, Xu F, Deng X, Zhang D, Lin H. 2018. Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in *Solanum lycopersicum*. *Plant Biotechnology Journal* **16**, 2063–2076.

Zhuang X, Chung KP, Cui Y, Lin W, Gao C, Kang B-H, Jiang L. 2017. ATG9 regulates autophagosome progression from the endoplasmic reticulum in *Arabidopsis*. *Proceedings of the National Academy of Sciences* **114**, E426–E435.

Zhuang X, Wang H, Lam SK, Gao C, Wang X, Cai Y, Jiang L. 2013. A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in *Arabidopsis*. *The Plant Cell* **25**, 4596–4615.

Table 1. Transcription factors and their target genes in autophagy regulation.

Transcription factor	ATG target	Putative roles in autophagy	References
Positive regulators			
ATAF1*	<i>AtATG7</i>	ATG8 lipidation	(Garapati <i>et al.</i> , 2015)
	<i>AtATG9</i>	Lipid source	
	<i>AtATG8a/b/e/h</i>	Autophagosome maturation, cargo recognition	
	<i>AtATG18f</i>	PI3P effector	
BZR1	<i>SiATG2</i>	Membrane expansion	(Wang <i>et al.</i> , 2019; Chi <i>et al.</i> , 2020)
	<i>SiATG6</i>	Vesicle nucleation	
	<i>SINBR1</i>	Autophagy receptor	
ERF5	<i>SiATG8d</i>	Autophagosome maturation, cargo recognition	(Zhu <i>et al.</i> , 2018)
	<i>SiATG18h</i>	PI3P effector	
HSFA1a	<i>SiATG10</i>	ATG12 conjugation	(Wang <i>et al.</i> , 2015)
	<i>SiATG18f</i>	PI3P effector	
TGA9	<i>AtATG1a</i>	Phagophore induction	(Wang <i>et al.</i> , 2020)
	<i>AtATG3</i>	ATG8 lipidation	
	<i>AtATG5</i>	ATG8 lipidation	
	<i>AtATG8a/b/e/f/g</i>	Autophagosome maturation, cargo recognition	
	<i>AtATG13b</i>	Phagophore induction	
	<i>AtATG18a/h</i>	PI3P effector	
WRKY20	<i>MeATG8a</i>	Autophagosome maturation, cargo recognition	(Yan <i>et al.</i> , 2017)
WRKY24	<i>MaATG8f/g</i>	Autophagosome maturation, cargo recognition	(Liu <i>et al.</i> , 2019)
WRKY33*	<i>AtATG18</i>	PI3P effector	(Lai <i>et al.</i> , 2011; Zhou <i>et al.</i> , 2014)
	<i>SiATG5</i>	ATG8 lipidation	
	<i>SiATG7</i>	ATG8 lipidation	
	<i>SINBR1</i>	Autophagy receptor	
Negative regulators			
HY5	<i>AtATG5</i>	ATG8 lipidation	(Yang <i>et al.</i> , 2020)
	<i>AtATG8e</i>	Autophagosome maturation, cargo recognition	
LUX	<i>AtATG2</i>	Membrane expansion	(Yang <i>et al.</i> , 2022)
	<i>AtATG8a</i>	Autophagosome maturation, cargo recognition	
	<i>AtATG11</i>	Phagophore induction	
SOC1	<i>AtATG4b</i>	ATG8 maturation	(Li <i>et al.</i> , 2022b)

	<i>AtATG7</i>	ATG8 lipidation	
	<i>AtATG18c</i>	PI3P effector	
TOC1	<i>AtATG1a</i>	Phagophore induction	(Chen <i>et al.</i> , 2022)
	<i>AtATG2</i>	Membrane expansion	
	<i>AtATG8d</i>	Autophagosome maturation, cargo recognition	
WRKY53	<i>AtATG9</i>	Lipid source	(Chen <i>et al.</i> , 2016)

*Not experimentally confirmed to directly regulate ATG genes.

Figure Legends

Fig. 1. Post-translational modifications (PTMs) of core ATG proteins in plants. During autophagy, the core ATG proteins form distinct functional groups which can be divided into the ATG1/ATG13 kinase complex, PI3K complex, ATG2-ATG18-ATG9 complex, and the ATG conjugation machinery. Post-translational modifications such as phosphorylation, persulfidation, ubiquitination and lipidation occur in the early steps of autophagy and dictate the function, dynamics and stability of these proteins. Stress triggers the ATG1/ATG13 kinase complex to initiate phagophore formation. The PI3K complex decorates the phagophore with PI3P to facilitate vesicle nucleation while the ATG2-ATG9-ATG18 complex provides lipids and membranes to promote phagophore expansion. The ATG8 and ATG12 conjugation systems together facilitate ATG8 lipidation to promote autophagosome maturation. The completed autophagosome fuses with the vacuole to deposit the cargo for degradation and recycling. 'P' refers to phosphorylation known to be regulated by the indicated upstream kinase whereas 'Ph' refers to phosphorylation validated through phosphoproteomics by (Mergner *et al.*, 2020; Montes *et al.*, 2022).

Fig. 2. Regulatory pathways that modulate plant autophagy in response to stress conditions. Autophagy is induced by different stress conditions via TORC-dependent (red arrow) and TORC-independent pathways (black arrow). Nutrient starvation, salt and osmotic stress activate SnRK1, which inhibits TORC expression and activity. TORC can suppress autophagy through the inhibition of the ATG1/ATG13 complex (red arrow). SnRK1 can directly phosphorylate and activate the ATG1/ATG13 complex, leading to autophagy induction. Upon long-term carbon starvation, SnRK1 phosphorylates ATG6 to activate autophagy, which is independent of TORC (black arrow). ER stress and oxidative stress activate autophagy through SnRK1-mediated phosphorylation of ATG1, independent of TORC repression (black arrow). ER stress-induced autophagy is also regulated by INOSITOL REQUIRING 1A/B (IRE1A/B), but its relationship with SnRK1 is unknown (black dashed arrow). Phosphate deficiency activates autophagy through the ER stress-mediated pathway (green arrow). TAP46 (a regulatory subunit of PP2A) is phosphorylated by TORC, acts as a downstream effector of TOR signaling, and negatively regulates autophagy (beige arrow). All the stress-induced autophagy pathways require SnRK1 activity. Upon osmotic stress, ABA-activated SnRK2 phosphorylates RAPTOR and inhibits TORC activity. In the absence of stress, TORC phosphorylates the PYL ABA receptors (blue arrow). Whether or not SnRK2 kinase and PP2C protein phosphatase are involved in autophagy regulation through TORC inhibition is still unknown (blue dashed arrow).

Fig. 3. Model of the role of transcriptional regulators of plant autophagy. (A) Under nutrient-rich conditions, HY5 and SOC1 translocate to the nucleus where they repress ATG expression to maintain autophagy at a low basal level. (B) Under nutrient starvation, HY5 and SOC1 protein abundance are reduced, which negatively regulates their transcriptional activities. In *Arabidopsis*, positive regulators such as TGA9 and ATAF1 upregulate several ATG genes to promote autophagy and enhance starvation tolerance. Negative regulators such as LUX and TOC1 downregulate ATG expression to fine-tune the level of autophagy and prevent autophagy-induced cell death. In tomato plants, BR induces the translocation of BZR1 into the nucleus where it activates ATG expression in response to starvation. (C) WRKY transcription factors positively regulate ATG expression to facilitate autophagy-mediated resistance to pathogen infection in various plant species. (D) To promote leaf senescence, WRKY53, in complex with PWR and HDA9, represses ATG9 expression. (E) Several transcription factors positively regulate ATG expression in response to different abiotic stresses such as heat (WRKY33, HSFA1a), drought (HSFA1a, ERF5), cold (BZR1) and osmotic stress (TGA9). Solid lines indicate direct transcriptional

regulation with experimental evidence. Dashed lines indicate direct transcriptional regulation requiring experimental validation. BR, brassinosteroid; ETH, ethylene; *Foc*, *Fusarium oxysporum f. sp. cubense*; *Xam*, *Xanthomonas axonopodis* pv. *Manihotis*.

Fig. 4. Proposed model of potential connections between transcriptional and post-translational regulation of autophagy. (A) Under optimal growth conditions, the activity of positive regulators of autophagy (e.g. ATAF1, SnRK1) is inhibited while negative regulators are activated. Negative upstream regulators, such as TORC, can control ATG protein abundance by suppressing the transcriptional activation of ATG expression through post-translational modifications of transcriptional regulators. In addition, these negative upstream regulators may inhibit the stability and function of ATG proteins in the cytosol and thereby keep autophagy at a low basal level. (B) In stress conditions, the activity of negative regulators (e.g. SOC1, HY5, TORC, SINAT1/2) is inhibited while positive regulators (e.g. TGA9, HSFA1a, SnRK1) are activated. Positive upstream regulators (e.g. SnRK1) can enhance ATG protein abundance by promoting the transcriptional activation of ATG expression. Upstream regulators can also promote the stability and function of ATG proteins in the cytosol leading to increased autophagy activity. Black lines with arrow heads indicate activation while black lines with bars indicate repression. Solid black lines indicate activation or repression with experimental evidence whereas dashed black lines indicate lack of experimental evidence. Red arrows pointing down indicate decreased autophagy while red arrows pointing up indicate increased autophagy.