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pathways in culturable marine isolates
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ABSTRACT Polycyclic aromatic hydrocarbons (PAHs) are common toxic and carcino-
genic pollutants in marine ecosystems. Despite their prevalence in these habitats,
relatively little is known about the natural microflora and biochemical pathways that
contribute to their degradation. Approaches to investigate marine microbial PAH
degraders often heavily rely on genetic biomarkers, which requires prior knowledge
of specific degradative enzymes and genes encoding them. As such, these biomarker-
reliant approaches cannot efficiently identify novel degradation pathways or degraders.
Here, we screen 18 marine bacterial strains representing the Pseudomonadota, Bacillota,
and Bacteroidota phyla for degradation of two model PAHs, pyrene (high molecular
weight) and phenanthrene (low molecular weight). Using a qualitative PAH plate
screening assay, we determined that 16 of 18 strains show some ability to degrade either
or both compounds. Degradative ability was subsequently confirmed with a quantitative
high-performance liquid chromatography approach, where an additional strain showed
some degradation in liquid culture. Several members of the prominent marine Roseobac-
teraceae family degraded pyrene and phenanthrene with varying efficiency (1.2%-29.6%
and 5.2%-52.2%, respectively) over 26 days. Described PAH genetic biomarkers were
absent in all PAH degrading strains for which genome sequences are available, sug-
gesting that these strains harbor novel transformation pathways. These results demon-
strate the utility of culture-based approaches in expanding the knowledge landscape
concerning PAH degradation in marine systems.

IMPORTANCE Polycyclic aromatic hydrocarbon (PAH) pollution is widespread through-
out marine environments and significantly affects native flora and fauna. Investigating
microbes responsible for degrading PAHs in these environments provides a greater
understanding of natural attenuation in these systems. In addition, the use of culture-
based approaches to inform bioinformatic and omics-based approaches is useful in
identifying novel mechanisms of PAH degradation that elude genetic biomarker-based
investigations. Furthermore, culture-based approaches allow for the study of PAH
co-metabolism, which increasingly appears to be a prominent mechanism for PAH
degradation in marine microbes.

KEYWORDS co-metabolism, marine bacteria, Roseobacteraceae, PAH degradation,
bioremediation

P olycyclic aromatic hydrocarbons (PAHs) are pollutants generated from incomplete
combustion of organic compounds, such as wood, coal, petroleum oil, and
municipal solid waste, that are ubiquitously found in atmospheric, terrestrial, and aquatic
environments (1, 2). PAHs are composed of fused aromatic rings and are classified
based on their molecular weight: low (<4 rings; LMW) and high (>4 rings; HMW).
These compounds are toxic and carcinogenic, presenting a hazard to both human
and environmental health (2). The removal of these compounds from the environment
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is difficult due to their stability, hydrophobicity, and low bioavailability (2). Due to their
recalcitrance and hazardous nature, the U.S. Environmental Protection Agency has
designated 16 PAHs as priority pollutants (3). HMW PAHs are of particular concern as
the recalcitrance of these chemicals increases with the number of aromatic rings (4).
While chemical and physical methods have been designed to remove PAHs from the
environment, many of these methods have low efficiency and high costs relative to
biological removal methods, including microbial degradation (4).

Marine ecosystems are frequently the final destinations for PAHs through terrestrial
run-off, atmospheric deposition, industrial discharge, and oil spills (2, 5, 6). Despite the
abundance of PAHs in marine ecosystems, relatively few marine bacteria have been
investigated for PAH biodegradation pathways. In contrast, significant research has been
conducted with soil and freshwater PAH degrading bacteria, including Mycobacterium
spp., Pseudomonas spp., and Sphingomonas spp. (7). While, in principle, these bacteria
can be applied to marine environments for bioaugmentation, such approaches have
challenges, most notably bacterial survival and the ability to degrade a compound in
non-native environments (8). Additionally, halophilic and halotolerant marine bacteria
may be useful in remediation of high-salinity waste effluents that commonly contain
PAH contaminants, such as industrial wastewater (9, 10). To effectively remediate marine
environments and high-salinity wastes, marine bacteria isolated from ecosystems of
interest should be investigated for their ability to degrade PAHs.

Bacteria are capable of transforming PAHs in various ways. The marine sediment
bacterium Mycobacterium vanbaalenii PYR-1 was one of the first strains demonstrated
to utilize pyrene, a HMW PAH, as a sole carbon source. The enzymes required for
the complete mineralization of several PAHs have been characterized in this strain (11-
13). Most other characterized PAH degraders employ similar enzymatic reactions to
those identified in M. vanbaalenii PYR-1. Accordingly, the M. vanbaalenii PYR-1 path-
way and highly homologous pathways form the basis for identification of PAH degra-
dation capabilities in both isolated strains and in culture-independent gene surveys.
In general, complete PAH catabolism is initiated by hydroxylation of an aromatic ring
(via a dioxygenase or monooxygenase), followed by subsequent re-aromatization and
ring cleavage reactions, resulting in monocyclic intermediates that are funneled to
central metabolism (i.e., tricarboxylic acid cycle). Not all PAH degraders are capable
of complete mineralization, instead, transforming these compounds into less toxic
intermediates through hydroxylation and addition of methoxy groups (12). Metabol-
ically, these intermediates are dead-end products, and further degradation is generally
prevented due to the methylation of hydroxyl groups (1). Finally, co-metabolism of PAHs
is increasingly observed in diverse bacteria. This phenomenon usually occurs with LMW
and HMW PAH mixtures, where the presence of more labile LMW PAH increases the rate
or efficiency of HMW PAH degradation (4, 14, 15). While some evidence exists that other
labile carbon sources (e.g., starch and yeast extract) can be used for co-metabolism of
PAHs, less information is available about the mechanism of co-metabolism and which
compounds effectively induce co-metabolism (16, 17).

Several genetic biomarkers for PAH degradation have been established. First, is the
initial ring-hydroxylating dioxygenase (RHD), which catalyzes the initial rate-limiting step
for PAH degradation: hydroxylation of an aromatic ring. These enzymes (e.g., PahA and
NidA) have been reported to be substrate specific but may be able to hydroxylate
several different ring structures (13, 18). Specifically, the alpha subunit of this enzyme
is responsible for substrate specificity and is used as a biomarker for PAH degradation.
Second, the PAH hydratase-aldolase (pahE) has been shown to be the most specific and
conserved biomarker within conventional PAH degradation pathways. This is the first
step from which an organism may gain energy from the breakdown of PAHs through
liberation of substrates feeding into the TCA cycle (19). Third, the final ring-cleaving
reaction acts on the monocyclic aromatic derivatives to produce TCA cycle intermedi-
ates, supporting growth. Generally, PAHs are converted into monoaromatic central
intermediates, protocatechuate or catechol, and funneled through their respective
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catabolic pathways (20). Each of these three steps provides a necessary reaction for
complete PAH mineralization in conventional degradation pathways.

A variety of culture-independent approaches are used to probe for PAH degraders in
marine environments, including PCR amplification of biomarker genes (most often PAH
RHD), 16S rRNA gene libraries of PAH enrichments, and biomarker homology and identity
searches in metagenomes and genomes (21-23). These approaches have broadened the
view of PAH degradation in marine habitats by increasing the number of predicted PAH
degraders, identifying phylogenetic distribution of genetic biomarkers, and discovering
diverse genetic organization of pathways (19, 24, 25). For example, a recent study
demonstrated the utility and specificity of pahE as a genetic biomarker and used an
amplicon-based library to recover sequences that led to the prediction of PAH degrada-
tive abilities for several previously unreported taxa (e.g., Nevskia ramosa DSM 11499 and
Rhodovulum sp. N122) (19). While these culture-independent approaches have increased
our knowledge of the genetic diversity and distribution of putative PAH degraders, these
efforts frequently fail to: (i) link functionality to specific organisms and (ii) identify novel
pathways for PAH degradation. Additionally, the focus on only those isolates capable of
using PAHs (single or mixed) as a sole carbon source limits our understanding of strains
that may play critical roles in co-metabolic transformation of PAHs in the environment.

To aid in expanding the landscape of known marine PAH degraders and pathways,
we screened 18 diverse marine bacterial isolates for the ability to degrade pyrene
and/or phenanthrene. After our initial screen, we focused our efforts on members of
the marine Roseobacteraceae family as prior studies have indicated that representatives
(e.g., Roseovarius species, Ruegeria pomeroyi DSS-3, and Celeribacter indicus P73) of this
abundant and active group of bacteria are able to degrade both LMW and HMW PAHs,
including pyrene, phenanthrene, and fluoranthene (17, 24, 26). From this work, we
hypothesize that some marine bacteria: (i) harbor novel pathways for PAH degradation
and (i) may likely not degrade PAHs as a sole carbon source, explaining the limited
marine bacterial PAH degraders and pathways identified via omics-based approaches
and culture-based approaches that investigate sole metabolism of PAHs.

RESULTS
PAH degradative abilities identified in diverse marine bacteria

An initial panel of 12 marine bacteria representing three phyla (Pseudomonadota,
Bacillota, and Bacteroidota) abundant in marine ecosystems was subjected to a
qualitative PAH degradation assay using pyrene and phenanthrene top agar plates
(Marinobacterium georgiense DSM 11526, Bacillus-Clostridium strain SE165, Bacillus-Clos-
tridium strain SE98, Alteromonas macleodii EZ55, Vibrio natriegens ATCC 14048, Rhodospir-
illaceae strain EZ35, Flavobacteriaceae strain EZ40, Alcanivorax sp. strain EZ46, Ruegeria
pomeroyi DSS-3, Citreicella sp. SE45, and Sagittula stellata E-37). R. pomeroyi DSS-3 has
previously been shown to degrade PAHs, thus this screening confirmed its degradative
ability (17). Except for Alcanivorax sp. strain EZ46 and M. georgiense DSM 11526, all
tested strains showed clearing zones, indicative of degradation, on both pyrene and/or
phenanthrene top agar plates containing complex medium after 7 days (Table 1). In
contrast, no convincing indication of degradation was evident for strains on the PAH top
agar plates containing minimal medium, suggesting that these strains could not utilize
PAHs as sole carbon sources (Table 1; Fig. S1). Citreicella sp. SE45 did show clearing zones
on the PAH top agar plates with minimal medium; however, this was attributed to the
strain’s ability to use the acetone solvent as a carbon source (data not shown).

Following the initial screen, efforts were focused on members of the marine
Roseobacteraceae family, an abundant and active group of heterotrophic bacteria with
known abilities to degrade lignin-derived aromatic compounds (27) (Fig. S2). Three PAH
degradation positive strains from the initial screen are family members (R. pomeroyi
DSS-3, Citreicella sp. SE45, and S. stellata E-37). Several additional Roseobacteraceae were
subsequently screened (Sulfitobacter sp. EE-36, Sulfitobacter sp. NAS-14.1, Ruegeria sp.
TM1040, Roseovarius sp. 217, Roseovarius nubinhibens 1SM, Rhodobacterales strain Y4l,
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TABLE 1 Screening of marine strains using pyrene and phenanthrene top agar plate assay

Bacterial strain Taxonomic phyla/class Complex + Complex + Minimal + pyrene  Minimal +

pyrene phenanthrene phenanthrene

Marinobacterium georgiense DSM 11526 ~ Gammaproteobacteria -t - - -

a

Bacillus-Clostridium strain SE165 Firmicutes + + - -
Bacillus-Clostridium strain SE98 Firmicutes + + - -
Alteromonas macleodii EZ55 Gammaproteobacteria + + - -
Vibrio natriegens ATCC 14048 Gammaproteobacteria + + - -
Rhodospirillaceae strain EZ35 Alphaproteobacteria + + - -
Flavobacteriaceae strain EZ40 Bacteroidetes + +/-° - -
Alcanivorax sp. strain EZ46 Gammaproteobacteria - - - -
Ruegeria pomeroyi DSS-3 Alphaproteobacteria + + - -
Citreicella sp. SE45 Alphaproteobacteria + + + +
Sagittula stellata E-37 Alphaproteobacteria + + - -
Escherichia coli DH5a Gammaproteobacteria - - - -

@+" denotes clearing zones evident by day 7 or 14.
b"—" denotes no clearing zones evident by day 7 or 14.
“+/-" denotes inconclusive clearing zone.

and Sulfitobacter pontiacus CB-D) using the PAH top agar plate assay with complex
medium (Table 2). All showed clearing zones on the pyrene-containing complex medium
plates, and all but one (R. nubinhibens ISM) showed definitive clearing on phenanthrene-
containing complex medium plates. Rhodobacterales strain Y4l produces a blue pigment
that stains the agar, obfuscating any clearing. To assess the PAH degradation of this
organism using the PAH top agar assay, the assay was repeated with an unpigmented
variant (igiD::Tn5) (28). This strain showed clearing zones on both pyrene and phenan-
threne top agar plates with complex medium (Fig. S3).

Quantitative assessment of PAH degradative ability

For all strains, excluding Alcanivorax sp. EZ46, PAH loss was quantified using HPLC (Fig.
1). All results were consistent with the PAH top agar assay, except M. georgiense DSM
11526, which, despite not showing clearing zones on the PAH top agar plates, showed
6% and 16.4% degradation of pyrene and phenanthrene, respectively, in liquid culture.
The extent of pyrene degradation for the marine strains ranged from 6% to 16.1% with
Rhodospirillaceae strain EZ35, Bacillus-Clostridium strain SE165, and Flavobacteriaceae
strain EZ40 showing the highest average pyrene degradation at 14.7%, 14.8%, and
16.1% loss, respectively. Phenanthrene degradation ranged from 0.7% to 24% with M.
georgiense DSM 11526, Alteromonas macleodii EZ55, and Bacillus-Clostridium strain SE165

TABLE 2 Screening of Roseobacteraceae strains using pyrene and phenanthrene top agar plate assay

Roseobacteraceae strains Complex + pyrene Complex + phenanthrene
Ruegeria sp. TM1040
Ruegeria pomeroyi DSS-3
Sulfitobacter sp. EE-36
Sulfitobacter sp. NAS-14.1
Sulfitobacter sp. CB-D
Roseovarius nubinhibens ISM

Q
+ o+ 4+ o+ o+

+
~
|f\

Roseovarius sp. 217

Rhodobacterales strain Y4l (igiD:Tn5)
Citreicella sp. SE45

Sagittula stellata E-37

Escherichia coli DH5a

+ 4+ o+ + o+ o+ A+ A+ A+ o+
+ 4+ 4+ 4+

=3

@+" denotes clearing zones evident by day 7.
b"—" denotes no clearing zone evident by day 7.
“+/-" denotes inconclusive clearing zone.
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FIG 1 Degradation of (A) pyrene and (B) phenanthrene by marine strains after 26 days. Percent degradation is relative to TO culture and accounts for deviation

from uninoculated controls. Standard error was calculated from three replicate cultures. Strain designations are indicated on x-axis.

having the highest average phenanthrene degradation at 16.4%, 16.6%, and 24% loss,
respectively. While Flavobacteriaceae strain EZ40 showed the greatest degradation of
pyrene, it exhibited the lowest for phenanthrene in agreement with the PAH top agar
assay. Only three strains, Bacillus-Clostridium strain SE165, M. georgiense DSM 11526, and
Alteromonas macleodii EZ55, showed greater degradation of phenanthrene relative to
pyrene.

For Roseobacteraceae strains, pyrene degradation ranged from 1.2% to 29.6% (Fig.
2). R. pomeroyi DSS-3, S. stellata E-37, and Citreicella sp. SE45 had the highest pyrene
degradation at 23.8%, 24.6%, and 29.6%, respectively. Most of the Roseobacteraceae
strains showed greater degradation of phenanthrene degradation relative to pyrene
ranging from 52% to 52.2%. Notably, Ruegeria sp. TM1040 showed the greatest
difference from 12.4% loss of pyrene to 52.2% loss of phenanthrene. Citreicella sp.
SE45, Sulfitobacter sp. EE-36, and Ruegeria sp. TM1040 had the highest phenanthrene
degradation averaging 33.1%, 34.4%, and 52.2%, respectively. The Roseobacteraceae
strains also appeared to have a greater range of degradative abilities for both pyrene and
phenanthrene relative to other marine strains.

PAH degradation protein identity in marine strains

An analysis of putative PAH degradation pathways and genes was conducted for strains
with available genome sequences: M. georgiense DSM 11526, A. macleodii EZ55, V.
natriegens ATCC 14048, R. pomeroyi DSS-3, Citreicella sp. SE45, S. stellata E-37, Sulfitobacter
sp. EE-36, Sulfitobacter sp. NAS-14.1, Sulfitobacter sp. CB-D, Roseovarius sp. 217, Ruegeria
sp. TM1040, Roseovarius nubinhibens ISM, and Rhodobacterales strain Y4l. E. coli DH5q,

A B
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FIG 2 Degradation of (A) pyrene and (B) phenanthrene by Roseobacteraceae strains after 26 days of incubation. Percent degradation is relative to TO culture and
accounts for deviation from uninoculated controls. Standard error was calculated from three replicate cultures. Strain designations are indicated on x-axis.
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a non-PAH degrader was included for reference (Fig. 3). The analysis was focused on
conserved reactions common to most characterized PAH degradation pathways: (i)
initial PAH ring-hydroxylation via RHD; (ii) TCA substrate liberation via PAH hydratase-
aldolase; (i) monocyclic aromatic hydrocarbon catabolism via RHD (11, 12, 29). Protein
sequence alignment searches were conducted with representative protein sequences
using BLASTP and results returning an E-value below 1E™® were further considered
(Tables S2 and S3; Fig. 3). NidA (Gram + PAH/Phthalate RHD), PobA (Group | RHD), AntA
(Group Il RHD), PahAc (Group Il RHD), BphA1 (Group IV RHD), and NagG (Salicylate
RHD) were chosen to represent the known diversity of aromatic ring-hydroxylating
dioxygenases involved in the first conserved reaction (30). PahE protein sequences
from Novosphingobium pentaromativorans US6-1 (PahE-NP), Rhodococcus opacus B4
(PahE-RO), Mycobacterium vanbaalenii PYR-1 (PahE-MV), and Pseudomonas aeruginosa
PaK1 (PahE-PA) were chosen as representatives of PAH hydratase-aldolase diversity (the
second conserved reaction). Four different monocyclic aromatic dioxygenases were
chosen, two from pathways that degrade protocatechuate (PcaH and PcaA/LigB) and
two from pathways that degrade catechol (CatA and CatE/YfiE).

All strains appeared to be missing proteins involved in PAH-specific degradation
(Fig. 3). Most strains encode putative protein sequences with an E-value below 1E7"°
for non-PAH specific RHD groups, with identities ranging from 22% to 36% for Group
| (PobA), 22% to 47% for Group Il (AntA), and 24% to 47% for Group IV (BphA1). The
Salicylate Group RHD, NagX, had no strong protein hits. For NidA (Gram + PAH/Phtha-
late RHD) and PahAc (Group Ill RHD), E. coli DH5a had a higher identity than almost
all protein hits for both of these query sequences, with 36% (E-value 1E™') and 37%
(E-value 2E7%) identity, respectively. The two exceptions are V. natriegens ATCC 14048
with 37% identity (E-value 1E7%) to NidA and M. georgiense DSM 11526 with 37% (E-value

Vibrio natriegens ATCC 14048 - Z- 0 4 4 4 2 2 1

0 2 0
Sulfitobacter sp. NAS-14.1- 0 0 1 0 0 0 0 1 1 1 0 0 1
Sulfitobacter sp. EE-36- 0 0 1 0 0 0 0 1 1 1 0 0 1
Sulfitobacter pontiacus sp. CB-D - . 1 1 0 1 1 1 1 1 1 0 0 1
Sagittula stellata E-37 -| 2 2 2 2 2 2 1 1 1 1 0 2
Ruegeria sp. TM1040-| 2 2 1 0 2 1 2 1 1 1 0 0 0
Ruegeria pomeroyi DSS-3 -| 5 5 0 5 5] 5 2 €] 1 0 0 1
Roseovarius sp. 217 - 2 1 2 2 2 8] €] 2 0 0 0
Roseovarius nubinhibens ISM - | 6 6 0 0 6 6 6 2 4 2 0 0 0
Rhodobacterales strain Y41 -| 2 2 2 . 2 2 2 1 1 1 1 0 0
Marinobacterium georgiense DSM11526 - 5 0 0 5 5 5 1 1 1 0 0 3
Escherichia coli DH5a - | 2 0 0 2 2 2 3 0 0 0 0 0 0
Citreicella sp. SE45-| 2 2 0 0 2 2 2 2 1 1 1 0 . 2
Alteromonas macleodii EZ55 - 1 0 0 1 1 1 2 1 2 1 0 0 0
£33 ¥gos ¢z E 28 F %
<& c° g 22 5 oLddoug o &

8 g & & & 8
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FIG 3 Summary of PAH protein BLASTP protein identity searches. Boxes are color-coded based on the highest percent identity of the protein hits from each

strain. The numbers in the boxes indicate protein hits for each query sequence below an E-value of 1E7'°. White boxes with a “0” indicate no hits with an E-value

below 1E7'. Protein query sequences are named either as the protein abbreviation or as the protein abbreviation with the first letter of the genus and species

from which the query sequence originated, as indicated in the text. Detailed results from the protein identity searches are in Table S2.
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1E7%) identity for PahAc (Table S3). None of the strains appear to encode a putative
PahE protein, most showing <30% sequence identity. For all strains, PahE-MV identities
were <31% (E-value <5E™%), PahE-NP identities were <40% (E-value <2E™%), PahE-PA
identities were <33% (E-value <1E™"), and PahE-RO identities were <27% (E-value <3E7'?).
Interestingly, only R. nubinhibens ISM had any PahE identity greater than 35%, at 40%
for PahE (E-value 5E7'°). Most of the putative PahE results were annotated as dihydropi-
colinate synthases or related enzymes, which are commonly found in microorganisms
where they are expected to play a role in lysine biosynthesis (31). The PcaA/LigB, PcaH,
CatE/YfiE, and CatA proteins are involved in the lower pathway of PAH degradation, steps
that occur after monocyclic aromatic compounds are formed. Roseobacteraceae strains
encode similar proteins to PcaH (<59% identity) (32). Other than the Roseobacteraceae
strains, only V. natriegens ATCC 14048 encoded proteins with similarity to PcaH (35%;
E-value >1E'®). No Roseobacteraceae strains had any similar proteins for PcaA/LigB,
whereas V. natriegens ATCC 14048, E. coli DH5a, and M. georgiense DSM 11526 all showed
proteins with >30% identity to PcaA/LigB. Thus, of the strains with genomes analyzed,
only A. macleodii EZ55 appears to be missing enzymes involved in protocatechuate
degradation. Of the catechol dioxygenases, Rhodobacterales strain Y4l, Roseovarius sp.
217, and S. stellata E-37 had protein hits for both investigated dioxygenases (CatA and
CatE/YfiE) with <31% and <49% identities, respectively. Out of the non-Roseobacteraceae
strains, only V. natriegens ATCC 14048 had a protein hit for CatA. While no strains
showed >40% identity to proteins specific to upper PAH degradation pathway proteins
(i.e., PahE, NidA, and PahAc), proteins involved in lower PAH degradation pathways
strains had much higher protein identities.

Roseobacteraceae PahE biomarker homology

To further explore the Roseobacteraceae family and their potential PAH degradation
ability, over 750 Roseobacteraceae genomes were searched for PahE proteins. Only seven
genomes had >50% identity (E-value <2E7'*) to the PahE from Pseudomonas aeruginosa
PaK1 (UniProt ACN POA142) (Fig. 4). Of the Roseobacteraceae collection analyzed, all
possessed at least one similar protein but at low identity (<31%). Clear phylogenetic
differences appear between these two groups of bacteria. Roseobacteraceae strains with
over 50% identity to PahE had several bacteria previously reported to degrade PAHs
(Fig. 4) (26, 33-36). Additionally, putative PahE homologs of Roseobacteraceae strains
screened in this study were investigated for the presence of conserved residues that
would support the activity of these enzymes in PAH degradation. This analysis revealed
that the putative PahE homologs are missing several active site residues although some
strains possess the catalytic residue (Fig. S4).

DISCUSSION

To expand the knowledge of bacterial PAH degradation in marine systems, 18 strains
representing diverse bacterial taxa were screened for their ability to transform phenan-
threne (LMW PAH) and pyrene (HMW PAH). From an initial collection of 12 strains,
three Roseobacteraceae strains demonstrated the highest degradation of PAHs (~20%
degradation by 26 days relative to <20% for the remaining taxa) in a quantitative assay.
As such, additional family members were included in subsequent quantitative analyses.
Despite the fact that none of the strains assayed here were derived from PAH enrich-
ments nor from contaminated sites, all but one (Alcanivorax sp. strain EZ46) showed
evidence of pyrene and/or phenanthrene transformation was under the cultivation
conditions used. Roseobacteraceae family members are well known for their ability to
degrade lignin-derived monocyclic aromatic compounds, and recent evidence suggests
that some strains can transform PAHs (17, 21, 22, 35). For example, R. pomeroyi DSS-3
has been previously reported to degrade phenanthrene, pyrene, and benzo[alpyrene
in complex media containing additional carbon sources (tryptone and yeast extract)
(17). Similarly, Flavobacteriaceae and marine Alteromonas strains have been strongly
implicated in PAH as well as oil degradation due to the appearance of strains in
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FIG 4 Maximum likelihood phylogenetic tree of select Roseobacteraceae to PahE homologs. Red squares indicate prior reports of PAH degradation for a given

strain (17, 19, 26, 35). Blue triangles indicate strains for which PAH degradation ability was demonstrated in this study. Protein accession numbers are provided

in parentheses. Bootstrap values (1,000 iterations) are shown at branch nodes with circle size corresponding to the value as indicated in the key. The scale bar

represents the number of substitutions per site. P. aeruginosa PaK1 was used and included as the original query sequence that identified the putative PahE

proteins.

enrichment cultures (5, 37, 38). Consistent with prior reports of numerous Bacillus
species, the two Bacillus-Clostridium strains examined in this study were able to degrade
pyrene and phenanthrene (39, 40). In contrast, reports of PAH degradation by other
Gammaproteobacterial genera (Vibrio, Rhodospirillaceae, and Marinobacterium) included
in the collection screened here are scant. A Vibrio cyclotrophicus strain has been shown to
degrade LMW PAHs but not use them as a growth substrate (41). Rhodospirillaceae strains
have been identified in PAH enrichment experiments, but little specific information exists
regarding their ability to transform PAHs (42, 43). Marinobacterium georgiense isolate
(IAM 1419T) was found in a PAH-enriched microbial consortium, but no confirmation of
its degradation has been reported (42). Finally, Alcanivorax species are known degraders
of n-alkanes from oil hydrocarbons, but little evidence exists regarding their ability to
degrade PAHs, aligning with the findings of this study (44, 45). Marine bacteria are
recognized to possess high metabolic and physiological diversity among closely related
strains, thus variation in PAH degradation abilities is unsurprising (46-48). However, it
does highlight the necessity of documenting PAH degradation ability of marine isolates,
even within closely related strains, if we are to improve our understanding of the ecology
and evolution of these degraders.

While none of the strains were able to utilize PAHs as a sole carbon source, nearly
all strains showed PAH degradation when also provided labile carbon substrates in the
complex medium (yeast extract and tryptone), suggestive of co-metabolism of pyrene
and phenanthrene among this cohort of marine bacteria. Co-metabolism, the synergistic
degradation of two carbon sources, is a common feature among PAH degraders, with
most studies reporting the synergistic breakdown of HMW PAHs and LMW PAHs (49,
50). Co-metabolism of PAHs with non-aromatic, labile carbon sources is recognized, but
often not considered in PAH degradation studies (16, 51). This study emphasizes the
need to assess both sole-metabolism and co-metabolism of PAHs to identify contributing
degraders in natural environments. In addition to the carbon source provided, growth
mode appears to also influence degradative abilities in some strains. For example, M.
georgiense DSM 11526 showed degradation only in liquid culture and not with PAH
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overlay plates. Exploring co-metabolic growth substrates as well as growth conditions
will provide further evidence for the role of marine microbes in natural attenuation of
PAHs.

While a plethora of strains have been found to degrade LMW PAHs, fewer degraders
have been discovered that transform HMW PAHs, presumably due to their decreased
bioavailability and increased stability. All but one strain analyzed, here, showed some
ability to degrade both a HMW PAH and a LMW PAH, with many strains demonstrating
greater degradation of LMW PAHs. While these compounds are generally degraded by
substrate-specific RHDs, flexibility in these enzymes is evident with some acting on both
LMW and HMW PAHs (13, 18). The available genomes analyzed revealed that strains
encoded genes with low identity to PAH-specific RHDs, suggesting that non-PAH-specific
RHDs act on these compounds. This is consistent with evidence that some marine
bacteria use various RHDs, with broad substrate ranges, to degrade PAHs (26, 52). We
suggest enzymes involved in the degradation of other aromatic compounds may act on
PAHs, as has been demonstrated for the Roseobacteraceae member, Celeribacter indicus
P73 (26). All Roseobacteraceae members possessed proteins with high protein identity
to PcaH, a marker for protocatechuate degradation (32). Additionally, of the remaining
strains, both M. georgiense and V. natriegens are predicted to encode enzymes that
may be required for lower pathways of PAH degradation. It is important to recognize,
however, that enzymes involved in the lower pathway of PAH degradation lack the
specificity to solely be used as PAH degradation biomarkers due to the plethora of
compounds that are funneled through these pathways (53). It is also relevant to highlight
that high protein identity to specific RHDs does not necessarily indicate an ability to
degrade PAHs. For example, E. coli DH5a had higher protein identities to NidA and PahAc
than most strains tested in this study, yet this strain showed no evidence of degradation
in the assays. Collectively, these findings indicate that strains may use different enzymes
than those present in conventional PAH degradation pathways. Finally, further studies
are needed to assess whether any strains utilize PAH-derived carbon for biosynthetic or
energetic purposes.

PahE has been recently implicated as a biomarker due to its specificity for PAH
degradation and its conservation across taxonomically diverse organisms but could not
reliably indicate PAH degradation ability with strains in this study (19, 50, 54). To consider
the utility of this gene as an indicator for PAH degradation, a broader analysis of 750
Roseobacteraceae genomes showed low sequence identity and an absence of conserved
residues to validate PahE proteins. This approach was also unable to identify many
known Roseobacteraceae PAH degraders from this study and others (17, 24). Due to the
lack of PahE, it is possible that these strains have novel pathways for the biodegradation
of PAHs that are not currently detected by bioinformatic approaches that rely on such
biomarkers as indications of PAH degradation ability.

PAHs are common pollutants in marine ecosystems, and degradation of these
pollutants frequently occurs via native bacteria, albeit at limited rates (6, 37). Conse-
quently, PAH degraders are crucial to systems subject to contamination and serve as
potential candidates for remediation purposes and indicators of active PAH biodegrada-
tion. Bioinformatic and omics-based research depends on prior culture-based work to
define genetic biomarkers for PAH degradation. Current biomarkers have challenges
with specificity for PAH degradation pathways and the ability to identify novel pathways
and/or PAH degraders. The evidence presented by this study suggests that we have yet
to uncover the full diversity of bacterial PAH degraders as well as biochemical pathways
employed to transform these compounds. Bridging the gap between culture-based
investigations and modern bioinformatic approaches holds the key to elucidating the full
landscape of PAH biodegradation in marine ecosystems.
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MATERIALS AND METHODS
Bacterial strains

The following 18 strains were analyzed in this study: Marinobacterium georgiense
DSM 11526 (55), Bacillus-Clostridium strain SE165 (56), Bacillus-Clostridium strain SE98
(56), Alteromonas macleodii EZ55 (57), Vibrio natriegens ATCC 14048 (44), Rhodospirilla-
ceae strain EZ35 (57), Flavobacteriaceae strain EZ40 (57), Alcanivorax sp. strain EZ46
(57), Ruegeria pomeroyi DSS-3 (45), Citreicella sp. SE45 (56), Sagittula stellata E-37
(58), Sulfitobacter sp. EE-36 (59), Sulfitobacter NAS-14.1(60), Ruegeria sp. TM1040 (48),
Roseovarius sp. 217 (61), Roseovarius nubinhibens ISM (45), Rhodobacterales strain Y4l
(28), Sulfitobacter pontiacus CB-D (62), and Escherichia coli DH5a (see Table S1 for strain
descriptions). These strains were routinely grown on YTSS (yeast tryptone sea salt)
agar [per liter: 15 g Instant Ocean (Thermo Fisher Scientific), 15 g agar (Thermo Fisher
Scientific), 4 g tryptone, 2.5 g yeast extract] or YTSS broth at 30°C in the dark, unless
otherwise noted.

PAH degradation screening plates

To screen for PAH degradation, a modification of the plate screening assay described
in Bogardt and Hemmingsen was used (63). For this modified screening assay, strains
were inoculated on top of a PAH-containing top agar rather than within the top agar
layer. This allows colonies to be scraped off the agar surface to evaluate clearing zones
directly beneath the colonies. In addition, we decided to use a complex medium to
screen marine strains for co-metabolism in conjunction with screening initial marine
strains for degradation of PAHs as a sole growth substrate (17). For PAH co-metabo-
lism screening, YTSS agar was used as a complex medium wbase layer, and, for PAH
degradation as a sole carbon source, aromatic basal media (ABM) agar [ABM—per liter
8.7 mM KCl, 8.7 mM CaCly, 43.5 mM MgSOg4, and 174 mM NaCl with 225 pM K;HPOy,
13.35 MM NH4Cl, 71 mM Tris-HCI (pH 7.5), 15 g agar (Thermo Fisher Scientific), 68 uM
Fe-EDTA, trace metals (7.85 mM nitrilotriacetic acid, 0.53 mM MnSO4H>0, 0.42 mM
CoCly6H50, 0.35 mM ZnSO4-7H,0, 0.038 mM CuSO4, 0.11 mM NiCly6H50, 1.16 mM
Na25e03, 041 mM NazMOO4-2H20, 0.33mM N32WO4-2H20, 0.25 mM Na25i03-9H20) and
trace vitamins [0.0020% vitamin H (Biotin), 0.0020% folic acid, 0.0100% pyridoxine-HCI
(B6), 0.0050% riboflavin (B2), 0.0050% thiamine (B1), 0.0050% nicotinic acid, 0.0050%
pantothenic acid (B5), 0.0001% cyanocobalamin (B12), 0.0050% p-aminobenzoic acid]]
was used as a minimal medium base layer. The PAH top-agar overlay was constructed
using 5 mg/mL stock solutions of pyrene or phenanthrene dissolved in acetone (Thermo
Fisher Scientific, 299.5%) and 5 mL of 0.7% top agar, using either agar (Thermo Fisher
Scientific) for complex or Agar Noble (Difco) for minimal media. The final concentration
of pyrene (Millipore Sigma, 98%) and phenanthrene (Millipore Sigma, 98%) in the agar
overlay was 286 pug/mL and 430 pg/mL, respectively. Due to the difference in solubility of
phenanthrene relative to pyrene, a higher concentration of phenanthrene was added to
the top agar to ensure precipitation. The top agar was mixed and poured evenly on the
base layer plate. PAH top agar plates were left in a fume hood for at least 2 hours to allow
residual acetone to vaporize.

To prepare strains for the PAH top agar screening assay, all strains were grown to
stationary phase in YTSS broth, and densities adjusted to an optical density (540 nm) of~
1.6. For PAH top agar complex medium plates, 5 pL of each strain was directly spotted
onto plates in triplicate. For PAH top agar minimal medium plates, 1 mL aliquots was
first gently centrifuged (2,200 x g for 5 minutes) and washed twice with ABM broth
prior to inoculating plates with 5 pL of each strain in triplicate. Plates were incubated
at 30°C in a polypropylene humidity chamber to prevent plates from drying out. PAH
top agar complex medium plates were incubated for 7 days with two technical replicate
plates scraped per day for each PAH (Fig. 5). PAH top agar minimal medium plates were
incubated for 14 days with two technical replicate plates scraped after 7 days and after
14 days. One strain (Citreicella sp. SE45) was able to use acetone as a carbon source,
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FIG 5 (A) Pyrene + complex medium and (B) phenanthrene + complex medium top agar assay plate after 5 days of incubation. For each strain, three replicate
bacterial spots were plated as follows: (1) R. pomeroyi DSS-3, (2) Citreicella sp. SE45, (3) S. stellata E-37, (4) Bacillus-Clostridium strain SE165, (5) Bacillus-Clostridium
strain SE98, (6) M. georgiense DSM 11526, (7) V. natriegens ATCC 14048, (8) Rhodospirillaceae strain EZ35, (9) Alcanivorax sp. strain EZ46, (10) A. macleodii EZ55, (11)
Flavobacteriaceae strain EZ40, and (12) E. coli DH5a. Clearing zones appear as dark circles on the media and are visualized after colonies are scraped from the top

agar.

complicating our ability to ascertain its ability to use PAHs as a sole carbon source. Only
PAH top agar plates with complex medium were used for the Roseobacteraceae screen
as all marine bacteria showed degradation only via co-metabolism, and previous results
suggested that Roseobacteraceae members used in this study could not degrade PAHs
as a sole carbon source (17). E. coli DH5q, previously reported to not degrade PAHs, was
used as a negative control (19).

HPLC quantification of pyrene and phenanthrene degradation

Marine and Roseobacteraceae strains (triplicates), except for Alcanivorax sp. EZ46, were
inoculated into 10 mL 5% YTSS and grown overnight, shaking at 200 rpm. Alcanivorax
sp. EZ46 was excluded as it would not grow in liquid culture conditions. Densities were
adjusted to an ODsgy4g of ~1.6 in 5% YTSS prior to inoculation (100 pL) in 9.9 mL 5%
YTSS with 25 pg/mL pyrene or phenanthrene. Before inoculation, 5% YTSS and PAH
tubes were incubated overnight at 30°C to evaporate off residual acetone. A subset
of cultures was immediately extracted (TO controls), and the remaining cultures were
incubated for 26 days. Uninoculated controls were incubated and processed in parallel.
PAHs were extracted as follows: 10 mL of HPLC-grade ethyl acetate (Thermo Fisher
Scientific) was added to each tube, mixed, and allowed to separate. The top aqueous
layer was transferred to a 15 mL polypropylene conical tube and directly injected into
an Agilent 1100 High Performance Liquid Chromatography System (Agilent Technologies
Co. Ltd). The following conditions were used with an injection volume of 20 pL: a C18
column (Acclaim PolarAdvantage Il C18 5 um 120 A 4.6 x 250 mm, Thermo Fisher
Scientific Inc.) was operated at 30°C with methanol as the mobile phase at a flow rate of
1 mL min™' (17). Both pyrene and phenanthrene were detected using a UV detector at
254 nm. Peak area was compared to the initial inoculum, and peak area was normalized
to uninoculated controls.
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Genomic analyses

For strain with available genome sequences: M. georgiense DSM 11526, A. macleodii
EZ55, V. natriegens ATCC 14048, R. pomeroyi DSS-3, Citreicella sp. SE45, S. stellata E-37,
Sulfitobacter sp. EE-36, Sulfitobacter NAS-14.1, Ruegeria sp. TM1040, Roseovarius sp. 217,
R. nubinhibens ISM, Rhodobacterales strain Y4l, S. pontiacus CB-D, and E. coli DH5a.
Protein identity searches were done using BLASTP against available genomes at the
Joint Genome Institute Integrated Microbial Genomes & Microbiomes System (https://
img.jgi.doe.gov/). Query amino acid sequences were selected to cover a diverse range
of proteins involved in PAH degradation and obtained from NCBI. Query sequences
had their function experimentally proven (Table S2) except for PahE sequences from
Novosphingobium pentaromativorans US6-1 and Rhodococcus opacus B4, included to
cover the known diversity of PahE proteins as previously described in Liang et al. (54).

Phylogenetic analysis was conducted for putative PahE proteins from over 750
Roseobacteraceae strains using BLASTP in JGI IMG (Table S4). PahE from Pseudomonas
aeruginosa PaK1 was used as the search query. Strains that showed at least one
protein over 50% amino acid identity and highest amino acid identity results for
Roseobacteraceae strains in this study were used to construct a maximum likelihood
phylogenetic tree. Protein sequences were aligned using BioEditv7.2.5 (64), and the
tree was constructed using MEGAXv10.2.2 using the Jones-Taylor-Thornton evolution-
ary model (65). To further investigate the functionality of these proteins, we aligned
putative PahE sequences of Roseobacteraceae strains listed in this paper with the
PahE sequence from P. aeruginosa PaK1 (UniProt ACN POA142). Catalytic residues and
putative active sites were predicted based on conserved residues from the NCBI
Conserved Domains Database (https://www.ncbi.nlm.nih.gov/cdd) of the CHBPH_aldo-
lase subfamily, containing trans-o-hydroxybenzylidenepyruvate hydratase-aldolase and
trans-2’-carboxybenzalpyruvate hydratase-aldolase, both of which are PAH hydratase
aldolases.
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