
The Role of Tactile Sensing in Learning and Deploying
Grasp Refinement Algorithms

Alexander Koenig1,2, Zixi Liu2, Lucas Janson3 and Robert Howe2,4

Abstract— A long-standing question in robot hand design is
how accurate tactile sensing must be. This paper uses simulated
tactile signals and the reinforcement learning (RL) framework
to study the sensing needs in grasping systems. Our first
experiment investigates the need for rich tactile sensing in the
rewards of RL-based grasp refinement algorithms for multi-
fingered robotic hands. We systematically integrate different
levels of tactile data into the rewards using analytic grasp
stability metrics. We find that combining information on contact
positions, normals, and forces in the reward yields the highest
average success rates of 95.4% for cuboids, 93.1% for cylinders,
and 62.3% for spheres across wrist position errors between
0 and 7 centimeters and rotational errors between 0 and 14
degrees. This contact-based reward outperforms a non-tactile
binary-reward baseline by 42.9%. Our follow-up experiment
shows that when training with tactile-enabled rewards, the
use of tactile information in the control policy’s state vector
is drastically reducible at only a slight performance decrease
of at most 6.6% for no tactile sensing in the state. Since
policies do not require access to the reward signal at test time,
our work implies that models trained on tactile-enabled hands
are deployable to robotic hands with a smaller sensor suite,
potentially reducing cost dramatically.

I. INTRODUCTION

Tactile sensing provides essential information about local
object geometry, surface properties, contact forces, and grasp
stability [1]. Hence, tactile sensors can be a valuable tool
in robotic grasp refinement tasks [2] where a grasping
system recovers from calibration errors. Computer vision
approaches for grasp refinement often face limitations due
to the occlusion of contact events. Tactile sensors are often
expensive and fragile hardware components. Hence, for cost-
effective robotic hand design, it is essential to understand
when robot hands need precise sensing and how accurate it
should be to achieve good grasping performance.

A few research papers investigated the effect of tactile
sensor resolution on grasp success. Wan et al. [3] found
that reduced spatial resolution of tactile sensors negatively
impacts grasp success since inaccuracies in contact position
and normal sensing can influence grasp stability predictions.
Other works analyzed the effect of contact sensor resolu-
tion on grasp performance in the context of reinforcement
learning. In simulated experiments, Merzić et al. [4] found
that contact feedback in a policy’s state vector improves the

This material is based upon work supported by the US National Science
Foundation under Grant No. IIS-1924984 and by the German Academic
Exchange Service.

1 Department of Informatics, Technical University of Munich
2 School of Engineering and Applied Sciences, Harvard University
3 Department of Statistics, Harvard University
4 RightHand Robotics, Inc., 237 Washington St, Somerville, MA 02143

USA. Robert Howe is corresponding author howe@seas.harvard.edu.

Stage Refine Lift Hold End

Steps 15 6 6 -

Duration 5 s 2 s 2 s -

and 0

0

0

0 0 0

ϵf + α1ϵτ + α2δtask

{0,1}

ϵf + α1ϵτ + α2δcur ϵf + α1ϵτ + α2δcur

ϵf + α1ϵτ ϵf + α1ϵτ ϵf + α1ϵτ
δtask δcur δcur

B - Grasp Refinement Episode

Select object and
calculate wrist pose

O Add translational and

rotational wrist error E
Close fingers
until contact

ϵ δ
δ
ϵ
β

A - Initialize World

Fig. 1: Overview of one algorithm episode. (A) Initialization
of hand and object. (B) We split the grasp refinement algo-
rithm into four stages and compare four reward frameworks:
(1) ε and δ, (2) only δ, (3) only ε and (4) the non-tactile
binary reward baseline β. The weighting factors of α1 = 5
and α2 = 0.5 were empirically determined.

performance of RL-based grasping controllers, and [5], [6]
presented similar results for in-hand manipulation. However,
[5], [6] also concluded that models trained with binary
contact signals perform equally well as models that receive
accurate normal force information. Furthermore, [5], [6]
found that tactile resolution (92 vs. 16 sensors) has no
noticeable effect on performance and sample efficiency of
reinforcement learned manipulation controllers.

In this paper, we use accurate tactile signals from simu-
lation and the reinforcement learning framework to explore
the tactile sensing needs in robotic systems. RL algorithms
aim to produce a policy π(a|s) that outputs actions a
given state information s such that the cumulative reward
signal r is maximized. The reward function is a critical
part of every RL algorithm [10]. While the previous work
in [4], [5], [6] only studied the tactile resolution in the
policy’s state, our first contribution investigates the impact
of tactile information in the reward signal. Table I shows an
overview of the reward functions used in other RL-based

TABLE I: Reward functions of RL grasping controllers.
Paper Reward
Chebotar
2016 [7]

Maximize predicted grasp success from learned stability
predictor

Merzić
2019 [4]

Maximize (1) number of links in contact and (2) binary
drop test reward
Minimize (1) distance object to gripper, (2) distance fin-
gertips to object, (3) joint torques and (4) object velocity

Wu
2019 [8]

Maximize binary pick-up reward at episode end
Minimize finger reopening

Hu
2020 [9]

Maximize (1) number of contact points and (2) number
of object key-points contained in convex hull of hand and
finger key-points
Minimize (1) distance from hand key-points to object key-
points, (2) angle between hand key-point normals and
vectors pointing from hand key-points to object center, (3)
number of contacts on outside of fingers and (4) object
linear velocity

grasping controllers that process tactile information from
multi-fingered hands. These reward functions are insufficient
to study the effect of different types of contact information,
because they either directly encode the experiment outcome
[4], [8] or consist of manually engineered cues (e.g., number
of contacts [4], [9]) that do not include contact position,
normal, and force information. Hence, we propose a unified
framework to systematically incorporate different levels of
tactile information from robotic hands into a reward signal
via analytic grasp stability metrics. As shown in Fig. 1, we
conduct grasp refinement experiments and define three types
of rewards: ε calculated from contact positions and normals,
a force-based reward δ, and a binary task execution reward
β. By comparing the individual and combined performance
of ε and δ, we estimate the relevance of contact position,
normal, and force sensing for the reward signal.

Calculating grasp stability metrics requires costly tactile
sensing capabilities on physical grippers. However, the re-
ward signal is only required during the training of policies
but not while testing, which suggests that sensing needs in
both stages could be different. We hypothesize in Figure 2
that policies trained with grasp stability metrics on a robotic
hand Hf with a full tactile sensor suite are deployable
to structurally similar but more affordable hands Hr with
reduced tactile sensing at a small performance decrease.
Hence, our second experiment gradually decreases tactile
resolution in the state vector to find realistic training and
deployment workflows for grasping algorithms.

Our paper reviews and defines grasp quality metrics in
section II. We use these metrics as reward signals in section
III and thereby study the impact of contact position, normal,
and force sensing in the reward. In section IV, we investigate
the importance of tactile data in the state vector.

II. GRASP STABILITY METRICS

A. Largest-minimum resisted forces and torques

Ferrari and Canny [11] define grasp quality as the largest-
minimum perturbing wrench that the grasp can resist given
the grasp’s force constraints. Ferrari’s metric [11] suffers
from the non-comparability of forces (in N) and torques
(in Nm). Hence, Mirtich and Canny [12] refine this popular

Test

Train

Environment

Grasp Quality rf

Reduced State sr a

Reduced State sr

π(a |s)

π(a |s)

Hf

Hr

a

De
pl
oy

Fig. 2: The hypothesized workflow for training and deploying
RL-controlled grasping systems. First, train a policy π(a|s)
on a hand Hf with a full tactile sensor suite (e.g., contact
position, normal and force sensors) where the grasp quality
metrics are available as a reward rf to learn a task, but only
provide a subset of the available contact data in the state
vector sr. Afterwards, deploy the policy to many structurally
similar hands Hr with a reduced sensor set to save cost.

metric by decoupling the wrench space into a force and
torque component, and thereby evaluate how well a grasp
resists pure forces and torques.

p1

p2
n1

n2

f1,2

f1,1

f2,1

f2,2

fx

fy

ϵf

f1,1

f1,2

f2,1

f2,2
Fig. 3: Left: a grasp on a grey object with two contact points
p1 and p2, contact normals ni and friction cones. Right: the
quality metric εf is the radius of the largest ball contained
in the convex hull Wf over the set of resisted forces.

Let us examine how to measure resistance to disturbing
forces. The contact force f i at each contact i is constrained
via the friction cone fi,t ≤ µfi,n, where µ is the co-
efficient of friction and fi,t and fi,n are the tangential
and normal components of f i, respectively. The friction
cone is discretized using m edges f i,j . The set of forces
Wf that the contacts can apply to the object is Wf =
ConvexHull

(⋃n
i=1

{
f i,1, . . . ,f i,m

})
, where n is the num-

ber of contacts. Finally, the quality metric εf in equation (1)
is the shortest distance from the origin to the nearest hyper-
plane of Wf . Hence, the metric defines a lower bound on
the resisted force in all directions. As shown in Fig. 3, εf
can be geometrically interpreted as the radius of the largest
ball centered at the origin and contained inside Wf .

εf = min
f∈∂Wf

‖f‖ (1)

This concept is easily extended to the torque domain. The
reaction torque τ i,j resulting from a friction cone edge f i,j
is calculated by τ i,j = ri×fi,j , where ri is a vector pointing
from the object’s center of mass to the contact point pi. The

set of torques Wτ that the grasp can resist is defined by
Wτ = ConvexHull (

⋃n
i=1 {τ i,1, . . . , τ i,m}). The metric ετ

in equation (2) evaluates the grasp’s quality by identifying
the magnitude of the largest-minimum resisted torque.

ετ = min
τ∈∂Wτ

‖τ‖ (2)

B. Minimum distance to the friction cone

The quality metrics εf and ετ analyze the forces that each
contact can theoretically exert on the object. However, these
metrics do not consider the actual contact forces that the
contacts apply to the object. To this end, we define two force-
based quality metrics δcur and δtask. While δcur is a general-
purpose grasp quality metric, δtask is applicable when a task
definition exists.

p2n1
f1,cur

n2
f2,cur

f̄1,cur
f̄2,curp1

p2
f1,cur

f2,cur

f̄1,task
f̄2,task

p1

f1,task
f2,task

fg

f1,add
f2,add

Fig. 4: Grasp with current contact forces f i,cur and tangen-
tial force margins f̄ i,cur to the friction cones.

Similar to Buss et al. [13], we measure grasp stability in
terms of how far the contact forces are from the friction
limits. Fig. 4 shows a grasp with the current contact forces
f i,cur and the tangential force margins f̄ i,cur. The vectors
f̄ i,cur are forces in the tangential direction that point from
f i,cur to the closest point on the friction cone, thereby
identifying the direction in which the contact can take the
least tangential force before slipping. A grasp with large
tangential force margins f̄ i,cur is desirable since the contacts
are less prone to sliding when an object wrench is applied.
Hence, the metric δcur in equation (3) measures the average
magnitude of the safety margins ‖f̄ i,cur‖. Contacts with
larger forces contribute more to grasp stability because they
can have larger tangential force margins f̄ i,cur and can
thereby compensate for more disturbing object wrenches.
Therefore, we weigh the safety margins ‖f̄ i,cur‖ by their
respective contact force magnitudes ‖f i,cur‖.

δcur =

∑nc
i=1 ‖f i,cur‖‖f̄ i,cur‖∑nc

i=1 ‖f i,cur‖
(3)

In many grasping tasks, a clear task definition exists.
Let T = {w1,w2, . . . ,wm} be the set of task wrenches
that the grasp must resist during task execution (e.g., object
weight or wrenches from expected collisions). Several task-
oriented quality metrics measure how well a convex set of
T is contained within the convex set of all wrenches that
the grasp can resist [14], [15], [16]. However, since these
approaches reason about the theoretically applicable contact
forces, which are commonly bounded to unity [17], [11], it is
not possible to evaluate whether the current contact forces of
a grasp are suitable to balance the anticipated task wrenches.

p2n1
f1,cur

n2
f2,cur

f̄1,cur
f̄2,curp1

p2
f1,cur

f2,cur

f̄1,task
f̄2,task

p1

f1,task
f2,task

fg

f1,add
f2,add

Fig. 5: Grasp with predicted task contact forces f i,task after
mapping the task force −fg onto the contacts.

We define an alternative task-oriented metric δtask. We
calculate the additional contact force f i,add that each contact
i must react with to compensate the task wrenchw ∈ T with
G+w = (fT1,add fT2,add . . . fTnc,add)T , where G+ is
the pseudoinverse of the grasp matrix as defined in [18]. Fig.
5 shows that the task contact force f i,task = f i,cur+f i,add
is the sum of the current contact force f i,cur and f i,add
which results from a task wrench (here the object weight
−fg). We use a hard contact model and assume that the
internal grasp forces stay the same after applying f i,add.
The metric δtask in equation (4) measures the expected grasp
stability during task execution by computing the average
magnitude of the tangential force margins ‖f̄ i,task‖ of the
task contact forces f i,task. The metric δtask is a lower bound
over all task wrenches w ∈ T and we thereby identify the
worst-case task wrench.

δtask = min
w∈T

∑nc
i=1 ‖f i,task‖‖f̄ i,task‖∑nc

i=1 ‖f i,task‖
(4)

III. TACTILE SENSING AND THE REWARD FUNCTION

A. Simulation Environment

We simulate the grasp refinement episodes of the
three-fingered ReFlex TakkTile hand (RightHand Robotics,
Somerville, MA USA) using a custom robotics simulator
based on the Gazebo [19] simulation environment, the DART
[20] physics engine, and the ROS [21] communication frame-
work. We model the under-actuated distal flexure as a rigid
link with two revolute joints (one between the proximal and
one between the distal finger link). Further, we approximate
the finger geometries as cuboids to reduce computational
load. We activate simulated gravity in our experiments (un-
like in [4]), and the object can freely interact with the hand
and the world. Our source code is publicly available under
github.com/axkoenig/grasp_refinement.

B. Train and Test Dataset

Each training sample consists of a tuple (O,E), where
O is the object, and E is the wrist pose error sampled
uniformly before every episode. There are three object types
(cuboid, cylinder, and sphere) with a mass ∈ [0.1, 0.4] kg and
randomly sampled sizes. Fig. 6 visualizes the minimum and
maximum object dimensions. The wrist pose error E con-
sists of a translational and a rotational error. We uniformly
sample the translational error (ex, ey, ez) from [−5, 5] cm
and the rotational error (eξ, eη, eζ) from [−10, 10] deg for
each variable, respectively.

github.com/axkoenig/grasp_refinement

Fig. 6: Minimum and maximum object sizes. Sizes in mm:
cuboid height ∈ [130, 230], length and width ∈ [40, 100],
cylinder height ∈ [130, 230], radius ∈ [30, 50], sphere radius
∈ [65, 80]. We place the spheres on a concave mount to
prevent rolling.

We define 8 different wrist error cases for the test dataset.
Let d(a, b, c) =

√
a2 + b2 + c2 be the L2 norm of the

variables (a, b, c). Table II shows the wrist error cases, where
case A corresponds to no error and case H means maximum
wrist error. Fig. 7 visualizes two wrist error cases. The
test dataset consists of 30 random objects O (10 cuboids,
10 cylinders, and 10 spheres). Per object O, we randomly
generate the eight wrist error cases {A,B, . . . ,H} from
Table II. Hence, we run 30 × 8 = 240 experiments to test
one model.

TABLE II: Wrist error cases

Wrist Error Case A B C D E F G H
d(ex, ey , ez) in cm 0 1 2 3 4 5 6 7
d(eξ, eη , eζ) in deg 0 2 4 6 8 10 12 14

Fig. 7: Left: wrist error case A (no wrist error), Right: wrist
error case H (maximum wrist error) after closing the fingers.
Contact points in blue.

C. State and Action Space

The state vector s consists of 7 joint positions (1 finger
separation, 3 proximal bending, 3 distal bending degrees of
freedom), and 7 contact cues (3 on proximal links, 3 on
distal links, and 1 on palm) that include contact position,
contact normal and contact force, which have 3 (x, y, z)
components each. The dimension of the state vector is
s ∈ R7+7×(3×3)=70. Note that we do not assume any
information about the object (e.g., object pose, geometry,
or mass) in the state vector. The action vector a consists of
3 finger position increments, 3 wrist position increments and
3 wrist rotation increments. The action vector’s dimension
is a ∈ R3+3+3=9. The policy πθ is parametrized by a
neural network with weights θ. The network is a multi-layer
perceptron (MLP) with four layers [70, 256, 256, 9]. We

use the stable-baselines3 [22] implementation of the
soft actor-critic (SAC) [23] framework to train the stochastic
policy πθ . We evaluate the policy deterministically when
testing.

D. Algorithm Overview

Fig. 1 shows an overview of one training episode. Before
starting the control algorithm, we reset the world. Thereby,
we randomly generate a new object, wrist error tuple (O,E)
(or we select one from the test dataset). We assume a
computer vision system and a grasp planner that produces
a side-ways facing grasp at a fixed 5 cm offset from the
object’s center of mass. We add the wrist pose error E to this
grasp pose to simulate calibration errors and close the fingers
of the robotic hand in the erroneous wrist pose until the
fingers make contact with the object. Consequently, the grasp
refinement episode starts. We divide each episode into three
stages, as displayed in Fig. 1. Firstly, the policy πθ refines the
grasp in five seconds and 15 algorithm steps. Afterward, the
agent lifts the object by 15 cm via hard-coded increments
to the wrist’s z-position in two seconds and six algorithm
steps. Finally, the policy holds the object in place for two
seconds and six algorithm steps to test the grasp’s stability.
The policy πθ can update the wrist and finger positions while
lifting and holding. The control frequency of the policy in all
stages is 3 Hz, while the update frequency of the low-level
proportional–derivative (PD) controllers in the wrist and the
fingers is 100 Hz.

Each episode can last at most 15 + 6 + 6 = 27 algorithm
steps. We end the episode earlier if the hand shifts the
object by more than 10 cm during the refinement stage to
discourage excessive movement of the object. Furthermore,
we terminate refinement if one of the fingers exceeds a joint
limit of 3 radians. We do not enter the holding stage if the
object dropped after the lifting stage. The algorithm trains
for 25000 steps, which corresponds to approximately 1000
training episodes depending on the episode lengths.

As shown in the table of Fig. 1, we use the analytic grasp
stability metrics from section II as reward functions. We
compare the following reward configurations: (1) both ε and
δ, (2) only ε, (3) only δ and (4) the baseline β. Fig. 1 shows
that δ refers to δtask in the refine stage to measure expected
grasp stability before lifting and δcur in the lift and hold
stages to measure current stability. Further, ε is a weighted
combination of εf and ετ . While ε and δ, δ, and ε provide
stability feedback after every algorithm step, the baseline β
gives a sparse reward after the holding stage, indicating if
the object is still in the hand (1) or not (0). Since the SAC
algorithm is sensitive to reward scaling [23], we normalize
the rewards, which are based on grasp quality metrics.

E. Results

Fig. 8 shows the training results of the four reward frame-
works. For all experiments in this paper, we average over
40 models trained with different seeds for each framework
and smooth the training curves with a moving average filter
of kernel size 30. The error bars in all plots represent ±2

Fig. 8: Training results for reward frameworks.

standard errors. It takes approximately 20 hours to train one
model on a machine with 4 CPUs. We realize from Fig.
8 that the algorithms trained with grasp stability metrics
are more sample efficient and reach higher success rates
than β within the defined training steps. We also notice that
the combination between ε and δ is particularly helpful for
spheres. The algorithms trained with β especially struggle to
grasp spheres. Furthermore, the reward framework ε initially
trains faster than the reward frameworks that include the
force agnostic metric δ. Lastly, we recognize that the Hold
Success and Lift Success graphs in Fig. 8 are very similar.

Fig. 9 summarizes the test results. All test results in this
paper stem from 38400 grasps (40 models with different
seeds × 4 frameworks × 240 test cases). Our main obser-
vation is that combining the geometric grasp stability metric
ε with the force-agnostic metric δ yields the highest average
success rates of 83.6% across all objects (95.4% for cuboids,
93.1% for cylinders, and 62.3% for spheres) over all wrist
errors. The ε and δ framework outperforms the binary reward
framework β by 42.9%. As expected, performance decreases
for larger wrist errors. We show results of a one-sided, paired
t-test in Table III (mean of framework x is µx and ‘≈ 0.0’
means that value was numerically zero).

TABLE III: Results of t-test for reward comparison.

Result µε and δ > µδ µε and δ > µε µε and δ > µβ
p-value 3.1681 10−10 2.0510 10−12 ≈ 0.0

F. Discussion

This study investigates the tactile sensing needs in the
reward of RL grasping controllers by incorporating highly
accurate contact information via analytic grasp stability met-
rics. From the results of the t-test in Table III, we conclude
that the claim ‘the combination of ε and δ outperforms all

Fig. 9: Test results for reward frameworks.

other tested rewards frameworks’ is statistically significant
(p < 0.01 for all comparisons). The results demonstrate that
information about contact positions and normals encoded in
ε combines well with the force-based information in the
δ reward. This result motivates building physical robotic
hands capable of sensing these types of information. The
low success rates for the spheres may be because they can
roll and are therefore harder to grasp (cuboids and cylinders
move comparatively less when touched by fingers or the
palm). The observation that success rates after the lift and
the hold stage are almost identical means that once the hand
successfully lifts the object, the grasp is usually also stable
enough to keep the object in hand until the very end of the
grasp refinement episode.

The β framework performs worst after the defined number
of training steps, which is unsurprising because shaped
rewards are known to be more sample efficient than sparse
rewards [24]. The β framework may not constitute the best-
performing alternative that is not based on analytic tech-
niques from grasp analysis. However, it should be considered
as a non-tactile reward baseline often used in related works
[4], [8]. Furthermore, the performance of the β framework
in Fig. 8 continues to rise slowly, and it would be interesting
to evaluate at which success rates it plateaus.

IV. TACTILE SENSING AND THE STATE VECTOR

A. Experimental Setup

In a second experiment, we investigate the effect of contact
sensing resolution in the state vector on grasp refinement. We
compare four contact sensing frameworks. The full contact
sensing framework receives the same state vector s ∈ R70 as
in section III-C. In the normal framework, we only provide
the algorithm with the contact normal forces and omit the
tangential forces (s ∈ R56). In the binary framework we only

Fig. 10: Training results for contact sensing frameworks.

give a binary signal whether a link is in contact (1) or not (0)
(s ∈ R56). Finally, we solely provide the joint positions in
the none framework (s ∈ R7). We adjust the size of the input
layer of the neural network from section III-C to match the
size of the state vector of each framework. We keep the rest
of the network’s architecture fixed to allow a fair comparison.
The reward function in these experiments is ε and δ from
Fig. 1. Hence, all contact sensing frameworks receive contact
information indirectly via the reward.

B. Results

Fig. 10 shows the training performance of the contact
sensing frameworks. Note that the full framework is the same
as the ε and δ framework from section III. We can observe
that the none framework initially learns faster than the other
frameworks. However, after approximately 250 episodes, the
frameworks that receive contact feedback outperform the
none framework, which plateaus at a lower success rate.

Fig. 11 compares the test results of the different contact
sensing frameworks. We observe that the frameworks which
receive contact feedback (full, normal, binary) outperform
the none framework by 6.3%, 6.6% and 3.7%, respectively.
Providing the algorithm with normal force information yields
a performance increase of 2.9% compared to the binary
contact sensing framework. However, training with the full
contact force vector only increases the performance by 2.6%
compared to the binary framework. Furthermore, the success
rates for cuboids and cylinders are higher than for spheres
(for the normal force framework the success rates are 96.8%,
93.7%, 61.3%, respectively). We show the results of a one-
sided, paired t-test in Table IV.
TABLE IV: Results of t-test for contact sensing comparison.

Result µnormal > µfull µnormal > µbinary µnormal > µnone
p-value 0.2232 7.0177 10−11 1.3087 10−46

Fig. 11: Test results for contact sensing frameworks.

C. Discussion

This experiment studies how contact sensing resolution in
the policy’s state vector is related to grasp success when
training with fully contact informed rewards. Thereby, we
investigate the viability of our hypothesized training and
deployment workflow in Figure 2. The training curves of
the full, normal and binary frameworks in Fig. 10 are hard
to distinguish, which indicates a similar training perfor-
mance in all cases. Each data point in the training curves
includes the outcome of only one grasp refinement episode
per model (one object O and one wrist error W). This
punctual evaluation poorly reflects on the overall model
performance. Therefore, we should focus our analysis on the
test results from the 240 experiments per model over multiple
objects and wrist errors which provide a more comprehensive
model evaluation. In the test results, we observe statistically
significant improvements for the normal force framework
when compared to the binary and none frameworks (p-
values in Table IV < 0.01). However, these improvements
are small, and the results suggest that an affordable binary
contact sensor suite may be suitable if a small decrease
in performance is tolerable. The surprisingly good perfor-
mance of the none framework means that agents can refine
grasps solely based on the crude contact feedback of finger
joint position data when trained with rewards that encode
grasp stability. These results support our hypothesis that RL
grasping algorithms are deployable to hands with reduced
contact sensor resolution at little performance decrease when
incorporating rich tactile feedback at train time. These results
also have implications for systems trained in simulation
that usually suffer from a sim-to-real gap. The gap may be
reduced by choosing only a feature set in the state vector that
is cheaply and accurately available on the real hand (e.g.,
joint positions) and integrating harder-to-obtain information

in the reward, which is easily computable in simulation.
Interestingly, the algorithms trained with the full force

vector perform approximately on par with the ones that
receive the normal force information (the small difference in
success rates of 0.3% is not statistically significant because
p-value > 0.01 in Table IV). This observation is counterin-
tuitive since tangential forces are prominent in the designed
grasping task. This result could be due to three reasons. (1)
The full force framework has the most network parameters
and requires even longer training times. (2) The model fails
to represent the concept of the friction cone internally. An
alternative representation of the tangential forces could be a
solution (e.g., providing a margin to the friction cone instead
of a tangential force vector). (3) Simulated contact forces are
prone to numerical instability [25], especially when simulat-
ing robotic grasping [26]. Hence, since simulated contact
forces are not always physically meaningful, they may not
constitute a good proxy of grasp success in simulation.

We relate the differences in learning speed to the size of
the state vector. The none framework has a smaller state
vector and can hence learn faster, while the frameworks that
process contact information require more training data to
converge. The relative performance decrease when reducing
contact sensor resolution is approximately the same across
all objects, even though they have different geometries and
grasping strategies. This result suggests that our conclusions
are representative of a variety of object geometries.

V. CONCLUSION

This paper investigated the importance of tactile signals in
the reward and the policy’s state vector to identify the tactile
sensing needs in RL-based grasping algorithms. We found
that rewards incorporating contact positions, normals, and
forces are the most powerful optimization objectives for RL
grasp refinement controllers. While this tactile information is
essential in the reward function, we uncovered that reducing
contact sensor resolution in the policy’s state vector de-
creases algorithm performance only by a small amount. This
result has implications for the design of physical grippers
and their training and deployment workflows.

In future work, we aim to build physical robotic hands
with advanced sensing capabilities to calculate grasp metrics.
Secondly, we want to test the proposed training and deploy-
ment workflow, providing only limited contact information
in the state vector and testing the algorithm on other robotic
hands.

REFERENCES

[1] M. R. Cutkosky and W. Provancher, “Force and tactile sensing,” in
Springer Handbook of Robotics. Springer, 2016, pp. 717–736.

[2] A. M. Dollar, L. P. Jentoft, J. H. Gao, and R. D. Howe, “Contact
sensing and grasping performance of compliant hands,” Autonomous
Robots, vol. 28, no. 1, pp. 65–75, 2010.

[3] Q. Wan and R. D. Howe, “Modeling the effects of contact sensor
resolution on grasp success,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1933–1940, 2018.

[4] H. Merzić, M. Bogdanović, D. Kappler, L. Righetti, and J. Bohg,
“Leveraging contact forces for learning to grasp,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA), 2019, pp.
3615–3621.

[5] A. Melnik, L. Lach, M. Plappert, T. Korthals, R. Haschke, and
H. Ritter, “Tactile sensing and deep reinforcement learning for in-
hand manipulation tasks,” in IROS Workshop on Autonomous Object
Manipulation, 2019.

[6] ——, “Using tactile sensing to improve the sample efficiency and
performance of deep deterministic policy gradients for simulated in-
hand manipulation tasks,” Frontiers in Robotics and AI, vol. 8, p. 57,
2021.

[7] Y. Chebotar, K. Hausman, Z. Su, G. S. Sukhatme, and S. Schaal,
“Self-supervised regrasping using spatio-temporal tactile features and
reinforcement learning,” in 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2016, pp. 1960–1966.

[8] B. Wu, I. Akinola, J. Varley, and P. Allen, “Mat: Multi-fingered
adaptive tactile grasping via deep reinforcement learning,” arXiv
preprint arXiv:1909.04787, 2019.

[9] W. Hu, C. Yang, K. Yuan, and Z. Li, “Reaching, grasping and re-
grasping: Learning multimode grasping skills,” 2020.

[10] D. Silver, S. Singh, D. Precup, and R. S. Sutton, “Reward is enough,”
Artificial Intelligence, vol. 299, p. 103535, 2021.

[11] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proceedings
1992 IEEE International Conference on Robotics and Automation,
1992, pp. 2290–2295 vol.3.

[12] B. Mirtich and J. Canny, “Easily computable optimum grasps in 2-d
and 3-d,” in Proceedings of the 1994 IEEE International Conference
on Robotics and Automation. IEEE, 1994, pp. 739–747.

[13] M. Buss, H. Hashimoto, and J. Moore, “Dextrous hand grasping
force optimization,” IEEE Transactions on Robotics and Automation,
vol. 12, no. 3, pp. 406–418, 1996.

[14] Z. Li and S. Sastry, “Task-oriented optimal grasping by multifingered
robot hands,” IEEE Journal on Robotics and Automation, vol. 4, no. 1,
pp. 32–44, 1988.

[15] N. Pollard, “Synthesizing grasps from generalized prototypes,” in
Proceedings of IEEE International Conference on Robotics and Au-
tomation, vol. 3, 1996, pp. 2124–2130 vol.3.

[16] C. Borst, M. Fischer, and G. Hirzinger, “Grasp planning: how to
choose a suitable task wrench space,” in IEEE International Con-
ference on Robotics and Automation, 2004. Proceedings. ICRA ’04.
2004, vol. 1, 2004, pp. 319–325 Vol.1.

[17] M. A. Roa and R. Suárez, “Grasp quality measures: review and
performance,” Autonomous robots, vol. 38, no. 1, pp. 65–88, 2015.

[18] D. Prattichizzo and J. C. Trinkle, “Grasping,” in Springer Handbook
of Robotics. Springer, 2016, pp. 955–988.

[19] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sendai, Japan, Sep
2004, pp. 2149–2154.

[20] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa,
M. Stilman, and C. K. Liu, “Dart: Dynamic animation and robotics
toolkit,” Journal of Open Source Software, vol. 3, no. 22, p. 500, 2018.

[21] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “Ros: an open-source robot
operating system,” in Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan,
May 2009.

[22] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto,
and N. Dormann, “Stable baselines3,” https://github.com/DLR-RM/
stable-baselines3, 2019.

[23] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” 2018.

[24] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in In
Proceedings of the Sixteenth International Conference on Machine
Learning. Morgan Kaufmann, 1999, pp. 278–287.

[25] J. M. Hsu and S. C. Peters, “Extending open dynamics engine
for the darpa virtual robotics challenge,” in Proceedings of the 4th
International Conference on Simulation, Modeling, and Programming
for Autonomous Robots - Volume 8810, ser. SIMPAR 2014. Berlin,
Heidelberg: Springer-Verlag, 2014, p. 37–48.

[26] J. R. Taylor, E. M. Drumwright, and J. Hsu, “Analysis of grasping
failures in multi-rigid body simulations,” in 2016 IEEE Interna-
tional Conference on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR), 2016, pp. 295–301.

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

	Introduction
	Grasp Stability Metrics
	Largest-minimum resisted forces and torques
	Minimum distance to the friction cone

	Tactile Sensing and the Reward Function
	Simulation Environment
	Train and Test Dataset
	State and Action Space
	Algorithm Overview
	Results
	Discussion

	Tactile Sensing and the State Vector
	Experimental Setup
	Results
	Discussion

	Conclusion
	References

