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Beyond Coulomb: Stochastic Friction Models
for Practical Grasping and Manipulation
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Abstract—Reliable grasping and manipulation in daily tasks
and unstructured environments require accurate contact mod-
eling and grasp stability estimation. A key component is the
coefficient of friction, which is variable and dependent on many
factors. However, robotics applications often use Coulomb’s
model of friction, which ignores this variability and instead
assumes that the coefficient of friction is a constant. In this
work, we conducted sliding experiments with robot fingers and
a robot hand, and show that rubber friction varies strongly with
normal force Fn and contact velocity v, and includes a significant
stochastic component. We present a framework for modeling the
coefficient of friction µ as a distribution rather than a constant,
and show how this distribution can be narrowed when given
a prior on Fn or v. For a given distribution, the likelihood of
slipping is a continuous function with respect to the tangential-
to-normal force ratio, instead of a step function according to
Coulomb’s law. By modeling friction as a function of Fn and v,
we demonstrate that friction parameters can be estimated using
regression models from a single sliding stroke of the fingertip
against the object surface, and that strokes spanning a larger
range of Fn-v space provide better friction estimates. These
results can be applied to grasp control to enable a quantitative
trade-off between the likelihood of slipping vs. grasp force
levels, and to sliding manipulation planning by elucidating the
relationship between desired velocity and anticipated force levels.
Application of this model to machine learning has the potential
to enhance reinforcement learning and sim-to-real transfer by
providing more accurate representations of frictional behavior.

Index Terms—Friction, Friction Variability, Contact Model-
ing, Grasping, Dexterous Manipulation, In-Hand Manipulation,
Uncertainties in Grasping and Manipulation

I. INTRODUCTION

FRICTION between fingers and objects plays a critical role
in reliable grasping and manipulation. The exceptional

dexterity of the human hand in performing a wide range of
grasping and manipulation tasks is dependent on our ability to
sense contact properties, particularly friction properties, using
thousands of mechanoreceptors located in the fingertips [1].
This superb tactile sensing capability allows us to perform
tasks that are challenging for robots, such as recognizing when
something is about to slip out of hand or controlling finger
motions to reorient an object within the hand. Understanding
friction is essential for executing controlled sliding and avoid-
ing accidental drops.
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Fig. 1. (A) A typical robot-object interaction via friction. (B) A 2-D
illustration of a friction cone in Coulomb’s model. (C) An example of Ft/Fn

variation as an elastomeric fingertip starts and stops sliding. The Ft/Fn ratio
varies extensively even within a single slip episode, and peak values change
significantly between episodes. (D) Fingertip sliding data shows that instead
of a constant µCoulomb at which slipping occurs, the coefficient of friction,
µ, is a stochastic variable with probability density function shown in the
bottom plot. Using µ to determine slip in this model reports a likelihood
of slip instead of a binary slip/no-slip estimate. (E) Measurements of µ as
a function of normal force Fn and velocity v, respectively, with mean ±
standard deviation values in black dashed line and adjacent grey shading.

In robotics, Coulomb’s law of friction is the cornerstone of
both simulation and real-time control (e.g. [2]–[4]). This “law,”
which is reasonably accurate for many rigid materials, states
that the friction or tangential force Ft between two objects is
proportional to the normal force Fn pressing them together,
or Ft = µFn, where µ is the coefficient of friction, which is
assumed to be constant for a given fingertip-object material
pair (Fig. 1B) [5].

Soft polymeric materials, however, are typically used to
cover robot fingers to allow the fingertip to conform to object
surfaces and to provide high friction. For these materials,
friction is stochastic and variable at the macroscopic level
(Fig. 1D). This behavior has been studied extensively in other
fields, particularly automotive tires, but has not been applied to
robotics. “Quantitative physical analysis began with the obser-
vation that the classic Coulombic laws obeyed consistently at
rigid body interfaces fail at the interface between a rigid solid
and a rubber.” [6] This behavior is due to numerous factors.
First, soft materials like robot fingertips sliding against rigid
surfaces exhibit stick-slip phenomena due to deformation and
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detachment waves [6], [7]. In addition, in real-world settings,
rubber friction changes due to variations across the object and
robot fingers in surface roughness and imperfections, local
contamination (dust, liquids, etc.), temperature and humidity
level, etc. [6]–[10].

Rubber friction also varies with loading and sliding speed
(Fig. 1E), as shown in numerous studies. Important examples
include Schallamach’s investigation of the relationship be-
tween µ, load, and contact area; this resulted in the formulation
µ = cW−1/3 where c is a constant and W is the load [11],
which is proposed as an alternative to Thirion’s formulation
1/µ = a+bW , where a and b are constants [12]. Schallamach
also showed the dependency of µ on contact velocity [13].
Albertini et al. investigated the stochastic properties of friction
[14]. Kang at el. demonstrated the stochastic variability of
friction for general mechanical systems [15].

Characterization of friction for robotic control of grasping
and manipulation has been a specialized sub-field. Bicchi et
al. evaluated µ during the transition from static to dynamic
friction in rotational and translational motion [16]. While the
data in this paper appear to show stochastic variation in the
Ft/Fn ratio, the coefficient of friction is treated as Coulombic,
with only static and dynamic values. Cutkosky et al. evaluated
multiple materials for robot skin and proposed µ = Fn/τA
where τ is the shear strength of the bonded areas and A is
contact area [17]. Han et al. also evaluated the relationship
between µ and Fn, and proposed µ = τ0/(Fn/A)+α0 where
τ0, α0 are constants [18]. Zhou et al. modeled the stochastic
friction distribution in planar pushing by sampling contact
force from appropriate distributions [19]. Ma et al. argued that
variability in planar friction is explainable but inevitable in
practice, and introduced an anisotropic friction model where
friction in x and y directions was individually considered [20].
None of these studies proposed a stochastic model for robot
fingertip friction.

In this work, we investigate the variability of the coefficient
of friction, µ, as a function of the normal force Fn and contact
velocity v, including a random component. Our contributions
are four-fold. First, we propose a framework for characterizing
µ as a distribution rather than a single constant. We model µ as
a stochastic function with respect to Fn and v, and validate this
model via experimental data. This implies that the likelihood
of slipping under specified loading conditions is a continuous
function with respect to the tangential-to-normal force ratio,
instead of a step function according to Coulomb’s law. Second,
the distribution of µ becomes narrower when priors such
as a known range of Fn are available. Third, by modeling
µ = f(Fn, v), we can estimate the friction parameters of
the function f using a regression model, and demonstrate
that these parameters can be reliably estimated with a single
stroke by spanning the anticipated Fn-v space of interest.
And lastly, the friction model enables quantitative planning
of sliding manipulation to answer questions such as: What is
an appropriate tangential force if a specific sliding velocity is
desired? What contact velocity is likely if a certain contact
force is applied? We emphasize that the proposed model is
a framework for incorporating the variability of friction into
robot planning and control applications, and is not meant to

Fig. 2. (A) Handheld experiment: a human operator holds a robot finger and
slides across surfaces in varying contact force, velocity, and contact location.
(B) Robot hand experiment: the robot hand grasps an object and a human
operator applies external force to cause instability, leading to slips on one or
more fingertip(s) without pushing the object out of the hand.

be an optimal friction model or an exhaustive investigation of
friction parameters across many materials.

The following sections of this paper provide a description of
the experimental setup used for data acquisition, an explana-
tion of the theoretical construct, and experimental validation of
the four contributions. The paper concludes with a discussion
of the implications of our proposed friction modeling frame-
work for robotic control, its integration with machine learning,
and its limitations.

II. MEASUREMENT OF FRICTION CHARACTERISTIC

We conducted two sets of experiments: one with a handheld
robot finger (“Handheld experiment,” Fig. 2A), and another
with a three-fingered articulated robot hand (“Robot hand
experiment,” Fig. 2B).

A. Hardware

Each robot fingers is equipped with a high-precision
force/torque sensor (ATI Nano17. Resolution: 1/160 N,
1/32 N·mm, 500 Hz). A hemispherical fingertip is mounted
on the force/torque sensor. It consists of a 17-mm-diameter
rigid inner layer (Stratasys Vero White) and a 3-mm-thick
silicone rubber outer layer (Smooth-On Dragon Skin 30). The
robot hand experiment uses a modified tendon-driven three-
fingered robot hand (Reflex Hand, RightHand Robotics) with
custom-designed fingers with two pin joints and fingertips
as described above. A high-precision optical tracking system
(Atracsys Fusion Track 500, Resolution: 0.090 mm RMS,
330 Hz) measures the pose of each fingertip and the grasped
object using fiducial markers. For the object, we 3D-printed an
80 mm cube (polylactic acid) with fiducials for precise pose
tracking. Mounting sites on the sides of the cube mate with
plates of various surface materials.

We fabricated side attachment plates in four materials:
paint primer (Rust-Oleum 260510 Automotive 2-in-1 Filler
& Sandable Primer), smooth paper (cast acrylic sheet surface
protection paper), heavyweight paper (heavyweight art paper
for dry and wet media), and canvas. Each side attachment has
a base layer of laser-cutting acrylic. Then the base layer was
coated by spray painting paint primer or gluing paper and
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canvas with spray adhesive (Scotch Super 77 Multipurpose
Adhesive Spray), flattened with a vinyl squeegee.

B. Data Processing

Data from the force/torque sensors and optical tracking
sensor are logged in Robot Operating System (ROS) and
synchronized at 300 Hz post-processing. Contact location,
contact surface normal, and contact force in the object frame
are calculated based on the geometries and poses (from optical
tracking) of the robot finger and the object. Since the fingertip
is hemispherical, the contact location is found by the normal
projection of the center of the hemisphere onto the object’s
side surface. Contact forces are measured directly on the
fingertip via the force/torque sensor.

Contact velocity is defined as the velocity of the contact
point on the surface of the object (from optical tracking), with
the velocity of the contact point on the fingertip surface (from
Intrinsic Sensing [21]) subtracted to compensate for rolling.
Velocities are median-filtered with a kernel size of 80 ms.

C. Handheld Experiment

A robot finger is dismounted from the robot hand, and
a human operator holds the robot finger and slides it on
a flat surface, as shown in Fig. 2A. The human operator
executes repeated sliding motions of the fingertip along the
flat surface with varying levels of force, velocity, and robot
fingertip contact location, leading to diverse sliding profiles.
Between strokes, the robot finger comes to a complete stop,
and can be lifted from the surface. Here we provided visual
feedback to each subject on normal force via real-time plot-
ting, demonstrated how slow (∼ 15 mm/s) vs. fast (∼ 80
mm/s) stroke looks like, and instructed each subject to cover
0− 5N and slow to fast span while varying fingertip contact
locations. We collected 2 minutes × 4 materials each, across
3 subjects, approximately 27% of which is slipping. For every
slip, the contact velocity goes up and down; for slip episodes
whose peak velocity is above 10 mm/s, we label the peak
and any neighboring samples with a velocity value above 5
mm/s as “slip”. This avoids spurious labels due to noise in
velocity estimates but captures all significant sliding episodes.
For consistency, samples with normal force ≥ 5N or velocities
≥ 150 mm/s are removed. Note that whether a human or a
robot executes the experiment will not impact the results, as
long as the range of variability is well-covered by confirming
coverage post-processing.

D. Robot Hand Experiment

In the robot hand experiment, the robot hand grasps a
cubical object with three fingers while a human operator gently
and repeatedly applies a varying external force anywhere on
the cube, causing it to slip within the grasp of the robot
hand without dropping (Fig. 2B). Two trials are collected,
each lasting approximately one minute. Samples are labeled
slipping when the peak contact velocity is above 5 mm/s.

III. FRICTION MODELS AND ESTIMATION METHODS

A. The Coefficient of Friction is a Stochastic Function

For the remainder of this paper, we define the coefficient of
friction as µ = Ft/Fn when slip is occurring, which can vary

Fig. 3. The likelihood of slip as a function of Ft/Fn across four materials
in the handheld experiment. Note that they all observe a range of uncertainty
with width differing across materials.

with loading and velocity and include a stochastic component.
We contrast this definition of µ to the fixed coefficient of
friction assumed by Coulomb’s model, which we will refer to
as “Coulomb’s coefficient of friction”, or µCoulomb.

Fig. 1C shows a typical example from the handheld exper-
iment that illustrates that the coefficient of friction can vary
significantly. µCoulomb is plotted as a dotted line for reference.
While Coulomb’s coefficient of friction, commonly sourced
from literature databases, is frequently utilized in robotics, its
accuracy is often limited with polymeric materials due to the
high variability of friction. In this plot, we define µCoulomb

as the mean value of µ across all data points collected from
the same surface material.

Fig. 1E plots the coefficient of friction against normal force
and velocity from the same experiments on a single material.
These findings confirm their correlation with µ, in agreement
with prior studies in the rubber friction literature.

Typically the use of Coulomb’s law to determine slip entails
comparing the force ratio Ft/Fn to the constant Coulomb’s
Coefficient of Friction, µCoulomb, to get a binary prediction:
when Ft/Fn < µCoulomb the contact will not slip, and
when Ft/Fn ≥ µCoulomb it will. However, these experiments
show that in practice, slipping may or may not occur as
Ft/Fn approaches µCoulomb from either direction, rather than
µCoulomb behaving as a discrete sharp boundary. Given that
the coefficient of friction is variable and stochastic in nature,
here we present a framework to estimate the coefficient of
friction and its uncertainty.

When Ft/Fn is low compared to µCoulomb, the likelihood
of slipping is 0% in practice; similarly, when Ft/Fn is high,
the likelihood of slipping is essentially 100%. Between the two
extremes, the likelihood of slip increases as Ft/Fn increases.
Fig. 1D shows the probability density of µ across various
contact conditions for a single material, which spans the wide
range from 1 to 2, as well as the likelihood of slipping, L, as
a function of Ft/Fn. L is calculated by binning samples by
Ft/Fn and calculating the slip-to-non-slip sample ratio in the
perspective bins. We model L by fitting a sigmoid curve to
the results. For this material, the model suggests that when
Ft/Fn ≤ 0.89 it never slips, and when Ft/Fn ≥ 1.55 it
always slips. Between these two values, whether a sample
point is slipping is uncertain based on Ft/Fn alone but exhibits
a probability distribution with defined uncertainty bounds.

Fig. 3 shows the likelihood of slip as a function of Ft/Fn for
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the four materials in the handheld experiment across subjects.
While there is a difference in the mean value of µ for these
diverse materials, as shown by the step function representing
Coulomb’s model, the plot also shows that in all four cases,
the range of uncertainty is substantial and exhibits variation in
width as well as its position relative to µCoulomb in each case.
Note that the widest span, in the case of smooth paper, covers
the range from 0.55 to 1.76, indicating that the variability
in µ can cover a notable three-fold span. Across subjects,
the differences are minimal. Note that for smooth paper,
subject 1 applied less variation in their strokes compared to
the other subjects (Fig. 9). The significance of this particular
detail underscores the fact that covering the desired span of
variability is key for repeatability. For the remainder of the
analysis, we group the data from all three subjects.

B. Limiting Normal Force or Velocity Range Narrows the
Distribution of µ

As expected for rubber friction, the coefficient of friction is
correlated with the normal force and contact velocity (Fig. 4).
As a result, the distribution of µ becomes narrower when given
prior information on normal force and/or contact velocity.

Fig. 4. The coefficient of friction with respect to the normal force (top row)
and contact velocity (bottom row) across four materials. Solid line represents
linear regression on the data.

Fig. 5. An example of using prior information on Fn to narrow the
distribution of µ. The top plot shows the likelihood of slip (raw data for
the slip-to-non-slip ratio of points in a certain Ft/Fn range) vs. Ft/Fn for
all data for the heavyweight paper. The middle plot shows the ratio for the
force range 2.0N < Fn < 2.2N . The bottom plot shows the probability
density function of µ in the above plots.

Fig. 5 shows an example of all heavyweight paper data vs.
data from a limited range of normal force, 2.0N < Fn <

Fig. 6. The distribution width (standard deviation) of µ as a function of
the window size of Fn and v. The left column shows variation for different
choices of window center value, and the right column shows variation for the
four materials (m1 to m4 for paint primer, smooth paper, heavyweight paper,
and canvas, respectively), centered at 4 N and 20 mm/s.

2.2N . From the probability density function, we see that with
prior information on Fn, the distribution of µ has a smaller
standard deviation (0.19 reduces to 0.09). This allows a more
precise estimation of the likelihood of slipping. Note that when
contact velocity v > 0, the contact is by definition slipping,
so while limiting the range of velocities will similarly narrow
the µ distribution, it will not narrow the likelihood function
because the results will be 100% slip for any velocity window.

To demonstrate the effect of window size on distribution
width for µ, we show that the shorter the window size, the
narrower the distribution becomes, i.e. the lower the standard
deviation (Fig. 6).

These findings indicate that the more information available
about the instantaneous contact conditions, the narrower the
distribution of µ becomes. This also suggests that it may be
possible to increase the precision of the model in situations
where other factors affecting µ (e.g., temperature or humidity)
can be measured.

C. Estimating Friction Parameters Using Regression Models

The observed variability of the coefficient of friction implies
that estimation of frictional properties is required for each
surface material. A straightforward and useful (although not
necessarily optimal) approach is to use linear regression on
data generated by a “test stroke” of the robot finger against
the material surface.

1) Linear Regression Model: The coefficient of friction µ
can be modeled with the linear regression

µ(t) = β0 + β1v(t) + β2Fn(t) + ϵ (1)

where β0, β1, β2 are constants specific to a given material, ϵ
is a random variable that represents the stochastic variation in
µ for this material, and t is time.

We fit the handheld dataset to a linear regression model,
resulting in moderately good linear fits and strong statisti-
cal significance (Table I). We define the absolute error as
e(t) = |µ(t) − µ̂(t)| where µ̂(t) is the estimated µ(t) from
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Fig. 7. The mean and standard deviation of absolute error of the estimation of
the coefficient of friction for our linear regression model vs. Coulomb’s model.
Our model outperforms Coulomb’s model in all four materials (m1 to m4 for
paint primer, smooth paper, heavyweight paper, and canvas, respectively). The
results from the robot hand experiment are on par with those of the handheld
experiment.

the regression model. We approximate the distribution of ϵ by
the distribution of e, i.e. σ̂ϵ = σe. Note that by definition, the
mean value of ϵ is 0.

Fig. 7 shows the mean absolute error ē and the standard
deviation of the absolute error σe across materials. For compar-
ison, we calculated Coulomb’s coefficient of friction µCoulomb

as the mean value of µ. The results demonstrate that the linear
regression model predicts µ more accurately, with ē and σe

roughly half the values for Coulomb’s model. This suggests
that while approximately half the variability of µ for these
particular materials is due to random variation, the remaining
half is due to dependence on normal force and velocity, which
can be compensated for in the linear regression model. We
note that here µCoulomb is optimized for the dataset and will
likely outperform generic Coulomb constants taken from the
literature.

We validated this result in a robotic grasping scenario using
two trials from the robot hand experiment. First, we fit a linear
regression model to one trial (training set); then we evaluate
the resulting model on the other trial (test set). The mean
and standard deviation of the absolute error for the test set
are shown in Fig. 7 next to the handheld dataset results for
comparison. Again, the linear regression model significantly
outperforms Coulomb’s model, and the resulting ē and σe are
on par with the results from the handheld dataset, suggesting
that the results from the handheld dataset are generalizable to
grasping and manipulation scenarios.

When using Ft/Fn to predict slip, the distribution of ϵ from
the regression model also sets the bounds of uncertainty. Here
we omit v and use the simple linear regression model µ =
β0 + β2Fn + ϵ, because knowing v would imply knowledge
of slip. This can be used to predict the likelihood of slipping,
L, from Ft/Fn, with the likelihood function estimated from
all the data collected on this material as in Fig. 3.

However, since we know that the coefficient of friction is a
function of Fn, we can get a better estimate of the likelihood of
slipping if we take Fn into account, i.e. L = f(Fn, Ft/Fn).

TABLE I
Material R2 F p

Paint Primer 0.643 28500 < 0.0001
Smooth Paper 0.553 17190 < 0.0001

Heavyweight Paper 0.580 25090 < 0.0001
Canvas 0.615 42250 < 0.0001

Fig. 8. An example of the variation in Ft/Fn during and across slipping
episodes and the likelihood of slip estimated by our model vs. Coulomb’s
model. Green highlights denote slipping intervals. Note that our model predicts
µ̂ with low error and reports a continuous likelihood of slipping.

First, we fit a likelihood function in small windows of Fn

as described in Section III-B. Specifically, for every 0.2 N
within the range of Fn between 0.6-4.4 N, we select a 0.6-N-
wide window and fit a sigmoid likelihood function defined as
L = 1/(1+e−c1(Ft/Fn−c2)). Then we interpolate the estimated
parameters as a function of Fn, i.e. c1 = f1(Fn), c2 = f2(Fn),
yielding the general form:

L = f(Fn, Ft/Fn) = 1/(1 + e−f1(Fn)(Ft/Fn−f2(Fn))) (2)

To illustrate the benefits of this approach, we show its
performance when applied to the handheld experiment data
previously shown in Fig. 1C. As seen in the bottom plot of
Fig. 8, Coulomb’s model results in a small error during the
first slip, but a significant, large error during the second. The
predicted coefficient of friction from the regression model,
µ̂(t), however, results in a significantly smaller error during
both slips. Here we plot the uncertainty bound µ̂(t) ± 2σe

in shaded red, and show that during the second slip where
we observe a small error between µ(t) and µ̂(t), µ(t) lies
in the region of uncertainty as predicted by our model,
and has a high likelihood of slipping. For determining the
likelihood of slipping, Coulomb’s model detects parts of the
first slip and completely misses the second slip with a binary
0/100% estimation, while our model reports a significant, if
not 100% likelihood of slipping during all slips. As expected,
as Fn(t) decreases, µ̂(t) increases, and as Fn(t) increases,
µ̂(t) decreases, resulting in a more accurate prediction.

2) Estimating Friction Parameters with a Single Stroke:
One advantage of using a linear regression model is the
relatively small number of parameters that must be estimated,
i.e. β̂0, β̂1, β̂2, and σ̂ϵ. This means that when encountering a
new material with unknown frictional properties, the robot can
simply perform stroke(s) on its surface in order to acquire a
reasonable estimate of these model parameters.

A key issue is the reliability of the parameter estimates
for small samples, e.g. a single stroke. The precision of
the regression coefficients β̂i can be calculated in terms of
their estimated standard errors, which are functions of the
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Fig. 9. The Fn-v span of all the data collected in the handheld experiment.

Fig. 10. Variability in the estimation of the friction parameters, β0, β1, β2

from µ = β0+β1v+β2Fn+ϵ with respect to varying Fn-v span percentage.

covariance matrix of the regression coefficients and σ̂ϵ [22].
Values are typically provided by multiple regression software.
In general, estimates of the friction parameters with a small
dataset such as a single stroke have the best precision when
the collected samples cover a large range of the independent
variables, and include the range that is likely to be encountered
in the planned task scenario. Specifically, since we model µ as
a function of Fn and v, the stroke should cover the anticipated
span of Fn-v.

To evaluate the effects of limiting the span in the Fn-
v space of data collection, we calculate the variability in
friction parameter estimation from small samples that do not
cover the entire range. For this analysis, we define 100%
span percentage as covering the entire Fn-v span of the full
handheld experiment dataset (Fig. 9). Specifically, we find the
convex hull of the slipping samples spanning the Fn-v space
and calculate its area Afull. For the ith subset of samples,
we find the corresponding convex hull area Ai and define the
span percentage as Ai/Afull × 100%.

We randomly select n (not necessarily consecutive) strokes
from the handheld dataset, calculate the span percentage, and
estimate the friction parameters β̂0, β̂1, β̂2 from (1). Here n is
an integer randomly sampled 500 times from the range 1∼40.
We found that friction parameters estimated from datasets
spanning a small percentage of the Fn-v space are highly
variable, and as the datasets cover a higher percentage of
span, the variability is reduced and the parameters converge
to steady state (Fig. 10). While the rate of convergence varies
across materials, in most cases the variability reaches close to
a steady state above 50% span.

In our analysis, we used varying numbers of strokes, but the
key is the percentage of the Fn-v span instead of the number of
strokes. Therefore, it is possible that a single stroke covering
≥ 50% span can reliably estimate the friction parameters
β0, β1, β2. To perform such a stroke, it is important to monitor
the span coverage during the data collection process. More
strokes can be added as needed, and more data would mean a
more accurate estimation of the distribution of ϵ.

D. Stochastic Friction Model for Practical Control

In addition to slip prediction and estimation of the coeffi-
cient of friction, the friction model described in Section III-C
can be used for practical control, specifically controlled sliding
and anticipation of sliding speed in contact motion planning.

1) Controlled Sliding: In some applications such as con-
trolling object re-orientation within the hand via sliding, it is
important to control the contact velocity or target a specific
speed. Using this model, one can find the ideal tangential force
Ft to apply to the contact to achieve a desired contact velocity
vd. By fitting data to the general form in (1), we can estimate
the friction parameters, β̂0, β̂1, β̂2, and use them to find the
estimated coefficient of friction, µ̂. This can be re-arranged to
solve for the target tangential force to be applied, F target

t :

µ̂ =
Ft

Fn

∣∣∣
slip

= β̂0 + β̂1v + β̂2Fn

F target
t = β̂0Fn + β̂1vdFn + β̂2F

2
n

(3)

For Fn, one option is to apply a suitable Fn via force
control, then plug in vd to find the optimal tangential force
F target
t to apply to the contact; alternatively, the applied Fn

can be measured and Ft adjusted to F target
t to reach the

desired contact velocity.
2) Prediction of Contact Velocity for Motion Planning:

In other applications, it could be helpful to predict contact
velocity given measurements of Fn and Ft in grasp control
or manipulation. This can be helpful for adapting to the
current contact condition, planning subsequent motions, and
perceiving how fast and how far the robot finger has traveled
when contact velocity cannot be measured. For instance, if
friction parameters can be estimated using benchtop sensors
in a constrained environment such as the laboratory, this model
can be deployed outside the lab to predict velocity if the
slipping condition is known. Similar to the derivation of (3)
above, using this model we can plug in the measurements
Fn, Ft and find the estimated velocity, v̂ as

v̂ =
( Ft

Fn

∣∣∣
slip

− β̂0 − β̂2Fn

)
/β̂1 (4)

IV. DISCUSSION & CONCLUSION

A holistic understanding of friction properties is key for
reliable and effective grasping and manipulation. The above
results demonstrate that for elastomeric robot fingertips, mod-
eling the coefficient of friction as a single constant as in
Coulomb’s law of friction results in large errors. This work
presents a framework for analyzing and understanding friction
in robotic applications. We model friction as a stochastic
variable that is a function of normal force Fn and contact
velocity v, whose distribution can be narrowed when given
a prior on Fn and/or v. This model predicts the likelihood
of slipping as a continuous function with respect to Ft/Fn,
instead of a step function according to Coulomb’s law. Friction
parameters can be estimated using regression models with as
little as a single stroke, and can be applied for practical control
of grasping and manipulation.

We emphasize that the contribution of this study is not
an optimal friction model nor an exhaustive evaluation of all
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Fig. 11. An illustration of the proposed workflow where a library of friction
parameters is created to streamline the process of finding friction parameters.
When a material is not found in the library, the robot can proceed to perform
test strokes to acquire friction parameters for this material, add it to the library,
then apply it to contact perception and planning.

materials in all conditions, rather, the provision of a framework
and method for incorporating more accurate friction models
in robotic applications. However, specifics of this approach,
particularly the variation of µ with Fn and v, have been
confirmed by the rubber friction literature to be generalizable
across a wide range of materials and conditions.

We became aware of the limits to the prediction of robot
friction in grasping during our attempts to develop controllers
that accurately predict the onset of slip. Despite the use
of state-of-the-art sensors and painstaking refinement of ex-
perimental methods, we found slip prediction had limited
accuracy, even in the simplest grasping configurations. This led
to the investigation of rubber friction models, and the creation
of the framework proposed here that accounts for the inherent
variability of polymer friction.

A. Implications for Robot Control

Treating the coefficient of friction, µ, as a random variable
enables reasoned trade-offs in grasp force for planning and
task control. For example, if a particular task requires con-
fidence in stability at the ≤ 0.1% risk of dropping an object
(e.g. manipulating a full cup of coffee), then knowledge of the
friction distribution function prescribes using a low value for
µ, at the price of higher grasp forces thus increased risk of
damaging the object. On the other hand, if only 5% stability is
needed (e.g. picking up a shirt), then the distribution function
prescribes using a higher µ for planning and control, resulting
in lower grasp forces.

While the test stroke(s) should center on the range of Fn and
v to be used in the manipulation task, spanning wider ranges
and collecting more samples allow more precise estimates of
friction model parameters and better estimates of ϵ. For tasks
where fine control is required, extended data collection might
be worth the time and labor to collect and process.

This framework enables the workflow illustrated in Fig. 11:
a library of friction parameters for a collection of materials can
be generated with offline data in a laboratory setting. When
a robot is about to grasp an object, a material-recognition
mechanism (e.g. friction sensors, computer vision algorithm,
etc.) can determine what material it is and retrieve its cor-
responding friction parameters. These friction parameters can
then be applied to contact strategy. This is particularly useful
when either Fn or v is not available from in-hand sensing. The
robot will still be able to use the results, albeit in a limited

fashion. In the event that a material is not found in the library,
the robot can proceed to perform a test stroke to acquire the
friction parameters for this material, add them to the library,
then apply them to contact perception and planning.

Local slip sensing could minimize or eliminate the need for
friction models for detecting slipping. However, such sensors
are an active area of research (e.g. [23]–[26]) and there is no
widely adopted practical solution as of yet. Another way to
detect slip is to adopt a slip detection algorithm using signals
from various in-hand sensors. This is also an active area of
research [27]–[31], for which our method provides a practical
solution. However, slip sensing alone cannot anticipate slip-
ping before it occurs. For many applications, detecting a slip
once it has already occurred may be too late to be useful,
in which case the likelihood of slipping can provide valuable
insight.

B. Implications for Machine Learning

1) Simulation and Transfer Learning: State-of-the-art
physics engines for simulating contact for robot grasping and
manipulation often struggle to fully and accurately represent
the complex behavior at contacts. When the coefficient of
friction is represented in simulation, Coulomb’s law of friction
is often assumed, and µCoulomb is often arbitrarily set to 1,
taken from the literature, or user-defined.

In this work, we show that the coefficient of friction is a
stochastic variable that changes significantly with respect to
normal force and velocity. The maximum observed value of
µ can be as large as three times the minimum, spanning a
wide range. This implies that it is important to include this
function in simulations. An accurate representation will not
only make simulations more realistic but in the case of sim-to-
real adaptation via transfer learning, may also result in faster
and better learning.

2) Reduced Sensor Suite in Deployment Using Reinforce-
ment Learning: In our prior work, we introduced an approach
to reliable grasping using Reinforcement Learning (RL). In
this approach an RL controller is trained using contact-sensor-
based reward functions, but with minimal contact information
in the state feedback. After training, the system was capable
of reliable grasping, even with minimal contact sensing on the
deployed version of the hand [32]. Analogously, we propose
training an RL model on a robot hand equipped with high-
precision tactile sensing for contact force, contact velocity,
and slip condition. This information can be used in the
reward function to achieve high accuracy in estimating µ
and/or detecting slips, but omitted from the state feedback.
This model can then be deployed on robot hands with a
reduced sensor suite, lowering their cost and streamlining the
fabrication process. Further studies will be required to validate
the effectiveness of this proposed strategy.

C. Limitations and Considerations

1) Linear Regression vs. More Sophisticated Models:
Although our analysis focused on linear regression models,
this method is not constrained to this particular model. In fact,
a more sophisticated model for µ = f(Fn, v, ...) could further
improve the results. For µ as a function of Fn, we implemented
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the linear model as well as the following models based on the
references in Section I: µ = aFn + b, µ = 1/(aFn + b),
and µ = a/F 3

n + b. We show the corresponding R2 values
in Table II. For µ as a function of v, analytical models were
not available from the literature to the best of our knowledge.
Ultimately, we adopted the linear regression model based on its
simplicity, transparency, interpretability, and the fact that it is
on par with other proposed analytical models in the literature.

TABLE II
R2 VALUES FOR VARIOUS MODELS OF µ = f(Fn).

aFn + b 1/(aFn + b) a/F 3
n + b

Paint Primer 0.56 0.59 0.29
Smooth Paper 0.48 0.51 0.24

Heavyweight Paper 0.43 0.44 0.24
Canvas 0.25 0.25 0.13

2) Additional Friction Parameters: In this work, we fo-
cused on the relationship between friction vs. normal force and
contact velocity. When other sensing modes become available,
this model can be easily expanded into a more complex multi-
variable function by incorporating new parameters such as
temperature, humidity, and contact area, whose relationship
to µ is not constrained to a linear model.

D. Conclusion and Future Work

In conclusion, modeling friction as a stochastic function that
varies with respect to normal force and contact velocity can
better handle the complexities involved in frictional phenom-
ena, which is key for advancing reliable grasping and manip-
ulation. This can enhance a range of robotics applications,
including analytical grasp modeling and planning, machine
learning approaches, or physics engines for simulations. In
future work, we aim to apply this model to more real-
world grasping and manipulation planning and analysis on
everyday objects with a more diverse set of surface materials,
geometries, weight, texture, and stiffness.
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