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Abstract

Undergraduate students are expected to produce and comprehend constructive
existence proofs; yet, these proofs are notoriously difficult for students. This study
investigates students’ thinking about these proofs by asking students to validate two
arguments for the existence of a mathematical object. The first argument featured
a common structural error while the second was a valid argument of the claim. We
found that the students often considered the logical structures of the arguments
when validating them. They provided reasons for their evaluations, including why
they thought the structure of the first argument functioned to prove the claim and
why they thought the structure of the second argument did not function to prove
the claim. We discuss how these reasons provide insights into why constructive
existence proofs might be challenging for students. We end the paper with implica-
tions for the teaching and learning of constructive existence proofs and their proof
frameworks.

Keywords Constructive existence proofs - Existence claims - Proof framework -
Explanatory proof - Proof validation - Proof

Introduction

Proofs and proof-activity are central components of mathematics students’ under-
graduate courses and as such, have received wide attention from mathematics
education researchers. Scholars often differentiate students’ activity when work-
ing on the formal-rhetorical part of a proof from the problem-centered part (e.g.,
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Fukawa-Connelly, 2012; McKee et al., 2010; Selden & Selden, 2010, 2013). Cre-
ating the formal-rhetorical part includes unpacking and using the logical structure
of the associated claim to create or make sense of the logical structure of an argu-
ment, the result of this process is a proof framework (see Fig. 1 for an example of
a proof with its framework in bold). Selden and Selden (2013) explain that while
proof frameworks can be difficult for students with little experience with proof,
they generally do not require a deep understanding of the concepts involved. Yet,
that is not to say that important mathematical work is absent from creating the
formal-rhetorical part of proof. We see proof frameworks as one of the many con-
ventional systems that the larger mathematics community uses to communicate
mathematical meanings, thus providing a rich context for discussions about lin-
guistic choices that are used to discern these meanings (Kontorovich & Zazkis,
2017; Larsen et al., 2022; Vroom, 2022). This study investigates students’ think-
ing about the structure of proofs, specifically for proofs that argue the existence
of a mathematical object.

Undergraduate students are expected to produce and comprehend existence
proofs, or proofs that argue the existence of a mathematical object. Claiming the
existence of a mathematical object is prevalent in undergraduates’ proof-activity
as it is common in both theorems (e.g., Mean Value Theorem, Cauchy’s Theorem
in group theory) and defining properties (e.g., € — 6 definition of continuity, the
identity element of a group). Regardless of its prevalence, scholars have recog-
nized that existence proofs are notoriously difficult for undergraduate students,
especially since their prior experiences in secondary mathematics rarely neces-
sitate arguing the existence of an object (De Guzmaén et al., 1998).

In our classroom experiences, as well as discussions with other experienced
instructors of proof-based courses, we have noticed that when attempting to prove
the existence of a mathematical object, students often produce an argument with a
flawed framework. Their argument starts with a desired property and then contin-
ues solving for the object. For instance, in Fig. 2 a student produced such an argu-
ment to show that given a group G and two elementsa, b € G, there exists x € G
such that ax = b. The argument deduced from the property ax = bthat x =a~! - b.
Rather than proving the existence of the desired mathematical object, the argu-
ment shows that if ax = b, then x =a~' - b. Given the perceived prevalence of
this framework error and our view that students can and will engage in meaning
making, we wondered what mathematical thinking students engaged in as they
produced or endorsed an argument of this nature.

In this study, we explored students’ thinking about an argument for the exist-
ence of a mathematical object that featured an error in the framework, as well as
students’ thinking about a valid argument of the same existence claim. In doing

Fig. 1 Example of valid exist- Let G be a group and let a,b € G. Then there exists an = in G such that a %z =b.
H : Proof:
ence prOOf with framework in Let G be a group with operation x.
bold Let a and b be in G.
Choose x =a"! *b.
Then, x is in G since a™! is in G, bis in G, and G is closed.
So,a*x=a*(at*b)=(axal)*b=exb=b.
Therefore, there exists € G such that a*xz =b.
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Let G be a group and let a,be G. Then 3 x € G s.t. ax =b.

proof: Since a € G then 3aleGst. al-a=a-al=e
Soar=b=>alar=a'b=ex=a'lb=>al-b=x

Since a!,b€ G then by rule 0, (a™'-b) e G ..a'-b=z€G

Fig.2 Example of student argument with logical error with typed proof below

so, we gain a better understanding of the mathematical work that students engage
in when working on the formal-rhetorical part of a proof.

Theoretical Grounding

In what follows we first describe what we mean by proof, proof-activity, and con-
structive existence proofs. Then, we situate our work in relevant research literature.

Proof and Proof Activity

We draw on Stylianides’ (2007) characterization of proof in school mathematics:
“Proof is a mathematical argument, a connected sequence of assertions for or
against a mathematical claim, with the following characteristics:

1. Tt uses statements accepted by the classroom community (set of accepted state-
ments) that are true and available without further justification;

2. Itemploys forms of reasoning (modes of argumentation) that are valid and known
to, or within the conceptual reach of, the classroom community; and

3. Itis communicated with forms of expression (modes of argument representation)
that are appropriate and known to, or within the conceptual reach of, the class-
room community” (p. 291).

We emphasize two points about this definition. First, what constitutes a proof is
dependent on the audience’s accepted statements, modes of argumentation, and rep-
resentation. For example, an argument that is viewed as a proof by a mathematician
may be rejected by a student because it uses a form of reasoning unfamiliar to the
student. Throughout the paper, we specify when we consider the students’ evalu-
ation of an argument. When we classify an argument as valid (or invalid), we are
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referring to our view of whether the larger mathematics community would accept
(or reject) the mathematical argument as a proof of a given statement based on for-
mal logic.

Second, Stylianides’ (2007) definition indirectly suggests that an argument that
meets the three characteristics establishes the truth of the statement. To make this
explicit, we further clarify that the associated mathematical claim plays a role in the
second characteristic: when evaluating whether a mathematical argument is a proof,
one should consider whether the argument uses acceptable modes of argumentation
that are for (or against) a known mathematical claim. We see proof frameworks as a
way to determine this. For instance, in the student argument above (Fig. 2), the stu-
dents’ proof framework assumes ax = b to deduce x = a~!- b, which is inconsistent
with the associated claim and thus does not establish its truth. While we acknowl-
edge that a given argument could prove a different claim than what is given, when
we say that an argument was (or was not) viewed as a proof, we mean that the argu-
ment was (or was not) viewed as a proof of the given claim.

Scholars have distinguished between proofs that only convince and proofs that simul-
taneously convince and explain (i.e., explanatory proofs) (e.g., Bartlo, 2013; Lockwood
et al., 2020; Weber, 2010). In this study, we leverage two aspects of explanatory proofs
that are consistent with Lockwood et al. (2020) characterization. First, a proof that is
explanatory to a mathematician may not give the same insight to a student, and thus,
explanatory proofs can be audience-dependent. Because of this, a prover who wanted
to provide insight into why a statement is true would consider their audience. Second,
the explanatory nature of a proof is closely tied to the activity of constructing the proof;
a reader often finds a proof to be explanatory if it gives them insight into the informal
reasoning that was used to create it. Thus, a prover who wanted to produce an explana-
tory proof for a particular reader might include an appropriate amount of their problem-
solving that led them to determine why the statement was true.

The research literature on students’ proof-activity has historically focused on
construction, comprehension, or validation. Constructing a proof is the mental and
physical actions of producing a proof, comprehending a proof is making meaning
of the given text as one reads a proof, and validating a proof is checking whether a
mathematical argument proves a given mathematical claim. As with many scholars
(e.g., Melhuish et al., 2021; Selden & Selden, 2003, 2017), we see these activities as
inherently connected. We see comprehension and validation as mutually dependent
activities; one cannot validate a proof without comprehending it nor can one com-
prehend a proof without understanding its validity. Selden and Selden (2003, 2017)
explain that students’ proof construction and validation are necessarily interrelated:
“...one constructs a proof with an eye toward ultimately validating it and may often
validate parts of it during the construction process. In fact, the final part of a proof
construction is likely to be a validation of that proof” (Selden & Selden, 2003, p. 6).
Because of this, we argue that we can gain insight into why students construct an
argument like the one in Fig. 2 by investigating their validation of such an argument.

One common aspect among these proof activities that is particularly relevant to this
study is attention to the proof framework. While comprehending proofs, students can
coordinate the statement being proven, the proof technique, and the necessary assump-
tions and conclusions (Mejia-Ramos et al., 2012; Weber, 2015). While validating proofs,
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students can evaluate whether the structure works to prove the claim (Selden & Selden,
2003). When constructing a proof, Selden et al. (2018) recommend students create a
proof framework to organize the logical structure of their argument. The student intro-
duces the claim’s assumptions by introducing the appropriate variables, leaves space to
later fill in the middle of the argument, and ends with the statement’s conclusion. The
prover can add another layer of their framework by “unpacking” the conclusion. Selden
and Selden (2013) note that with enough practice, identifying an appropriate proof
framework can be a relatively procedural task involving little to no problem-solving.

Once their framework is complete, they can begin problem solving how to fill in
the middle of the argument. This problem-solving can sometimes include starting
by fictitiously assuming the conclusion to deduce what is known to be true based on
the givens of the statement. Then, the prover can reverse the argument to start with
the givens and end with the sought-after conclusion. This strategy is consistent with
what is called the analysis-synthesis method (Lakatos, 1978).

In this study, we asked students to engage in proof validation of two arguments:
one is a valid argument while the other is invalid because it uses an invalid proof
framework (similar to the argument in Fig. 2). We investigate the students’ valida-
tion activity to not only understand students’ reasons for the evaluations of the argu-
ments, but also to better understand how students might think about the arguments
and why students might construct a proof with this structural error.

Proofs of Existence Claims

Brown (2017) explained that existence proofs take two forms: constructive or non-
constructive. A constructive existence proof ‘“either explicitly produces the desired
result or provides an algorithm for its production” (p. 468—469). Whereas a noncon-
structive proof “establishes the theorem as a consequence of previous theorems or as
a logical necessity” (p. 469). Brown provided two proofs of the claim that there exist
irrational numbers a and b such that a” is rational. The constructive proof introduced
the irrational numbers a = \/5 and b = log,9 and then demonstrated that the desired
property, a’ is rational, was met. The nonconstructive existence proof relied on the

V2
logical necessity that either (1) a =b = \/E or(2)a= \/5 and b = \/5 must sat-

V2
isfy the desired property since \/5 is either rational or irrational.

In Brown’s (2017) study, she investigated students’ conviction of the two proofs.
Despite prior literature supporting the conjecture that students would be more
convinced by the constructive argument (Harel & Sowder, 1998; Leron, 1985),
Brown found that the students in her study tended to deem the constructive proof
as less convincing, providing some evidence for students’ skepticism for construc-
tive existence proofs. Further, the students often gave unexpected reasons for their
selection. For instance, more than half of the students that viewed the constructive
proof as more convincing did not mention its constructive nature and some students
seemed to interpret the non-constructive proof as a constructive one. Thus, Brown
highlighted that students’ interpretations of a proof might differ from the standard
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mathematical interpretation. This suggests that there are potential methodological
issues in work that draws on preconceived notions about what is communicated
with a given proof to understand how the students interpret it. Research that aims
to understand students’ interpretations should use approaches that bring to light the
arguments from the students’ point of view.

We argue that another aspect of constructive existence proofs may impact how
students comprehend and validate them. Published existence proofs, and likely those
provided by instructors, vary in the extent to which the process of identifying the
desired object (or a procedure for generating it) are communicated. On one end of
this spectrum, a prover offers an object as a candidate early in the proof without
details of how the prover found it and then shows that the object fits the desired
property (e.g., the proof in Fig. 1). On the other end, the prover details the construc-
tion process. The proof in Fig. 3 shows that given any € > 0, there exists a math-
ematical object, denoted &, that fits a desired property (i.e., if 0 < |x — 2| < 6 then
|g(x) — 4| < €). This proof shares with the reader more information about how the
prover went about selecting 6 = min{1,e/5}.

The prover must strategically decide an adequate amount of information to share
with the reader in such a way that the argument is logically connected with the asso-
ciated claim. For example, presumably the prover of the argument in Fig. 1 selected
x = a~! * bby first solving the desired equation a * x = b for x. However, the prover
tactically left this information out since proving if a * x =b, then x=a"! * b
was not the goal of the argument. In contrast, the prover of the proof in Fig. 3 was
quite strategic by including their problem-solving work without a logical flaw. The
amount of detail that the prover shares with a reader might also impact how stu-
dents comprehend and validate the proof. The framework of the proof in Fig. 1 is
straightforward in that one could match the framework to the statement; however,
such a concise framework contains a great deal of precise meanings that students
may not yet be able to unpack. The proof in Fig. 3 describes more informal reason-
ing for how the prover found the proposed value for 6; however, a consequence of
the lengthier description is that the framework is more hidden.

Fig.3 An example of a more Let’s show
explanatory constructive exist- lim g(z) = 4,
T2
ence proof (borrowed from
Abbot, 2015, p. 117) where g(z) = z%. Given an arbitrary € > 0, our goal this time is to make

lg(z) — 4| < € by restricting |z — 2| to be smaller than some carefully
chosen d. As in the previous problem, a little algebra reveals

lg(z) — 4] = |o® — 4] = |z + 2|z - 2|.

We can make |z — 2| as small as we like, but we need an upper bound on
|z+2| in order to know how small to choose 8. The presence of the variable
z causes some initial confusion, but keep in mind that we are discussing
the limit as « approaches 2. If we agree that our d-neighborhood around
¢ = 2 must have radius no bigger than § = 1, then we get the upper bound
|z +2] < [3+2| =5 for all z € Vs(c).

Now, choose § = min{1,¢/5}. If 0 < |z — 2| < 6, then it follows that

|22 —4] = |z +2||lz — 2| < (5)% =

and the limit is proved.
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Insights from the Literature

While the research literature on students’ thinking about proof and proving in gen-
eral is mounting, there are only a handful of studies that explicitly discuss students’
thinking about existence proofs (Brown, 2017; Samper et al., 2016; Schaub, 2021).
In what follows, we review the literature on students’ proving activity to gain insight
into how students might think about constructive existence proofs.

There are several studies that have investigated students’ attention (or lack
thereof) to the structure of arguments in general. These studies show that students
might view an invalid argument with a flaw in the framework as a proof because
they ignore the logical flaw or doubt the structure of the argument matters (Selden &
Selden, 2003; Weber, 2009, 2010). Weber (2009, 2010) interviewed 28 mathemat-
ics majors asking them to read various arguments presented as potential proofs, or
purported proofs. One of which featured a logical flaw by assuming “n is divisible
by 3” to prove that “If n? is divisible by 3, then n is divisible by 3" (i.e., assumed the
conclusion). Similar to Selden and Selden’s (2003) findings which also used this
argument, Weber found that more than half of the students viewed the argument
as a proof. Twelve of these students gave the argument the highest marks in terms
of their personal conviction and its rigor despite the flaw in the proof framework.
Weber explained that many of the students did not check whether the argument used
appropriate assumptions and conclusions. This is consistent with other findings that
students tend to focus on “surface features” such as computational aspects of an
argument rather than the logical structure (Inglis & Alcock, 2012; Selden & Selden,
2003). Interestingly, Weber (2009) also found that some of the students who viewed
the argument as a proof attended to the structure by identifying that the argument
started with what they wanted to prove but, as one student put it, “I don’t know if the
formatting matters” (p. 15). Thus, when students are considering proofs of existence
claims, the structure of the argument may not impact their validation.

Studies have also identified that students have difficulties with the mathematical
language used in proofs (Moore, 1994; Selden & Selden, 1995), and specifically,
that students may not understand the nuanced ways that mathematical objects are
introduced and used (Lew & Mejia-Ramos, 2019). In the context of existence proofs,
Samper et al. (2016) argue that teachers need to deliberately support the students in
understanding the strategy for proving existence claims in geometry. This included
supporting the students to understand what object to introduce, how they could
introduce the object, and why it was guaranteed. This is because in their experience,
students tended to introduce random objects and attempt to force the desired proper-
ties on them. Given that constructive existence proofs often introduce a particular
object as a candidate early in the argument, these studies suggest that students might
not fully understand the subtle way that such an argument establishes the existence
of the desired object and may need intentional support to gain this understanding.

Of particular relevance to our study, Schaub (2021) presented a classroom epi-
sode of an inquiry-oriented Real Analysis class constructing a proof of an existence
claim. During the episode, the class discussed leaving out the algebraic work that
led the students to find a desired mathematical object from their final proof while
proving a particular sequence converged by employing the € — N definition. In the
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case that a sequence converges, the definition claims the existence of a mathematical
object, denoted N: for every € > 0, there exists a positive integer N such that for all
n>N, |an - L| < €. During the episode, the instructor transformed the class board
work for finding an N into a proof, which included “Let N > [3/e — 1/2]” imme-
diately after introducing an arbitrary positive epsilon. After the instructor wrote the
full proof on the board, she acknowledged that it seemed off putting because it was
unclear why the prover chose the particularN, explaining:

“...[The proof] has this weird like ‘where did you get that?’ and the answer is we
got that by working out the problem backwards. Assuming what we wanted to prove,
finding what N should be, and then sticking it in and proving that it works. And this
step is super important because this is a proof in the right order. Start with epsilon,
find big N, and show that beyond that point, we are always close, and close means
within epsilon, of our limit” (Schaub, 2021, p. 168).

A student then expressed some discomfort with this strategy, explaining, “I’ve
always had a problem with this way of writing a proof” adding, “because we do
things, we find the answer the only way we can, and then we pretend like we didn’t
do it that way” (Schaub, 2021, p. 168). This student’s comment suggests that stu-
dents might have issues with constructive existence proofs that are not transparent in
how the prover found the mathematical object.

The reviewed literature suggests that constructive existence proofs are non-trivial
for students. Students’ difficulties may be related to the proof framework, how the
object is introduced and used in the proof, and lack of transparency for how the
prover went about finding the mathematical object. In the current study, we inves-
tigate: how do students think about arguments for the existence of a mathematical
object? To answer this question, we created models of the students’ thinking as they
evaluated arguments for the existence of a mathematical object. That is, we used
observable data (students’ utterances, gestures) to describe our understanding of
the students’ thinking. This understanding adds to the current research literature by
identifying why constructive existence proofs might be challenging for students. In
doing so, we view our study as important steps towards better supporting students
to engage in constructing, comprehending, and validating constructive existence
proofs.

Methods
Interviews

This study is part of a larger design research project that is developing inquiry-oriented
Introduction to Proof curriculum and instructor support materials (Advancing Students’
Proof Practices in Mathematics through Inquiry, Reinvention, and Engagement project,
NSF DUE #1916490). The course is designed so that the instructors can use materials
in the context of real analysis (via exploring the Intermediate Value Theorem, IVT)
and/or group theory (via exploring Symmetry groups). The course was intended for stu-
dents who had not yet taken any undergraduate proof-based courses. During the course,
students reinvented key concepts (e.g., sequence convergence or the definition of group)
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and engaged in various related proof construction tasks. Of particular relevance, the
students were sometimes tasked to prove various existence claims, during which the
instructors often mentioned the problem-solving needed to find the desired object prior
to writing the proof. At this point in the design project, the curriculum did not include
tasks designed to explicitly support students in learning about how constructive exist-
ence proofs can be a valid proof of an existence claim, or why an argument that starts
with the desired property is not a valid proof.

Students exiting the courses were invited to complete a survey which asked them
to interpret a collection of mathematical statements as well as describe their experi-
ences in the course, views about mathematics, and demographic information. At the
end of the survey, students were invited to participate in an additional interview.
The data for this study comes from 16 semi-structured interviews (not including
pilot interviews) from students at two universities enrolled in three different classes
with different instructors. At one university two instructors implemented both group
theory and real analysis materials during a 10-week term whereas the instructor at
the other university implemented real analysis materials during a 15-week semester.
The interview tasks were either in the context of groups or functions depending on
the course context. See Table 1 for an overview of the data.

There were two interview components that corresponded to two distinct research
goals. The first component followed-up with the students regarding their experiences
in the course. The goal for this component was to better understand these experi-
ences in order to inform later course implementations. The second component is the
focus of this report and was designed to engage students in proof validation tasks.
The goal was to understand how the students thought about the purported proofs.
We then used our interpretations of their thinking to design additional instructional
tasks for the course that would target students’ proof comprehension, validation, and
construction of existence claims. The full interview typically lasted an hour with the
second component lasting between 30 and 40 min.

We were both present for each of the interviews. The interviews were facilitated
remotely via Zoom and a shared Google Doc and were video-recorded capturing
the students’ gestures and typed work. When we refer to individual students, we use
a code to indicate their proof validation for each argument and the context of the
interview tasks. For instance, the label “NPG-7” represented that the participant did
not view the first argument as a proof (represented by “N”), viewed the second argu-
ment as a proof (represented by “P”), the arguments were in the group context (rep-
resented by “G”), and they were the seventh interviewee (represented by “7”). We
used “F” to represent the tasks in the function context and “U” to represent the one
instance in which a student was ultimately undecided about the validity.

Interview Tasks
There were three main parts of the second component of the interview: we asked

students to (1) (re)interpret a given existence statement, (2) describe their sense
making and validation of the Invalid Argument, and then (3) describe their sense
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Table 1 Overview of Data

Term/Semester School Course Content Interview Number of Participants
Context

Summer 2020  Community College ~ Group Theory Group 3 (Pilot Data)

Term A
Fall 2020 Term  University A Group Theory +Real  Group 6

Analysis

Winter 2021 University A Group Theory +Real  Group 5

Term Analysis
Spring 2021 University B Real Analysis Function 5

Semester

making and validation of the Valid Argument. See Figs. 4 and 5 for the statements
and the Invalid and Valid Arguments. The students did not see the labels “Invalid
Argument” or “Valid Argument” during the interview. Additionally, the students
did not initially see the underlined text in the arguments (we will elaborate on this
methodological choice later). The students interviewed with the group context had
previously discussed the statement in detail and approaches for proving it during the
class. In the function context, the students had previously conjectured various func-
tion properties that would guarantee the existence of a real root (e.g., IVT). Prior to
the interviews, the students had not engaged with tasks that asked them to evaluate
the two arguments given in Figs. 4 or 5.

We constructed the Invalid Arguments in Figs. 4 and 5 based on our experiences
with students. It was relatively common during the interviews for students to com-
ment that the argument was how they would construct a proof of the given state-
ment. For instance, before PPG-11 saw the Invalid Argument, he explained that he
would start proving the given statement by “left multiplying both sides of this equa-
tion [a * x = b] by a~! and then it would just be x = a~!' * b”. When he was given
the Invalid Argument, he confirmed that this was the approach that he explained
earlier, saying “That’s what I was getting at, yeah.” While we acknowledge that in

Group Context
Statment: Consider the group G with operation *. Let b be in G. For every a in G, there
exists an z in G such that a * z = b.

Invalid Argument: Valid Argument:

Let G be a group with operation x. Let G be a group with operation *.

Let b be in G. Let b be in G.

Let abein G. Let a be in G.

Then, axz=b Choose = a™! +b. By closure, z is in G
Tmplies that a1 » () = o~ *b sincealisin Gandbism G,
Which implies that (a™!*a) *z=a"1 b Then

Which implies that exz=a™' b a*x;a*(a‘l*b)= (axal)*b=exb=b.
Which implies that z = a™! * b.

By closure z is in G since ™! is in G and b is in G.

Fig.4 Group version of the statements and purported proofs
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Function Context
Statement: Let f be a real-valued function defined by f(z) = mz +b. For all real numbers
m and b with m # 0, there exists a real number ¢ such that f(t) = 0.

Invalid Argument: Valid Argument:

Let f be a real-valued function defined by Let f be a real-valued function defined by

f(z) =mz +b. f(@)=mz+b.

Let m, b be in R such that m # 0. Let m, b be in R such that m # 0.

Ther}’ ft)=0 Choose t = —b/m. Since m # 0, t is a real number.
Implies that mt +b=0 Then, f(t) = f(~bJm) = m(=bJm) +b=—-b+b=0.

Which implies that mt = -b
Which implies that ¢ = —b/m.
Since m # 0, t is a real number.

Fig.5 Function version of the statements and purported proofs

both contexts the solved-for object must fit the desired criteria, we view this argu-
ment as invalid since this is not always the case for existence claims of this form.
We constructed the Valid Arguments to show two parts of the desired property: 1)
the mathematical object is a solution to the desired equation (e.g., a % x = b) and
2) the mathematical object is a member of the desired set (e.g., x € G). The first
part is accomplished through the string of equalities at the end of the proof while
the second is accomplished by the underlined text after the mathematical object is
introduced.

We conducted three pilot interviews which supported refinements to the inter-
view protocol. We found one strategy to be particularly effective in eliciting stu-
dents’ thinking about the arguments: during the second and third part of the inter-
view we periodically added, deleted, or adapted lines of the arguments, asking
students whether the change altered the meaning of the argument and if the change
was necessary. We found this to be a useful interviewing technique in two ways.
First, by asking about the necessity of specific lines, we focused students’ attention
beyond the surface features and on the inner-workings of the argument in relation
to the statement. Second, it supported us to see the arguments from the students’
point of view: the students’ responses included their view of how each line func-
tioned to convey the prover’s argument, and thus, centering the student’s view of
the prover’s argument. We added this interviewing technique to the protocol in two
ways. First, we added the underlined text in Figs. 4 and 5 after the students had dis-
cussed their initial thinking about the purported proof. We decided to focus on these
lines because they were part of the proof frameworks. We decided to add the lines
after their initial thinking to allow the students opportunities to identify potential
disconnects between the proofs and the statements without our prompting. Second,
we added individualized follow-up questions of this nature depending on the discus-
sion. This methodological choice is consistent with Vroom’s (2022) technique that
was rooted in social semiotic theory (Halliday & Matthiessen, 2013) that surfaced
students’ views of meaningful grammatical choices. Additionally, we view this
approach as following Brown’s (2017) recommendation that research that engages
students in comparing proofs should seek to understand student activity from the
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eyes of the student as opposed to interpreting it through an observer’s predetermined
criteria.

Part 1: Interpret the Statement

The task-based interview began with the student and researchers opening a shared
Google Doc that displayed the statement. The students that were interviewed using
the group context were previously asked to determine if the statement was true or
false and explain why on the exit survey. The students were prompted to re-read the
statement and their response and then asked whether they agreed with their earlier
response. Students interviewed using the function context were not surveyed about
their interpretation of the statement. In this case, the students were given the state-
ment and then asked about the meaning, whether the statement was true or false, and
why. In either case, we continued to ask follow-up questions until we were satisfied
with our understanding of the students’ interpretations. At this point in the inter-
views, all of the interviewees indicated that the given statement was true.

Part 2: Make Sense of the Invalid Argument

Next, we pasted the Invalid Argument (without the underlined text) into the docu-
ment and presented it as a student’s proof of the statement. After we gave the par-
ticipant time to read the argument, we asked them to discuss their thinking about
the purported proof following up with whether or not they thought it was a valid
proof and why. We then added the underlined text to the argument and prompted the
student to explain whether or not the new text was needed and whether it changed
the meaning of the argument. We continued to follow up with the student regarding
what they saw as the prover’s argument.

Part 3: Make Sense of the Valid Argument

Then, we pasted the Valid Argument into the document explaining that it was a dif-
ferent student’s proof of the statement. Again, we allowed participants time to read
the argument and asked the same follow-up questions as we did with the Invalid
Argument. We then added the two underlined texts one at a time to allow discussion
for each. Throughout this discussion we elicited how the participant considered the
first prover’s argument as different or similar to the second prover’s argument. Addi-
tionally, we asked how the students saw the statement as connected or disconnected
to each of the purported proofs.

Data Analysis
Our data analysis process was consistent with a thematic analysis (Braun & Clarke,

2006). Together we engaged in a cyclic process examining each interview tran-
script and corresponding video data for evidence of the students’ thinking about the
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existence statement and two arguments. To do so, we focused on the following guid-
ing questions:

e How did the student describe their interpretation of the statement?

— Did the student’s description of the statement change over the course of the
interview? (If yes, how so, and why?)

e How did the student describe their initial thinking about the Valid/Invalid Argu-
ments?

— Did the student indicate it was a proof or not? Why?

— How did the student describe the logical argument?

— Did the student change the way they described their thinking about the Valid/
Invalid Argument over the course of the interview? (If yes, how so, and why?)

e How did the student discuss the two arguments in comparison to each other?

For each student, we discussed our answers to these guiding questions until we
could come to an agreement on how we would interpret their thinking. We docu-
mented our answers to the questions with relevant quotes and our shared-interpretation
of the quotes in an analytic memo. By answering these questions, we developed initial
descriptions of our understanding of each of the student’s thinking about the two argu-
ments and why they did or did not view them as proofs. After creating each analytic
memo, we compared our understanding of the student’s thinking to the previous. Dur-
ing this comparison, we generated and refined a list of the ways in which we under-
stood how the participants thought about the arguments and how this related to their
views of the arguments as proofs or not.

Results

In this section, we share our interpretations of the students’ ways of thinking about
the mathematical arguments, and how, if at all, this could explain the students’ view
of the arguments as proofs. We summarize our reasons for why the students in our
study viewed the arguments as proofs (or not) at the end of each subsection. Table 2
offers an overview of the students’ assessments of the arguments by providing the
frequency of each of the proof validation combinations.

The Invalid Argument Shows How to Find the Mathematical Object

The majority of the participants (N=12) indicated that the Invalid Argument
showed how to find the mathematical object. For instance, PNG-3 explained that
it described “the process of finding that element [x] for which that [a % x = b] is
true”. The students whose thinking did not fit in this category either did not elabo-
rate on the prover’s logical argument after they pointed to an error (NPG-8, NPG-9,
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Table 2 Overview of students’

e Student Validations of Student Validations of  Frequency®
validations of the two arguments

Invalid Argument Valid Argument

Not a proof Proof 7
Proof Proof 4
Proof Not a proof 2
Not a proof Not a proof 2

*This count does not include PUG-4 was undecided about the valid-
ity of the Valid Argument

NPG-10) or else explained that the prover showed that if there exists an x in G such
that a % x = b, then x must be in the form a~! * b (NPG-1).

Some of the students who saw the Invalid Argument as showing how to find the
mathematical object viewed it as a proof (N=7), while others did not (N=5). One
salient reason that these students claimed it was a proof was that it elaborated why
the existence claim was true by showing the algebraic work to construct the claimed
object. For instance, when PPG-11 compared the two arguments, he explained that
he had a preference for the Invalid Argument since it showed how to find the object,
saying: “I prefer to see the steps, right. Like, I think I prefer to see like the thought
process happen in real time...” It was common for these students to mention that the
Invalid Argument was an appropriate proof for more novice readers. For instance,
PPF-16 explained, “I could see where somebody at a lower math level would appre-
ciate having that”. We see these students as thinking the Invalid Argument was an
explanatory proof for less experienced students as it provided insights about how to
construct the claimed object.

Some of the students who viewed the Invalid Argument as a proof since it showed
how to find the object explained why starting with the desired equation was not a
flaw in the logic. PPG-11 explained:

“No, they don’t start with the thing that they’re trying to prove. They’re trying to
prove that x needs to be an element in G. Right. That’s what we’re trying to prove,
that there exists an x in G such that the statement is true.”

While this student seemed to view the property a * x = b as a way to describe a
desired characteristic of x, the student focused on showing that such a group element
existed. PPF-16 explained that it was appropriate to start by “assuming that there
exists a real number 7 that makes the function equal to zero” because “we know that
whatever number we’re going to solve ¢ to be is always going to make that [ f(¢)]
zero”. To this student, the prover could show that there existed a real number ¢ such
that f(f) = 0 by solving the desired equation for ¢ because the value that they solve
for must be the value that makes f(r) = 0 true'.

There were other students who deemed the Invalid Argument as a proof who
pointed to the logical necessity of showing how to find the mathematical object.

! If the reader interpreted the implicit warrants in the proof to be bi-directional, then they would feel
confident that the solved for object would have to be a solution.
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PUG-4 explained that she preferred the Invalid Argument because it made sense to
her and she could see the statement connecting to the argument. She said:

“I think it makes more sense mathematically. But also in context of the problem
that we’re supposed to show ‘for every a there exists an x...’, you know? So, I like
that it gets, you know, it starts here, this is the equation that we’re given. This is
what we have and then here’s the x that exists and that’s like proof. That’s why I like
it, because it’s kind of in the order of the proof...”

We interpret her comment to mean that she not only could follow the algebraic
steps, but she saw it as fitting the logical structure of the given statement. PNG-6
further articulated why from her perspective the Invalid Argument was a proof.
When asked how she saw the argument connected to the statement she explained
that the prover showed that “no matter what the a is, we’re able to figure out an x,
that will equal b when you do that [operation].” To these students, an appropriate
approach to show that one could find a desired mathematical object was to show
how to find it.

Four of the 5 students who did not view showing how to find the object as a proof
explained that it assumes there exists the desired object when it solves the desired
equation for the value. Some of these students commented on the utility of the alge-
braic work even though it should not be part of the proof. For instance, NPG-5 said:
“That [‘Then a * x = b'] assumes the conclusion and then works from that. Which
is like one of those good strategies you use to write a proof, but you do it separately
and then try and write it the other way.”. Interestingly, the fifth student who did not
see the Invalid Argument as a proof viewed the argument as a necessary part of the
proof, but alone was incomplete. To NNF-15, the Invalid Argument showed why
x = —b/m and that it was a real number but “it has not proven that f(x) = 0. It is just
stating ‘hey, this is what we’re trying to solve for’...”.

In summary, we saw most of our students as identifying the prover of the Invalid
Argument as showing the process of finding the desired mathematical object. We
viewed the students in our study as thinking about the argument in at least one of the
following ways:

e The argument was a proof since it showed the existence of the desired object by
explaining why such an object fit the desired property,

e The argument was a proof since it fits the logical structure of the statement,

e The argument was not a proof since it assumed the existence of the desired
object, or

e The argument was not a proof since it had only solved for the desired object but
also needed to show the desired property was true.

The Valid Argument Shows an Instance of the Mathematical Object
All the students in our study (N=16) were able to identify that the Valid Argument

introduced an instance of the mathematical object. For instance, when asked to walk
through the prover’s logic in the group theory context, NPG-8 explained “they’re
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just choosing an x, which is essentially what the problem is asking for. It’s just say-
ing, just find, just find one of them”.

While all students saw the Valid Argument as identifying a particular instance of
the mathematical object, some students did not view it as a proof (N =5)>. We iden-
tified two reasons that these students had this view. First, four students explained
that by starting with an instance of the mathematical statement, the prover incor-
rectly assumed the existence of the object instead of deducing its existence. For
instance, when discussing why the Valid Argument may not be a proof, PUG-4
stated: “because it starts with the x - that’s a little confusing to be like ‘oh, for every
a, an x exists’ but that’s what they’re saying right here, this is the x that exists”. For
this student, like the other three, the prover could not start with x = a~! « b because
by doing so they assume that the object exists. The fifth student who did not view
the argument as a proof had a different reason. Similar to his reasoning for why the
Invalid Argument was not a proof, NNF-15 saw the Valid Argument as only provid-
ing half of the necessary argument, saying “you would also have to prove why x is
equal to —b/m, you can’t just state that”. Unlike the other four students, NNF-15
viewed the Valid Argument as a necessary part of the proof since the prover showed
the mathematical object met the desired equation (i.e., f(x) = 0). To NNF-15, you
would need the two arguments together to make a proof.

Among the 11 students who thought the Valid Argument was a proof, one salient
reasoning was that it was logical but had a jump in explanation. For example,

“The second [argument], just like tosses that up there. So, they maybe did some
side work or maybe were just able to see it. But, uh, but they kind of leave a lot of
their reasoning off the page” (PPG-11).

While these students also acknowledged that the prover omitted relevant reason-
ing from the reader by introducing an object up front, we see these students as think-
ing that the proof only needed to convince rather than explain to the reader how to
find the object.

There were several students who explained that the Valid Argument was a proof
since it only needed to show the existence of one element that met the desired prop-
erty. NPF-12 explained:

“So, since we only have to prove there exist one number we don’t have to prove
for all real numbers, we just have to find that one real number for which the equation
is equal to zero, so I guess, we could say that, like to let it be equal to —b/m and then
use that to show that the equation is zero.”

Several of these students (among others) did not see the line that the mathemati-
cal object was an element of the claimed set (i.e., “By closure, x is in G since a™!is
in G and b is in G” or “since m # 0, t is a real number) as being necessary for the
argument. For instance, NPG-9 explained:

“I don’t think it’s necessary, but I think it’s helpful. [...] Explaining why x is in
there like, to me, it was just kind of intuitive because you define it in terms of things
that are already in G...”

2 This count includes PUG-4 who offered a reason why the Valid Argument was not a proof, but did not
ultimately commit to her decision.
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NPG-9 as well as others saw this line as simply adding further explanation and
clarity for the reader rather than a necessary part of the conclusion.

In summary, we saw all the students as thinking the Valid Argument introduced a
specific mathematical object. We viewed the students in our study as thinking about
the argument in at least one of the following ways:

e The argument was not a proof because it assumed the existence of the object
instead of deducing its existence,

e The argument was not a proof because it only showed that the object met the
desired property but not how they found the object,

e The argument was a proof since it showed the existence of the mathematical
object but had a jump in explanation when the mathematical object was intro-
duced,

e The argument was a proof since it only needed to show the existence of one ele-
ment that met the desired property, or

e The argument was a proof since it showed the existence of the mathematical
object even without arguing the mathematical object was in the desired set.

The Arguments are Structured in Different Ways

Most of the students in our study identified the different logical structures of the
arguments (N=15). Many of these students described them as “opposite” of each
other or explained how the first deduced information from the desired equation
whereas the second concluded the desired equation. For instance, when comparing
the two arguments PNG-3 stated that “this one [the Invalid Argument] shows how
they got to that x and this one [the Valid Argument] just like here’s the x and you
get b when you multiply by a”. The one student’s thinking that did not fit in this cat-
egory saw both arguments as proofs that were structured in the same way.

Some students indicated that the structural differences mattered to them, that
is, only one of the frameworks structured the argument to prove the claim. This
depended on the students’ view of the goal of the argument. These students dis-
cussed two different goals. First, some students thought that a proof should con-
clude with the mathematical object instead of assuming it at the start - these students
tended to be the ones who thought a) the Invalid Argument was a proof because it
explained how to find the mathematical object and b) the Valid Argument was not
a proof because it assumed the existence of the object instead of deducing its exist-
ence. PNG-3 explained:

“Well, we’re trying to conclude that there exists an x. Okay yeah, so I don’t think
proof two [the Valid Argument] is [a proof], because that is the conclusion, that
there exists an x such that a % x = b. Whereas in this one [the Invalid Argument]
we’re definitely looking for that x, in the first one. Because I think that the conclu-
sion should be that there exists an x in G such that a = x = b, and our givens are that
ais in G and that b is in G, essentially and that’s it.”

She later confirmed that to her the Valid Argument assumed the conclusion by
introducing the element x = a~! * b at the beginning of the argument. Second, there
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were some students who thought that the argument should conclude that the desired
property held for an instance of the mathematical object. These students were the
ones that a) did not think the Invalid Argument was a proof since it assumed the
existence of the desired object and b) thought the Valid Argument was a proof since
it only needed to show the existence of one element that met the desired property.

Other students indicated that the structural differences did not matter to them.
These students either explained that neither argument effectively proved the claim
(N'=2) or else viewed both arguments as proofs (N=3). The students who thought
neither were a proof thought so because neither had acceptable or complete frame-
works. NNG-2 identified that both arguments had issues with how they started. She
discussed that a proof of the existence statement needed to deduce the mathematical
object rather than assume it, leading to a clear rejection of the Valid Argument due
to it starting “with our conclusion and not with our beginning”. She preferred the
Invalid Argument saying it was “the proof in the correct direction” but explained
that it needed one fix. She explained:

“I wouldn’t just say ‘then’ I would say, like I think that’s more of like a ‘consider’
or ‘if’. [...] Yeah if a * x = b (emphasis added).”

This suggests she also viewed the Invalid Argument as making the error by start-
ing with an ineffective assumption. To her, the Invalid Argument no longer assumed
unknown knowledge when she changed the beginning of the argument to a condi-
tional statement by adding “if”. NNF-15 was the other student who viewed neither
as a proof. As we have previously discussed, he thought the two arguments were
structurally different in that they accomplished different, but necessary parts. To
him, the frameworks were incomplete on their own.

The other three students who did not think the structural differences mattered
viewed both arguments as proofs. These students acknowledged that one could con-
struct different proofs to show the existence of the mathematical object. They saw a)
the Invalid Argument as a proof since it showed the existence of the desired object
by explaining why such an object fit the desired property and b) the Valid Argument
as a proof with a jump in explanation when the mathematical object is introduced.
We interpret this as them seeing one proof as being more explanatory to certain
readers, while another may only convince. For these students, the first proof pro-
vided additional information that the second proof left out. While both arguments
were valid, the intended reader differed. For instance, PPF-13 explained:

“So, this one [the Invalid Argument] feels like it’s more like explain it like your
five and the other one [the Valid Argument] is more like assume they already know
what it means to go from there and that they’re both valid, but they’re both different
ways of doing it.”

To PPF-13, and the other two students whose thinking fit in this category, the two
arguments accomplished the task of finding the object, they just did so in different
ways. As PPG-11 stated: “It’s just the construction of it [the two arguments] that’s
different [...] They [the provers] both understand that x needs to be equal to a~! * b
whatever a is.” Unlike these students, a fourth student, PPF-14, who viewed both
arguments as proofs, thought that they followed a parallel structure. Like the three

@ Springer



Int. J. Res. Undergrad. Math. Ed.

students in this category, PPF-14 also saw the explanatory power of the first argu-
ment, but saw it as an expanded version of the second argument. He explained:

“They start the same and then this one [the Valid Argument] jumps straight to
choose t = —b/m. So, it’s assuming [...] that hey you were able to complete these
steps on your own, essentially. [The Invalid Argument], it’s showing you, step by
step. And this one’s [the Valid Argument] just assuming - okay, we start with A
[pointing to the first line] we go to B [pointing to the “Choose” line] we hit C [point-
ing to the last line with the string of equalities] and there’s our answer. This one [the
Invalid Argument] is - we started A [pointing to the first line] here’s how we get to B
[highlighting the algebraic work that leads to t = —b/m] here’s an example of it and
then there’s C [pointing to the last line], which is also our answer so it’s just giving
those extra steps to somebody.”

In summary, we saw that all but one of the students in our study identified that the
arguments were structured in different ways. We viewed these students as thinking
about the arguments in at least one of the following ways:

e Only the Invalid Argument had an effective framework since it was the only one
that concluded the mathematical object instead of assuming it at the start,

e Only the Valid Argument had an effective framework since it was the only one
that concluded the desired property held for an instance of the mathematical
object,

e Neither of the arguments functioned as proofs since neither had acceptable or
complete frameworks,

e Both of the arguments functioned as proofs since the Invalid Argument was more
explanatory to certain readers while the Valid Argument only convinced.

Conclusion and Discussion
Students’ Thinking About Constructive Existence Proofs

Returning to our research question, our study found that students thought about
arguments for the existence of a mathematical object in several different ways. Some
students identified that an argument that started with the desired property and then
solved for the object was not a proof, while other students offered reasons why to
them such an argument proved the claim. Additionally, there were also students who
identified that an argument that introduced the object as a candidate early on and
then showed that it fit the desired criteria was a proof. Yet, there were other stu-
dents who offered reasons why to them such an argument was not a proof. Despite
the different ways that the students validated the arguments, their reasons tended to
attend to the logical structure of the arguments. This is in contrast to prior studies
that have documented that students ignore the structure of proofs or think that they
do not matter (Selden & Selden, 2003; Weber, 2009, 2010). Of particular interest,
the students provided reasons for why they thought the structure of the Invalid Argu-
ment functioned to prove the claim and why they thought the structure of the Valid
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Argument did not function to prove the claim. This offers insights into why con-
structive existence proofs might be challenging for students.

In reference to the Invalid Argument, we found two reasons for why some stu-
dents in our study saw starting with the desired property (e.g., a * x = b) as accept-
able. First, some of the students viewed the Invalid Argument’s framework as fitting
the logical structure of the existence statement. For them, the statement required that
one show how to find the desired object and thus needed to start with the prop-
erty and end with the object itself. Second, other students viewed it as a way to
add transparency when showing the existence of the desired object by explaining
how one would find it. We saw these students as valuing the explanatory nature of
Invalid Argument while acknowledging it was not the only way to prove the exist-
ence of the object. These ways of reasoning can explain why students may produce
or endorse an argument that starts with a desired property and follows with solving
for the object: students may think that (a) the structure of the proof should logically
show how to find the mathematical object or (b) a reader should gain insight about
how the mathematical object was derived.

Additionally, we found there were students who did not view the Valid Argument
as a proof of the existence claim. In particular, there were students who saw the line
that introduced the object (e.g., Choose x = a~! * b) as assuming the existence of
the mathematical object. In other words, the argument did not prove the existence of
the object since it assumed it from the start. Such a view explains why students may
not think that proofs of existence claims can first introduce the object as a candidate:
students may think that such an introduction is logically invalid as it assumes the
conclusion.

Implications and Future Directions

Our findings motivate additional areas for research. First, we echo Brown’s (2017)
recommendation: there is a need for research on student’s conceptions of proof and
proof-activity from the students’ point of view. By prioritizing the students’ point of
view, we were able to describe important mathematical thinking from the students
that might have gone unnoticed if we conducted our analysis using preconceived
notions about what is communicated with the given proofs. Potential important
insights can be gained from future research that takes such an asset lens on students’
thinking about proof and proof-activity focusing on what students can do rather than
a deficit lens focusing on what students cannot do.

From our work, we see two potential avenues to further study students’ think-
ing about existence proofs. Our findings suggest that students might find value in
arguments that give insight into the informal reasoning used to construct it. More
research is needed to understand how students think about explanatory proofs. In
particular, a limitation of our study is that we did not ask students to validate a valid
and explanatory proof. It could be insightful to better understand how students think
about valid explanatory proofs in addition to invalid explanatory proofs like the ones
in our study. An extension of our study could be to ask students to validate four cat-
egories of arguments: 1) a valid explanatory proof, 2) a valid non-explanatory proof,
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3) an invalid explanatory proof, and 4) an invalid non-explanatory proof. To see how
students’ views of explanatory proofs extends beyond the context of constructive
existence proofs, future research might study students’ views of proofs of claims that
typically employ additional proof techniques. It might also be insightful to further
investigate students thinking about the labels used in existence proofs, or proofs in
general. For instance, one might investigate the influence on the choice of the letter
x in the statement and the Valid Argument on the students’ view that the argument
assumed the conclusion by presenting students with the Valid Argument without the
using x (e.g., “Considera™! * b” instead of “Choose x = a™! * b”).

Importantly, there is also a need to find ways to base instruction on student think-
ing to support them in learning about proof, including supporting students in learn-
ing about proof frameworks. As our findings show, there is important mathematical
work in the formal-rhetorical part of a proof, and we argue instructors should sup-
port students new to proof to engage in it. We see that discussions that elicit the
possible functions of the frameworks as deeply mathematical in the sense that such
a discussion would unpack nuanced ways to convey specific mathematical ideas. We
see such instruction far more productive than a procedural approach to proof frame-
works that simply asks novice students to practice matching the given statement’s
assumptions and conclusions to the structure of the argument without any discussion
related to the meaningful choices of the framework.

Engaging students in comparing the two arguments in this study seemed to be a
productive activity for eliciting possible student interpretations of the prover’s argu-
ment and how that argument did or did not prove the given statement. We suspect
such an activity would lead to productive classroom discussions that could support
students in better understanding constructive existence proofs. We emphasize sev-
eral points of discussion that our findings suggest would be particularly advanta-
geous. First, while finding the mathematical object is a critical step in constructing
the proof, it is not the goal of the argument. Instructors should take care to support
their students in recognizing that starting from a desired property can be a produc-
tive problem-solving strategy to find a claimed object but also why this work may
not show-up in a proof, or if it does, how the prover must carefully do so. This is
related to our second point: we see that there is a need to support students in under-
standing how one might construct a valid explanatory constructive existence proof.
That is, if students have this desire, then instructors should support them in add-
ing insight into how they found the object while preserving the connection between
the logical structures of the associated claim and their argument. Third, instructors
could act as a broker between the classroom community and the larger mathematics
community (Rasmussen et al., 2009; Vroom, 2020) to support students in under-
standing how introducing an object as a candidate early in the proof does not assume
the conclusion and how the argument establishes the existence of the desired object.

We see our study as important steps in supporting students in engaging in proof-
activity related to existence claims by providing different ways in which students
might think about constructive existence proofs and their frameworks. There is
important mathematical work in understanding the formal-rhetorical part of a proof
that students can, and should, engage in, including how a proof framework func-
tions to prove the claim. We hope that future work will investigate the affordances of
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instruction that goes beyond procedural frameworks in supporting students in con-
structing, comprehending, and validating proofs of existence claims.
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