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ABSTRACT

The group isomorphism problem determines whether two groups,
given by their Cayley tables, are isomorphic. For groups with order
n, an algorithm with p(logn+0O(1)) running time, attributed to Tarjan,
was proposed in the 1970s (Miller, STOC 1978). Despite the extensive
study over the past decades, the current best group isomorphism
algorithm has an n(1/4+0(1)10g7 rynning time (Rosenbaum 2013).

The isomorphism testing for p-groups of (nilpotent) class 2 and
exponent p has been identified as a major barrier to obtaining an
no1ogn) time algorithm for the group isomorphism problem. Al-
though the p-groups of class 2 and exponent p have much simpler
algebraic structures than general groups, the best-known isomor-
phism testing algorithm for this group class also has an nO(logn)
running time.

In this paper, we present an isomorphism testing algorithm for
p-groups of class 2 and exponent p with running time nO((logm)™*)
for any prime p > 2. Our result is based on a novel reduction to the
skew-symmetric matrix tuple isometry problem (Ivanyos and Qiao,
SIAM ]J. Computing, 2019). To obtain the reduction, we develop
several tools for matrix space analysis, including a matrix space
individualization-refinement method and a characterization of the
low rank matrix spaces.
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1 INTRODUCTION

The group isomorphism problem is to determine whether two
groups, given by their Cayley (multiplication) tables, are isomor-
phic. The problem is among a few classes of problems in NP that are
not known to be solvable in polynomial time or NP-Complete [24].
The group isomorphism problem and its variants have close con-
nections to cryptography, computational group theory, and alge-
braic complexity theory [30]. Furthermore, following Babai’s break-
through on the quasi-polynomial time algorithm for graph iso-
morphism [4, 5], group isomorphism has become a bottleneck for
an n°(1°8") time algorithm of graph isomorphism because group
isomorphism reduces to graph isomorphism.

The group isomorphism problem has been extensively studied
since the 1970s [7, 8, 11, 16-18, 21, 22, 25, 26, 32, 34-36, 38, 39, 41—
45,50, 54, 55]. A simple algorithm for group isomorphism, attributed
to Tarjan, picks a generating set in one of the groups and checks for
all possible images of the generating set in the other group, whether
the partial correspondence extends to an isomorphism [39]. Since
every group of order n has a generating set of size at most log, n,
this algorithm results in an nlog, n+0(1) running time. The current
best-known algorithm for the group isomorphism problem has an
n(1/4+0(1)) log, n running time [43].

It is long believed that the isomorphism testing of p-groups of
class 2 and exponent p is a major bottleneck for the group isomor-
phism problem [7, 15, 17, 18, 35, 36, 43]. A group G is a p-group of
(nilpotent) class 2 and exponent p for some prime number p if every
element except the identity has an order of p, and G is not abelian
but [G, [G, G]] only contains the identity element, where [G, H]
denotes the group generated by xyx~!y~! for all x € G,y € H.

The best-known algorithm for the isomorphism testing of p-
groups of class 2 and exponent p does not have a major advantage
in the running time, being n®{1°8:) [43], over the general groups,
even though the structure of p-groups of class 2 and exponent p
was well understood [13, 51, 54, 55], and the isomorphism testing of
this group class has been studied in depth [15, 17, 18, 35, 36, 43, 46].
Hence, to develop a better algorithm for isomorphism testing of
general groups, it is necessary to provide a faster algorithm for
p-groups of class 2 and exponent p.

1.1 Our Result

In this paper, we present an isomorphism testing algorithm for
p-groups of class 2 and exponent p with n°1°8") running time for
any odd prime p.

THEOREM 1.1. Let G and H be two groups of order n. If both G
and H are p-groups of class 2 and exponent p for some prime number
p > 2, then given the Cayley tables of G and H, there is an algorithm
with running time n©((10g W) 1o determine whether G and H are
isomorphic.
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Theorem 1.1 utilizes the Baer’s correspondence [13], which re-
duces the group isomorphism problem for p-groups of class 2 and
exponent p to the isometry testing problem of skew-symmetric
matrix spaces.

A square matrix A is a skew-symmetric matrix if AT = A In
the isometry testing problem for skew-symmetric matrix spaces,
the input consists of the linear bases of two skew-symmetric matrix
spaces U and B. The problem is to decide whether there is an
isometry S from U to B, i.e., an invertible matrix S such that SUS T
B, where SUST is the linear span of the matrices SAST for all the
matrices A € A. We prove the following result for the isometry
testing problem of skew-symmetric matrix spaces.

THEOREM 1.2. Let A and B be two linear matrix spaces, both
of dimension m, such that every matrix in W or B isann X n
skew-symmetric matrix over Fp for some prime number p > 2
and positive integers m, n. There is an algorithm with running time
po((”J"")L8 1og(p)) to determine whether there is an invertible n X n
matrix S over Fp such that SUAST = 8.

We obtain Theorem 1.2 by combining several new tools to ana-
lyze matrix spaces, including an individualization-refinement method
for matrix spaces, a characterization of low rank matrix spaces, and
a reduction from the isometry testing of skew-symmetric matrix
spaces to the isometry testing of skew-symmetric matrix tuples [30].

To obtain Theorem 1.1, let k denote logp(n), We apply Theo-

rem 1.2 for the case of k > (log,(p))® by constructing the skew-
symmetric matrix spaces for both input groups according to the
Baer’s correspondence [13]. Theorem 1.2 implies the running time

for this case is n®(1°8™**) For the case of k < (log, (»)°, we
run the aforementioned generating set enumeration algorithm [39].
Because every p group of order pk has a generating set of size at
most k, the running time of the algorithm for this case is po(kz),
which is also nO((logm**),

1.2 Related Work

The group isomorphism problem has been studied for variant
group classes. Polynomial time algorithms have been developed for
abelian groups [32, 45, 50], groups formed by semidirect products
of an abelian group and a cyclic group [34, 54, 55], groups with
normal Hall subgroups [42], groups with abelian Sylow towers [11],
and groups with no abelian normal subgroups [8]. Dietrich and
Wilson recently showed that the group isomorphism problem can
be solved in nearly linear time for most orders [21].

For p-groups of class 2 and exponent p, algorithms for some
nontrivial subclasses of this group class have been proposed [17, 18,
35]. Li and Qiao showed that if the p-groups of class 2 and exponent
p are generated randomly, then the isomorphism testing problem
can be solved in polynomial time in the average case [36]. In [15],
the average case running time was further improved to linear. In
this work, we focus on the isomorphism testing for p-groups of
class 2 and exponent p in the worst case.

The refinement methods, such as the naive refinement [9] and
Weisfeiler-Leman refinement [52], have been powerful tools for the
graph isomorphism problem. The refinement methods have been
successfully used for graph isomorphism testing algorithms [2,
3, 6,9, 10, 12, 19, 20, 27-29, 33, 37, 40, 47, 48, 53, 56], including
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the celebrated quasi-polynomial time algorithm for graph isomor-
phism [4, 5].

The refinement approach does not extend to groups in a naive
way. Several representations of groups that allow refinement have
been proposed. In [15], the authors defined a hypergraph using
recursively refinable filters and proposed applying the Weisfeiler-
Leman refinement on the hypergraph. Brachter and Schweitzer
proposed defining colors of group element tuples by group oper-
ation patterns of the elements involved in the tuple and applying
the Weisfeiler-Leman refinement to refine the colors of element
tuples [14]. Both approaches can distinguish between several non-
isomorphic constructions of p-groups of class 2 and exponent p.
However, it was unclear how these refinement methods could be
used to develop faster worst case isomorphism testing algorithms.

The isometry testing of skew-symmetric matrix spaces was stud-
ied in [16, 25, 26, 36]. Its applications in cryptography were investi-
gated in [15, 31, 49].

2 PRELIMINARIES

We give the notations and previous results used in this paper.

2.1 Notations

Throughout the paper, the vectors and matrices are over F, for a
prime number p > 2. Let F}} be the linear space of row vectors of
length n over Fp. Unless specified, the vectors are row vectors. We
use (-) to denote the linear span.

Matrices. Let M(n,F)) (and respectively M(m,n,FFp)) be the lin-
ear space of n X n (and respectively m X n) matrices over Fp. Let
GL(n,Fp) be the group of n X n invertible matrices over F,.

For a matrix A € M(m,n,Fp), let rank (A) be the rank of A, and
AT be the transpose of A. A square matrix A € M(n, Fp) is a skew-
symmetric matrix if and only if A = —AT . Forany 1 < i < m,1 <
J < n,let A[i, j] be the entry of A in the i-th row and j-th column.

For two matrices A, B € M(mxn,F;), A is lexically smaller than
B if there exist 1 < ¢ < mand 1 < r < n such that the following
conditions hold:

o Ali,j] = Bli,jl] forany1 <i < qg-1,1< j < norany
i=ql<j<r;
e Alg,r] <Blg.r].

Matrix Tuples and Matrix Spaces. An m X n matrix tuple A of length
k, denoted as A = (Ay,...,Ag), is an element in M(m, n, Fp)k.
For any P € M(a,m,Fp) and Q € M(n, B,Fp) with some positive
integers « and f, let

PAQ = (PA1Q, PA, Q, ..., PALQ).

An m X n matrix space U is a linear subspace of M(m,n, ]Fp).
For any P € M(a, m, IFP) and Q € M(n, f, Fp) with some positive
integers @ and f3, let

PUAQ := (PAQ : VA € ).

Since any linear combination of skew-symmetric matrices of the
same dimension is also a skew-symmetric matrix, we use SS(n, Fy)
to denote the linear space of all the n X n skew-symmetric matrices.
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2.2 Isometry and Equivalence for Matrix
Tuples and Spaces
We define equivalence relations for matrix tuples.

Definition 2.1 (Matrix tuple equivalence). Let A = (Ay, ..., Ag)
and B = (Bj, ..., By) be two matrix tuples in M(m, n, Fp)k. A and
B are equivalent if there exist two matrices P € GL(m,F,) and

Q € GL(n,Fp) such that PAQ = B.

Definition 2.2 (Skew-symmetric matrix tuple isometry). Let A =
(A1,...,Ar) and B = (By, ..., Br) be two skew-symmetric matrix
tuples in SS(n, Fp)k. A and B are isometric if there exists a matrix
P € GL(n,Fp) such that PAPT = B. Such a matrix P is called an
isometry from A to B.

In this paper, we use the algorithm for the isometry testing of
two skew-symmetric matrix tuples (Theorem 2.4) and the algorithm
for the equivalence testing of two matrix tuples (Theorem 2.3), both
proposed by Ivanyos and Qiao in [30].

THEOREM 2.3 (PROPOSITION 3.2 OF [30]). Given two matrix tuples
A = (Ay,...,Ar) and B = (By,...,By) in M(m, n,Fp)k for some
prime p > 2 and positive integers k, m and n, there is an algorithm
with running time poly(k, n, m, p) to determine whether A and B
are equivalent.

THEOREM 2.4 (THEOREM 1.7 OF [30]). Let A = (Ay,...,Ay) and
B = (By,...,Br) be two skew-symmetric matrix tuples of length
k such that the matrices in A and B are of dimension n X n over
Fy for some prime p > 2. There is an algorithm with running time
poly(n, k, p) to determine whether there is an isometry from A to B.
If yes, the algorithm also returns an isometry from ‘A to B.

Following the definitions for matrix tuples, we also define the
isometry of skew-symmetric matrix spaces.

Definition 2.5 (Skew-symmetric matrix space isometry). Let A, B
be two skew-symmetric matrix spaces. 2 and B are isometric if
there exists a matrix P € GL(n,Fp) such that PUAPT = B. Pis called
an isometry from U to B if P exists.

In Section 2.3, we will use the Baer’s correspondence to reduce
the group isomorphism for p-groups of class two and exponent p to
the problem of isometry testing for skew-symmetric matrix spaces.

2.3 Baer’s Correspondence

For a p-group of nilpotent class 2 and exponent p, let pk denote
the order of the group. Because of the class two and exponent p
condition, G/Z(G) is isomorphic to Z}, and [G, G] is isomorphic
to ZZ’ for some positive integers n and m such that n + m < k,
where Z(G) denotes the center of G, and [G, G] denotes the group
generated by xyx~!y~! for all x,y € G. Taking an arbitrary basis of
G/Z(G), an arbitrary basis of [G, G], and taking the commutator
bracket, we obtain a skew-symmetric bilinear map bg : ]FZ X Fg —
IF;,” which can be represented by a skew-symmetric matrix tuple
G = (Gy,...,Gpy) such that every G; is a matrix in SS(n, [Fp). Such
a skew-symmetric matrix tuple is called a skew-symmetric matrix
tuple of G.

For two p-groups G and H of nilpotent class 2 and exponent p,
it is necessary for H to be isomorphic to G that

dimz, (G/Z(G)) = dimg, (H/Z(H))
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and

dimg, (G, G]) = dimz, (1, H])
The following theorem, also called Baer’s correspondence, was
proved by Baer in [13].

THEOREM 2.6 (BAER’S CORRESPONDENCE [13], REPHRASED). Let
G and H be two p-groups of class two and exponent p for some prime
number p with the same order. Let G and H be the skew-symmetric
matrix tuples of G and H, respectively. If both G and H arenxn skew-
symmetric matrix tuples of length m, then G and H are isomorphic
if and only if there are matrices P € GL(n,F)) and Q € GL(m,Fp)
such that

Gi= ) QI jl(P-H; - PT).
j=1

Furthermore, we can also represent skew-symmetric matrix tu-
ples of groups by skew-symmetric matrix spaces. Given an arbitrary
skew-symmetric matrix tuple G of group G, the skew-symmetric
matrix space ® of G is the linear matrix space spanned by matrices
in G. Hence, Baer’s correspondence can be rephrased as follows.

COROLLARY 2.7. Let G and H be two p-groups of class two and
exponent p for some prime number p with the same order. Let ® and
9 be the skew-symmetric matrix spaces of G and H, respectively. G
and H are isomorphic if and only if ® and $) are isometric.

3 TECHNICAL OVERVIEW

We provide an overview of the algorithm for the isometry testing
of skew-symmetric matrix spaces (Theorem 1.2).

The main idea of proving Theorem 1.2 is to reduce the isometry
testing of skew-symmetric matrix spaces to the isometry testing of
skew-symmetric matrix tuples, which can be solved efficiently by
Theorem 2.4. The difference between the two problems is that the
correspondence between matrices from two matrix tuples is fixed
by the indices of the matrices, whereas for matrix spaces, no such
correspondence is given.

For an input of the skew-symmetric matrix space isometry test-
ing problem, let m be the dimension of the input matrix spaces and
n be the number of rows (or columns) for each square matrix in the
matrix spaces. If one enumerates all the possible correspondences
between the matrices of the two matrix spaces, then the running
time of the algorithms is O( pm2 -poly(m, n, p)), which offers no im-
provement on the isomorphism of p-groups of class 2 and exponent
p.

In this work, we give a po((”””)l'g'bgp) time reduction to the
skew-symmetric matrix tuple isometry problem. The reduction is
obtained by investigating several new tools for analyzing the struc-
ture of skew-symmetric matrix spaces, including a matrix space
individualization-refinement method (Section 3.1) and a characteri-
zation of the low rank matrix spaces (Section 3.2).

3.1 Individualization-Refinement for Matrix
Spaces

One powerful technique for graph isomorphism is the method

of individualization-refinement [2-4, 6, 9, 12, 19, 47, 48, 56]. For

graphs, the individualization-refinement method first chooses a

set of a small number of vertices and assigns each chosen vertex
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a distinct vertex color, and then it refines the vertex colors by
assigning distinguished vertices different colors in a canonical way
until vertices of the same color cannot be further distinguished.

A natural question for the group isomorphism problem is whether
it is possible to define individualization-refinement operations for
group isomorphism. Based on the connection between group iso-
morphism for p-groups of class 2 and exponent p and the skew-
symmetric matrix space isometry problem [13], Li and Qiao pro-
posed a matrix space individualization-refinement method, which
follows the individualization-refinement for random graphs [9], and
analyzed the isometry testing of skew-symmetric matrix spaces in
the average case [36].

In this work, we propose a different matrix space individualization-
refinement to enable the analysis of the isometry of skew-symmetric
matrix spaces in the worst case. Consider an m X n matrix space
A. The individualization in our scenario is defined by a left individ-
ualization matrix L and a right individualization matrix R, where
L is a matrix with m columns and R is a matrix with n rows. In
the refinement, we compute LAR for each matrix A € . If LA’R
does not equal LA”'R for some A’,A” € U, then A’ and A" are
distinguished.

Ideally, if LA’R does not equal LA”'R for any two matrices A’
and A” in ¥, then each matrix A in the space can be uniquely
identified by LAR, and thus all the matrices in U are distinguished.
Consider two isometric skew-symmetric matrix spaces A and B.
Let Lg; and Ry be individualization matrices for U that distinguish
all the matrices in U. Let Lgs and Ry be individualization matrices
for B such that

-1
Ly = LyS™" and R = (ST) Ry

for some isometry S from A to B. One can distinguish all the ma-
trices in both spaces by their individualization matrices and then
establish a bijection between the matrices in the two spaces. Thus
the skew-symmetric matrix space isometry problem reduces to the
skew-symmetric matrix tuple isometry problem, which can be effi-
ciently solved by Theorem 2.4. Furthermore, suppose Ly contains a
small number of rows and Ry contains a small number of columns.
Then one can solve the skew-symmetric matrix space isometry
problem efficiently by enumerating all the possible corresponding
Ly and Rg.

We show that the number of rows for the left individualization
matrices and the number of columns for the right individualization
matrices are related to the rank of matrices in the matrix space.

LemMA 3.1. Let U be ad-dimensional matrix subspace of M(m, n, Fp)
for a prime p and some positive integers d, m, n. For any k > 4, denote

ti= [3zmax{dlog(p),k}/«/ﬂ.

There is a left individualization matrix L € M(t, m, Fp) and a right
individualization matrix R € M(n, t,FFp) such that for any A € A of
rank at least k, LAR is a non-zero matrix.

By Lemma 3.1, if every matrix (except the zero matrix) in a skew-
symmetric matrix space is of high rank, then the skew-symmetric
matrix space isometry problem reduces to the skew-symmetric
matrix tuple isometry problem efficiently.
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3.2 Low Rank Matrix Space Characterization

The hard case for the matrix space individualization/refine method
is that there are some matrices A in the space such that LAR are
zero matrices. Because of the linearity, such matrices form a linear
subspace of the original matrix space. To tackle this hard case, we
characterize the structure of the matrix space in which every matrix
is of low rank. Such a matrix space is called a low rank matrix space.

As our main technical result for the low rank matrix space char-
acterization, we show that, for a matrix space % such that every
matrix in the space is of rank at most r, there are invertible matrices
P and Q, called left and right formatting matrices, such that for
each A € %A, PAQ has non-zero entries only in the last O(r?) rows
or columns.

LEmMMA 3.2. Let A be a matrix subspace of M(m, n, Fp) or a skew-
symmetric matrix subspace of SS(n,Fp) such that for each A € U,
rank (A) < r for some positive integer r. There is a matrix P €
GL(m,Fp), a matrix Q € GL(n,Fp), and an integer £ = O(r?) such
that for any A € W, PAQIi, j] = 0 forall thel < i < n— ¢ and
1< j < n—¢. Furthermore, Q = PT if W is a skew-symmetric matrix
space.

We remark that similar characterizations were studied in [1, 23].
But to the author’s knowledge, all the previous results require that
the underlying field has at least r + 1 elements.

Together with matrix space individualization-refinement, we can
represent a matrix space in a more structured way. First, we con-
struct a “semi-canonical” basis for the input matrix space. Suppose
we apply left and right individualization matrices L and R to a matrix
space U of dimension d and compute a linear basis (A, ..., Ay) of
A such that (LA1R,LA2R, ..., LA4R) is lexically minimized among
all the linear basis of . Because the zero matrix is lexically the
smallest among all the matrices, the first few matrices in the semi-
canonical basis correspond to a linear basis of €, which is the linear
span of all the matrices A € U such that LAR is a zero matrix.

We further apply formatting matrices P and Q for € to each
matrix in the semi-canonical basis of A (every matrix A in the semi-
canonical basis becomes PAQ). Then by our low rank matrix space
characterization, the matrices that form a linear basis of € have
non-zero entries only in the last few rows or columns. See Figure 1
for an illustration.

The semi-canonical basis is not canonical because, for fixed indi-
vidualization matrices, there can be different semi-canonical bases.
But the semi-canonical bases can provide a partial correspondence
between two isometric skew-symmetric matrix spaces. Suppose
two skew-symmetric matrix spaces 2 and B are isometric and let S
be an isometry from U to B. For individualization matrices L and R
of A, let (A, ..., Ay) be a semi-canonical basis of A with L and R
as individualization matrices, and (By, ..., By) be a semi-canonical
basis of B with LS™! and (ST)~IR as individualization matrices.
Then foreach 1 <i <d,

SA;ST = B; + B

for some B satisfying the condition that

-1
178} (s) R
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Aq

Ai[m, 1]

Ay Ai[m, n]

Figure 1: The semi-canonical basis of a matrix space after
applying matrix space individualization-refinement and the
low rank matrix space characterization. The three black ma-
trices in the front form a basis of the space spanned by all
the matrices A € U such that LAR is a zero matrix. The trans-
parent rectangles enclosed by the dashed black lines are zero
matrices. The four light brown matrices in the back are the
rest matrices in the basis.

is a zero matrix. The partial correspondence also holds for two
equivalent matrix spaces. Two matrix spaces % and B, in which
matrices are not necessarily square matrices, are equivalent if there
are invertible matrices X and Y such that XY = B, i.e., B equals
the space spanned by XAY for all the matrices A € 2.

3.3 Tensor Representation of Skew-Symmetric
Matrix Spaces

Next, we combine the matrix space individualization-refinement
and the low rank matrix space characterization to analyze skew-
symmetric matrix spaces. For convenience, let us define a three-
tensor representation for skew-symmetric matrix spaces follow-
ing [36]. For a skew-symmetric matrix space % of dimension m
such that every matrix in the space is an n X n matrix, a three-
tensor G € FI"X" jg a skew-symmetric matrix space tensor of U
if G[i, j, k] = A;[j, k] for a linear basis (Ay,...,Ap) of A, where
A;ilJ, k] is the (j, k)-th entry of A;, and G, j, k] is the (i, j, k)-th
entry of G.

Given a skew-symmetric matrix space tensor G, we use Xg ; to
denote the n X n skew-symmetric matrix such that

Xg,ilJ. k] = Gl[i, j. k],

use Yg,j to denote the m X n matrix such that
Ve, 1i, k] = Gli, j, k],

and use 3g  to denote the m X n matrix such that

36kl j] = Gli, j. k].
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Since A; are skew-symmetric matrices for all the 1 < i < m, Xg ;
are skew symmetric matrices for all the 1 < i < m, and 9g ; equals
to —Jg,j forallthe 1 < j < n.

We also use Xg to denote the matrix space (Xg 1,... Xg m), use
g to denote the matrix space (g 1, . - . Dg,n), and use 3g to de-
note the matrix space (3G 1, . . . 3G,n), Where (-) is the linear span.
We remark that Xg is a skew-symmetric matrix space, but 9 and
3G are not.

One can verify that two skew-symmetric matrix spaces are iso-
metric if and only if their tensors (denoted as G and H) are isometric,
i.e., there is an n X n invertible matrix N and an m X m invertible
matrix M such that the transform of G by N and M, denoted as
Transy p(G), equals H, where

m
xTransN,M(G),i = Z MIi,i'] - (N -Xg,i - NT) .

i’=1

3.4 Semi-Canonical Form of Skew-Symmetric
Matrix Space Tensors

The purpose of the tensor representation of a skew-symmetric
matrix space is to incorporate the matrix space individualization-
refinement and the low rank matrix space characterization tech-
niques so the tensor is transformed into a more structured form,
called the “semi-canonical form” of the tensor.

For a skew-symmetric matrix space tensor G, the semi-canonical
form of G, denoted as SC(G), is obtained by applying the two
techniques to the three matrix spaces Xg, ¥, and 3g so matrices in
each of the three matrix spaces have the structure shown in Figure 1.
To achieve this, we need to carefully choose the individualization
and formatting matrices in a coordinated fashion. In particular,
if the individualization and formatting matrices are chosen such
that, for the left formatting matrix P used for Xg, PT can also be
used as the right formatting matrix for 9g and 3g, then the tensor
semi-canonical form has the structure shown in Figure 2(a). The
tensor values in the transparent region are all zero. The union of
the transparent region and the red cube is called the kernel of the
tensor semi-canonical form. The blue region is called the surface of
the tensor semi-canonical form.

For fixed individualization and formatting matrices, the tensor
semi-canonical form is also fixed. However, for an efficient tensor
isometry testing algorithm, it is unacceptable to enumerate all
possible formatting matrices, though it is affordable to enumerate all
possible individualization matrices. To address this issue, we show
that if the individualization matrices are fixed, and the formatting
matrices are partially fixed (i.e., only a few key rows are fixed, and
all the other rows satisfy certain conditions), then the kernel is
fixed. This is also the reason for the term “semi-canonical form”:
the semi-canonical form is not unique for fixed individualization
matrices and partially fixed formatting matrices, but the kernel is
unique.

In other words, if two tensors are isometric, and one constructs
the semi-canonical forms of the two tensors using individualization
matrices and partially fixed formatting matrices that are the same up
to some isometry, then the kernels of the two semi-canonical forms
are identical. Therefore, to determine whether the two tensors are
isometric, one only needs to check further if there are formatting
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Matrices in the surface of JG Matrices in the surface of

AW
1\

Matrices in the surface of XG

(b)

Figure 2: (a). Semi-canonical form of a skew-symmetric matrix space tensor. (b) Matrices in the surfaces of Xg, 9, and 3.

matrices that make the surface identical for the two tensors while
keeping the kernel unchanged.

In addition, based on the the matrix space individualization-
refinement and the low rank matrix space characterization, there are
always semi-canonical forms such that the numbers of matrices in
the surfaces of Xg, Yg, and 3G (Figure 2(b)) are small. Hence, in the
partially fixed formatting matrices, we also fix the rows related to
the surfaces of X, ¥g, and 3. Then matrices in the surfaces from
the three matrix spaces are fixed up to some formatting matrices
satisfying the partially fixed constraint.

Hence, the isometry testing of skew-symmetric matrix space
tensors reduces to the isometry testing of their semi-canonical
forms by enumerating individualization matrices and partially fixed
formatting matrices for both tensors. Due to the fixed kernel for all
the semi-canonical forms, the isometry testing of semi-canonical
forms further reduces to deciding whether the surfaces are identical
between semi-canonical forms up to some formatting matrices
satisfying the partially fixed constraint.

3.5 Reduction to Skew-Symmetric Matrix
Tuple Isometry Testing

Finally, we reduce the isometry testing of semi-canonical forms
of skew-symmetric matrix spaces to the aforementioned skew-
symmetric matrix tuple isometry problem. The high-level idea is
to construct a skew-symmetric matrix tuple to encode the surface
of the tensor semi-canonical form. Because the matrices in the
surfaces of Xg, 9, and 3G are fixed, we can use different matrices
in the matrix tuple to encode the matrices in the surface.

Suppose the kernel is of dimension m’ X n’ X n’ for some 1 <
m’ < mand 1 < n’ < n. In our skew-symmetric matrix tuple of
SC(G), denoted as Fsc(g)> each matrix is of dimension (3 +n +
m’) X (3 + n+ m’). The rows from the fourth to the (3 + n)-th
of matrices in Fsc(g) correspond to the rows of matrices in Xg.
The last m” rows of matrices in Fgc(g) correspond to the first m’
rows of matrices in g (or equivalently 3g). The first three rows

of matrices in Fgc(g) are auxiliary rows used to ensure that the
other rows satisfy the constraints of the partially fixed formatting
matrices. See Figure 3 for an illustration.

Auxiliary rows

Rl R2

Rows of matrices

(encode matrices
in Xg

in the surface of

De)

(encode matrices in the
surface of Xg)

Rs = 7R-2r . /
First ™' rows of
(encode matrices in the

surface of 3G )

matices in 23 G

Figure 3: The matrices in F5c(g)-

We use the submatrices on R; (as Figure 3) for all the matrices
in Fsc(g) to encode the skew-symmetric matrices in the surface
of Xg. We also use the submatrices on R for all the matrices in
Fsc(g) to encode the matrices in the surface of Yg (excluding the
intersection with the surface of Xg). Consequently, the submatrices
on Rs for all the matrices in Fsc(g), which is the negative transpose
of submatrices on Ry by the skew-symmetric condition, encode the
matrices in the surface of 3¢ (excluding the intersection with the
surface of Xi). We use the other submatrices to ensure constraints
given by the partially fixed formatting matrices.
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By carefully designing matrix tuples constructed from tensor
semi-canonical forms, we show that the semi-canonical forms of
two skew-symmetric matrix space tensors are isometric if and only
if there is an isometry S between the skew-symmetric matrix tuples
such that S is a block diagonal matrix

Q o0
(¢ w)
for some (3 + n) X (3 + n) matrix Q and m’ X m’ matrix W.

Naturally, we want to determine the isometry of the two ten-
sors by running the skew-symmetric matrix tuple isometry algo-
rithm (Theorem 2.4) on the matrix tuples constructed from the
semi-canonical forms. However, the requirement of S being block
diagonal makes things more complex.

Suppose we run the algorithm for skew-symmetric matrix tuple
isometry on the matrix tuples constructed. If the algorithm returns
no, then the two semi-canonical forms are not isometric. If the
algorithm returns yes and an isometry that is block diagonal, then
the two semi-canonical forms are isometric. The difficult case is
when the algorithm returns yes and an isometry that is not block
diagonal. For this case, we can neither certify that the two semi-
canonical forms are isometric, nor show that the two semi-canonical
forms are not isometric.

Let us consider an easier scenario: Suppose for each non-zero
row vector v € IFZ there is a matrix X in the surface of Xg such
that vX is a non-zero vector. With this condition, together with
our construction of matrix tuples, we can show that the isometry
returned is of the form

X Y
(5 2)

After carefully analyzing the matrix tuples constructed, we show

that
X 0
0 Z

is also an isometry, and thus the two semi-canonical forms are
isometric.

The general case is more complex because the left bottom subma-
trix of the isometry returned can be non-zero. However, we show
that either we can certify that there exists another block diagonal
isometry for the skew-symmetric matrix tuples, or we can reduce
the problem to a matrix tuple equivalence problem (Definition 2.1).
By Theorem 2.3, the matrix tuple equivalence problem can be solved
efficiently.

ACKNOWLEDGEMENTS

Xiaorui Sun is supported by the National Science Foundation (NSF)
under Grant No. 2240024 and a start-up fund from the University
of Illinois at Chicago.

REFERENCES

[1] MD Atkinson and S Lloyd. 1981. Primitive spaces of matrices of bounded rank.
Journal of the Australian Mathematical Society 30, 4 (1981), 473-482. https:
//doi.org/10.1017/S144678870001795X

[2] Laszl6 Babai. 1980. On the complexity of canonical labeling of strongly regular
graphs. SIAM J. Comput. 9, 1 (1980), 212-216. https://doi.org/10.1137/0209018

[3] Laszlo Babai. 1981. On the order of uniprimitive permutation groups. Annals of
Mathematics 113, 3 (1981), 553-568. https://doi.org/10.2307/2006997

[4] Laszl6 Babai. 2016. Graph isomorphism in quasipolynomial time. In ACM Sympo-
sium on Theory of Computing (STOC). 684-697. https://doi.org/10.1145/2897518.
2897542

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Laszl6 Babai. 2019. Canonical form for graphs in quasipolynomial time: prelim-
inary report. In ACM Symposium on Theory of Computing (STOC). 1237-1246.
https://doi.org/10.1145/3313276.3316356

Laszl6 Babai, Xi Chen, Xiaorui Sun, Shang-Hua Teng, and John Wilmes. 2013.
Faster canonical forms for strongly regular graphs. In IEEE Symposium on Founda-
tions of Computer Science (FOCS). 157-166. https://doi.org/10.1109/FOCS.2013.25
Lasz16 Babai, Paolo Codenotti, Joshua A Grochow, and Youming Qiao. 2011.
Code equivalence and group isomorphism. In ACM-SIAM Symposium on Discrete
Algorithms (SODA). 1395-1408. https://doi.org/10.1137/1.9781611973082.107
Laszl6 Babai, Paolo Codenotti, and Youming Qiao. 2012. Polynomial-time iso-
morphism test for groups with no abelian normal subgroups. In International
Colloquium on Automata, Languages, and Programming (ICALP). Springer, 51-62.
https://doi.org/10.1007/978-3-642-31594-7_5

Lasz]6 Babai, Paul Erdés, and Stanley M Selkow. 1980. Random graph isomor-
phism. SIAM Journal on computing 9, 3 (1980), 628-635. https://doi.org/10.1137/
0209047

Laszl6 Babai and Eugene M Luks. 1983. Canonical labeling of graphs. In ACM
Symposium on Theory of computing (STOC). 171-183. https://doi.org/10.1145/
800061.808746

Laszl6 Babai and Youming Qiao. 2012. Polynomial-time isomorphism test for
groups with Abelian Sylow towers. In International Symposium on Theoretical
Aspects of Computer Science (STACS). 453. https://doi.org/10.4230/LIPIcs.STACS.
2012.453

Laszl6 Babai and John Wilmes. 2013. Quasipolynomial-time canonical form for
Steiner designs. In ACM Symposium on Theory of Computing (STOC). https:
//doi.org/10.1145/2488608.2488642

Reinhold Baer. 1938. Groups with abelian central quotient group. Trans. Amer.
Math. Soc. 44, 3 (1938), 357-386.  https://doi.org/10.1090/S0002-9947-1938-
1501972-1

Jendrik Brachter and Pascal Schweitzer. 2020. On the Weisfeiler-Leman dimension
of finite groups. In ACM/IEEE Symposium on Logic in Computer Science (LICS).
287-300. https://doi.org/10.1145/3373718.3394786

Peter A Brooksbank, Joshua A Grochow, Yinan Li, Youming Qiao, and James B
Wilson. 2019. Incorporating Weisfeiler-Leman into algorithms for group isomor-
phism. arXiv preprint arXiv:1905.02518 (2019).

Peter A Brooksbank, Yinan Li, Youming Qiao, and James B Wilson. 2020. Improved
algorithms for alternating matrix space isometry: from theory to practice. In
European Symposium on Algorithms (ESA). https://doi.org/10.4230/LIPIcs. ESA.
2020.26

Peter A Brooksbank, Joshua Maglione, and James B Wilson. 2015. A fast isomor-
phism test for groups of genus 2. arXiv preprint arXiv:1508.03033 (2015).

Peter A Brooksbank and James Wilson. 2012. Computing isometry groups
of Hermitian maps. Trans. Amer. Math. Soc. 364, 4 (2012), 1975-1996. https:
//doi.org/10.1090/S0002-9947-2011-05388-2

Xi Chen, Xiaorui Sun, and Shang-Hua Teng. 2013. Multi-stage design for
quasipolynomial-time isomorphism testing of Steiner 2-systems. In ACM Symypo-
sium on Theory of Computing (STOC). https://doi.org/10.1145/2488608.2488643
Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian
Wagner. 2009. Planar graph isomorphism is in log-space. In IEEE Conference on
Computational Complexity (CCC). 203-214. https://doi.org/10.1109/CCC.2009.16
Heiko Dietrich and James B Wilson. 2022. Group isomorphism is nearly-linear
time for most orders. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS). IEEE, 457-467. https://doi.org/10.1109/FOCS52979.
2021.00053

Volkmar Felsch and Joachim Neubiiser. 1970. On a programme for the determi-
nation of the automorphism group of a finite group. In Computational Problems
in Abstract Algebra. 59-60. https://doi.org/10.1016/B978-0-08-012975-4.50011-4
Harley Flanders. 1962. On spaces of linear transformations with bounded rank.
Journal of the London Mathematical Society 1, 1 (1962), 10-16. https://doi.org/10.
1112/jlms/s1-37.1.10

Michael R Garey and David S Johnson. 1979. Computers and intractability: a
guide to the theory of NP-completeness.

Joshua A Grochow and Youming Qiao. 2021. On p-group isomorphism: search-
to-decision, counting-to-decision, and nilpotency class reductions via tensors.
In 36th Computational Complexity Conference (CCC). Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik. https://doi.org/10.4230/LIPIcs.CCC.2021.16

Joshua A Grochow and Youming Qiao. 2021. On the complexity of isomor-
phism problems for tensors, groups, and polynomials I: tensor isomorphism-
completeness. In Innovations in Theoretical Computer Science Conference (ITCS).
https://doi.org/10.4230/LIPIcs.ITCS.2021.31

Martin Grohe and Daniel Neuen. 2019. Canonisation and definability for graphs
of bounded rank width. In ACM/IEEE Symposium on Logic in Computer Science
(LICS). 1-13. https://doi.org/10.1109/LICS.2019.8785682

Martin Grohe, Daniel Neuen, and Pascal Schweitzer. 2020. A faster isomorphism
test for graphs of small degree. SIAM J. Comput. (2020). https://doi.org/10.1137/
19M1245293


https://doi.org/10.1017/S144678870001795X
https://doi.org/10.1017/S144678870001795X
https://doi.org/10.1137/0209018
https://doi.org/10.2307/2006997
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/3313276.3316356
https://doi.org/10.1109/FOCS.2013.25
https://doi.org/10.1137/1.9781611973082.107
https://doi.org/10.1007/978-3-642-31594-7_5
https://doi.org/10.1137/0209047
https://doi.org/10.1137/0209047
https://doi.org/10.1145/800061.808746
https://doi.org/10.1145/800061.808746
https://doi.org/10.4230/LIPIcs.STACS.2012.453
https://doi.org/10.4230/LIPIcs.STACS.2012.453
https://doi.org/10.1145/2488608.2488642
https://doi.org/10.1145/2488608.2488642
https://doi.org/10.1090/S0002-9947-1938-1501972-1
https://doi.org/10.1090/S0002-9947-1938-1501972-1
https://doi.org/10.1145/3373718.3394786
https://doi.org/10.4230/LIPIcs.ESA.2020.26
https://doi.org/10.4230/LIPIcs.ESA.2020.26
https://doi.org/10.1090/S0002-9947-2011-05388-2
https://doi.org/10.1090/S0002-9947-2011-05388-2
https://doi.org/10.1145/2488608.2488643
https://doi.org/10.1109/CCC.2009.16
https://doi.org/10.1109/FOCS52979.2021.00053
https://doi.org/10.1109/FOCS52979.2021.00053
https://doi.org/10.1016/B978-0-08-012975-4.50011-4
https://doi.org/10.1112/jlms/s1-37.1.10
https://doi.org/10.1112/jlms/s1-37.1.10
https://doi.org/10.4230/LIPIcs.CCC.2021.16
https://doi.org/10.4230/LIPIcs.ITCS.2021.31
https://doi.org/10.1109/LICS.2019.8785682
https://doi.org/10.1137/19M1245293
https://doi.org/10.1137/19M1245293

STOC ’23, June 20-23, 2023, Orlando, FL, USA

[29]

[30]

[31

[32]

[33

[34

[35]

[36]

[37]

[38]

[40]

[41

[42]

Martin Grohe, Daniel Wiebking, and Daniel Neuen. 2020. Isomorphism testing for
graphs excluding small minors. In Annual Symposium on Foundations of Computer
Science (FOCS). 625-636. https://doi.org/10.1109/FOCS46700.2020.00064

Gabor Ivanyos and Youming Qiao. 2019. Algorithms based on*-algebras, and their
applications to isomorphism of polynomials with one secret, group isomorphism,
and polynomial identity testing. SIAM J. Comput. 48, 3 (2019), 926-963. https:
//doi.org/10.1137/18M 1165682

Zhengfeng Ji, Youming Qiao, Fang Song, and Aaram Yun. 2019. General linear
group action on tensors: a candidate for post-quantum cryptography. In Theory
of Cryptography Conference. Springer, 251-281. https://doi.org/10.1007/978-3-
030-36030-6_11

Telikepalli Kavitha. 2007. Linear time algorithms for abelian group isomorphism
and related problems. J. Comput. System Sci. 73, 6 (2007), 986-996.  https:
//doi.org/10.1016/j.jcss.2007.03.013

Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. 2019. The Weisfeiler—
Leman dimension of planar graphs is at most 3. Journal of the ACM (JACM) 66,
6 (2019), 1-31. https://doi.org/10.1145/3333003

Francois Le Gall. 2009. Efficient isomorphism testing for a class of group ex-
tensions. In International Symposium on Theoretical Aspects of Computer Science
(STACS). 625-636. https://doi.org/10.4230/LIPIcs. STACS.2009.1830

Mark L Lewis and James B Wilson. 2010. Isomorphism in expanding families of
indistinguishable groups. arXiv preprint arXiv:1010.5466 (2010).

Yinan Li and Youming Qiao. 2017. Linear algebraic analogues of the graph
isomorphism problem and the Erdés-Rényi model. In Annual Symposium on
Foundations of Computer Science (FOCS). 463-474. https://doi.org/10.1109/FOCS.
2017.49

Daniel Lokshtanov, Marcin Pilipczuk, Michat Pilipczuk, and Saket Saurabh. 2017.
Fixed-parameter tractable canonization and isomorphism test for graphs of
bounded treewidth. SIAM J. Comput. 46, 1 (2017), 161-189. https://doi.org/
10.1137/140999980

Eugene M Luks. 2015. Group isomorphism with fixed subnormal chains. arXiv
preprint arXiv:1511.00151 (2015).

Gary L. Miller. 1978. On the n'°8" isomorphism technique: a preliminary report.
In ACM Symposium on Theory of Computing (STOC). 51-58. https://doi.org/10.
1145/800133.804331

Daniel Neuen. 2022. Isomorphism testing for graphs excluding small topological
subgraphs. In ACM-SIAM Symposium on Discrete Algorithms (SODA). 1411-1434.
https://doi.org/10.1137/1.9781611977073.59

Eamonn A O’Brien. 1994. Isomorphism testing for p-groups. Journal of Symbolic
Computation 17, 2 (1994), 133-147. https://doi.org/10.1006/jsc0.1994.1007
Youming Qiao, Jayalal Sarma, and Bangsheng Tang. 2012. On isomorphism
testing of groups with normal Hall subgroups. Journal of Computer Science and

[43]

[44

[45]

[46

[48

[49]

[50]

(51]

[52]

(53]

Xiaorui Sun

Technology 27, 4 (2012), 687-701. https://doi.org/10.1007/s11390-012-1255-7
David J. Rosenbaum. 2013. Bidirectional collision detection and faster determin-
istic isomorphism testing. arXiv preprint arXiv:1304.3935 (2013).

David J. Rosenbaum and Fabian Wagner. 2015. Beating the generator-enumeration
bound for p-group isomorphism. Theoretical Computer Science 593 (2015), 16-25.
https://doi.org/10.1016/j.tcs.2015.05.036

Carla Diane Savage. 1980. An O(n?) algorithm for abelian group isomorphism.
North Carolina State University.

Tyler Schrock. 2019. On the complexity of isomorphism in finite group theory and
symbolic dynamics. Ph.D. Dissertation. University of Colorado at Boulder.
Daniel A. Spielman. 1996. Faster isomorphism testing of strongly regular graphs.
In ACM Symposium on Theory of Computing (STOC). 576-584. https://doi.org/10.
1145/237814.238006

Xiaorui Sun and John Wilmes. 2015. Faster canonical forms for primitive coherent
configurations. In ACM Symposium on Theory of Computing (STOC). 693-702.
https://doi.org/10.1145/2746539.2746617

Gang Tang, Dung Hoang Duong, Antoine Joux, Thomas Plantard, Youming
Qiao, and Willy Susilo. 2022. Practical post-quantum signature schemes from
isomorphism problems of trilinear forms. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques (EUROCRYPT). 582-612.
https://doi.org/10.1007/978-3-031-07082-2_21

Narayan Vikas. 1996. An O(n) algorithm for abelian p-group isomorphism and
an O(nlogn) algorithm for abelian group isomorphism. . Comput. System Sci.
53, 1(1996), 1-9. https://doi.org/10.1006/jcss.1996.0045

UHM Webb. 1983. On the rank of a p-group of class 2. Canad. Math. Bull. 26, 1
(1983), 101-105. https://doi.org/10.4153/CMB-1983-015-5

Boris Weisfeiler and A. A. Lehman. 1968. A reduction of a graph to a canonical
form and an algebra arising during this reduction. Nauchno-Technicheskaya
Informatsiya 9 (1968), 12-16.

Daniel Wiebking. 2020. Graph isomorphism in quasipolynomial time parame-
terized by treewidth. In International Colloquium on Automata, Languages, and
Programming (ICALP). https://doi.org/10.4230/LIPIcs.ICALP.2020.103

[54] James B Wilson. 2009. Decomposing p-groups via Jordan algebras. Journal of

Algebra 322, 8 (2009), 2642-2679. https://doi.org/10.1016/j.jalgebra.2009.07.029

[55] James B Wilson. 2009. Finding central decompositions of p-groups. Journal of

[56]

Group Theory 12, 6 (2009), 813-830. https://doi.org/10.1515/JGT.2009.015
Viktor N Zemlyachenko, Nickolay M Korneenko, and Regina I Tyshkevich. 1985.
Graph isomorphism problem. Journal of Soviet Mathematics 29, 4 (1985), 1426~
1481. https://doi.org/10.1007/BF02104746

Received 2022-11-07; accepted 2023-02-06


https://doi.org/10.1109/FOCS46700.2020.00064
https://doi.org/10.1137/18M1165682
https://doi.org/10.1137/18M1165682
https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1016/j.jcss.2007.03.013
https://doi.org/10.1016/j.jcss.2007.03.013
https://doi.org/10.1145/3333003
https://doi.org/10.4230/LIPIcs.STACS.2009.1830
https://doi.org/10.1109/FOCS.2017.49
https://doi.org/10.1109/FOCS.2017.49
https://doi.org/10.1137/140999980
https://doi.org/10.1137/140999980
https://doi.org/10.1145/800133.804331
https://doi.org/10.1145/800133.804331
https://doi.org/10.1137/1.9781611977073.59
https://doi.org/10.1006/jsco.1994.1007
https://doi.org/10.1007/s11390-012-1255-7
https://doi.org/10.1016/j.tcs.2015.05.036
https://doi.org/10.1145/237814.238006
https://doi.org/10.1145/237814.238006
https://doi.org/10.1145/2746539.2746617
https://doi.org/10.1007/978-3-031-07082-2_21
https://doi.org/10.1006/jcss.1996.0045
https://doi.org/10.4153/CMB-1983-015-5
https://doi.org/10.4230/LIPIcs.ICALP.2020.103
https://doi.org/10.1016/j.jalgebra.2009.07.029
https://doi.org/10.1515/JGT.2009.015
https://doi.org/10.1007/BF02104746

	Abstract
	1 Introduction
	1.1 Our Result
	1.2 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Isometry and Equivalence for Matrix Tuples and Spaces
	2.3 Baer's Correspondence

	3 Technical Overview
	3.1 Individualization-Refinement for Matrix Spaces
	3.2 Low Rank Matrix Space Characterization
	3.3 Tensor Representation of Skew-Symmetric Matrix Spaces
	3.4 Semi-Canonical Form of Skew-Symmetric Matrix Space Tensors
	3.5 Reduction to Skew-Symmetric Matrix Tuple Isometry Testing

	References

