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ABSTRACT
The group isomorphism problem determines whether two groups,

given by their Cayley tables, are isomorphic. For groups with order

𝑛, an algorithmwith𝑛 (log𝑛+𝑂 (1))
running time, attributed to Tarjan,

was proposed in the 1970s (Miller, STOC 1978). Despite the extensive

study over the past decades, the current best group isomorphism

algorithm has an 𝑛 (1/4+𝑜 (1)) log𝑛 running time (Rosenbaum 2013).

The isomorphism testing for 𝑝-groups of (nilpotent) class 2 and

exponent 𝑝 has been identified as a major barrier to obtaining an

𝑛𝑜 (log𝑛) time algorithm for the group isomorphism problem. Al-

though the 𝑝-groups of class 2 and exponent 𝑝 have much simpler

algebraic structures than general groups, the best-known isomor-

phism testing algorithm for this group class also has an 𝑛𝑂 (log𝑛)

running time.

In this paper, we present an isomorphism testing algorithm for

𝑝-groups of class 2 and exponent 𝑝 with running time 𝑛𝑂 ( (log𝑛)5/6)

for any prime 𝑝 > 2. Our result is based on a novel reduction to the

skew-symmetric matrix tuple isometry problem (Ivanyos and Qiao,

SIAM J. Computing, 2019). To obtain the reduction, we develop

several tools for matrix space analysis, including a matrix space

individualization-refinement method and a characterization of the

low rank matrix spaces.
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1 INTRODUCTION
The group isomorphism problem is to determine whether two

groups, given by their Cayley (multiplication) tables, are isomor-

phic. The problem is among a few classes of problems in NP that are

not known to be solvable in polynomial time or NP-Complete [24].

The group isomorphism problem and its variants have close con-

nections to cryptography, computational group theory, and alge-

braic complexity theory [30]. Furthermore, following Babai’s break-

through on the quasi-polynomial time algorithm for graph iso-

morphism [4, 5], group isomorphism has become a bottleneck for

an 𝑛𝑜 (log𝑛) time algorithm of graph isomorphism because group

isomorphism reduces to graph isomorphism.

The group isomorphism problem has been extensively studied

since the 1970s [7, 8, 11, 16–18, 21, 22, 25, 26, 32, 34–36, 38, 39, 41–

45, 50, 54, 55]. A simple algorithm for group isomorphism, attributed

to Tarjan, picks a generating set in one of the groups and checks for

all possible images of the generating set in the other group, whether

the partial correspondence extends to an isomorphism [39]. Since

every group of order 𝑛 has a generating set of size at most log
2
𝑛,

this algorithm results in an 𝑛log2 𝑛+𝑂 (1)
running time. The current

best-known algorithm for the group isomorphism problem has an

𝑛 (1/4+𝑜 (1)) log2 𝑛 running time [43].

It is long believed that the isomorphism testing of 𝑝-groups of

class 2 and exponent 𝑝 is a major bottleneck for the group isomor-

phism problem [7, 15, 17, 18, 35, 36, 43]. A group 𝐺 is a 𝑝-group of

(nilpotent) class 2 and exponent 𝑝 for some prime number 𝑝 if every

element except the identity has an order of 𝑝 , and 𝐺 is not abelian

but [𝐺, [𝐺,𝐺]] only contains the identity element, where [𝐺,𝐻 ]
denotes the group generated by 𝑥𝑦𝑥−1𝑦−1 for all 𝑥 ∈ 𝐺,𝑦 ∈ 𝐻 .

The best-known algorithm for the isomorphism testing of 𝑝-

groups of class 2 and exponent 𝑝 does not have a major advantage

in the running time, being 𝑛𝑂 (log
2
𝑛)

[43], over the general groups,

even though the structure of 𝑝-groups of class 2 and exponent 𝑝

was well understood [13, 51, 54, 55], and the isomorphism testing of

this group class has been studied in depth [15, 17, 18, 35, 36, 43, 46].

Hence, to develop a better algorithm for isomorphism testing of

general groups, it is necessary to provide a faster algorithm for

𝑝-groups of class 2 and exponent 𝑝 .

1.1 Our Result
In this paper, we present an isomorphism testing algorithm for

𝑝-groups of class 2 and exponent 𝑝 with 𝑛𝑜 (log𝑛) running time for

any odd prime 𝑝 .

Theorem 1.1. Let 𝐺 and 𝐻 be two groups of order 𝑛. If both 𝐺

and 𝐻 are 𝑝-groups of class 2 and exponent 𝑝 for some prime number
𝑝 > 2, then given the Cayley tables of𝐺 and 𝐻 , there is an algorithm
with running time 𝑛𝑂 ( (log𝑛)5/6) to determine whether 𝐺 and 𝐻 are
isomorphic.

https://doi.org/10.1145/3564246.3585250
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Theorem 1.1 utilizes the Baer’s correspondence [13], which re-

duces the group isomorphism problem for 𝑝-groups of class 2 and

exponent 𝑝 to the isometry testing problem of skew-symmetric

matrix spaces.

A square matrix 𝐴 is a skew-symmetric matrix if 𝐴𝑇 = −𝐴. In
the isometry testing problem for skew-symmetric matrix spaces,

the input consists of the linear bases of two skew-symmetric matrix

spaces 𝔄 and 𝔅. The problem is to decide whether there is an

isometry 𝑆 from𝔄 to𝔅, i.e., an invertiblematrix 𝑆 such that 𝑆𝔄𝑆𝑇 =

𝔅, where 𝑆𝔄𝑆𝑇 is the linear span of the matrices 𝑆𝐴𝑆𝑇 for all the

matrices 𝐴 ∈ 𝔄. We prove the following result for the isometry

testing problem of skew-symmetric matrix spaces.

Theorem 1.2. Let 𝔄 and 𝔅 be two linear matrix spaces, both
of dimension 𝑚, such that every matrix in 𝔄 or 𝔅 is an 𝑛 × 𝑛

skew-symmetric matrix over F𝑝 for some prime number 𝑝 > 2

and positive integers𝑚,𝑛. There is an algorithm with running time
𝑝𝑂 ( (𝑛+𝑚)1.8 ·log(𝑝)) to determine whether there is an invertible 𝑛 × 𝑛

matrix 𝑆 over F𝑝 such that 𝑆𝔄𝑆𝑇 = 𝔅.

We obtain Theorem 1.2 by combining several new tools to ana-

lyzematrix spaces, including an individualization-refinementmethod

for matrix spaces, a characterization of low rank matrix spaces, and

a reduction from the isometry testing of skew-symmetric matrix

spaces to the isometry testing of skew-symmetric matrix tuples [30].

To obtain Theorem 1.1, let 𝑘 denote log𝑝 (𝑛). We apply Theo-

rem 1.2 for the case of 𝑘 > (log
2
(𝑝))5 by constructing the skew-

symmetric matrix spaces for both input groups according to the

Baer’s correspondence [13]. Theorem 1.2 implies the running time

for this case is 𝑛𝑂 ( (log𝑛)5/6)
. For the case of 𝑘 ≤ (log

2
(𝑝))5, we

run the aforementioned generating set enumeration algorithm [39].

Because every 𝑝 group of order 𝑝𝑘 has a generating set of size at

most 𝑘 , the running time of the algorithm for this case is 𝑝𝑂 (𝑘2)
,

which is also 𝑛𝑂 ( (log𝑛)5/6)
.

1.2 Related Work
The group isomorphism problem has been studied for variant

group classes. Polynomial time algorithms have been developed for

abelian groups [32, 45, 50], groups formed by semidirect products

of an abelian group and a cyclic group [34, 54, 55], groups with

normal Hall subgroups [42], groups with abelian Sylow towers [11],

and groups with no abelian normal subgroups [8]. Dietrich and

Wilson recently showed that the group isomorphism problem can

be solved in nearly linear time for most orders [21].

For 𝑝-groups of class 2 and exponent 𝑝 , algorithms for some

nontrivial subclasses of this group class have been proposed [17, 18,

35]. Li and Qiao showed that if the 𝑝-groups of class 2 and exponent

𝑝 are generated randomly, then the isomorphism testing problem

can be solved in polynomial time in the average case [36]. In [15],

the average case running time was further improved to linear. In

this work, we focus on the isomorphism testing for 𝑝-groups of

class 2 and exponent 𝑝 in the worst case.

The refinement methods, such as the naive refinement [9] and

Weisfeiler-Leman refinement [52], have been powerful tools for the

graph isomorphism problem. The refinement methods have been

successfully used for graph isomorphism testing algorithms [2,

3, 6, 9, 10, 12, 19, 20, 27–29, 33, 37, 40, 47, 48, 53, 56], including

the celebrated quasi-polynomial time algorithm for graph isomor-

phism [4, 5].

The refinement approach does not extend to groups in a naive

way. Several representations of groups that allow refinement have

been proposed. In [15], the authors defined a hypergraph using

recursively refinable filters and proposed applying the Weisfeiler-

Leman refinement on the hypergraph. Brachter and Schweitzer

proposed defining colors of group element tuples by group oper-

ation patterns of the elements involved in the tuple and applying

the Weisfeiler-Leman refinement to refine the colors of element

tuples [14]. Both approaches can distinguish between several non-

isomorphic constructions of 𝑝-groups of class 2 and exponent 𝑝 .

However, it was unclear how these refinement methods could be

used to develop faster worst case isomorphism testing algorithms.

The isometry testing of skew-symmetric matrix spaces was stud-

ied in [16, 25, 26, 36]. Its applications in cryptography were investi-

gated in [15, 31, 49].

2 PRELIMINARIES
We give the notations and previous results used in this paper.

2.1 Notations
Throughout the paper, the vectors and matrices are over F𝑝 for a

prime number 𝑝 > 2. Let F𝑛𝑝 be the linear space of row vectors of

length 𝑛 over F𝑝 . Unless specified, the vectors are row vectors. We

use ⟨·⟩ to denote the linear span.

Matrices. Let 𝑀 (𝑛, F𝑝 ) (and respectively 𝑀 (𝑚,𝑛, F𝑝 )) be the lin-

ear space of 𝑛 × 𝑛 (and respectively𝑚 × 𝑛) matrices over F𝑝 . Let
GL(𝑛, F𝑝 ) be the group of 𝑛 × 𝑛 invertible matrices over F𝑝 .

For a matrix 𝐴 ∈ 𝑀 (𝑚,𝑛, F𝑝 ), let rank (𝐴) be the rank of 𝐴, and

𝐴𝑇 be the transpose of 𝐴. A square matrix 𝐴 ∈ 𝑀 (𝑛, F𝑝 ) is a skew-
symmetric matrix if and only if 𝐴 = −𝐴𝑇 . For any 1 ≤ 𝑖 ≤ 𝑚, 1 ≤
𝑗 ≤ 𝑛, let 𝐴[𝑖, 𝑗] be the entry of 𝐴 in the 𝑖-th row and 𝑗-th column.

For two matrices𝐴, 𝐵 ∈ 𝑀 (𝑚×𝑛, F𝑝 ),𝐴 is lexically smaller than

𝐵 if there exist 1 ≤ 𝑞 ≤ 𝑚 and 1 ≤ 𝑟 ≤ 𝑛 such that the following

conditions hold:

• 𝐴[𝑖, 𝑗] = 𝐵 [𝑖, 𝑗] for any 1 ≤ 𝑖 ≤ 𝑞 − 1, 1 ≤ 𝑗 ≤ 𝑛 or any

𝑖 = 𝑞, 1 ≤ 𝑗 < 𝑟 ;

• 𝐴[𝑞, 𝑟 ] < 𝐵 [𝑞, 𝑟 ].

Matrix Tuples and Matrix Spaces. An𝑚×𝑛 matrix tupleA of length

𝑘 , denoted as A = (𝐴1, . . . , 𝐴𝑘 ), is an element in 𝑀 (𝑚,𝑛, F𝑝 )𝑘 .
For any 𝑃 ∈ 𝑀 (𝛼,𝑚, F𝑝 ) and 𝑄 ∈ 𝑀 (𝑛, 𝛽, F𝑝 ) with some positive

integers 𝛼 and 𝛽 , let

𝑃A𝑄 B (𝑃𝐴1𝑄, 𝑃𝐴2, 𝑄, . . . , 𝑃𝐴𝑘𝑄) .

An 𝑚 × 𝑛 matrix space 𝔄 is a linear subspace of 𝑀 (𝑚,𝑛, F𝑝 ).
For any 𝑃 ∈ 𝑀 (𝛼,𝑚, F𝑝 ) and 𝑄 ∈ 𝑀 (𝑛, 𝛽, F𝑝 ) with some positive

integers 𝛼 and 𝛽 , let

𝑃𝔄𝑄 B ⟨𝑃𝐴𝑄 : ∀𝐴 ∈ 𝔄⟩.

Since any linear combination of skew-symmetric matrices of the

same dimension is also a skew-symmetric matrix, we use SS(𝑛, F𝑝 )
to denote the linear space of all the 𝑛 ×𝑛 skew-symmetric matrices.
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2.2 Isometry and Equivalence for Matrix
Tuples and Spaces

We define equivalence relations for matrix tuples.

Definition 2.1 (Matrix tuple equivalence). Let A = (𝐴1, . . . , 𝐴𝑘 )
and B = (𝐵1, . . . , 𝐵𝑘 ) be two matrix tuples in𝑀 (𝑚,𝑛, F𝑝 )𝑘 . A and

B are equivalent if there exist two matrices 𝑃 ∈ GL(𝑚, F𝑝 ) and
𝑄 ∈ GL(𝑛, F𝑝 ) such that 𝑃A𝑄 = B.

Definition 2.2 (Skew-symmetric matrix tuple isometry). Let A =

(𝐴1, . . . , 𝐴𝑘 ) and B = (𝐵1, . . . , 𝐵𝑘 ) be two skew-symmetric matrix

tuples in SS(𝑛, F𝑝 )𝑘 . A and B are isometric if there exists a matrix

𝑃 ∈ GL(𝑛, F𝑝 ) such that 𝑃A𝑃𝑇 = B. Such a matrix 𝑃 is called an

isometry from A to B.

In this paper, we use the algorithm for the isometry testing of

two skew-symmetric matrix tuples (Theorem 2.4) and the algorithm

for the equivalence testing of two matrix tuples (Theorem 2.3), both

proposed by Ivanyos and Qiao in [30].

Theorem 2.3 (Proposition 3.2 of [30]). Given two matrix tuples
A = (𝐴1, . . . , 𝐴𝑘 ) and B = (𝐵1, . . . , 𝐵𝑘 ) in 𝑀 (𝑚,𝑛, F𝑝 )𝑘 for some
prime 𝑝 > 2 and positive integers 𝑘,𝑚 and 𝑛, there is an algorithm
with running time poly(𝑘, 𝑛,𝑚, 𝑝) to determine whether A and B
are equivalent.

Theorem 2.4 (Theorem 1.7 of [30]). Let A = (𝐴1, . . . , 𝐴𝑘 ) and
B = (𝐵1, . . . , 𝐵𝑘 ) be two skew-symmetric matrix tuples of length
𝑘 such that the matrices in A and B are of dimension 𝑛 × 𝑛 over
F𝑝 for some prime 𝑝 > 2. There is an algorithm with running time
poly(𝑛, 𝑘, 𝑝) to determine whether there is an isometry from A to B.
If yes, the algorithm also returns an isometry from A to B.

Following the definitions for matrix tuples, we also define the

isometry of skew-symmetric matrix spaces.

Definition 2.5 (Skew-symmetric matrix space isometry). Let 𝔄,𝔅
be two skew-symmetric matrix spaces. 𝔄 and 𝔅 are isometric if

there exists a matrix 𝑃 ∈ GL(𝑛, F𝑝 ) such that 𝑃𝔄𝑃𝑇 = 𝔅. 𝑃 is called

an isometry from 𝔄 to 𝔅 if 𝑃 exists.

In Section 2.3, we will use the Baer’s correspondence to reduce

the group isomorphism for 𝑝-groups of class two and exponent 𝑝 to

the problem of isometry testing for skew-symmetric matrix spaces.

2.3 Baer’s Correspondence
For a 𝑝-group of nilpotent class 2 and exponent 𝑝 , let 𝑝𝑘 denote

the order of the group. Because of the class two and exponent 𝑝

condition, 𝐺/𝑍 (𝐺) is isomorphic to Z𝑛𝑝 , and [𝐺,𝐺] is isomorphic

to Z𝑚𝑝 for some positive integers 𝑛 and 𝑚 such that 𝑛 +𝑚 ≤ 𝑘 ,

where 𝑍 (𝐺) denotes the center of 𝐺 , and [𝐺,𝐺] denotes the group
generated by 𝑥𝑦𝑥−1𝑦−1 for all 𝑥,𝑦 ∈ 𝐺 . Taking an arbitrary basis of

𝐺/𝑍 (𝐺), an arbitrary basis of [𝐺,𝐺], and taking the commutator

bracket, we obtain a skew-symmetric bilinear map 𝑏𝐺 : F𝑛𝑝 × F𝑛𝑝 →
F𝑚𝑝 , which can be represented by a skew-symmetric matrix tuple

G = (𝐺1, . . . ,𝐺𝑚) such that every 𝐺𝑖 is a matrix in SS(𝑛, F𝑝 ). Such
a skew-symmetric matrix tuple is called a skew-symmetric matrix

tuple of 𝐺 .

For two 𝑝-groups 𝐺 and 𝐻 of nilpotent class 2 and exponent 𝑝 ,

it is necessary for 𝐻 to be isomorphic to 𝐺 that

dimZ𝑝 (𝐺/𝑍 (𝐺)) = dimZ𝑝 (𝐻/𝑍 (𝐻 ))

and

dimZ𝑝 ( [𝐺,𝐺]) = dimZ𝑝 ( [𝐻,𝐻 ])
The following theorem, also called Baer’s correspondence, was

proved by Baer in [13].

Theorem 2.6 (Baer’s correspondence [13], rephrased). Let
𝐺 and 𝐻 be two 𝑝-groups of class two and exponent 𝑝 for some prime
number 𝑝 with the same order. Let G and H be the skew-symmetric
matrix tuples of𝐺 and𝐻 , respectively. If both G andH are𝑛×𝑛 skew-
symmetric matrix tuples of length𝑚, then𝐺 and 𝐻 are isomorphic
if and only if there are matrices 𝑃 ∈ GL(𝑛, F𝑝 ) and 𝑄 ∈ GL(𝑚, F𝑝 )
such that

𝐺𝑖 =

𝑚∑
𝑗=1

𝑄 [𝑖, 𝑗] (𝑃 · 𝐻 𝑗 · 𝑃𝑇 ) .

Furthermore, we can also represent skew-symmetric matrix tu-

ples of groups by skew-symmetric matrix spaces. Given an arbitrary

skew-symmetric matrix tuple G of group 𝐺 , the skew-symmetric

matrix space𝔊 of𝐺 is the linear matrix space spanned by matrices

in G. Hence, Baer’s correspondence can be rephrased as follows.

Corollary 2.7. Let 𝐺 and 𝐻 be two 𝑝-groups of class two and
exponent 𝑝 for some prime number 𝑝 with the same order. Let𝔊 and
ℌ be the skew-symmetric matrix spaces of 𝐺 and 𝐻 , respectively. 𝐺
and 𝐻 are isomorphic if and only if𝔊 and ℌ are isometric.

3 TECHNICAL OVERVIEW
We provide an overview of the algorithm for the isometry testing

of skew-symmetric matrix spaces (Theorem 1.2).

The main idea of proving Theorem 1.2 is to reduce the isometry

testing of skew-symmetric matrix spaces to the isometry testing of

skew-symmetric matrix tuples, which can be solved efficiently by

Theorem 2.4. The difference between the two problems is that the

correspondence between matrices from two matrix tuples is fixed

by the indices of the matrices, whereas for matrix spaces, no such

correspondence is given.

For an input of the skew-symmetric matrix space isometry test-

ing problem, let𝑚 be the dimension of the input matrix spaces and

𝑛 be the number of rows (or columns) for each square matrix in the

matrix spaces. If one enumerates all the possible correspondences

between the matrices of the two matrix spaces, then the running

time of the algorithms is𝑂 (𝑝𝑚2 ·poly(𝑚,𝑛, 𝑝)), which offers no im-

provement on the isomorphism of 𝑝-groups of class 2 and exponent

𝑝 .

In this work, we give a 𝑝𝑂 ( (𝑛+𝑚)1.8 ·log𝑝)
time reduction to the

skew-symmetric matrix tuple isometry problem. The reduction is

obtained by investigating several new tools for analyzing the struc-

ture of skew-symmetric matrix spaces, including a matrix space

individualization-refinement method (Section 3.1) and a characteri-

zation of the low rank matrix spaces (Section 3.2).

3.1 Individualization-Refinement for Matrix
Spaces

One powerful technique for graph isomorphism is the method

of individualization-refinement [2–4, 6, 9, 12, 19, 47, 48, 56]. For

graphs, the individualization-refinement method first chooses a

set of a small number of vertices and assigns each chosen vertex
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a distinct vertex color, and then it refines the vertex colors by

assigning distinguished vertices different colors in a canonical way

until vertices of the same color cannot be further distinguished.

A natural question for the group isomorphism problem iswhether

it is possible to define individualization-refinement operations for

group isomorphism. Based on the connection between group iso-

morphism for 𝑝-groups of class 2 and exponent 𝑝 and the skew-

symmetric matrix space isometry problem [13], Li and Qiao pro-

posed a matrix space individualization-refinement method, which

follows the individualization-refinement for random graphs [9], and

analyzed the isometry testing of skew-symmetric matrix spaces in

the average case [36].

In this work, we propose a differentmatrix space individualization-

refinement to enable the analysis of the isometry of skew-symmetric

matrix spaces in the worst case. Consider an𝑚 × 𝑛 matrix space

𝔄. The individualization in our scenario is defined by a left individ-

ualization matrix 𝐿 and a right individualization matrix 𝑅, where

𝐿 is a matrix with 𝑚 columns and 𝑅 is a matrix with 𝑛 rows. In

the refinement, we compute 𝐿𝐴𝑅 for each matrix 𝐴 ∈ 𝔄. If 𝐿𝐴′𝑅
does not equal 𝐿𝐴′′𝑅 for some 𝐴′, 𝐴′′ ∈ 𝔄, then 𝐴′

and 𝐴′′
are

distinguished.

Ideally, if 𝐿𝐴′𝑅 does not equal 𝐿𝐴′′𝑅 for any two matrices 𝐴′

and 𝐴′′
in 𝔄, then each matrix 𝐴 in the space can be uniquely

identified by 𝐿𝐴𝑅, and thus all the matrices in 𝔄 are distinguished.

Consider two isometric skew-symmetric matrix spaces 𝔄 and 𝔅.

Let 𝐿𝔄 and 𝑅𝔄 be individualization matrices for 𝔄 that distinguish

all the matrices in 𝔄. Let 𝐿𝔅 and 𝑅𝔅 be individualization matrices

for 𝔅 such that

𝐿𝔅 = 𝐿𝔄𝑆
−1

and 𝑅𝔅 =

(
𝑆𝑇

)−1
𝑅𝔄

for some isometry 𝑆 from 𝔄 to 𝔅. One can distinguish all the ma-

trices in both spaces by their individualization matrices and then

establish a bijection between the matrices in the two spaces. Thus

the skew-symmetric matrix space isometry problem reduces to the

skew-symmetric matrix tuple isometry problem, which can be effi-

ciently solved by Theorem 2.4. Furthermore, suppose 𝐿𝔄 contains a

small number of rows and 𝑅𝔄 contains a small number of columns.

Then one can solve the skew-symmetric matrix space isometry

problem efficiently by enumerating all the possible corresponding

𝐿𝔅 and 𝑅𝔅.

We show that the number of rows for the left individualization

matrices and the number of columns for the right individualization

matrices are related to the rank of matrices in the matrix space.

Lemma 3.1. Let𝔄 be a𝑑-dimensionalmatrix subspace of𝑀 (𝑚,𝑛, F𝑝 )
for a prime 𝑝 and some positive integers 𝑑,𝑚, 𝑛. For any 𝑘 ≥ 4, denote

𝑡 B
⌈
32max{𝑑 log(𝑝), 𝑘}/

√
𝑘

⌉
.

There is a left individualization matrix 𝐿 ∈ 𝑀 (𝑡,𝑚, F𝑝 ) and a right
individualization matrix 𝑅 ∈ 𝑀 (𝑛, 𝑡, F𝑝 ) such that for any 𝐴 ∈ 𝔄 of
rank at least 𝑘 , 𝐿𝐴𝑅 is a non-zero matrix.

By Lemma 3.1, if every matrix (except the zero matrix) in a skew-

symmetric matrix space is of high rank, then the skew-symmetric

matrix space isometry problem reduces to the skew-symmetric

matrix tuple isometry problem efficiently.

3.2 Low Rank Matrix Space Characterization
The hard case for the matrix space individualization/refine method

is that there are some matrices 𝐴 in the space such that 𝐿𝐴𝑅 are

zero matrices. Because of the linearity, such matrices form a linear

subspace of the original matrix space. To tackle this hard case, we

characterize the structure of the matrix space in which every matrix

is of low rank. Such a matrix space is called a low rank matrix space.

As our main technical result for the low rank matrix space char-

acterization, we show that, for a matrix space 𝔄 such that every

matrix in the space is of rank at most 𝑟 , there are invertible matrices

𝑃 and 𝑄 , called left and right formatting matrices, such that for

each 𝐴 ∈ 𝔄, 𝑃𝐴𝑄 has non-zero entries only in the last 𝑂 (𝑟2) rows
or columns.

Lemma 3.2. Let 𝔄 be a matrix subspace of𝑀 (𝑚,𝑛, F𝑝 ) or a skew-
symmetric matrix subspace of SS(𝑛, F𝑝 ) such that for each 𝐴 ∈ 𝔄,
rank (𝐴) ≤ 𝑟 for some positive integer 𝑟 . There is a matrix 𝑃 ∈
GL(𝑚, F𝑝 ), a matrix 𝑄 ∈ GL(𝑛, F𝑝 ), and an integer ℓ = 𝑂 (𝑟2) such
that for any 𝐴 ∈ 𝔄, 𝑃𝐴𝑄 [𝑖, 𝑗] = 0 for all the 1 ≤ 𝑖 ≤ 𝑛 − ℓ and
1 ≤ 𝑗 ≤ 𝑛 − ℓ . Furthermore,𝑄 = 𝑃𝑇 if 𝔄 is a skew-symmetric matrix
space.

We remark that similar characterizations were studied in [1, 23].

But to the author’s knowledge, all the previous results require that

the underlying field has at least 𝑟 + 1 elements.

Together with matrix space individualization-refinement, we can

represent a matrix space in a more structured way. First, we con-

struct a “semi-canonical” basis for the input matrix space. Suppose

we apply left and right individualizationmatrices 𝐿 and𝑅 to amatrix

space 𝔄 of dimension 𝑑 and compute a linear basis (𝐴1, . . . , 𝐴𝑑 ) of
𝔄 such that (𝐿𝐴1𝑅, 𝐿𝐴2𝑅, . . . , 𝐿𝐴𝑑𝑅) is lexically minimized among

all the linear basis of 𝔄. Because the zero matrix is lexically the

smallest among all the matrices, the first few matrices in the semi-

canonical basis correspond to a linear basis of ℭ, which is the linear

span of all the matrices 𝐴 ∈ 𝔄 such that 𝐿𝐴𝑅 is a zero matrix.

We further apply formatting matrices 𝑃 and 𝑄 for ℭ to each

matrix in the semi-canonical basis of 𝔄 (every matrix𝐴 in the semi-

canonical basis becomes 𝑃𝐴𝑄). Then by our low rank matrix space

characterization, the matrices that form a linear basis of ℭ have

non-zero entries only in the last few rows or columns. See Figure 1

for an illustration.

The semi-canonical basis is not canonical because, for fixed indi-

vidualization matrices, there can be different semi-canonical bases.

But the semi-canonical bases can provide a partial correspondence

between two isometric skew-symmetric matrix spaces. Suppose

two skew-symmetric matrix spaces 𝔄 and𝔅 are isometric and let 𝑆

be an isometry from 𝔄 to𝔅. For individualization matrices 𝐿 and 𝑅

of 𝔄, let (𝐴1, . . . , 𝐴𝑑 ) be a semi-canonical basis of 𝔄 with 𝐿 and 𝑅

as individualization matrices, and (𝐵1, . . . , 𝐵𝑑 ) be a semi-canonical

basis of 𝔅 with 𝐿𝑆−1 and (𝑆𝑇 )−1𝑅 as individualization matrices.

Then for each 1 ≤ 𝑖 ≤ 𝑑 ,

𝑆𝐴𝑖𝑆
𝑇 = 𝐵𝑖 + 𝐵′

𝑖

for some 𝐵′
𝑖
satisfying the condition that

𝐿𝑆−1𝐵′
𝑖

(
𝑆𝑇

)−1
𝑅
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Figure 1: The semi-canonical basis of a matrix space after
applyingmatrix space individualization-refinement and the
low rankmatrix space characterization. The three blackma-
trices in the front form a basis of the space spanned by all
the matrices𝐴 ∈ 𝔄 such that 𝐿𝐴𝑅 is a zero matrix. The trans-
parent rectangles enclosed by the dashed black lines are zero
matrices. The four light brown matrices in the back are the
rest matrices in the basis.

is a zero matrix. The partial correspondence also holds for two

equivalent matrix spaces. Two matrix spaces 𝔄 and 𝔅, in which

matrices are not necessarily square matrices, are equivalent if there

are invertible matrices 𝑋 and 𝑌 such that 𝑋𝔄𝑌 = 𝔅, i.e., 𝔅 equals

the space spanned by 𝑋𝐴𝑌 for all the matrices 𝐴 ∈ 𝔄.

3.3 Tensor Representation of Skew-Symmetric
Matrix Spaces

Next, we combine the matrix space individualization-refinement

and the low rank matrix space characterization to analyze skew-

symmetric matrix spaces. For convenience, let us define a three-

tensor representation for skew-symmetric matrix spaces follow-

ing [36]. For a skew-symmetric matrix space 𝔄 of dimension 𝑚

such that every matrix in the space is an 𝑛 × 𝑛 matrix, a three-

tensor G ∈ F𝑚×𝑛×𝑛
𝑝 is a skew-symmetric matrix space tensor of 𝔄

if G[𝑖, 𝑗, 𝑘] = 𝐴𝑖 [ 𝑗, 𝑘] for a linear basis (𝐴1, . . . , 𝐴𝑚) of 𝔄, where
𝐴𝑖 [ 𝑗, 𝑘] is the ( 𝑗, 𝑘)-th entry of 𝐴𝑖 , and G[𝑖, 𝑗, 𝑘] is the (𝑖, 𝑗, 𝑘)-th
entry of G.

Given a skew-symmetric matrix space tensor G, we use 𝔛G,𝑖 to
denote the 𝑛 × 𝑛 skew-symmetric matrix such that

𝔛G,𝑖 [ 𝑗, 𝑘] = G[𝑖, 𝑗, 𝑘],

use 𝔜G, 𝑗 to denote the𝑚 × 𝑛 matrix such that

𝔜G, 𝑗 [𝑖, 𝑘] = G[𝑖, 𝑗, 𝑘],

and use ℨG,𝑘 to denote the𝑚 × 𝑛 matrix such that

ℨG,𝑘 [𝑖, 𝑗] = G[𝑖, 𝑗, 𝑘] .

Since 𝐴𝑖 are skew-symmetric matrices for all the 1 ≤ 𝑖 ≤ 𝑚, 𝔛G,𝑖
are skew symmetric matrices for all the 1 ≤ 𝑖 ≤ 𝑚, and 𝔜G, 𝑗 equals
to −ℨG, 𝑗 for all the 1 ≤ 𝑗 ≤ 𝑛.

We also use 𝔛G to denote the matrix space ⟨𝔛G,1, . . .𝔛G,𝑚⟩, use
𝔜G to denote the matrix space ⟨𝔜G,1, . . .𝔜G,𝑛⟩, and use ℨG to de-

note the matrix space ⟨ℨG,1, . . .ℨG,𝑛⟩, where ⟨·⟩ is the linear span.
We remark that 𝔛G is a skew-symmetric matrix space, but 𝔜G and

ℨG are not.

One can verify that two skew-symmetric matrix spaces are iso-

metric if and only if their tensors (denoted asG andH) are isometric,

i.e., there is an 𝑛 × 𝑛 invertible matrix 𝑁 and an𝑚 ×𝑚 invertible

matrix 𝑀 such that the transform of G by 𝑁 and 𝑀 , denoted as

Trans𝑁,𝑀 (G), equals H, where

𝔛
Trans𝑁,𝑀 (G),𝑖 =

𝑚∑
𝑖′=1

𝑀 [𝑖, 𝑖 ′] ·
(
𝑁 · 𝔛G,𝑖′ · 𝑁𝑇

)
.

3.4 Semi-Canonical Form of Skew-Symmetric
Matrix Space Tensors

The purpose of the tensor representation of a skew-symmetric

matrix space is to incorporate the matrix space individualization-

refinement and the low rank matrix space characterization tech-

niques so the tensor is transformed into a more structured form,

called the “semi-canonical form” of the tensor.

For a skew-symmetric matrix space tensorG, the semi-canonical

form of G, denoted as SC(G), is obtained by applying the two

techniques to the three matrix spaces𝔛G,𝔜G, andℨG so matrices in

each of the three matrix spaces have the structure shown in Figure 1.

To achieve this, we need to carefully choose the individualization

and formatting matrices in a coordinated fashion. In particular,

if the individualization and formatting matrices are chosen such

that, for the left formatting matrix 𝑃 used for 𝔛G, 𝑃
𝑇
can also be

used as the right formatting matrix for 𝔜G and ℨG, then the tensor

semi-canonical form has the structure shown in Figure 2(a). The

tensor values in the transparent region are all zero. The union of

the transparent region and the red cube is called the kernel of the

tensor semi-canonical form. The blue region is called the surface of

the tensor semi-canonical form.

For fixed individualization and formatting matrices, the tensor

semi-canonical form is also fixed. However, for an efficient tensor

isometry testing algorithm, it is unacceptable to enumerate all

possible formattingmatrices, though it is affordable to enumerate all

possible individualization matrices. To address this issue, we show

that if the individualization matrices are fixed, and the formatting

matrices are partially fixed (i.e., only a few key rows are fixed, and

all the other rows satisfy certain conditions), then the kernel is

fixed. This is also the reason for the term “semi-canonical form”:

the semi-canonical form is not unique for fixed individualization

matrices and partially fixed formatting matrices, but the kernel is

unique.

In other words, if two tensors are isometric, and one constructs

the semi-canonical forms of the two tensors using individualization

matrices and partially fixed formattingmatrices that are the same up

to some isometry, then the kernels of the two semi-canonical forms

are identical. Therefore, to determine whether the two tensors are

isometric, one only needs to check further if there are formatting
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(a) (b)

Figure 2: (a). Semi-canonical form of a skew-symmetric matrix space tensor. (b) Matrices in the surfaces of 𝔛G,𝔜G, and ℨG.

matrices that make the surface identical for the two tensors while

keeping the kernel unchanged.

In addition, based on the the matrix space individualization-

refinement and the low rankmatrix space characterization, there are

always semi-canonical forms such that the numbers of matrices in

the surfaces of𝔛G,𝔜G, andℨG (Figure 2(b)) are small. Hence, in the

partially fixed formatting matrices, we also fix the rows related to

the surfaces of 𝔛G,𝔜G, and ℨG. Then matrices in the surfaces from

the three matrix spaces are fixed up to some formatting matrices

satisfying the partially fixed constraint.

Hence, the isometry testing of skew-symmetric matrix space

tensors reduces to the isometry testing of their semi-canonical

forms by enumerating individualization matrices and partially fixed

formatting matrices for both tensors. Due to the fixed kernel for all

the semi-canonical forms, the isometry testing of semi-canonical

forms further reduces to deciding whether the surfaces are identical

between semi-canonical forms up to some formatting matrices

satisfying the partially fixed constraint.

3.5 Reduction to Skew-Symmetric Matrix
Tuple Isometry Testing

Finally, we reduce the isometry testing of semi-canonical forms

of skew-symmetric matrix spaces to the aforementioned skew-

symmetric matrix tuple isometry problem. The high-level idea is

to construct a skew-symmetric matrix tuple to encode the surface

of the tensor semi-canonical form. Because the matrices in the

surfaces of 𝔛G, 𝔜G, and ℨG are fixed, we can use different matrices

in the matrix tuple to encode the matrices in the surface.

Suppose the kernel is of dimension𝑚′ × 𝑛′ × 𝑛′ for some 1 ≤
𝑚′ ≤ 𝑚 and 1 ≤ 𝑛′ ≤ 𝑛. In our skew-symmetric matrix tuple of

SC(G), denoted as FSC(G) , each matrix is of dimension (3 + 𝑛 +
𝑚′) × (3 + 𝑛 + 𝑚′). The rows from the fourth to the (3 + 𝑛)-th
of matrices in FSC(G) correspond to the rows of matrices in 𝔛G.
The last𝑚′

rows of matrices in FSC(G) correspond to the first𝑚′

rows of matrices in 𝔜G (or equivalently ℨG). The first three rows

of matrices in FSC(G) are auxiliary rows used to ensure that the

other rows satisfy the constraints of the partially fixed formatting

matrices. See Figure 3 for an illustration.

Figure 3: The matrices in FSC(G) .

We use the submatrices on 𝑅1 (as Figure 3) for all the matrices

in FSC(G) to encode the skew-symmetric matrices in the surface

of 𝔛G. We also use the submatrices on 𝑅2 for all the matrices in

FSC(G) to encode the matrices in the surface of 𝔜G (excluding the

intersection with the surface of𝔛G). Consequently, the submatrices

on 𝑅3 for all the matrices in FSC(G) , which is the negative transpose
of submatrices on 𝑅2 by the skew-symmetric condition, encode the

matrices in the surface of ℨG (excluding the intersection with the

surface of 𝔛G). We use the other submatrices to ensure constraints

given by the partially fixed formatting matrices.
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By carefully designing matrix tuples constructed from tensor

semi-canonical forms, we show that the semi-canonical forms of

two skew-symmetric matrix space tensors are isometric if and only

if there is an isometry 𝑆 between the skew-symmetric matrix tuples

such that 𝑆 is a block diagonal matrix

𝑆 =

(
𝑄 0

0 𝑊

)
for some (3 + 𝑛) × (3 + 𝑛) matrix 𝑄 and𝑚′ ×𝑚′

matrix𝑊 .

Naturally, we want to determine the isometry of the two ten-

sors by running the skew-symmetric matrix tuple isometry algo-

rithm (Theorem 2.4) on the matrix tuples constructed from the

semi-canonical forms. However, the requirement of 𝑆 being block

diagonal makes things more complex.

Suppose we run the algorithm for skew-symmetric matrix tuple

isometry on the matrix tuples constructed. If the algorithm returns

no, then the two semi-canonical forms are not isometric. If the

algorithm returns yes and an isometry that is block diagonal, then

the two semi-canonical forms are isometric. The difficult case is

when the algorithm returns yes and an isometry that is not block

diagonal. For this case, we can neither certify that the two semi-

canonical forms are isometric, nor show that the two semi-canonical

forms are not isometric.

Let us consider an easier scenario: Suppose for each non-zero

row vector 𝑣 ∈ F𝑛𝑝 , there is a matrix 𝑋 in the surface of 𝔛G such

that 𝑣𝑋 is a non-zero vector. With this condition, together with

our construction of matrix tuples, we can show that the isometry

returned is of the form (
𝑋 𝑌

0 𝑍

)
.

After carefully analyzing the matrix tuples constructed, we show

that (
𝑋 0

0 𝑍

)
is also an isometry, and thus the two semi-canonical forms are

isometric.

The general case is more complex because the left bottom subma-

trix of the isometry returned can be non-zero. However, we show

that either we can certify that there exists another block diagonal

isometry for the skew-symmetric matrix tuples, or we can reduce

the problem to a matrix tuple equivalence problem (Definition 2.1).

By Theorem 2.3, the matrix tuple equivalence problem can be solved

efficiently.
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