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Absiract—Fourier analysis learning trajectories are investi-
gated in this full paper as a joint interdisciplinary construct for
a scholarly collaboration among engineering and mathematics
faculty. This is a dynamic and recursive construct for aligning,
developing, and sharing research based innovative practices
for engineering mathematics education. Towards building more
coherence and transfer of learning between engineering and
mathematics courses, these trajectories offer experimental prac-
tice templates for the interdisciplinary community of practice
for engincering mathematics education. Conjectured learning
trajectories for Fourier analysis thinking are here articulated and
experimented in three courses - Trigonometry, Linear Algebra,
and Signal Processing. Informed by the interdisciplinary perspec-
tives from the team, these trajectories help to design instruction
to support the complex learning of the mathematical, and
engineering foundations for the advanced mathematical concepts
and practices such as Fourier Analysis for engineers. The re-
sults highlight the impact of collaborative, interdisciplinary, and
innovative practices within and across courses to purposefully
build and refine instruction to foster coherence and transfer
with learning trajectories across mathematics and engineering
courses for enginecring majors. This offers a transformative
process towards an interdisciplinary engineering mathematics
education. The valid assessment and measorement of complex
learning ontcomes along learning trajectories are discussed for
engineering mathematics education, paving the pathway for our
future research direction.

Index Terms—learning trajectories, Fourier analysis, transfer,
engineering mathematics education, coherence, complex learning

1. INTRODUCTION

One of the major challenges of engineering mathematics
education is teaching and learning of advanced mathematical
concepls such as Fourier analysis heavily used in upper level
engineering courses. Due o the gaps among engineering and
mathematics courses, the development and transfer of such
advanced applied mathematics perspectives are often inade-

quately supported and integrated along the required mathemat-
ics and engineering courses for undergraduates, Fourier meth-
ods have found a significant place in engineering mathematics
education programs around the world [1]. There is a need
for articulating and supporting the emergence and progression
of advanced mathematical practices for engineers across the
courses and curricula,

Linking the theory and practice in engineering mathematics
education requires educational research constructs that can
recognize the complexity of learning and applying advanced
mathematical conient such as Fourier analysis. Learning ira-
jectories are research constructs adopted here to inform, guide,
and build research-based collaborations among faculty to
imnovale instructional practices for engineering mathematics
education [2]. Leaming trajectories are dynamic constructs,
initially conjectured from practice, then validated and refined
by experts from relevant disciplines including experiments
with students and faculty.

Fourier analysis learning trajectory starts early and progress
across the mathematics courses such as Trigonometry, Calcu-
lus sequence, Differential Equations, Linear Algebra, and engi-
neering courses such as analysis of waves in Signal Processing,
Control systems, Electromagnetic Theory. Research dentified
that the multiplicity of representations is a major source of the
coherence problem in upper level math courses for engineers.
Students struggle to make connections between different fram-
ings (geometrical, algebraic, abstract), between different regis-
ters of representations (graphical, algebraic, symbolic, tabular),
and analytic-arithmetic and arithmetic-structural modes of
reasoning when they are learning undergraduate mathematics
education courses including caleulus [3], [4].

Mathematical modeling is a practice that allows the con-
nection of knowledge across disciplines such as engineering,
mathematics, and technology by responding to real world
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challenges. Mathematical models and modeling activities as
a sequence can be used to develop student understanding
of deeper content and connections for engineering mathe-
matics education along a targeted learning trajectory [6]—
[8]. Modeling in engineering education can be implemented
as a prololype for interdisciplinary mathematics educalion
demanding coordination and assessment of interdisciplinary
complex learming outcomes [9].

Fourier analysis as a branch of functional analysis is a
core mathematical idea extensively utilized in engineering
mathematics education. Its applications include modeling and
processing of signals for electrical and mechanical engineers,
as well as for solving differential equations. Functional anal-
ysis has been the key conceptualization in modernizing linear
algebra extending its study of arbitrary veclor spaces beyond
B, E* to include infinite dimensional linear spaces and
vector spaces of functions [10]. Fourier analysis methods
require engineering students 1o develop an understanding of
functional analysis perspective that they can apply in signal
and data processing, On the other hand, Linear Algebra and
Engineering Analysis courses generally fall short of providing
a clear understanding of function spaces spanned by orthonor-
mal Tunctions as Hilbert Spaces, Banach spaces as complete,
normed veclor spaces.

Fourier's idea goes back to ancient astronomy where em-
pirical models of planetary motions were build upon deferents
and epicycles. Fourier's work offered a novel formulation of
heat diffusion through Fourier series and integrals establishing
a process that a continuous function can be represented by a
trigonometric series [11].

II. PROBLEM AND BACKGROUND

Learning trajectories provide an integrated approach to
develop mathematical knowledge for teaching engineering
mathematics through design and analysis of mathematical
modeling tasks for engineering majors and consequently, stu-
dents’ learming experience, connecling, anticipating, attending
1o learming discourse and assessment [12].

Students are observed to have difficulty in recognizing
conceptual shifts while making transitions from algebra —
functions— analysis [13] where they need to conceptualize
functions as mathematical objects to operate and build function
spaces such as the Hilbert space as needed in Fourier Analysis.

While there are examples of Learning Trajectories in the
research literature (5], [14]-[16], there 1s a gap in research in
the development of Fourier Analysis thinking in undergraduate
or engineering mathematics education. There is prior work on
linear transformations [16]. We examine learning trajectories
for research-oriented teaching and learning of Fourier analy-
sis, as it builds across aligned mathematics and engineering
courses. As a part of Fourier Analysis Learning Trajectory,
its early foundation in Trigonometry is here investigated for
coherent leaming of complex and conlinuous (rigonomeltric
functions. This is one of the novel contributions made here to
engineering mathematics education.

This represents an innovative interdisciplinary approach
to reform engineering mathematics education curricula and
practices to align and build an interdisciplinary mathemat-
ical knowledge content for engineering students. It builds
a scholarly community of practice approach by designing,
implementing and refining the instruction across mathematics
and engineering courses with an interdisciplinary team of
mathematics, engineenng, and STEM education faculty [17].
Upper level engineering courses demand mathematical back-
ground that may not be addressed adequately in lower level
courses such as Differential Equations and Linear Algebra.
Instructors also feel the pressure to get students develop
a strong mathematical foundation for learning engincering
courses such as Signal Processing, that are heavily relying
on advanced mathematical methods such as Fourier analysis.
To support faculty and students, learning (rajectories provide
conjeclures regarding the organization and the development
of advanced mathematical concepts. Nested conceptual hier-
archies support instructors purposefully design and experiment
learning modules to build their local practices. It provides a
dynamic framework for collaboration to clarify the concepts,
connections, and instructional support 1o help students move
along conceptual scaffolds in developing Fourier analysis
perspectives in mathematics and enginecring courscs.

Learning Trajectories are studied here as research constructs
for a scholarly collaborative practice of engineering mathe-
matics education. Building on mathematics education research
[18], [14], these trajectories allow experimentation on a graded
and a fine-grained conceptual analysis of the development and
transfer of Fourter and broader functional analysis thinking in
engineering mathematics courses. Learning trajectories offer
viable paths for instructors and learners for the conceptual
development and assessment of the higher order mathematical
concepts and practices such as Fourier analysis for engineers.
Through design based research and mathematical modeling
orientation, the conjectured learning trajectories on Fourier
analysis are introduced and refined to build coherence and
transfer of complex learning for engineering mathematics
education.

We discuss how Fourier analysis can be intuitively intro-
duced with College Trigonometry, evolve across Calculus se-
quence courses, and Differential Equations, then formalized n
the Linear Algebra course for engineers with the introduction
of inner product spaces. We examine the conceptual barriers
in the multiple frameworks of its fundamental mathematical
elements such as vectors and function spaces in developing
Fourier analysis perspective for students.

A Assessing Interdisciplinary Complex Learning Trajectories

The process of assessment should be aligned with the
practice. Learning trajectories offer the pathways for build-
ing disciphinary connections and interdisciplinary connections
helping 1o build advanced mathematical content. The assess-
ment of interdisciplinary knowledge and competences for
complex learning trajectories for engineering mathematics is
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critical to support the development and integration of multiple
competencies for students with partner disciplines.

B. Questions

This innovative practice help us develop scholarly knowl-
edge on practice for engineering mathematics education
around the following questions:

« What mathematical concepts and connections should be
targeted as hypothetical learning trajectories for Fourier
analysis for undergraduates?

+« How does the collaborative process of developing learn-
ing trajectories on Fourier analysis contribute fo coher-
ence and transfer of learning between and across courses
on mathematics and engineering?

C. Theoretical Framework

This study 1s descriptive first to critically analyze the
undergraduate content and practices as an interdisciplinary
community of practice for the emergence and development
of Fourier analysis thinking engaging Mathematics, Engineer-
ing, and Mathematics Education Faculty and an educational
psychometrician, Design-based research with a sequence of
learning activities in the aligned course modules are con-
ducted. The faculty met to discuss the refinements of learning
irajectory-aligned modules work based on the experience of
students along the course of semester-long classroom teaching
of trigonometry and linear algebra courses. In a span of
three semesters, the relevant content and practice on Fourier
Analysis Learning Trajectories were collected from Trigonom-
etry, Engineering Analysis/Linear Algebra courses, and Signal
processing. Document analysis and retrospective analysis of
teaching/learning episodes are conducted to articulate align-
ments using course syllabus, lessons, and artifact review across
mathematics and engineering courses with aligned content on
the Fourier Analysis. Three mathematics and three engineering
faculty provided input on the teaching and learning Fourier
analysis for engineering majors. While the teacher self-reports,
and reflections on their practice and student learning were pre-
dominant source. The interdisciplinary community of practice
had periodic weekly meetings in Engineering analysis/Linear
algebra and trigonomelry course had external observers during
the experimentation with Fourier related modules.

1. Setting and Background

The authors have been leading a community of practice on
scholarship of teaching and learning engincering mathemai-
ics education towards learning Fourier analysis thinking as
required by the advanced engineering courses.

The design research as described in Prediger ef al. [19] 15
conducted to develop local instructional theories for teaching
and learning of Fourier analysis as a core engineering mathe-
matics education practice in engineering progras.

This study is underiaken at a midsize state university with
large cohorts of engineering majors. [nterdisciphinary team of
faculty with Mathematics/STEM education, applied mathe-
matics, and engineering backgrounds has been collaborating

on building a scholarship of teaching and learning of engi-
neering mathematics with locally effective practices. In this
collaborative, pedagogical innovations involved Ingquiry-based
Learning (IBL) of engineering mathematics with its multiple
framings in mathematics and engineering disciplines, adopting
multiple representations, and experimenting with modeling
tools utilized by engineering mathematics community.

Engincering Analysis as a mathematical course for engi-
neers 18 dependent on the needs of a number of engineering
disciplines for a linear algebra course. The first course in linear
algebra is a service course for electrical, mechanical, aerospace
and systems engineering among other disciplines. After taking
the linear algebra course, students often come away knowing
how to perform certain algorithms and computations but they
have not acquired the intuition relating knowledge of the
mathematics to selection of the method for analysis, design,
and control of physical systems. Students in these various
disciplines often only take one course in linear algebra.

The interdisciplinary tension observed here is the balance of
mathematical abstraction and concretization of mathematical
ideas in engineering context. We ask instructors how much
an engineering student should learn about the process of
mathematical reasoning and abstraction through proofs, and
implications in learning upper level engineering courses.

While learning linear algebra there is a tendency to build
instruction on two or three dimensional objects and appli-
cations. Relying on geometric intuitions is highlighted as
a danger of practice repeatedly observed throughout history
on teaching/learning lincar algebra such as [10]. This has
implications for learners 1o perceive vectors as 2 dimensional
or 3 dimensional number sirings. It 1s also observed in our
praclice that students siruggle in making a transiiion [rom
2D and 3D vectors to n-dimensional and mfinite dimensional
vectors, and higher abstractions of vectors as functions with
finitely or infinitely many components. Understanding Fourier
Methods will require learner a higher conception of vectors
beyond 2D/3D vectors and vector arithmetic. It demanding a
conceptual transition inie higher absiractions of vectors and
vector spaces harder for advanced engincering practices. This
transition is a critical conceplual transition to occur along
Fourier Analysis Learning trajectory in a linear algebra course
for engineers (see Figure 2 on Page 7).

Engineering students need coordinated support towards de-
veloping an understanding of these ideas during their math-
ematical content preparation. Learning trajectory for Fourier
analysis starts in College Trigonometry by modeling musical
sounds or periodic orbits using trigonometric functions helping
students understand the Fourier series more accessible for
freshmen students. Fourier Analysis Learning Trajectory then
builds across Trigonomeiry, Calculus, Differential Equations,
Linear Algebra, and Signal Processing courses.

It is a clear challenge o expect students to develop and in-
tegrate their understanding of complex numbers and lunctions
into trigonometry and linear algebra to build their understand-
ing of Fourier analysis.
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IT1. ANALYSIS AND RESULTS FROM FOURIER ANALYSIS
LEARNING TRAIECTORY ACROSS COURSES

In Fourier analysis, continuous functions are represented in
terms of an orthogonal set of functions in its vector space
with orthonormal properties. Understanding those functions
represented as vectors become more accessible for engineering
students only during or after they take the Linear Algebra
course. Further analysis of functions as vectors helps them
to extend their understanding about the vector spaces that
students learned in Linear algebra. This orientation helps (o
construct the founding ideas of functional analysis as heavily
implemented by engineers when using Fourier transform meth-
ods, and also other transformations as operators or mappings
into spaces spanned by orthonormal functions, for instance
cos(z) and sin(z). Fourier Transform, ., of a signal f({) in
Cast € (—oo,00) is defined as F(w) = [ f(t)e "“idt.
Therefore # is a function of w, the frequency, transform-
ing function f{t) from time domain 1o a function in fre-
quency domain represented as #(w). This is an operation
between functions with certain characteristics. Students require
a knowledge of orthonormal bases and inner product spaces to
have a solid fundamental understanding of the mathematical
reasoning behind Fourier Transform. While Fourier Series
are formed by summations of basic sinuscidal functions, the
Fourier Transform uses integrals. Fourier series represent a
periodic function f(x) with period L as

> 27 2k
flz) t%n + j; (uk cos -2 + by, sin %.‘5) ,

where the coefficients ay, b are defined as

2 (2 2k
ap = —j fix) ms( ﬂk:r;)d.r,._
IJ L;"Z [.l

2 (L2 27k
by —f Sflx) sin (Larjdﬂ:,
L) 1 I

with k = 0,1,--- and by = 0,

Not all students start with a strong background of complex
representation of periedic behavior using Euler's formula,
etf cosf + isinf. As described in [21] students can
be supported to connect complex representations and the
irigonometric functions in orbital modeling. This connection
1s a core part of Fourter Analysis Learning Trajectory which
can be accessed by freshmen engineering students.

A. Fourier Analysis Learning Trajectory in Lower Level Math-
ematics Courses: Trigonometry

In the Trigonometry course, aligned instructional design
experiments were conducted for three semesters by the first
anthor to develop an intuitive understanding of Fourier Anal-
ysis. Integrated teaching of Fourier analysis with its modeling,
and assessment activities were shared with other mathematics,
engineering faculty, STEM Education faculty and an educa-
tional psychometrician [4], [21].

Learming trajectories in Trigonometry course culminated
in re-framing modeling with trigonometric functions using a

2wwti

series of complex functions in the form ke ,where k = Rt
in order to simplify the parametric modeling of the periodic
trajectories (x:(t), y(t)) as ¢ increase in the time domain [21].

Technology integration facilitated transitions among multi-
ple representations. Students modeled sound, musical tunes,
and periodic orbits using a series of sinusoidal functions with
different amplitude and periods as their term projects. Tech-
nological tools allowed students to experiment with a series of
trigonometric functions as objects in modeling periodic orbits
and seeking pafterns in transforming multiplicative to additive
structures with sinusoidal forms.

As part of the learning trajectory, the conceptual connections
between the addition of sine waves and their multiphication is
established. Operating with trigonometric functions, students
observe patterns in additive and multiplicative structures with
trigonometric functions. This is to be revisited in Calculus
when it will help students to see the building ideas of integral
transformations. This connection 1s a crucial part of learning
trajectory in understanding orthogonal properties of sinusoidal
functions in inner product spaces as introduced in Linear
Algebra.

Here, ftrigonometric functions are practiced as objects
(bases) to build more advanced pericdic functions to develop
the foundations of Fourier analysis approach. In Trigonometry
course, using an orbital modeling as model to extend circle
trigonometry and blend with complex (rigonometry, students
build more advanced orbital paths that can be modeled by
manipulating and superposing circular functions with different
frequencies and amplitudes. The culminating idea at the end
is a conceptual orientation towards looking into a periodic
function as a composition of a circular functions. This is
to provide readiness for more formal approach towards the
Fourier Transform as a process to find the set of cycle periods,
amplitudes and phascs to match any periodic function, fi't).
Al the end students have done a couple of simple examples
for this reverse conceptual onentation that is “How do we
decompose a complex periodic function or a signal into ils
founding circular functions with their amplitudes, frequencies,
and phases?

Extending the modeling of a Ferris Wheel, students de-
signed more complex double and triple Fernms wheel rides
by developing mathematical/ trigonometnc models of periodic
orbits formed by the trajectory of a nider located on several
circles simultaneously rotating with different periods and radii
(See Figure 1). Experimentally, star and loop patterns are
investigated looking into the relationship of periods of the
circles and the relationships among amplitudes. As depicted
in Figure 1, the star-like periodic orbit 1s decomposed into a
trigonometric sum expressed by the parametric curve, repre-
senting the locus of peoint tracing the orbital pattern with its
x and y positions are expressed with the following sums.

(rl cos(ayt) + ro cos(azt) + rycos(ast) + ry cos(agt),

r18in(ait) + rosinfest) + rysinfagt) + ry sin{er})
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A. Fourier Analysis Learning Trajectory in Lower Level Math-
ematics Courses: Trigonometry

In the Trigonometry course, aligned instructional design
experiments were conducted for three semesters by the first
author to develop an intuitive understanding of Fourier Anal-
ysis. Integrated teaching of Fourier analysis with 1ts modeling,
and assessment activities were shared with other mathematics,
engineering faculty, STEM Education faculty and an educa-
tional psychometrician [4], [21].

Learning trajectories in Trigonometry course culminated
in re-framing modeling with trigonometric functions using a

series of complex functions in the form ke?™t where k € R

in order to simplify the parametric modeling of the periodic
trajectories (x:{t). y{t]) as ¢ increase in the time domain [21].

Technology integration facilitated transitions among multi-
ple representations. Students modeled sound, musical tunes,
and periodic orbits using a series of sinusoidal functions with
different amplitude and periods as their term projects. Tech-
nological tools allowed students to experiment with a series of
trigonometric functions as objects in modeling periodic orbits
and seeking patterns in transforming multiplicative to additive
structures with sinusoidal forms.

As part of the learning trajectory, the conceptual connections
between the addition of sine waves and their multiplication is
established. Operating with trigonometric functions, students
observe patterns in additive and multiplicative structures with
trigonometric functions. This is to be revisited in Calculus
when it will help students to see the building ideas of integral
transformations. This connection is a crucial part of learning
trajectory in understanding orthogonal properties of sinusoidal
functions in inner product spaces as iniroduced in Linear
Algebra.

Here, trigonometric functions are practiced as objects
(bases) to build more advanced pericdic functions to develop
the foundations of Fourier analysis approach. In Trigonometry
course, using an orhital modeling as model to extend circle
trigonometry and blend with complex (rigonometry, students
build more advanced orbital paths that can be modeled by
manipulating and superposing circular functions with different
frequencies and amplitudes. The culminating idea at the end
is a conceptual orientation towards looking into a periodic
function as a composition of a circular functions. This is
to provide readiness for more formal approach towards the
Fourier Transform as a process to find the set of cycle periods,
amplitudes and phascs 1o match any periodic function, fit).
Al the end students have done a couple of simple examples
for this reverse conceptual orientation that is “How do we
decompose a complex periodic funchion or a signal into 1its
founding circular functions with their amplitudes, frequencies,
and phases?”

Extending the modeling of a Ferris Wheel, students de-
signed more complex double and iriple Ferms wheel rides
by developing mathematical/ trigonometric models of periodic
orbits formed by the trajectory of a rider located on several
circles simultaneously rotating with different periods and radn
(See Figure 1). Experimentally, star and loop patterns are
investigated looking into the relationship of periods of the
circles and the relationships among amplitudes. As depicted
in Figure 1, the star-like periodic orbit is decomposed into a
frigonomeiric sum expressed by the parametric curve, repre-
senting the locus of point tracing the orbital pattern with its
x and y posiions are expressed with the following sums.

(rl cos(ayt) + o cos(aszt) + r3cos(ast) + rycos{agt),

rysinf{at) + rosin(ast) + rysinfagt) + ry Rin{ﬂ:‘;f})
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learn more about series and their convergence in Caleulus I11.
Students learn to represent and approximate with polynomial
functions, and series of trigonometric functions.

Students find opportunities to build on their understanding
of convergence of the sum of trigonometric series. This is a
sharp conirast to the practice of representation of trigonomeltric
functions as polynomial series. Conceiving trigonomeiric sine
functions as building blocks or bases to represent any given
function is the core idea to build to understand Fourier analysis
as a branch of functional analysis, which further requires the
notion of vector spaces, Inner prodm:l: spaces, trigonometric
functions as bases to be conceptalized in Linear Algebra.

B. Fourier Analysis Learning Trajectory in Linear Algebra

Based on our conceplual analysis and the review of teach-
ing/learning artifacts, we offer a conjectured learning trajec-
tory across linear algebra required for a formal development
of the foundations of functional analysis thinking. Figure 2 on
page 7 demonstrates the proposed Learning Trajectory towards
Fourier Analysis along the lincar algebra course for engineers.
As seen from Figure 2 on page 7, it is clear that Fourier
analysis requires the idea of vector spaces, basis, subspaces,
orthogonal functions as well as inner products with periodic
and non-periodic functions. The concept of inner product is the
founding idea leading to Fourier series and transform. While
the inner products can be defined in different ways, integral
based definition is critical to construct Fourier transformation,
series and 1ts coefficients. Below we provide a bnef description
of the local practice on introducing the idea of inner product.
Students start with the notion of dot product. The concept of
inner product extends the dot product further as a projection
of a given function onto bases consisting of polynomial or
periodic functions. The dot product and scalar products in the
Euclidean space automatically satisfy the conditions of inner
product as special cases. An inner product on the set of all
continuous functions C'[a, b can be defined as an integral in
the form

b
< f,g>= / f(@)o(z)dz,

where fixz), g(x) € Cla,bl. In particular, if in C'|—1, 1| the
inner product becomes

1
<fg> [ Fa)g(a)d

For the Fourier Analysis Learning Trajectory, the crucial inner
product for trigonometric functions/polynomials relevant to
Fourier analysis is

1 K .
< fgz=—[ flz)glx)dx,

! =

1

in the function space C[—m, 7, and wi(z) = = is taken

to be the weight function. With this definition we have

< Ccosa,sinr »>= — cos xsinadr = (0,
LI

1 ki
< COST,CO8% >= — cosxcospdr = 1, and

L

] ki
< SN E, Sin = — ginz sinxdr = 1.

o

The first of these implies that cosx and sin z are orthogonal,
that is, cosx L sinz, in the space of functions, C'|—=, x|. The
last two scalars are used to illustrate the orthonormal vectors in
functional spaces. An orthonormal set 15 a set of orthogonal
unit vectors. The cosine and sine functions are orthonormal
bases in representing a given [unction by Fourier series.

C. Practices with Fourier Analysis in Upper Level Engineer-
ing Courses: Signal Processing

1) Crosscutting Engineering Connections to Signal Pro-
cessing: Fourier analysis of sounds and images with data mod-
eling and compression tools are revisited in Signal Processing
course. The students start the course with the visualization
of the frequency content of simple signals using MATLAB
and Fast Fourier Transform algorithm. The students observe
frequency content of signals combined by adding signals with
a single frequency each, including low and high frequencies
(see Figure 3 on page 7). The students are asked to design a
simple digital filter to remove the low frequencies, or the high
frequencies which ride on the signal as noise, depending on
the purpose of the application. This is depicted in Figure 4
on page 7. At the end of the semester the students take on a
final project that involves liliering a signal, such as removing a
random truck hom sound from an audio file with conversation,
or removing a buzzing noise in the background, among other
requirements.

Again in electromagnetic theory course, the propagation of
clectromagnetic waves are further studied and analyzed by
super-positioning of plane waves which builds on the previous
mathematical concepts as well as engineering applications.

In signal processing context, the tools used for Fourier
Analysis include Fourier Series, Fourier Transformation (FT),
Fast FT (FFT), Discrete FT (DFT), and Discrete Time FT
(DTFT). While Fourier Series and DFT are finite extent in
fime with discrete frequency variable, FT and DTFT are
infimite exlenl in Gime domain with a conlinuous [requency
domain, Discrete Cosine Transform (DCT) 15 a Founer-related
transform similar to DFT, but using only real numbers.

2) Complex Learning in Modeling and Processing Signals
with Fourier Methods: Modeling and processing signals re-
quire students’ attention to the problem constraints and the
data models based on the knowledge and assumptions of
the desirable characteristics of the engineering context. In
order to model the sound data perceivable for human ear, an
engineering design constraint is naturally the audible range for
human ear. This range determines the filtering of the sound
data that can be attenuated as noise which will be irrelevant
to human ear. This in turn leads to the selection criteria
based on the dominant audible frequencies to model relevant
sounds for human hearing. Humans are most sensitive over
a range of frequencies approximately between 500 to 4000
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Fig. 3. Signals with different single frequency content

Hz, and sound intensity or amplitude levels approximately
between 35 dB and 80 dB or sound pressure level (SPL).
In signal processing, sensitivity becomes another contextual
constraint in interpreting the models. There is no true model
when modeling sound data for human ear; all would be based
on the biological characteristics of a human ear which can
only discriminate a change of about one decibel in sound
level and about a half of a percent change in tonal frequency
[20]. Modeling and interpretation of signal data is highly
contextual demanding engineers to draw from interdisciplinary
knowledge across bio-physics, physiclogy, bio-mathematics as
well as other disciplines.

In musical sound processing, a problem context can call for
the extraction of the audible bass sounds as desirable outputs
that should range between 32 to 512 Hz frequencies. Engi-
neering students experiment with filters to extract desirable
data and detecting noise based on the contextual demands
of the underlying engineering problem. Modeling data using
signal processing is a complex process requiring research and

Fig. 4. Combined signals & their Fast Fourer Transfonm representation

formulation of assumptions and choice of parameters deter-
mined by knowledge from multiple disciplinary backgrounds.
In modeling musical tones, the frequency of a sound signal
corresponds to the pitch of an auditory musical tone as one
of four auditory attributes along with duration, loudness, and
timbre.

In signal processing, another common problem that students
investigate i1s the compression methods for image data which
requires Fourier transformation method. JPEG compression
employs a Fourier transform known as Discrete Cosine Trans-
form on small squared partitions of a digital image and then
re-synthesis of the image from the superposition of waves.
This transform of small partitions of image data extracts the
frequency components so that the resynthesis can compress
the data using not all frequencies. Indeed, filtering high
frequencies and only using low frequency components of a
signal allow us to express the signal with less information
depending on the desired accuracy.

Discrete Cosine Transform (DCT) is a widely used signal
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processing technique building on representing an image signal
as a sum of sinusoids from cosines functions with varying
magnitudes and frequencies. The constraint for this DCT
transform real data with even symmetry due to the evenness
of cosine functions. Not having to deal with the complex
components in a Fourier Transform 1s a strength bul the
symmetry assumption is critical for the learner. DCT as a
data analysis and compression method becomes accessible Tor
engineering students once they learn series in Calculus 111
and inner product spaces in Linear Algebra. Discrete Cosine
Transform is a real valued transformation only building on the
even part of Fourier series with cosines. On the other hand,
Diiscrete Fourier Transform seeks to represent a time series
signal as a fimte sum of complex trigonometric functions by
finding amplitudes, Ags. and frequencies, wes, 10 approXimate
the time data 377 Apet?mert,

Engineering studenis are expected (o develop competency
using spectrum analyzers for analysis of the frequency spec-
trum of a signal. Spectral analysis allows an engineer to
discover underlying frequency components for a given time
series x; with its Fourier Series representation by figuring
out how to construct 1t using sines and cosines with the
coefficients for each frequency and amphiude. Fourier analysis
helps students when designing filters by identifying high-
frequency noise in signals that becomes obvious when signals
are separated into their frequency content mathematically and
visually. The students can then identify the necessary design
criteria lor their fillers o atlenuate undesirable Irequencies in
their signal. Examples in musical signals have been given. In
addition, examples of analysis of and filtering noise from other
signals are also possible, such as signals from electrocardio-
gram (ECG) significant for biomedical engineers; radar signal
are imporiani for signal propagalion analysis in aniennas.
Fourier analysis provides a tool in anomaly detection by
identifying discrepancies and unexpected content in otherwise
characterized signals. Besides these one-dimensional signals,
in 2D image data, Fourier analysis is used to determine
spatial frequencies in the image. For example, edges appear
as high frequencies, whereas solid colors appear as low or
no frequency regions. Fourier analysis, including functional
analysis offers content interpretation of images, and provides
a tool to identify and remove noise through high-pass, low-
pass or band-pass fillening, once the undesirable frequencies
are identified. It is possible to extend Fourier analysis to three
dimensions when analyzing point cloud data from lidar.

Besides providing mathematical formulation and back-
ground skills needed in engineering courses, engineering math-
ematics, scaffolding through mathematics courses throughout
the engineering curriculum, allows students to characterize and
interpret signals associated with engineering systems when
devising engineering solutions to related problems.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

Functional analysis historically modernized the linear alge-
bra to generalized vector spaces including infinite dimensional
spaces, generalized inner product spaces extending the dot and

scalar product of vectors with functions, This study provides a
pathway to modernize engineering mathematics education by
incorporating Fourier analysis as a functional analysis think-
ing. This study provides a conceptual analysis of a learning
trajectory for Fourier analysis across mathematical courses
in engineering disciplines. Fourier analysis skills are funda-
mental in engineering education. Analysis not only requires
the students to understand the parameters of equations and
input-output relationships, but also in modeling an engineering
system or a system’s behavior. Fourier transform functions
provide tools to establish signal content, and (o approximate
any signal of any shape. Mathematical scaffolding that begins
with lower division math courses are fundamental in capturing
these skills necessary in engineering courses. Furthermore,
as students begin to use complex equipment for analysis
purposes, such as spectrum analyzers, oscilloscopes, as well
as other high-technology tools, 1t 1s absolutely necessary for
them to understand what is behind these results and how they
are obtained through the equipment. Engineering mathematics,
with addressed learning trajectories, ensures that the students
are in a position (o infterpret data and measurement resulls
from complex equipment.

Interdisciplinary collaboration on improving engineering
mathematics education needs a strong and overarching focus
driving the innovative teaching experiments across courses.
Learming trajectory for Fourier analysis provides this focus
vielding more coherence within and across mathematics and
engineering courses. This collaboration builds an ongoing di-
alogue between instructors from mathematics and engineering
towards teaching and learning mathematics for engineers, The
Fourter Analysis Learming Trajectory will further guide the
progressive development and iterative refinement of conceptual
scaffolds as students re-frame and transfer their concepls
in new mathematical or engineering contexts and build and
synthesize new knowledge constructs,

The assessment of interdisciplinary knowledge and com-
petences in complex learning trajectories for engineering
mathematics education requires timely support for their emer-
gence and blending, and integration of emergent multiple
competencies across disciplines and time. The next phase of
this research is the walidation of Fourier Analysis Learning
Trajectory by the aligned complex learning assessment across
courses building on previous research [22], [23]. This line
of interdisciplinary research will help to develop research
based practices (o model and support complex learning of
advanced mathematical concepts for engineering and compu-
tational sciences. Collaborative innovative practices aligned by
conjectured and validated learning trajectories have potential
to build scholarly practices with their joint and temporal resulis
allowing to gauge progress, and diagnose and adequately
address the difficulties in engineering mathematics education.

ACKNOWLEDGMENT

Part of this work was supported by funding from the
Mational Science Foundation (NSF-IUSE 1725952).

Authorized licensed use limited to; Texas A & M University - Corpus Christi, Downloaded on April 19,2023 at 14:51;35 UTC from |EEE Xplore, Restrictions apply,



[l

(2]

131

(4]

[5]

[6]

[7]

(8]

191

[10]

REFERENCES

5. Pohjolainen, T. Myllykoski, C. Mercat, and 5. Sosnovsky, “Overview
ol Engineering Mathematics Education for STEM in EU" in §. Po-
hjolaimen et al. (eds) Modern Mathematics Education for Engineering
Curricula in Ewrope, Birkhiuser, Cham, 2018,

R. Duschl, 5. Maeng and A, Sczen, “Learning progressions and teaching
sequences: a review and analvsis,” Studies in Science Education, vol. 47,
ne. 2, pp. 123-182, Feb. 2011, DOL D0 1080/03057267.2011.604476

1-L. Dorler and A. Sierpinska. "Research intoe the teaching and learning
of Iincar algebra,” im . Holton et al. (eds.), The Teacking and Learning
of Mathematics ar University Level, New ICMI Study Series, vol. 7,
Sponnger, Dordrecht, pp. 255273, 2001, DO 10.1007/0-306-47231-
7_24

C. Plyley and C. Ekici, "Developing strategic competence with represen-
tations for growth modeling im calculus,” in A, Weinberg, C. Rasmussen,
1. Rabin, M, Wawro, and 8, Brown {eds.), Proc. of the 215t Annual Confl
on Res, in Undergrad,, Math, Ed., pp. 1102—110%, San Dicgo, CA, 2017,
Gravemeijer, K., Bowers, 1., & Stephan M.(2003). * A hypothetical
learning trajectory in measurement and flexible arithmetic” Int. Journal
for Res. in Math. Educ., vol. 12, pp. 51-66, Dec. 2003,

1. 5. Zawojewski, M. A, Hjalmarson, K. 1. Bowman, and K. Lesh, “A
mdeling perspective on learming and teaching i engineering educa-
ton,” in I 8. Fawojewski, . Dieles-Dux, & K. Bowman {eds.), Models
and Modeling in Engineering Education: Designing Experiences for All
Students, pp. 1-15. Rotterdam: Sense Publishers, 20008,

R. Lesh, K. A, Cramer, H. Doerr, T. Post, and J. Zawojewsk:, “Maodel
development sequences: Mudels and modeling perspectives on math-
ematics pr,” in K. Lesh and H. Doerr (eds.), Bevond Constructivism:
Models and modeling perspectives on mathematical proflem selving,
learning, and teaching . pp. 35-58, Lawrence Erlbaum Assoc., 2003,
L. McLavchlan, M. Mehmbeogly and J. Durham, “Problem Based
Leamning through Modeling and Simulation of Unmanned Vehicles,”
1200 ASEE Annual Conf. & Exposition, Atlanta, GA, June 23-28, 2013,
E. B. Ferri and N. Mousoulides, “Mathematical modelling as a prototype
for interdisciplinary mathematics education?” Proc. CERME 10, pp.
Q00-907, Dublin, Ireland, Feb, 2017,

G. Guendet-Chartier, “Should we teach lincar algebra through geome-
try ™ Linear Algebra and its Applications, vol. 379, pp. 491501, 2004,

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[2

21

[22]

(23]

J. Fourier, "The Analytical Theory of Heat”, English translation by
Freeman (1878); republication by Dover, New York, 1955,

P. Sztajn, J. Confrey, P. Wilson, and C. Edgington, “Learning Trajec-
tory Based Instruction: Toward a Theory of Teaching” Educational
Researcher, vol. 41, no. 5, pp. 147-156, June 2012,

M. O. ], Thomas et al, “Key mathematical concepts in the transition
from secomdary school to university,” in 8. Cho (ed) Prec. 12" Int,
Cong. on Mathematical Education, pp. 265-84, Springer, Cham, 2015,
D H. Clements and I, Sarama, “Learning Trajectories in Mathematics
Education,” Mathematical Thinking and Learning, vol. 6, no. 2, pp. 81-
89, March 2004, DOL 10.1207/s15327833mil0602_1

M. Stephan, J. Bowers, F. Cobb and K. P, E. Gravemeijer. "Supporing
students’ development of measuring conceptions: Analyzing students’
learning in social context,” J. for Research in Mathematics Education
Monograph, Reston, VA: NCTM, no. 12, pp. 51-66, 2003,

C. Andrews-Larson, M. Wawro, M. Zandich, “A hypothetical leamning
trajectory for conceptealizing matrices as linear transformations,” Int, T,
of Math. Fdu in Sci. and Tech., vol. 48, no. 6, pp. 80029, Dec. 2017.
P C. Wankat, R. M. Felder, K. A. Smith and F 5 Oreovicz, "The
scholarship of teaching and learning in engineering,” in M.T. Huber &
5. Morreale (eds.), Disciplinary Stvles in the Scholarship af Teaching
and Learning: Exploving Commen Ground, AAHE/Carnegie Found. lor
Advance. of Teackhing, Washington, 2002,

J. Lobato, “How design experiments can inform a rethinking of transfer
and vice versa,” Educational Researcher, vol. 32, pp.17-20, Jan. 2003.
5. Prediger, K. Gravemetjer and 1. Confrey, “Design research with a
focus on learmng processes, DM Mathematics Edueation vol, 47, pp.
BTT-891, Jume 2005, hops:Wdod.org/ 101007/ T1858-015-0722-3

H. Ngo and M. Mehrubeoglu, “Effect of the number of LPC coefficients
on the quality of svnthesized sounds” Int. J. Engineering Fesearch and
Innovation, vol. 2, no. 2, pp. 11-16, Fall'Winter 2010,

C. Ekici and C. Alapor, Inquiry-based orbilal modeling to build coher-
ence in trigonometry,” 19 fnt, Conf. Teaching Mathematical Modeling
and Applications (ICTMA), Univ. of Hong Kong, Hong Kong, 2019
C. Alagoz and C. Ekici, “Cognitive Diagnostic Modelling for Mathe-
matical Modelling Assessment,” in G, Stillman, Kaiser G., Lampen C,
(eds.) Mathematical Modelling Educ, and Sense-making, International
Perspectives on the Teaching and Learning of Mathematical Modelling,
pp. 349-59, Springer, Cham, 2020,

C. Alagoz and C. Ekicy, “Validity framework for mathematical modeling
assessment,” ]9 fnsernational Conf. Teaching of Mathematical Madel-
ing and Applications (ICTMA), Umv. of Hong Kong, Hong Kong, July
20149,

Authorized licensed use limited to: Texas A & M University = Corpus Christi, Downloaded on April 18,2023 at 14:51:35 UTC from |EEE Xplore, Restrictions apply.



