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Black carbon (BC) is a carbonaceous component of fine particulate matter (PM2.5) that is quantified via light

absorption. We demonstrate a low-cost method for quantifying BC using cell phone camera images. BC

concentration is correlated with red light absorbance that is measured from photographs of particle filter

samples following image processing steps to account for distortion (geometric calibration) and lighting

conditions (color calibration). We trained multiple Red channel to BC models using ambient air filter

samples and found that the exponential model best explains the correlation (R2
∼ 0.94). Our approach

has an effective minimum detection limit of 0.15 mg m−3 of ambient BC for an hourly sample collected

at 1 m3 h−1. This detection limit should be sufficient to quantify BC concentrations at high time

resolution at locations worldwide. We demonstrate the performance of our optical BC method using

a combination of filter samples and filter tapes from beta attenuation monitors (BAMs) operating at two

sites in an urban setting in Pittsburgh, Pennsylvania, USA. Our approach compares favorably to reference

filter-based methods, suggesting that post-analysis of BAM tapes collected worldwide can be a valuable

source for PM composition data, especially in countries in the Global South where there is insufficient air

quality data to make informed policy decisions.

Environmental signicance

PM2.5 exposure is responsible for around 3.3 million premature deaths every year, and yet, there is insufficient air quality data in many developing nations. PM2.5

composition data is critical to identify sources and help in evidence-based policymaking. This work developed a low-cost method to quantify atmospheric black

carbon (BC), a component of PM2.5. The method estimates hourly BC concentrations using photographs of particulate deposits on lter tapes from existing

PM2.5 monitors. We will be able to measure the BC concentrations above 0.15 mg m−3 in places across the globe with instruments that have xed-interval

particulate deposit spots on lters. The BC concentration data generated from this work will be publicly shared, and we plan to reach out to local collabora-

tors in developing nations who can use the data to build air quality control policies.

1 Introduction

Exposure to air pollution poses a severe risk to global public

health.1–3 It is the h leading cause of death worldwide and is

attributed to around 4.9 million premature deaths every year.4

The risk is more critical in low- and middle-income countries

due to a lack of effective public health policies. Among the air

pollutants, PM2.5 (particulate matter with an aerodynamic

diameter of 2.5 mm or smaller) alone is responsible for nearly

3.3 million premature deaths annually.2

Air quality in the US is regulated by the Environmental

Protection Agency (EPA) under the Clean Air Act, and there is

a robust infrastructure to measure pollutant concentrations

nationwide. Yet, air quality information is not adequate in

many densely populated lands around the world to make

informed policy decisions, especially in the Global South

(Africa, Latin America, developing parts of Asia and the Middle

East).5–7 These developing countries are still industrializing and

continue to emit large amounts of air pollutants in the process,

but do not always have enough resources to monitor the emis-

sions and ambient concentrations. There is a critical need for

better quantication of both PM2.5 concentration and compo-

sition in the Global South.5–12 PM2.5 concentration tells about

exposure; composition data can help us investigate emission

sources and dene future policies.13 A major barrier is the high

capital and operational costs of research-grade air pollutant

monitors. Thus, there is incentive to develop low-cost methods

for improving air quality monitoring in the Global South.5

Black carbon (BC), commonly referred to as soot, is

a component of PM2.5. It is a refractory form of carbon and is
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primarily formed by incomplete combustion of fossil fuels,

biofuel, or biomass.14 BC is emitted from gasoline and diesel

engines, coal-red power plants, and other sources burning

fossil fuels. In addition, it does not participate in chemical

reactions in the atmosphere which makes it an important tracer

for combustion emissions.15–17 BC is important to quantify and

control as it adds to the health burden due to PM2.5 and has

shown higher health impacts compared to PM2.5 for similar

mass concentrations.18,19

Particulate pollutants in the atmosphere interact with solar

radiation by absorbing and scattering it at different wave-

lengths.20 BC is dened as optically absorbing carbon in parti-

cles and is generally measured optically by quantifying the

absorbance of infrared or red light through particle-laden

lters.21,22 EC (elemental carbon) is another measure of

carbon soot in the air and is quantied operationally as

carbonaceous aerosols measured via thermal-optical methods.

Contini et al. reported anthropogenic and natural combustion

sources to be the main contributors to BC or EC in the atmo-

sphere.23 The correlation between BC and EC as well as the BC-

to-EC mass ratio can vary with sampling environments due to

differences in sources.24 PM mass concentrations can also be

optically quantied by the transmission of beta rays through

a lter tape laden with PM. This study builds on these optical

attenuation methods.

Aethalometers are widely used for continuous measurement

of ambient BC concentrations.22 An aethalometer collects

particulate matter on a quartz ber lter tape at a xed ow rate.

Then, it uses Beer–Lambert law to estimate BC by measuring

attenuation of a near-infrared light beam (880 nm) through the

particle sample. Most aethalometers also measure light

absorption by particles at 370 nm. Organic aerosol components

of wood smoke exhibit an enhanced light absorption at 370 nm

compared to 880 nm.25 The difference in PM concentrations

measured by aethalometers at the two wavelengths (Delta-C =

UVPM − BC) is strongly correlated with wood smoke markers in

heating seasons and hence has been used as a tracer for wood

smoke particles.26,27 However, applications of aethalometer are

limited due to its high installation and operational cost as well

as a need for high technical expertise.

A few studies have tried to nd cost-effective ways of

measuring ambient BC using photographs of PM on lter

surfaces. A digital image is composed of multiple pixels and

each pixel in a colored image is a combination of three color

channels (R – Red, G – Green and B – Blue). Every color channel

ranges between 0 to 255 for a 24 bit image (8 bits per channel),

where 0 indicates no light (zero intensity) and 255 means

maximum light (maximum intensity). Cheng et al.28 found

a high correlation of EC loading on a lter sample with the

average of R, G and B channels in the sample image. Ram-

anathan et al.29 used reectance of red light (R channel) from

photos of BC captured on quartz ber lters to measure its

concentration. Jeronimo et al.30 evaluated the method for pol-

ytetrauoroethylene (PTFE) lters. These studies used BC

reectance on discrete lter samples with long sampling

periods which gives a low temporal resolution dataset. However,

high time resolution (daily or preferably hourly) is needed to get

a better understanding of temporally changing PM sources.

The US Department of State collects air pollutant data at US

Embassies around the world to inform US personnel and citi-

zens of air quality overseas. These measurements use Beta

Attenuation Monitors (BAMs) to measure hourly ambient PM2.5

concentrations.31 BAMs collect PM2.5 onto a glass-ber lter

tape and estimate particle concentrations by measuring

absorption of beta radiation across the sample using the Beer–

Lambert law.

This study investigates a cost-effective method to leverage

these existing PM2.5 monitors to expand the limited air quality

dataset in the Global South. The mean ambient BC concentra-

tions at these locations tend to be very high (up to daily average

of 80 mg m−3) compared to that in developed nations (<1 mg

m−3).32–37 Our long-term goal is to use these BAM tapes to extract

BC concentrations. To achieve this goal, we collected PM2.5 on

51 glass-ber lters, designed a custom color-coded reference

card, captured photos of sampled lters on the reference card,

developed an image-processing algorithm to extract Red

channel values (R) from the lter images and trained an R to BC

model with the measured R values and BC concentrations for

the 51 lter samples. Particulate loadings for each lter sample

varied and BC concentrations were measured with an aethal-

ometer (BCAeth). We evaluated the trained model at two EPA

Chemical Speciation Network (CSN) urban sites in Pittsburgh by

comparing daily EC measurements with daily averaged BAM-

based BCs estimated with our model. We empirically dened

a minimum detection limit for the method to assess its appli-

cability in various sampling environments. This work also

investigates the possibility to quantify wood smoke BC by

utilizing color channels of lter samples from varied sources,

mainly wood smoke, diesel and ambient.

2 Methods
2.1 Particle sampling setup

We collected ambient aerosol samples to test the image

reectance-based method. Samples were collected at the Car-

negie Mellon University (CMU) campus (Fig. S1†). This is an

urban background location that is far from major roadways or

other local BC sources. The nearest arterial road from the

sampling point is ∼225 m away.

Fig. 1 shows the sampling setup. A wire mesh enveloped the

inlet to avoid macro contaminants or insects from entering the

inlet. The ambient air passed through a stainless-steel PM2.5

cyclone (2.5 mm at 92 LPM, URG-2000-30EP, URG Corporation)

to allow only PM2.5. Most of the freshly emitted combustion-

based BC falls in this size range.38 The air through the cyclone

branched into four lines; an aethalometer (AE-31, Magee

Scientic) measured BC concentration (mg m−3) as a reference

monitor, and two lines parallelly collected PM2.5 on a 47 mm

glass-ber lter (A/E Glass Fiber Filter, Pall Corporation) and

47 mm quartz-ber lters (2500 QAO-UP, Pall Corporation),

both at a ow rate of 16.67 LPM (1 m3 h−1). The remaining line

was to draw excess air, making cumulative ow through the

cyclone to 92 LPM for a cutoff diameter of 2.5 mm. The parallel

© 2023 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Atmos., 2023, 3, 842–854 | 843
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sampling on the two lter types was done to compare the effect

of compositional differences between glass lters used in BAMs

and conventionally used quartz lters on image-processing

performance (Fig. S3†).

The ows for lter samples were maintained with mass ow

controllers (MCR-50SLPM-D, Alicat Scientic, Inc.), each

attached to a diaphragm pump for a pressure source. Filter

holders (Gelman Sciences 2220 47 mm Stainless Steel Filter

Holder, Gelman Sciences, Inc.) were used to support the lters

and ensure a uniform PM loading during sampling. The setup

used copper tubing (3/8′′) to avoid particle loss by sticking to

the tubing wall surface. We collected 7 sets of quartz- and

glass-ber lters parallelly and 44 additional glass-ber lters.

The hourly ambient BC level varied between 0.03–3.77 mg m−3

for our sampling location. Since the image reectance method

measures area concentration (mg cm−2) on lters, we main-

tained the ow rate of 1 m3 h−1 and changed sampling dura-

tions to achieve BC lter loadings between 0–16 mg cm−2. This

range of surface concentrations corresponds to ambient

concentrations of 0–15.2 mg m−3 for one-hour samples

collected by BAMs with a spot size of 0.95 cm2. The 51 glass-

ber lter samples were used for training the R to BC model,

where R is red scale values for a lter sample that takes integer

values between 0 to 255, and BC represents area loading of

black carbon (mg cm−2) in the lter sample.

Filter-based light attenuation techniques face challenges due

to continuous particle loading on the same spot and multiple

scattering of light rays. The AE-31 tends to underestimate BC

concentrations as the lter tape gradually becomes loaded with

particles, a phenomenon referred to as the “shadowing effect”,

that is prominently observed in experiments with high

concentrations of freshly emitted soot.39 We applied appro-

priate loading corrections to the raw BC concentrations from

AE-31 and the corrected BC is referred to as BCAeth in this

article.40

Subramanian et al. reported that lter-based optical BC

measurements can experience errors due to aerosol emissions

from smoldering biomass burning or other sources of liquid

organic matter.41 Therefore, we compared BCAeth with EC for 7

quartz ber lter samples to evaluate the performance of the

aethalometer (Fig. S2†). EC was quantied using the Inter-

agency Monitoring of PROtected Visual Environments

(IMPROVE)-A protocol. Fig. S2† shows a high correlation

between BC and EC (R2 > 0.99), as expected, and EC concen-

trations were ∼13% higher than BC for these lters sampled at

CMU.

BCAeth was used as reference BC concentration for all 51

training lters to ensure readily available data at high time

resolution and to avoid always relying on time consuming

thermo-optical methods for reference measurements. The

aethalometer is used as ground truth for our models due to its

wide applicability in continuous monitoring of BC in ambient

environments.

This study measures area concentration (mg cm−2) of BC on

lter surfaces using a reectance-based method, whereas

particle concentrations are typically reported as volume

concentration (mg m−3). We used CA = CVQTS/AF for converting

one to another, where CA is mass of BC per unit area of the lter

surface and CV is the concentration of BC in the ambient air.

The sampling was done at a ow rate of Q (1 m3 h−1) for TS
hours on lters with collection area AF (9.6 cm2 for 47 mm

lters).

Fig. 1 Sampling set-up used for collecting ambient particulates on glass and quartz-fiber filters. An aethalometer (AE-31) parallelly measured BC

for training filter R to BC model and to validate image-based BC. A cyclone was used at the collective inlet to allow only PM2.5 during sampling.
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2.2 Image processing

The image reectance method relies on cell phone camera

photos of each lter to determine BC concentrations. The lters

are placed on a reference card (described in section 2.2.1) for

each photo. A camera captures the reected light from an object

in the form of a photograph. A photo is composed of pixels and

each pixel is a combination of RGB channels. We aim to

determine BC concentration of a lter sample by extracting the

averaged Red channel of all pixels of the sampled area in the

photo. This approach requires that we rst perform geometric

and color calibration of the original image.

The raw images of lter samples undergo geometric cali-

bration to correct for image distortion from the nature of the

lens in the camera during photo capture. Cameras generally

exhibit some form of lens distortion, especially radial distor-

tion.42 Geometric calibration is followed by color calibration to

correct for the effects of lighting conditions and scale the RGB

channels of the resulting image as close as possible to

a common reference.

2.2.1 Reference card. We prepared a reference card with

twelve grayscale values, each with Red–Green–Blue (RGB) color

channel values between [0, 0, 0] and [255, 255, 255] printed on

a matte nish photo paper (Fig. 2a). These grayscales are

present on the card in duplicates (a total of 24) for a better-

averaged extraction of RGB scales from each grayscale box. A

black-ll square encompassing a white circular zone at the

center of the card is for placing lter samples. There are two sets

of three colored boxes to aid in color calibration; each box

consists of different RGB channel combinations. All the gray-

scale and colored squares were given black ([0, 0, 0]) boundaries

for added advantage in contour detection (Fig. S6a†).

In this study, we used the abovementioned reference card to

capture images of lters (Section S1, ESI†). The lters were

placed on the reference card one at a time and a photo was

captured using a cell phone camera (OnePlus 6, OnePlus

Technology Co., Ltd., China), xed at ∼9′′ above the card.

Images were taken in a dark room under uniform diffused

lighting established with two ring lights with a xed light

intensity (Fig. S5†).

2.2.2 Geometric and color calibrations. The extraction of

RGB channels of a raw image was executed with the use of

a custom python script. The full code is available here (https://

github.com/eloyjaws/lter_extraction). The pipeline for lter

sample RGB extraction used traditional computer vision

algorithms from OpenCV and can be broken down into two

stages: geometric calibration of the input image and color

calibration of the geometrically calibrated input image. The

pipeline was designed to use the reference card (Fig. 2a) as

a template in both stages.

Fig. 2 The reference card used in capturing filter sample images is shown here. Particulate deposit spots are placed at the center circle. (a) Red,

green and blue (RGB) color channels are shown for all the square boxes. The 3 colored boxes in the reference card are used for color calibration,

whereas the Red channel of each grayscale box (R values for the gray boxes are 75, 91, 107, 123, 139, 155, 171, 187, 203, 219, 235, 251) corresponds

to a unique BC concentration (mg cm−2). The card contains a duplicate set of the colored and grayscale boxes for an improved RGB estimation

through averaging. (b) A raw image with one of the calibration filters placed at the center of the calibration card. (c) The same image after

geometric correction (d) The image after geometric correction and color calibration, which is used for extraction of RGB channels for the

squares and filter samples.

© 2023 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Atmos., 2023, 3, 842–854 | 845
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2.2.2.1 Geometric calibration. Camera images of a horizon-

tally aligned lter and reference card assembly usually have

image distortion. We ran a series of transformations on the raw

input images to correct for distortion, translation, or rotation

errors. To geometrically calibrate the image, we resized the

input image to a xed resolution and aspect ratio. We then ran

a computer vision algorithm called SIFT (Scale-Invariant

Feature Transform) on both the resized input image and the

reference card image (a digital template designed in Adobe

Illustrator) to extract points of interest that are not only

invariant to the image scale and rotation but are also robust to

changes in illumination, noise and minor changes in view-

point.43 We call these extracted points SIFT features. We used

a feature matcher algorithm from OpenCV to nd and match

the SIFT features extracted from our resized input image with

the reference image.44 Aer extracting these matches, we

selected the optimum matches by applying Lowe's ratio test.45

We computed a homography matrix (a 3 × 3 matrix that maps

the transformation between the two image planes) through

a robust estimation technique called Random Sample

Consensus (RANSAC) using key points from the images that

were highlighted in our optimum matches.46 With the resulting

homography matrix, a transformation was applied to all pixels

in our resized input image to map it to the reference. Any

distortion, scale, or rotation differences in the input image were

corrected by warping the perspective of the resized input image

to the perspective of the reference image by using the homog-

raphy matrix. The geometrically calibrated image of Fig. 2b,

which shows a slight distortion, is shown in Fig. 2c.

2.2.2.2 Color calibration. Once the input image was

geometrically aligned with the reference image, the locations of

the colored boxes were used to extract their RGB channels for

color calibrations. Color calibration helps to minimize effects

on extracted RGB values due to variations in lighting conditions

in photo-capturing environments. Fig. 2a shows predesignated

set of RGB values of colored boxes in the reference card. The

color calibration uses known RGB values from these squares in

the reference image to scale RGB for the entire input image. To

accomplish this, we extracted the RGB values of all 30 boxes

from the geometrically calibrated input image (Fig. 2c) and the

reference image (Fig. 2a). We then normalize the RGB values

from the geometrically calibrated input image (target colors) to

have a value between 0 and 1. We use a piece-wise function

“eotf_sRGB” (sRGB electro-optical transfer function) to decode

the normalized values that can represent the image in a linear

color space.47 ‘Finlayson 2015’ method was used for color

correction to learn a function f that maps target colors to

reference colors.48 We used the function f to color-correct the

target image. The average RGB of the extracted pixels in the

lter sample area (Fig. S6b†) represents the geometrically and

color corrected color channels of the sample.

3 Results and discussion
3.1 Red scale to BC algorithm

The red scale value of a sample is an indicator of the attenuation

of visible red light through the sample. Light attenuation

through the atmosphere is exponential and can be explained by

the Beer–Lambert law. Existing lter-based BC and PM instru-

ments follow this exponential optical extinction principle to

measure mass concentrations.22,49 Therefore, we expect an

exponential relationship between red light reectance and BC

area concentration on a lter sample in the form:

BC(mg cm−2) = a × e
(b×R) + c

where R is the averaged Red scale value of a particle spot on

a lter, a (mg cm−2), b (unitless) and c (mg cm−2) are coefficients

of the exponential curve.

Nonetheless, we tested a set of R to BC (mg cm−2) calibration

models to investigate for the best-performing model. Linear,

polynomial and logarithmic models are commonly used

regression models. Additionally, gradient boosting, random

forest, ridge and support vector machines are machine

learning models widely used in air quality research recently.

Ensemble methods try to improve accuracy by combining

predictive performances of different machine learning

models. We also explored a hybrid model to exploit the fairly

linear correlation of BC with R on lower BC concentrations.

This hybrid model consisted of a linear part for low BC values

and an exponential curve to explain the dependence of high

BC range on R.

We used R2, mean absolute error (MAE) and root mean

square error (RMSE) to assess model performance. Table 1

summarizes the performance of all trained models, and the

training data are shown in Fig. 3 and Table S2.† All models in

Table 1 were evaluated with random 4-fold cross-validation.

While many of the models showed similar performance, the

exponential model seems to be the simplest model with the best

performance. Thus, we used this model; the model t and

parameters are shown in Fig. 3.

A cell phone is used in our experiments due to its easy

availability. A lower resolution camera such as a webcam is

equally suited for the task as this method requires an average of

only a few pixels of evenly deposited particles on a lter to

quantify BC concentrations.

We investigated the effects of lighting conditions on esti-

mation of BC concentration with the image reectance method

for a lter sample (Section S1†). BC concentrations for two

lters, with BC loadings of 1.725 mg cm−2 and 8.089 mg cm−2,

were calculated with the R to BC model at ve light intensities

from very dim (level 6) to very bright (level 10) lighting during

image capture (Table S1†). We observed a maximum increase of

only 1.2% in R and a 3.8% decline in BC compared to those in

the reference light settings. Thus, the same model can work for

quantifying BC concentrations for an unknown sample in

a wide range of lighting conditions.

The method relies on Red channel values hence the detec-

tion limit is controlled by the maximum value of the Red

channel, which is 255 (no red light intensity). Red channel

values are reported with integer resolution. Thus, we can use the

exponential model for a Red channel value of 254 to determine

an effective detection limit (EDL) of 0.08 mg cm2 for the image

reectance method.
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Converting this surface concentration to the corresponding

hourly BC volume concentration depends on the model of BAM.

Different models will have varying sampling ow rates and lter

loading areas. The two most commonly used research-grade

BAMs are BAM-1020 (Continuous Particulate Monitor BAM

1020, Met One Instruments Inc.) and BAM-5014i (Beta Contin-

uous Ambient Particulate Monitor, Thermo Fisher Scientic

Inc.) with particulate loading lter spot area of 0.95 cm2 and

2.01 cm2, respectively. Both instruments sample at a ow rate of

1 m3 h−1. The image-based approach can therefore detect BC

concentrations of 0.07 mg m−3 for the Met One BAM and 0.15 mg

m−3 for the Thermo Fisher BAM at an hourly resolution.

Our method relies on red light reected from the sample

spot. It is possible that under very high lter loadings, BC could

accumulate into such a dark spot that R = 0 and additional

material does not change the absorbance. Such a situation is

unlikely under ambient conditions but could be encountered if

this method is used to quantify BC for direct emissions testing

from combustion sources. We illustrate our performance up to

an hourly BC concentration of 15 mg m−3 (and a lter loading of

15.8 mg cm−2 for BAM 1020). This is an extremely high hourly BC

concentration for an ambient environment, even for highly

polluted ambient environments. Therefore, we do not expect to

Table 1 Red scale to BC concentration model performance. R2, MAE and RMSE are used as metrics for assessment. All metrics represent an

average of 4-fold cross-validation. For models tested over subsets of concentration, “low BC” corresponds to BC concentrations below

a threshold BC (BCth, mg cm2), and “high BC” corresponds to concentrations $ BCth mg cm2. BCth for each model is calculated separately to

maximize model performance. The BCth calculation is discussed in Section S3 of the ESI

Models R2 MAE RMSE

Linear regression Low BC 0.95 0.09 0.11
High BC 0.89 0.82 1.05

All 0.79 0.76 1.08

Polynomial regression Low BC 0.93 0.10 0.11

High BC 0.88 0.81 0.99
All 0.90 0.55 0.79

Exponential Low BC 0.93 0.11 0.13

High BC 0.91 0.77 1.00
All 0.94 0.59 0.86

Hybrid Low BC–linear 0.95 0.09 0.11

High BC – exponential (using all 51 data points) 0.91 0.74 0.98

All 0.94 0.59 0.85
Logarithmic 0.93 0.70 0.95

Gradient boosting 0.82 0.73 0.99

Random forests 0.81 0.83 1.09

Support vector machines (SVMs) 0.64 1.04 1.78
Ensemble 0.79 0.76 1.16

Fig. 3 The solid blue line represents a fitted exponential model for

sample Red scale to BC concentration. The crosses are calibration

filters (51 glass-fiber filter samples) used for fitting the model. BC

values for calibration are measured with an aethalometer.

Fig. 4 The histogram plot shows the probability distribution curve of

hourly BC for a near-road site (AQS ID: 42-003-1376, latitude:

40.437430 and longitude: −79.863572) in Pittsburgh, Pennsylvania

(USA). The vertical blue dashed line represents the EDL of the image

reflectance method. The monitoring station is a roadside site and BC

data is measured with an aethalometer, sampled between August

2020 to July 2021. The hourly BC concentration was higher than the

EDL (0.15 mg m−3) more than 98% of the time.

© 2023 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Atmos., 2023, 3, 842–854 | 847
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encounter a ‘maximum’ detection limit for typical ambient

conditions.

We can compare the EDL to measurements of ambient BC.

Fig. 4 shows a histogram of one year of hourly BC concentra-

tions measured with an aethalometer at a near-road site in

Pittsburgh, Pennsylvania, USA from August 2020–July 2021. The

median for the BC histogram is 0.67 mg m−3. The measured BC

at this site is above the EDL for >98% of all hours. BC concen-

trations in many developing nations are higher (Fig. S8†),

indicating that this approach will be able to determine hourly

BC concentrations from BAM tapes in many locations

worldwide.

We use the RMSE of R to BC model for low BC levels (below

1.66 mg m−3, or R > 224) to estimate the uncertainty of the

method to be around 0.1 mg m−3 at the typical ambient BC

concentrations shown in Fig. 4.

3.2 Validation of BAM estimated BC with EC at CSN sites

In this section, we apply the calibration model to BAM tapes

collected at two EPAmonitoring sites in Pittsburgh that have co-

located lter measurements for thermal-optical EC. The Law-

renceville site (AQS ID: 42-003-0008, latitude: 40.465420 and

longitude: −79.960757) is an urban background site. It is in

a city neighborhood with a mix of residential and commercial

land use. The Liberty site (AQS ID: 42-003-0064, latitude:

40.323761 and longitude: −79.868151) is located 2.65 km from

the largest metallurgical coke plant in North America. Both sites

are CSN sites with 1-in-3 days (Lawrenceville) and 1-in-6 days

(Liberty) 24 h EC lter measurements.

We obtained BAM tapes from 12 July, 2020 to 6 September,

2020 for Lawrenceville and 10 March, 2020 to 29 May, 2020 for

Liberty. We used the image reectance method to determine

hourly BC concentrations (BC-OPT) at each location. For days

with concurrent lter sampling, we compared the daily mean

BC-OPT to the lter EC (EC-CSN) at each site (Lawrenceville: 19

days; Liberty: 13 days). The comparison is shown as a box plot in

Fig. 5. Daily BC-OPT estimates and EC-CSN for both sites are

listed in Table S3.†

Overall, concentrations at both locations were typical of

urban BC concentrations in the US. Mean (median) EC

concentrations were ∼0.37 (0.34) mg m−3 for Lawrenceville and

∼0.37 (0.26) mg m−3 for Liberty. The mean concentration at

Lawrenceville is similar to average background BC concentra-

tions in Pittsburgh measured during mobile sampling between

similar months (August–September) of 2016.50

Themean andmedian BC-OPT for Lawrenceville (mean: 0.35

mg m−3, median: 0.32 mg m−3) and Liberty (mean: 0.30 mg m−3,

median: 0.24 mg m−3) agree well with EC-CSN. At Lawrenceville,

the BC-OPT has a larger interquartile range (IQR). The IQR is

0.11 mg m−3 for the CSN EC and 0.19 mg m−3 for the optical

method. Overall, the optical BC compares favorably with the EC

measurements for this urban site.

At Liberty, the 25th percentile and medians agree well for the

two methods, but the 75th percentile for the EC-CSN (0.58 mg

m−3) is larger than for the optical method (0.38 mg m−3). This

may be a result of the different measurement methods (optical

for BC and thermal-optical for EC).51 Fig. S7† shows that while

BC and EC are correlated at Liberty, the image reectance-based

BC is consistently lower when EC is above 0.5 mg m−3. This

disparity in EC and BC-OPT is reected in our quartz training

lters (Fig. S2†). In those lters, EC was systematically higher

than BC-OPT, with larger differences at high concentrations.

While some of the differences between BC-OPT and EC at

Liberty might be due to methodological differences, the source

of BC may also play a role. High BC (EC) concentrations both at

Liberty and at the CMU site are oen associated with industrial

emissions from a metallurgical coke works located 3 km south

of the Liberty site.52 If these industrial emissions have

a different EC-to-BC ratio than typical traffic-dominated urban

emissions, that could explain the poorer agreement at Liberty

than at Lawrenceville or CMU.

3.3 Color channel correlation for samples from different

sources

This section focuses on quantifying wood smoke BC from the

lter spots. Previous studies have used the difference in BC at

370 nm (ultraviolet) and 880 nm (infrared) as a tracer for wood

smoke. We hypothesized that data frommultiple color channels

from sample photographs could be used to differentiate

between wood smoke BC and that from other sources.

Fig. 6 and Table S4† compare Red, Blue and Green channel

values for lter samples from three sources: wood smoke,

diesel-dominated traffic and ambient. The ambient lters are

the same samples used for model calibration. The BC on these

lters is likely dominated by traffic emissions, primarily from

diesel vehicles. Subramanian et al.53 attributed >80% of BC in

Pittsburgh to traffic sources. Robinson et al. further showed that

Fig. 5 The boxplot is a comparison of the daily average BC-OPT with

EC-CSN in Pittsburgh, Pennsylvania. Lawrenceville CSN site (AQS ID:

42-003-0008) measures EC 1-in-3 days, whereas the frequency is

every 6th day in Liberty (AQS ID: 42-003-0064). In this plot, we

compare daily average BC values at the two sites for 19 and 13 days,

respectively. The boxes show the interquartile range and whiskers on

the two ends extend to 1.5 times the interquartile range. The data

points outside the whiskers are considered outliers. The white dots in

the boxes represent mean values.
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Pittsburgh has minor impacts from biomass burning

emissions.54

The diesel-dominated samples were collected in the Squirrel

Hill tunnel in Pittsburgh, Pennsylvania. Sampling details for the

‘Tunnel’ lters can be found in Grieshop et al.55 Briey, the

tunnel traffic is mostly comprised of heavy-duty diesel vehicles

(HDDVs) and light-duty gasoline vehicles (LDVs). Grieshop et al.

found that EC emission factor for HDDVs in the tunnel was up

to 20 times larger than that for the LDVs, suggesting a diesel

emission-dominated environment.55

The wood smoke lters were sampled by collecting direct

emissions from controlled burning of wood logs. The wood

smoke sampling setup is explained in Section S4 and Fig. S9 of

the ESI.† ‘Wood smoke 2004’ lters were collected by Lipsky

et al. in 2004.56 These samples were stored in a freezer since

then. ‘Wood smoke 2022’ are freshly collected lters sampled in

2022.

Lastly, we generated lter samples that contained ambient

PM ‘doped’ with wood smoke. These ‘Ambient + wood smoke’

samples are a subset of the ambient lters used for calibration

(e.g., Fig. 2) with additional wood smoke sampled aer the

initial analysis. These lters should therefore represent a mix of

diesel and wood smoke emissions.

For nearly all of the samples, there is a high correlation

between both the Red and Blue channels (R2
∼ 0.98 for

a quadratic polynomial) and Red and Green channels (R2
∼ 0.99

and gradient ∼1.03 for a linear model). Samples from different

sources (ambient, tunnel and wood smoke) seem to fall along

a common curve in both Red–Blue (Fig. 6a) and Red–Green

(Fig. 6b) plots.

The exception is the ‘Wood smoke 2004’ samples. These

samples have excess absorption of both Blue and Green light

wavelengths. This excess absorption may be due to the presence

of light-absorbing brown carbon formed during smoldering

combustion.57 The wood smoke samples from 2022 were

dominated by aming combustion and therefore had minimal

emissions of brown carbon. The excess absorption of Blue and

Green light is not observed in the freshly collected ‘Wood smoke

2022’ samples nor in the ambient samples doped with wood

smoke. The excess Blue and Green absorption for the 2004

samples might also be due to artifacts introduced to these

samples due to aging of particle deposits during storage.

Our results suggest that excess absorption in the Blue and

Green channels might be useful as a qualitative indicator for the

presence of BC from biomass burning. However, since aming

combustion produces minimal brown carbon, samples domi-

nated by aming biomass combustion will not have excess

absorption in the Blue and Green channels. Better separation of

wood smoke BC from other sources, such as diesel, will require

further investigation under a variety of biomass burning

conditions.

4 Conclusion

Air quality monitoring in the Global South is hampered by the

high cost of equipment. This paper presents a low-cost method

to leverage existing measurements to extract PM2.5 composition

data that can in turn be used to better understand PM sources

and inform future policies. BAMs are deployed worldwide to

quantify PM2.5 concentrations with hourly time resolution; for

example, the US State Department has deployed BAMs at 76

embassies and consulates worldwide. Post-analysis of the BAM

lter tapes using cell phone camera images can provide valu-

able information on BC concentrations with hourly time

resolution.

The approach shown here has an effective minimum detec-

tion limit of 0.15 mg m−3. As we show in Fig. 4, this is sufficient

to detect hourly BC at a roadside location in the US, and

therefore the method should be widely applicable to locations

worldwide.

There are a few key advantages to the approach outlined

here. First, it leverages existing samples. Second, it is extremely

low cost. Cell phone cameras are ubiquitous, and no special or

expensive equipment is needed to collect the photographs;

Fig. 6 (a) B to R plots and (b) G to R plots for ambient, diesel and

woodsmoke sources. Scatter points represent 156 individual samples.

‘Ambient’ samples (51) are the samples used for training R to BC

models. ‘Tunnel’ samples (17) were collected inside the Squirrel Hill

tunnel in Pittsburgh in 2004. ‘Wood smoke 2004’ (26) and ‘Wood

smoke 2022’ (35) are wood smoke samples collected from direct

wood burn experiments performed in the CMU laboratory in 2004 and

2022, respectively. ‘Ambient + wood smoke’ samples (27) are filters

with wood burn emissions deposited over ambient samples.

© 2023 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Atmos., 2023, 3, 842–854 | 849
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a lower resolution camera such as a webcam is could also be

used in place of the cell phone camera. Third, all code is

available freely online. Lastly, this method can provide high

time resolution data on a PM component. One potential draw-

back to our approach is that BC detection is not achieved in real

time. Instead, the BAM lter tapes can only be photographed

aer the entire lter tape has been used and removed from the

BAM. Since lters last approximately 2–3 months, this can

create a delay between data collection and analysis.
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K. M. Iburg, N. Ikeda, K. Innos, M. Inoue, N. Kawakami,

K. Shibuya, F. Islami, S. Ismayilova, K. H. Jacobsen,

H. A. Jansen, S. K. Jassal, S. Jayaraman, P. Jeemon,

D. Prabhakaran, F. Jiang, G. Jiang, M. R. Phillips,

J. B. Jonas, K. Juel, J. She, H. Kan, K. S. S. Roseline,

N. E. Karam, A. Karch, C. K. Karema, G. Karthikeyan,

V. K. Paul, M. Satpathy, N. Tandon, A. Kaul, D. S. Kazi,

A. H. Kemp, P. A. Lotufo, G. V. Polanczyk, I. S. Santos,

A. P. Kengne, R. Matzopoulos, C. D. Parry, K. Sliwa,

B. M. Mayosi, D. J. Stein, A. Keren, Y. S. Khader, S. E. Ali

Hassan Khalifa, E. A. Khan, Y. Khang, C. Kieling, D. Kim,

S. Kim, Y. Kim, R. W. Kimokoti, Y. Kinfu, B. M. Kissela,

Y. Kokubo, S. Kosen, T. S. Warouw, M. Kravchenko,

Y. Y. Varakin, S. Krishnaswami, B. Kuate Defo,

E. J. Kuipers, S. Polinder, C. Kulkarni, V. S. Kulkarni,

G. F. Kwan, T. Lai, R. Lalloo, T. Lallukka, R. Shiri, H. Lam,

Q. Lan, V. C. Lansingh, P. M. Lavados, A. E. Lawrynowicz,

J. L. Leasher, J. Lee, S. Yoon, M. Levi, J. Liang, Y. Wang,

J. Zhu, S. E. Lipshultz, B. K. Lloyd, R. Room, G. Logroscino,

J. Lortet-Tieulent, S. Ma, H. P. Phua, C. Magis-Rodriguez,

A. A. Mahdi, R. Malekzadeh, S. Mangalam, C. C. Mapoma,

F. Masiye, M. Marape, W. Marcenes, P. A. Meaney,

D. J. Margolis, D. H. Silberberg, R. V. Martin,

M. B. Marzan, M. T. Mashal, A. J. Mason-Jones,

T. T. Mazorodze, A. C. McKay, M. Mehndiratta, M. Meltzer,

W. Mendoza, F. Apolinary Mhimbira, T. R. Miller,

E. J. Mills, S. Mishra, N. Mohamed Ibrahim,

K. A. Mohammad, G. L. Mola, L. Monasta, M. Montico,

L. Ronfani, A. R. Moore, L. Morawska, R. E. Norman,

R. Mori, M. Tsilimbaris, J. Moschandreas, W. N. Moturi,

A. Werdecker, U. O. Mueller, R. Westerman,

M. Mukaigawara, Z. Nahas, K. S. Naidoo, L. Naldi,

D. Nand, V. Nangia, B. Neal, C. Nejjari, S. P. Neupane,

C. R. Newton, F. N. Ngalesoni, J. D. Ngirabega, J. M. Nolla,

S. E. Vollset, O. F. Norheim, B. Norrving, L. Nyakarahuka,

I. Oh, T. Ohkubo, B. O. Olusanya, J. N. Opio,

R. S. Pagcatipunan, J. D. Pandian, E. Park, S. Seedat,

B. I. Pavlin, L. Pejin Stokic, D. M. Pereira, R. Perez-Padilla,

F. Perez-Ruiz, N. Perico, G. Remuzzi, M. Trillini,

S. A. L. Perry, A. Pervaiz, K. Pesudovs, C. B. Peterson,

M. Petzold, D. Plass, D. Poenaru, C. D. Pond, C. Pope,

S. Popova, J. Rehm, N. M. Prasad, D. M. Qato, A. Rafay,

S. M. Rana, S. Ur Rahman, M. Raju, I. Rakovac, M. Rao,

H. Razavi, A. L. Ribeiro, G. Velasquez-Melendez,

P. M. Riccio, L. A. Sposato, A. Roca, I. Romieu, K. Straif,

G. M. Ruhago, B. F. Sunguya, R. L. Sacco, S. Saha,

R. Sahathevan, J. R. Sanabria, L. Sanchez-Riera, A. Sapkota,

J. E. Saunders, S. Soneji, M. Sawhney, M. I. Saylan,

I. J. C. Schneider, D. C. Schwebel, J. A. Singh, B. Serdar,

G. Shaddick, Y. Shinohara, K. Shishani, I. Shiue,

I. D. Sigfusdottir, A. Singh, K. Søreide,

C. T. Sreeramareddy, N. J. C. Stapelberg, V. Stathopoulou,

N. Steckling, K. Stroumpoulis, S. Swaminathan,

M. Swaroop, Y. Yano, B. L. Sykes, K. M. Tabb,

R. T. Talongwa, D. Tanne, M. Tavakkoli, S. V. Thackway,

G. D. Thurston, F. Topouzis, J. A. Towbin, H. Toyoshima,

J. Traebert, U. Trujillo, Z. Tsala Dimbuene, E. Tuzcu,

U. S. Uchendu, K. N. Ukwaja, R. Van Dingenen, C. H. van

Gool, J. van Os, T. J. Vasankari, A. N. Vasconcelos,

F. S. Violante, V. Victorovich Vlassov, S. G. Waller,

M. T. Wallin, W. Wang, K. Wessells, J. D. Wilkinson,

H. C. Williams, S. M. Woldeyohannes, J. Q. Wong,

A. D. Woolf, G. Xu, L. L. Yan, G. Yang, P. Yip,

N. Yonemoto, M. Z. Younis, Z. Younoussi, C. Yu,

M. E. Zaki, Y. Zhao and S. Zhu, Global, Regional, and

National Comparative Risk Assessment of 79 Behavioural,

Environmental and Occupational, and Metabolic Risks or

Clusters of Risks in 188 Countries, 1990-2013: A Systematic

Analysis for the Global Burden of Disease Study 2013,

Lancet, 2015, 386(10010), 2287–2323, DOI: 10.1016/S0140-

6736(15)00128-2.

5 A. K. Amegah and S. Agyei-Mensah, Urban Air Pollution in

Sub-Saharan Africa: Time for Action, Environ. Pollut., 2017,

220, 738–743, DOI: 10.1016/J.ENVPOL.2016.09.042.

6 A. K. Amegah, Proliferation of Low-Cost Sensors. What

Prospects for Air Pollution Epidemiologic Research in Sub-

Saharan Africa?, Environ. Pollut., 2018, 241, 1132–1137,

DOI: 10.1016/J.ENVPOL.2018.06.044.

© 2023 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Atmos., 2023, 3, 842–854 | 851

Paper Environmental Science: Atmospheres

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 0

6
 M

ar
ch

 2
0
2
3
. 
D

o
w

n
lo

ad
ed

 o
n
 1

/1
2
/2

0
2
4
 8

:5
4
:0

4
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



7 Health Effects Institute, The State of Air Quality and Health

Impacts in Africa. A Report from the State of Global Air

Initiative, https://www.stateofglobalair.org/sites/default/

les/documents/2022-10/soga-africa-report.pdf, (accessed

Nov 8, 2022).

8 C. L. Weagle, G. Snider, C. Li, A. Van Donkelaar, S. Philip,

P. Bissonnette, J. Burke, J. Jackson, R. Latimer, E. Stone,

I. Abboud, C. Akoshile, N. X. Anh, J. R. Brook, A. Cohen,

J. Dong, M. D. Gibson, D. Griffith, K. B. He, B. N. Holben,

R. Kahn, C. A. Keller, J. S. Kim, N. Lagrosas, P. Lestari,

Y. L. Khian, Y. Liu, E. A. Marais, J. V. Martins, A. Misra,

U. Muliane, R. Pratiwi, E. J. Quel, A. Salam, L. Segev,

S. N. Tripathi, C. Wang, Q. Zhang, M. Brauer, Y. Rudich

and R. V. Martin, Global Sources of Fine Particulate

Matter: Interpretation of PM 2.5 Chemical Composition

Observed by SPARTAN Using a Global Chemical Transport

Model, Environ. Sci. Technol., 2018, 52(20), 11670–11681,

DOI: 10.1021/ACS.EST.8B01658.

9 J. Bachwenkizi, C. Liu, X. Meng, L. Zhang, W. Wang, A. van

Donkelaar, R. V. Martin, M. S. Hammer, R. Chen and

H. Kan, Fine Particulate Matter Constituents and Infant

Mortality in Africa: A Multicountry Study, Environ. Int.,

2021, 156, 106739, DOI: 10.1016/J.ENVINT.2021.106739.

10 Q. Di, P. Koutrakis and J. Schwartz, A Hybrid Prediction

Model for PM2.5 Mass and Components Using a Chemical

Transport Model and Land Use Regression, Atmos.

Environ., 2016, 131, 390–399, DOI: 10.1016/

J.ATMOSENV.2016.02.002.

11 K. Vohra, A. Vodonos, J. Schwartz, E. A. Marais,

M. P. Sulprizio and L. J. Mickley, Global Mortality from

Outdoor Fine Particle Pollution Generated by Fossil Fuel

Combustion: Results from GEOS-Chem., Environ. Res.,

2021, 195, 110754, DOI: 10.1016/J.ENVRES.2021.110754.

12 M. S. Hammer, A. Van Donkelaar, C. Li, A. Lyapustin,

A. M. Sayer, N. C. Hsu, R. C. Levy, M. J. Garay,

O. V. Kalashnikova, R. A. Kahn, M. Brauer, J. S. Apte,

D. K. Henze, L. Zhang, Q. Zhang, B. Ford, J. R. Pierce and

R. V. Martin, Global Estimates and Long-Term Trends of

Fine Particulate Matter Concentrations (1998-2018),

Environ. Sci. Technol., 2020, 54(13), 7879–7890, DOI:

10.1021/ACS.EST.0C01764.

13 P. A. Solomon, D. Crumpler, J. B. Flanagan, R. K. M. Jayanty,

E. E. Rickman and C. E. McDade, U.S. National PM2.5

Chemical Speciation Monitoring Networks—CSN and

IMPROVE: Description of Networks, 2014, 64, 12, 1410–

1438, DOI: 10.1080/10962247.2014.956904.

14 V. Ramanathan and G. Carmichael, Global and Regional

Climate Changes Due to Black Carbon, Nat. Geosci., 2008,

1(4), 221–227, DOI: 10.1038/ngeo156.

15 G. T. Wolff, Particulate Elemental Carbon in the

Atmosphere, J. Air Pollut. Control Assoc., 2012, DOI:

10.1080/00022470.1981.10465298.

16 H. Rosen, T. Novakov and B. A. Bodhaine, Soot in the Arctic,

Atmos. Environ., 1981, 15(8), 1371–1374, DOI: 10.1016/0004-

6981(81)90343-7.

17 M. O. Andreae, Soot Carbon and Excess Fine Potassium:

Long-Range Transport of Combustion-Derived Aerosols,

Science, 1983, 220(4602), 1148–1151, DOI: 10.1126/

SCIENCE.220.4602.1148.

18 N. A. H. Janssen, G. Hoek, M. Simic-Lawson, P. Fischer,

L. van Bree, H. T. Brink, M. Keuken, R. W. Atkinson,

H. Ross Anderson, B. Brunekreef and F. R. Cassee, Black

Carbon as an Additional Indicator of the Adverse Health

Effects of Airborne Particles Compared with Pm10 and

Pm2.5, Environ. Health Perspect., 2011, 119(12), 1691–1699,

DOI: 10.1289/EHP.1003369.

19 T. J. Grahame and R. B. Schlesinger, Cardiovascular Health

and Particulate Vehicular Emissions: A Critical Evaluation

of the Evidence, Air Qual., Atmos. Health, 2010, 3(1), 3–27,

DOI: 10.1007/S11869-009-0047-X.

20 H. Horvath, Atmospheric Light Absorption—A Review,

Atmos. Environ., Part A, 1993, 27(3), 293–317, DOI: 10.1016/

0960-1686(93)90104-7.

21 M. O. Andreae and A. Gelencsér, Black Carbon or Brown

Carbon? The Nature of Light-Absorbing Carbonaceous

Aerosols, Atmos. Chem. Phys., 2006, 6(10), 3131–3148, DOI:

10.5194/acp-6-3131-2006.

22 A. D. A. Hansen, H. Rosen and T. Novakov, The Aethalometer

— An Instrument for the Real-Time Measurement of Optical

Absorption by Aerosol Particles, Sci. Total Environ., 1984, 36,

191–196, DOI: 10.1016/0048-9697(84)90265-1.

23 D. Contini, R. Vecchi and M. Viana, Carbonaceous Aerosols

in the Atmosphere, Atmos, 2018, 9(5), 181, DOI: 10.3390/

ATMOS9050181.

24 G. O. Salako, P. K. Hopke, D. D. Cohen, B. A. Begum,

S. K. Biswas, G. G. Pandit, Y. S. Chung, S. A. Rahman,

M. S. Hamzah, P. Davy, A. Markwitz, D. Shagjjamba,

S. Lodoysamba, W. Wimolwattanapun and S. Bunprapob,

Exploring the Variation between EC and BC in a Variety of

Locations, Aerosol Air Qual. Res., 2012, 12(1), 1–7, DOI:

10.4209/AAQR.2011.09.0150.

25 G. Allen, P. Babich and R. Poirot, Evaluation of a New

Approach for Real Time Assessment of Wood Smoke PM

Urban-Scale Spat Ial-t Emporal Variabilit y of Black Carbon

and Wint Er Resident Ial Wood Combust Ion Par., 2004.

26 Y. Wang, P. K. Hopke, O. V. Rattigan, X. Xia, D. C. Chalupa

and M. J. Utell, Characterization of Residential Wood

Combustion Particles Using the Two-Wavelength

Aethalometer, Environ. Sci. Technol., 2011, 45(17), 7387–

7393, DOI: 10.1021/ES2013984.

27 Y. Wang, P. K. Hopke, O. V. Rattigan, D. C. Chalupa and

M. J. Utell, Multiple-Year Black Carbon Measurements and

Source Apportionment Using Delta-C in Rochester, New

York., J. Air Waste Manage. Assoc., 2012, 62(8), 880–887,

DOI: 10.1080/10962247.2012.671792.

28 J. Y. W. Cheng, C. K. Chan and A. P. S. Lau, Quantication of

Airborne Elemental Carbon by Digital Imaging, 2011, 45 (5),

581–586, DOI: 10.1080/02786826.2010.550960.

29 N. Ramanathan, M. Lukac, T. Ahmed, A. Kar, P. S. Praveen,

T. Honles, I. Leong, I. H. Rehman, J. J. Schauer and

V. Ramanathan, A Cellphone Based System for Large-Scale

Monitoring of Black Carbon, DOI: 10.1016/

j.atmosenv.2011.05.030.

852 | Environ. Sci.: Atmos., 2023, 3, 842–854 © 2023 The Author(s). Published by the Royal Society of Chemistry

Environmental Science: Atmospheres Paper

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 0

6
 M

ar
ch

 2
0
2
3
. 
D

o
w

n
lo

ad
ed

 o
n
 1

/1
2
/2

0
2
4
 8

:5
4
:0

4
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



30 M. Jeronimo, Q. Stewart, A. T. Weakley, J. Giacomo,

X. Zhang, N. Hyslop, A. M. Dillner, M. Shupler and

M. Brauer, Analysis of Black Carbon on Filters by Image-

Based Reectance, Atmos. Environ., 2020, 223, 117300, DOI:

10.1016/j.atmosenv.2020.117300.

31 A. Mukherjee and D. W. Toohey, A Study of Aerosol

Properties Based on Observations of Particulate Matter

from the U.S. Embassy in Beijing, China, Earth’s Futur.,

2016, 4(8), 381–395, DOI: 10.1002/2016EF000367.

32 R. Subramanian, A. S. Kagabo, V. Baharane, S. Guhirwa,

C. Malings, N. J. Williams, E. Kalisa, H. Li, P. Adams,

A. L. Robinson, H. L. Dewitt, J. Gasore and P. Jaramillo, Air

Pollution in Kigali, Rwanda : Spatial and Temporal

Variability, Source Contributions, and the Impact of Car-

Free Sundays, Clean Air J., 30(2), DOI: 10.17159/caj/2020/

30/2.8023.

33 H. Langley Dewitt, J. Gasore, M. Rupakheti, K. E. Potter,

R. G. Prinn, J. De Dieu Ndikubwimana, J. Nkusi and

B. Safari, Seasonal and Diurnal Variability in O3, Black

Carbon, and CO Measured at the Rwanda Climate

Observatory, Atmos. Chem. Phys., 2019, 19(3), 2063–2078,

DOI: 10.5194/acp-19-2063-2019.

34 M. J. Gatari, P. L. Kinney, B. Yan, E. Sclar, N. Volavka-Close,

N. S. Ngo, S. Mwaniki Gaita, A. Law, P. K. Ndiba, A. Gachanja,

J. Graeff and S. N. Chillrud, High Airborne Black Carbon

Concentrations Measured near Roadways in Nairobi,

Kenya, Transp. Res. D: Transp. Environ., 2019, 68, 99–109,

DOI: 10.1016/J.TRD.2017.10.002.

35 A. Retama, D. Baumgardner, G. B. Raga, G. R. McMeeking

and J. W. Walker, Seasonal and Diurnal Trends in Black

Carbon Properties and Co-Pollutants in Mexico City, Atmos.

Chem. Phys., 2015, 15(16), 9693–9709, DOI: 10.5194/ACP-15-

9693-2015.

36 B. Ambade, T. K. Sankar, A. S. Panicker, A. S. Gautam and

S. Gautam, Characterization, Seasonal Variation, Source

Apportionment and Health Risk Assessment of Black

Carbon over an Urban Region of East India, Urban Clim.,

2021, 38, 100896, DOI: 10.1016/J.UCLIM.2021.100896.

37 Y. Zhang, Y. Li, J. Guo, Y. Wang, D. Chen and H. Chen, The

Climatology and Trend of Black Carbon in China from 12-

Year Ground Observations, Clim. Dyn., 2019, 53(9–10),

5881–5892, DOI: 10.1007/S00382-019-04903-0.

38 M. A. Robert, M. J. Kleeman and C. A. Jakober, Size and

Composition Distributions of Particulate Matter

Emissions: Part 2—Heavy-Duty Diesel Vehicles, J. Air Waste

Manage. Assoc., 2007, 57(12), 1429–1438, DOI: 10.3155/

1047-3289.57.12.1429.

39 J. Jimenez, C. Claiborn, T. Larson, T. Gould,

T. W. Kirchstetter and L. Gundel, Loading Effect

Correction for Real-Time Aethalometer Measurements of

Fresh Diesel Soot, J. Air Waste Manage. Assoc., 2007, 57(7),

868–873, DOI: 10.3155/1047-3289.57.7.868.
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Particulate Mass Measurement with Beta Attenuation Mass

Monitor, Environ. Sci. Technol., 1976, 18, 50.

50 P. Gu, H. Z. Li, Q. Ye, E. S. Robinson, J. S. Apte,

A. L. Robinson and A. A. Presto, Intracity Variability of

Particulate Matter Exposure Is Driven by Carbonaceous

Sources and Correlated with Land-Use Variables, Environ.

Sci. Technol., 2018, 11545–11554, DOI: 10.1021/

acs.est.8b03833.

51 C. H. Jeong, P. K. Hopke, E. Kim and D. W. Lee, The

Comparison between Thermal-Optical Transmittance

Elemental Carbon and Aethalometer Black Carbon

Measured at Multiple Monitoring Sites, Atmos. Environ.,

2004, 38(31), 5193–5204, DOI: 10.1016/

J.ATMOSENV.2004.02.065.

52 S. Rose Eilenberg, R. Subramanian, C. Malings,

A. Hauryliuk, A. A. Presto and A. L. Robinson, Using

a Network of Lower-Cost Monitors to Identify the Inuence

of Modiable Factors Driving Spatial Patterns in Fine

Particulate Matter Concentrations in an Urban

Environment, J. Expo. Sci. Environ. Epidemiol., 2020, 30(6),

949–961, DOI: 10.1038/s41370-020-0255-x.

53 R. Subramanian, N. M. Donahue, A. Bernardo-Bricker,

W. F. Rogge and A. L. Robinson, Contribution of Motor

Vehicle Emissions to Organic Carbon and Fine Particle

Mass in Pittsburgh, Pennsylvania: Effects of Varying Source

Proles and Seasonal Trends in Ambient Marker

Concentrations, Atmos. Environ., 2006, 40(40), 8002–8019,

DOI: 10.1016/J.ATMOSENV.2006.06.055.

© 2023 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Atmos., 2023, 3, 842–854 | 853

Paper Environmental Science: Atmospheres

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 0

6
 M

ar
ch

 2
0
2
3
. 
D

o
w

n
lo

ad
ed

 o
n
 1

/1
2
/2

0
2
4
 8

:5
4
:0

4
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



54 A. L. Robinson, R. Subramanian, N. M. Donahue,

A. Bernardo-Bricker and W. F. Rogge, Source

Apportionment of Molecular Markers and Organic Aerosol.

2. Biomass Smoke, Environ. Sci. Technol., 2006, 40(24),

7811–7819, DOI: 10.1021/ES060782H.

55 A. P. Grieshop, E. M. Lipsky, N. J. Pekney, S. Takahama and

A. L. Robinson, Fine Particle Emission Factors from Vehicles

in a Highway Tunnel: Effects of Fleet Composition and

Season, Atmos. Environ., 2006, 40(SUPPL. 2), 287–298, DOI:

10.1016/J.ATMOSENV.2006.03.064.

56 E. M. Lipsky and A. L. Robinson, Effects of Dilution on Fine

Particle Mass and Partitioning of Semivolatile Organics in

Diesel Exhaust and Wood Smoke, Environ. Sci. Technol.,

2006, 40(1), 155–162, DOI: 10.1021/ES050319P.

57 R. K. Chakrabarty, H. Moosmüller, L. W. A. Chen, K. Lewis,

W. P. Arnott, C. Mazzoleni, M. K. Dubey, C. E. Wold,

W. M. Hao and S. M. Kreidenweis, Brown Carbon in Tar

Balls from Smoldering Biomass Combustion, Atmos. Chem.

Phys., 2010, 10(13), 6363–6370, DOI: 10.5194/ACP-10-6363-

2010.

854 | Environ. Sci.: Atmos., 2023, 3, 842–854 © 2023 The Author(s). Published by the Royal Society of Chemistry

Environmental Science: Atmospheres Paper

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 0

6
 M

ar
ch

 2
0
2
3
. 
D

o
w

n
lo

ad
ed

 o
n
 1

/1
2
/2

0
2
4
 8

:5
4
:0

4
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online


	Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based methodElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00166g
	Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based methodElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00166g
	Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based methodElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00166g
	Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based methodElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00166g
	Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based methodElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00166g
	Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based methodElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00166g
	Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based methodElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00166g
	Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based methodElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00166g
	Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based methodElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00166g

	Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based methodElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00166g
	Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based methodElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00166g
	Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based methodElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00166g
	Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based methodElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00166g

	Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based methodElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00166g
	Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based methodElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00166g
	Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based methodElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00166g


