
Citation: Niu, L.; Ramasubramanian,

B.; Clark, A.; Poovendran, R. Robust

Satisfaction of Metric Interval

Temporal Logic Objectives in

Adversarial Environments. Games

2023, 1, 0. https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2024 by the authors.

Submitted to Games for possible open

access publication under the terms and

conditions of the Creative Commons

Attri- bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Robust Satisfaction of Metric Interval Temporal Logic Objectives
in Adversarial Environments
Luyao Niu 1∗, Bhaskar Ramasubramanian 2, Andrew Clark 3, and Radha Poovendran1

1 Network Security Lab, Department of Electrical and Computer Engineering, University of Washington;
luyaoniu @uw.edu, rp3@uw.edu

2 Electrical and Computer Engineering, Western Washington University; ramasub@wwu.edu
3 Department of Electrical and Systems Engineering, Washington University in St. Louis;

andrewclark@wustl.edu
* Correspondence: luyaoniu@uw.edu (L.N.)

Abstract: This paper studies the synthesis of controllers for cyber-physical systems (CPSs) that are 1

required to carry out complex time-sensitive tasks, in the presence of an adversary. The time-sensitive 2

task is specified as a formula in metric interval temporal logic (MITL). CPS that operate in adversarial 3

environments have typically been abstracted as stochastic games (SGs). However, since traditional 4

SG models do not incorporate a notion of time, they cannot be used in a setting where the objective is 5

time-sensitive. To address this, we introduce durational stochastic games (DSGs). DSGs generalize 6

SGs to incorporate a notion of time and model the adversary’s abilities to tamper with the control 7

input (actuator attack) and manipulate timing information perceived by the CPS (timing attack). 8

We define notions of spatial, temporal, and spatio-temporal robustness to quantify the amounts by 9

which system trajectories under the synthesized policy can be perturbed in space and in time without 10

affecting satisfaction of the MITL objective. In the case of an actuator attack, we design computational 11

procedures to synthesize controllers that will satisfy the MITL task along with a guarantee on its 12

robustness. In the presence of a timing attack, we relax the robustness constraint to develop a value 13

iteration-based procedure to compute the CPS policy as a finite state controller to maximize the 14

probability of satisfying the MITL task. A numerical evaluation of our approach on a signalized 15

traffic network is presented to illustrate our results. 16

Keywords: MITL specification; control synthesis; adversary; robustness; Stackelberg game 17

1. Introduction 18

Cyber-physical systems (CPSs) are playing increasingly important roles in multiple 19

applications, including autonomous vehicles, robotics, and advanced manufacturing [1]. In 20

many of these applications, the CPS is expected to satisfy complex time-critical objectives 21

in dynamic environments with autonomy. An example is a scenario where a drone has to 22

periodically surveil a target region in its environment. One way to specify requirements on 23

the CPS behavior is through a temporal logic framework [2] like metric interval temporal 24

logic (MITL) or signal temporal logic (STL). Verification of satisfaction of the temporal 25

logic objective can then be achieved by applying principles from model checking [2,3] to a 26

finite transition system that abstracts the CPS [4–7]. Solution techniques to verify such an 27

objective usually return a ‘yes/no’ output, indicating if the behavior of the CPS will satisfy 28

the desired task and if it is possible to synthesize a control policy to satisfy this objective. 29

However, such binary-valued verification results may not be adequate when an 30

adversary can inject inputs that affect the behavior of the CPS. Small perturbations can 31

result in significantly large changes in the output of a CPS, and can lead to violations of the 32

desired task. The authors of [8,9] defined a notion of robustness degree to quantify the extent 33

to which a CPS could tolerate deviations from its nominal behavior without resulting in 34

violation of the desired specification. 35

Version January 12, 2024 submitted to Games https://www.mdpi.com/journal/games

https://doi.org/10.3390/g1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://www.mdpi.com/journal/games

Version January 12, 2024 submitted to Games 2 of 23

For time-critical CPS, an adversary could launch attacks on clocks of the system (by 36

timing attack) and the inputs to the system (by actuator attack). In the latter case, stochastic 37

games (SGs) have been used to model the interaction between the CPS and adversary [10]. 38

However, SGs do not include information about the time taken for a transition between two 39

states. To bridge this gap, we introduce durational stochastic games (DSGs). In addition to 40

transition probabilities between states under given actions of the CPS and adversary, a DSG 41

encodes the time taken for the transition as a probability mass function. Although DSGs 42

present a modeling formalism for time-critical objectives, they introduce an additional 43

attack surface that can be exploited by an adversary. 44

In this paper, we synthesize controllers to satisfy an MITL specification which can be 45

represented by a deterministic timed Büchi automaton with a desired robustness guarantee. 46

The robustness guarantee quantifies how sensitive the synthesized policy (that satisfies 47

the MITL task) will be to disturbances and adversarial inputs. The adversary is assumed 48

to have the following abilities: it can tamper with the input to the defender through an 49

actuator attack [11], and it can affect the time index observed by the CPS by effecting a 50

timing attack [12]. An actuator attack could steer the DSG away from a target set of states, 51

while a timing attack will prevent it from satisfying the objective within the specified time 52

interval. 53

To address perturbations originating from different attack surfaces (timing information 54

and system inputs), we develop three notions of robustness, namely spatial, temporal, and 55

spatio-temporal robustness. The spatial robustness is defined over discrete timed words, 56

and quantifies the maximum perturbation that can be tolerated by timed words so that the 57

desired tasks can still be satisfied in the absence of timing attacks. The temporal robustness 58

characterizes the maximum timing perturbation that can be tolerated by a CPS such that 59

the given MITL objective will not be violated. We introduce a notion of spatio-temporal 60

robustness that unifies the concepts of spatial and temporal robustness. Using these three 61

notions of robustness, we develop algorithms to estimate them and compute controllers for 62

CPSs to guarantee that the given MITL objective can be satisfied with desired robustness 63

guarantee. This paper makes the following contributions. 64

• We introduce durational stochastic games (DSGs) to model the interaction between 65

the CPS which has to satisfy a time-critical objective and an adversary who can initiate 66

actuator and timing attacks. 67

• We define notions of spatial, temporal, and spatio-temporal robustness which quan- 68

tify the robustness of system trajectories to spatial, temporal, and spatio-temporal 69

perturbations, respectively, and present computational procedures to estimate them. 70

We design an algorithm to compute a policy for the CPS (defender) with robustness 71

guarantee when the adversary is limited to effecting only actuator attacks. 72

• We demonstrate that the defender cannot estimate the spatio-temporal robustness 73

correctly when the adversary can initiate both actuator and timing attacks. We relax 74

the robustness constraints in such cases and present a value iteration based procedure 75

to compute the defender’s policy, represented as a finite state controller, to maximize 76

the probability of satisfying the MITL objective. 77

• We evaluate our approach on a signalized traffic network. We compare our approach 78

with two baselines, and show that it outperforms both baselines. 79

The remainder of this paper is organized as follows. Section 2 discusses related work. 80

Section 3 gives background on MITL and deterministic timed Büchi automata. We define 81

the DSG and notions of robustness in Section 4 and formally state the problem of interest. 82

Sections 5 and 6 respectively present our results when the adversary is limited to initiating 83

only actuator attacks and when it can effect both actuator and timing attacks. Experimental 84

results are presented in Section 7. Section 8 concludes the paper. 85

2. Related Work 86

For a single agent, semi-Markov decision processes (SMDPs) [13] can be used to model 87

Markovian dynamics where time taken for transitions between states is a random variable. 88

Version January 12, 2024 submitted to Games 3 of 23

SMDPs have been used in production scheduling [14] and optimization of queues [15]. 89

Stochastic games (SGs) generalize MDPs when there is more than one agent taking an 90

action [16]. SGs have been widely adopted to model strategic interactions between CPS 91

and adversaries. For example, a zero-sum SG was formulated in [17] to allocate resources 92

to protect power systems against malicious attacks. Two SGs were developed in [18] to 93

detect intrusions to achieve secret and reliable communications. The satisfaction of complex 94

objectives modeled by linear temporal logic (LTL) formulae for zero-sum two-player SGs 95

was presented in [10], where the authors synthesized controllers to maximize the probability 96

of satisfying the LTL formula. However, this approach will not apply when the system has 97

to satisfy a time-critical specification and the adversary can launch a timing attack. 98

Timed automata (TA) [3] attach finitely many clock constraints to each state. A 99

transition between any two states will be influenced by the satisfaction of clock constraints 100

in the respective states. There has been significant work in the formulation of timed 101

temporal logic frameworks, a detailed survey of which is presented in [19]. Metric interval 102

temporal logic (MITL) [20] is one such fragment that allows for the specification of formulae 103

that explicitly depend on time. Moreover, an MITL formula can be represented as a TA 104

[20,21] that will have a feasible path in it if and only if the MITL formula is true. 105

Control synthesis under metric temporal logic constraints was studied for motion 106

planning applications in [6,7,22,23]. The authors of [22] considered a vehicle routing 107

problem to meet MTL specifications by solving a mixed integer linear program. Timed 108

automaton-based control synthesis under a subclass of MITL specifications was studied 109

in [6,7]. Cooperative task planning of multi-agent system under MITL specifications was 110

studied in [24]. In comparison, we consider actions of an adversarial player, whose objective 111

is opposite to that of the defender. This leads to a modeling of the interaction between the 112

adversary and defender as an SG. Moreover, they limited their focus to a certain fragment 113

of MITL, while this paper offers a generalized treatment to arbitrary MITL formulae. 114

Finite state controllers (FSCs) were used to simplify the policy iteration procedure for 115

POMDPs in [25]. The satisfaction of an LTL formula of a POMDP was presented in [26]. 116

This was extended to the case with an adversary, who also only had partial observation 117

of the environment, and whose goal was to prevent the defender from satisfying the LTL 118

formula in [27,28]. These treatments, however, did not account for the presence of timing 119

constraints on the satisfaction of a temporal logic formula. 120

Control synthesis for control systems under disturbances with robustness guarantees 121

has been extensively studied [29–32]. Such robustness guarantees can be categorized 122

as a notion of spatial robustness. Robust satisfaction of temporal logic tasks have been 123

studied for signal monitoring and property verification. A notion of robustness degree for 124

continuous signals was defined in [8] by computing a distance between the given timed 125

behavior and the set of behaviors that satisfy a property expressed in temporal logic. Our 126

notion of spatial robustness is defined over discrete timed words using the Levenshtein 127

distance, which distinguishes our approach from [8]. The robustness degree between two 128

LTL formulae was introduced in [33]. The authors of [34] adopted a different approach 129

and used the weighted edit distance to quantify a measure of robustness. The notion of 130

temporal robustness was also investigated in [9]. There are three differences between our 131

definition of temporal robustness and that in [9]. First, the temporal robustness in [9] is 132

defined for a specific trace. In our framework, since the DSG is not deterministic, there 133

could be multiple traces that satisfy the MITL objective under the defender and adversary 134

policies. Therefore, we define temporal robustness with respect to policies of the defender 135

and adversary and the MITL specification. Second, the temporal robustness of a real-valued 136

signal is computed as the maximum amount of time units by which we can shift on the 137

rising/falling edge of a ‘characteristic function’ in [9]. In comparison, we work with discrete 138

timed words. Finally, our work considers the presence of an adversary while [9] assumes a 139

single agent. Robust control under signal temporal logic (STL) formulae has been studied 140

based on notions of space robustness [35,36] and temporal robustness [37,38]. These works 141

did not consider the presence of an adversary. 142

Version January 12, 2024 submitted to Games 4 of 23

A preliminary version of this paper [39] synthesized policies to satisfy MITL objectives 143

under actuator and timing attacks without robustness guarantees. In this paper, we define 144

three robustness degrees, and develop algorithms to compute these quantities. We show 145

that any defender policy that gives positive robustness degree is an almost-sure satisfaction 146

policy, which is stronger than quantitative satisfaction policies synthesized in [39]. 147

3. MITL and Timed Automata 148

We introduce the syntax and semantics of metric interval temporal logic, and its 149

equivalent representation as a timed automaton. We use R,R≥0,N,Q≥0 to denote the 150

sets of real numbers, non-negative reals, positive integers, and non-negative rationals. 151

Vectors are represented by bold symbols. The comparison between vectors v1 and v2 is 152

element-wise, and v(i) denotes the i-th element of v. 153

Given a set of atomic propositions Π, a metric interval temporal logic (MITL) formula
is defined inductively as

φ := ⊤|π|¬φ|φ1 ∧ φ2|φ1UI φ2,

where π ∈ Π is an atomic proposition, and I is a non-singular time interval with integer 154

end-points. MITL admits derived operators like ‘constrained eventually’ (✸I φ := ⊤UI φ) 155

and ‘constrained always’ (✷I φ := ¬(✸I¬φ)). Throughout this paper, we assume that I is 156

bounded. We further rewrite the given MITL formula in the negation normal form so that 157

negations appear only in front of atomic propositions. We augment the atomic proposition 158

set Π so that any atomic proposition π and its negation ¬π are both included in Π. 159

We focus on the pointwise MITL semantics [40]. A timed word is an infinite sequence 160

ρ = (a0, t0)(a1, t1) . . . , where ai ∈ 2Π, ti ∈ R≥0 is the time index with ti+1 > ti ∀i ≥ 0. We 161

denote a0, a1, · · · as a word over Π, and t0, t1, · · · as a time sequence. With ρ(i) = (ai, ti), 162

we define: UNTIME(ρ) := a0, a1, · · · , and VAL(ρ) := t0, t1, · · · . We interpret MITL formulae 163

over timed words as follows. 164

Definition 1 (MITL Semantics). Given a timed word ρ and an MITL formula φ, the satisfaction 165

of φ at position j, denoted as (ρ, j) |= φ, is defined inductively as follows: 166

1. (ρ, j) |= ⊤ if and only if (iff) (ρ, j) is true; 167

2. (ρ, j) |= π iff π ∈ aj; 168

3. (ρ, j) |= ¬φ iff (ρ, j) does not satisfy φ; 169

4. (ρ, j) |= φ1 ∧ φ2 iff (ρ, j) |= φ1 and (ρ, j) |= φ2; 170

5. (ρ, j) |= φ1UI φ2 iff ∃k ≥ j such that (ρ, k) |= φ2, tk − tj ∈ I, and (ρ, m) |= φ1 holds for all 171

j ≤ m < k. 172

We denote ρ |= φ if (ρ, 0) |= φ. The satisfaction of an MITL formula can be equivalently 173

associated to accepting words of a timed Büchi automaton (TBA) [20]. Let C = {c1, · · · , cM} 174

be a finite set of clocks. Define a set of clock constraints Φ(C) over C as ξ = ⊤|⊥|c ▷◁ 175

δ|ξ1 ∧ ξ2, where ▷◁∈ {≤,≥,<,>}, c, c′ ∈ C are clocks, and δ ∈ Q is a non-negative rational 176

number. In this paper, we focus on a subclass of MITL formulae that can be equivalently 177

represented as deterministic timed Büchi automaton defined as follows. 178

Definition 2 (Deterministic Timed Büchi Automaton [3]). A deterministic timed Büchi au- 179

tomaton (DTBA) is a tuple A = (Q, 2Π, q0, C, Φ(C), E, F), where Q is a finite set of states, 2Π is 180

an alphabet over atomic propositions in Π, q0 is the initial state, E ⊆ Q×Q× 2Π × 2C ×Φ(C) is 181

the set of transitions, and F ⊆ Q is the set of accepting states. A transition < q, q′, a, C′, ϕ >∈ E 182

if A enables the transition from q to q′ when a subset of atomic propositions a ∈ 2Π and clock 183

constraints ϕ ∈ Φ(C) evaluate to true. The clocks in C′ ⊆ C are reset to zero after the transition. 184

We present the DTBA representing MITL formula φ = ✸[2,3]π as an example in Fig. 185

1. In this figure, the states Q and transitions E are represented by circles and arrows, 186

respectively. Here the initial state is q0. The set of accepting states is F = {q2}. Consider 187

the transition from initial state q0 to state q2. The transition < q0, q2, π, c, ϕ > can take place 188

Version January 12, 2024 submitted to Games 5 of 23

Figure 1. The deterministic timed Büchi automaton (DTBA) representing metric interval temporal
logic formula φ = ✸[2,3]π. The states and transitions of the DTBA are represented by circles and
arrows, respectively. The initial state of this DTBA is q0 and the accepting state is q2. The formula φ

can be satisfied if DTBA reaches state q2.

if atomic proposition π is evaluated to be true and clock constraint ϕ(c) defined on clock c 189

satisfies 2 ≤ c ≤ 3. Furthermore, the clock c is reset to zero after the transition. 190

Given the set of clocks C, v : C 7→ V is the valuation of C, where V ⊆ Q|C|. Let v(c) 191

be the valuation of clock c ∈ C. We say v = 0 if v(c) = 0 for all c ∈ C. Given δ ∈ R≥0, 192

we let v + δ := [v(1) + δ, · · · , v(|C|) + δ]T . A configuration of A is a pair (q, v), where 193

q ∈ Q is a state of A. Suppose a transition < q, q′, a, C′, ξ > is taken after δ time units. 194

Then the DTBA is transited from configuration (q, v) to (q′, v + δ) such that v + δ |= ξ, 195

v′(c) = v(c) + δ for all c /∈ C′, and v′(c) = 0 for all c ∈ C′. We denote the transition 196

between these configurations as (q, v) a,δ−→ (q′, v + δ). A run of A is a sequence of such 197

transitions between configurations β := (q0, v0)
a0,δ0−−→ (q1, v1) · · · . A feasible run β on A is 198

accepting iff it intersects with F infinitely often. 199

4. Problem Setup and Formulation 200

In this section, we propose durational stochastic games that generalize stochastic games, 201

and present the defender and adversary models in terms of information available to them. 202

We then define three robustness degrees, and state the problem of interest. 203

4.1. Environment, Defender, and Adversary Models 204

We introduce durational stochastic games as a generalization of stochastic games [10]. 205

Different from SGs, DSGs model (i) timing information for transitions between states, and 206

(ii) an attack surface resulting from the timing information. An SG is defined as follows. 207

Definition 3 (Stochastic Game). A (labeled) stochastic game SG is a tuple SG = (S, UC, UA, Pr, 208

Π,L), where S is a finite set of states, UC is a finite set of actions of the defender, UA is a finite 209

set of actions of an adversary, Pr : S ×UC ×UA × S → [0, 1] is a transition function where 210

Pr(s, uC, uA, s′) is the probability of a transition from state s to state s′ when the defender takes 211

action uC and the adversary takes action uA. Π is a set of atomic propositions. L : S → 2Π is a 212

labeling function mapping each state to a subset of propositions in Π. 213

The SG in Definition 3 cannot be used to verify satisfaction of an MITL objective since 214

it does not include a notion of time. We define durational stochastic games to bridge this gap. 215

DSGs incorporate a notion of time taken for a transition between states, and also models 216

the ability of an adversary to modify this timing information. 217

Definition 4 (Durational Stochastic Game). A (labeled) durational stochastic game (DSG) is 218

a tuple G = (SG , sG,0, UC, UA, In fG,C, In fG,A, PrG , TG , Π, L, Cl). SG is a finite set of states, sG,0 219

is the initial state, UC, UA are finite sets of actions. In fG,C : SG × R≥0 7→ (SG × R≥0)
∗ and 220

In fG,A : SG × R≥0 7→ (SG × R≥0 ×UC)
∗ are information sets of the defender and adversary, 221

respectively, where (·)∗ is the Kleene operator. PrG : SG × UC × UA × SG 7→ [0, 1] encodes 222

Version January 12, 2024 submitted to Games 6 of 23

Figure 2. This figure presents an example of a DSG consisting of 4 states, denoted as SG =

{sG,0, s1, s2, s3}. The transition probabilities PrG and the probability mass function TG for some
transitions are given in the figure. The labeling function L for state s1 is given as L(s1) = {π1, π2}.

PrG(s′G |sG , uC, uA), the transition probability from state sG to s′G when the controller and adversary 223

take actions uC and uA. TG : SG ×UC ×UA × SG × ∆ 7→ [0, 1] is a probability mass function. 224

TG(δ|sG , uC, uA, s′G) denotes the probability that a transition from sG to s′G under actions uC and 225

uA takes δ ∈ ∆ time units, where ∆ is a finite set of time units that each transition of DSG can 226

possibly take to complete. Π is a set of atomic propositions. L : SG 7→ 2Π is a labeling function that 227

maps each state to atomic propositions in Π that are true in that state, and Cl is a finite set of clocks. 228

The set of admissible actions that can be taken by the defender (adversary) in a state 229

s ∈ SG is denoted UC(s) (UA(s)). A path on G is a sequence of states w := s0
uC,0,uA,0−−−−→

δ0
230

s1 . . .
uC,i ,uA,i−−−−→

δi
si+1 . . . such that s0 = sG,0, PrG(si+1|si, uC,i, uA,i) > 0, and TG(δ|si, uC,i, uA,i, 231

si+1) > 0 for some uC,i ∈ UC(si), uA,i ∈ UA(si), and δ ∈ ∆ for all i ≥ 0. Consider the DSG 232

with SG = {sG,0, s1, s2, s3}, UC = {uC}, and UA = {uA} presented in Fig. 2 as an example. 233

We have that w = s0
uC ,uA−−−→

1
s2

uC ,uA−−−→
1

s3 is a finite path. We denote the set of finite (infinite) 234

paths by (SG × R≥0)
∗ ((SG × R≥0)

ω). Given a path w, L(w) := L(sG,0), L(s1), . . . , is the 235

sequence of atomic propositions corresponding to states in w. The sequence of state-time 236

tuples in w is obtained as (s0, k0), (s1, k1), . . ., where ki + δi = ki+1, i = 0, 1, 237

For the defender, a deterministic policy µ : (SG ×R≥0)
∗ 7→ UC is a map from the set of 238

finite paths to its actions. A randomized policy µ : (SG ×R≥0)
∗ 7→ D(UC) maps the set of 239

finite paths to a probability distribution over its actions. A policy is memoryless if it only 240

depends on the the most recent state. 241

Consider a path w in G . At a state s, the information set of the defender is In f w
G,C(s, kC) := 242

{(sG,0, 0), . . . , (s, kC)}, where kC is the time perceived by the defender when it reaches s 243

along w. For example, given the finite path w = s0
uC ,uA−−−→

1
s2

uC ,uA−−−→
1

s3 for the DSG pre- 244

sented in Fig. 2, information set In f w
G,C(s2, kC) = {(sG,0, 0), (s1, 1)}. For the adversary, 245

In fG,A(s, kA) := {(sG,0, 0), . . . , (s, kA)} ∪ {µ}, where kA is the time observed by the adver- 246

sary at s, and µ is the defender’s policy. Information sets of the defender and adversary are 247

given by In fG,C(s, kC) :=
⋃
w

In f w
G,C(s, kC) and In fG,A(s, kA) :=

⋃
w

In f w
G,A(s, kA). 248

We assume that the initial time is 0, and this is known to both agents. The adversary 249

having knowledge of the policy µ committed to by the defender introduces an asymmetry 250

between the information sets of the two agents. We note that although the adversary is 251

aware of the defender’s randomized policy, it does not know the exact action uC. This is also 252

known as the Stackelberg setting in game theory. We assume a concurrent Stackelberg setting 253

in that both the defender and adversary take their actions at each state simultaneously. 254

The solution concept to a Stackelberg game is Stackelberg equilibrium, which is 255

defined as follows. 256

Definition 5 (Stackelberg Equilibrium [16]). A tuple (µ, (τ, γ)) is a Stackelberg equilibrium if 257

µ = arg maxµ′ QC(µ
′, BR(µ′)), where QC(µ, (τ, γ)) and QA(µ, (τ, γ)) are the expected utilities 258

Version January 12, 2024 submitted to Games 7 of 23

of the defender and adversary under policies µ and (τ, γ), respectively, and BR(µ′) = {(τ, γ) : 259

(τ, γ) = arg max
(τ′ ,γ′)

QA(µ
′, (τ′, γ′))}. 260

If BR(µ′) contains multiple adversary policies, the defender will arbitrarily pick one. 261

During an actuator attack, the adversary can manipulate state transitions in G since its 262

actions uA will influence the transition probabilities PrG . The adversary could also exploit 263

the attack surface that will be introduced as a consequence of including timing information. 264

We term this a timing attack. In this paper, we consider the worst-case scenario, and 265

assume that the adversary knows the correct time index at each time k. However, it can 266

manipulate timing information perceived by the defender through TG . Thus, the time index 267

kC perceived by the defender need not be the same as that known to the adversary, kA. 268

The adversary launches actuator and timing attacks through attack policies. An 269

actuator attack policy τ : (SG ×R≥0)
∗ 7→ UA specifies the action taken by the adversary, given 270

the set of finite paths. A timing attack policy γ : V ×V 7→ [0, 1] takes as its input the correct 271

clock valuation, and yields a probability distribution over clock valuations. This models 272

the ability of the adversary to manipulate clock valuations. For an intelligent adversary, 273

it should launch the timing attack such that resulting sequence of clock valuations is 274

monotone when the clocks are not reset. The reason is such non-monotone clock valuations 275

informs the defender the presence of timing attack, and thus the defender can simply ignore 276

the perceived clock valuations. 277

4.2. Definitions of Robustness Degree 278

In this subsection, we define three robustness degrees defined with respect to policies 279

on the DSG G. 280

4.2.1. Spatial Robustness 281

The spatial robustness, denoted as χ
φ
s (µ, τ, γ), represents the minimum distance 282

between any accepting (resp. non-accepting) path on the DSG induced by policies µ and 283

(τ, γ) and the language of the MITL specification, without regard to the timing information. 284

We define the spatial robustness using the Levenshtein distance, which is used to measure 285

the distance between strings [41]. 286

Definition 6 (Levenshtein Distance [41]). The Levenshtein distance between sequences of sym- 287

bols w1 and w2, denoted dL(w1, w2), is the minimum number of edit operations (insertions, substi- 288

tutions, or deletions) that can be applied to w1 so that w1 can be converted to w2. 289

Consider timed words w1 = (q0, 0)(q1, 1)(q2, 2) . . . and w2 = (q0, 0)(q′1, 1)(q2, 2) . . . 290

that differ at position 1, where q1 ̸= q′1. Then, dL(w1, w2) = 1, since w1 can be converted 291

to w2 by substituting q1 with q′1. Relying on the Levenshtein distance in Definition 6, we 292

define the spatial robustness χ
φ
s (µ, τ, γ) for policies µ and (τ, γ) on a DSG G with respect to 293

MITL formula φ as 294

χ
φ
s (µ, τ, γ) =

minw1∈B
µτγ
G ,w2 /∈L dL(w1, w2), if Bµτγ

G ⊆ L;

−minw1∈B
µτγ
G ,w2∈L dL(w1, w2), otherwise.

(1)

In Equation (1), Bµτγ
G is the set of paths enabled on G under policies µ and (τ, γ), and 295

L contains the set of paths on G that satisfy φ. We note that since dL(·, ·) ≥ 0, any path 296

w ∈ Bµτγ
G synthesized under policies µ and τ that satisfies φ will result in χ

φ
s (µ, τ, γ) > 0. 297

If, for some w ∈ Bµτγ
G , w /∈ L, then χ

φ
s (µ, τ, γ) ≤ 0. 298

4.2.2. Temporal Robustness 299

The temporal robustness χ
φ
t (µ, τ, γ) captures the maximum time units by which any

accepting path synthesized under policies µ and (τ, γ) can be temporally perturbed so

Version January 12, 2024 submitted to Games 8 of 23

that the MITL formula φ is not violated. Given an accepting run w and k ∈ Q, we let
VAL(w) + k := v0 + k, v1 + k, We define the left temporal robustness χ

φ,−
t (µ, τ, γ) and

right temporal robustness χ
φ,+
t (µ, τ, γ) as:

χ
φ,−
t (µ, τ, γ) = max

⋂
w∈Bµτγ

G

{k|w′ |= φ ∀w′ s.t. 0 ≤ VAL(w)− VAL(w′) ≤ k ∈ Q}, (2)

χ
φ,+
t (µ, τ, γ) = max

⋂
w∈Bµτγ

G

{k|w′ |= φ ∀w′ s.t. 0 ≤ VAL(w′)− VAL(w) ≤ k ∈ Q}. (3)

The left (right) temporal robustness χ
φ,−
t (µ, τ, γ) (χφ,+

t (µ, τ, γ)) indicates that an accepting 300

run w induced by µ and (τ, γ) can be perturbed up to k time units to the left (right) without 301

violating φ. These definitions also ensure that any perturbation smaller than χ
φ,−
t (µ, τ, γ) 302

or χ
φ,+
t (µ, τ, γ) will not violate φ. The temporal robustness is then: 303

χ
φ
t (µ, τ, γ) =

{
min{χφ,−

t (µ, τ, γ), χ
φ,+
t (µ, τ, γ)}, if Bµτγ

G ⊆ L
Λ, otherwise

, (4)

where Λ is a symbol indicating that policies µ and (τ, γ) can lead to non-accepting runs. 304

4.2.3. Spatio-temporal Robustness 305

We define the spatio-temporal robustness χφ(µ, τ, γ) to unify notions of spatial and 306

temporal robustness as: 307

χφ(µ, τ, γ) = I(χφ
s (µ, τ, γ) ≥ ϵs)χ

φ
t (µ, τ, γ), (5)

where I(χφ
s (µ, τ, γ) ≥ ϵs) is an indicator function that equals to 1 if χ

φ
s (µ, τ, γ) ≥ ϵs and 308

−1 otherwise. In other words, the spatio-temporal robustness χφ(µ, τ, γ) captures the 309

maximum time units by which any accepting run can be perturbed without violating the 310

MITL specification φ, given a desired spatial robustness ϵs, under policies µ and (τ, γ). 311

Note that when the spatio-temporal robustness is −Λ, we have that policies µ and (τ, γ) 312

lead to non-accepting runs. 313

4.2.4. Robust MITL Semantics 314

Given the spatio-temporal robustness in Equation (5), we can use a real-valued func- 315

tion ζφ(ρ, j) to reason about the satisfaction of φ such that (ρ, j) |= φ ≡ ζφ(ρ, j) > 0. 316

Definition 7 (Robust MITL Semantics). Let ρ be a timed word. We define a real-valued function 317

ζφ(ρ, j) such that the satisfaction of an MITL formula φ at position j by a timed word ρ, written 318

(ρ, j) |= φ := ζφ(ρ, j) > 0, can be recursively defined as: 319

1. ζφ(ρ, j) = f (ρ, j); 320

2. ζφ1∧φ2(ρ, j) = min{ζφ1(ρ, j), ζφ2(ρ, j)}; 321

3. ζφ1∨φ2(ρ, j) = max{ζφ1(ρ, j), ζφ2(ρ, j)}; 322

4. ζφ1U[a,b]φ2(ρ, j) = maxt′∈[j+a,j+b]{min{ζφ2(ρ, t′), mint′′∈[j,t′] ζφ1(ρ, t′′)}}. 323

where f (ρ, j) = I(minw/∈L dL(ρ, w) ≥ ϵs)k̄, and k̄ = max{k|(ρ′, j) |= φ ∀ρ′ s.t. 0 ≤ |VAL(ρ)− 324

VAL(ρ′)| ≤ k}. 325

4.3. Problem Statement 326

Before formally stating the problem of interest, we prove a result which shows that 327

a defender’s policy that provides positive spatio-temporal robustness satisfies the MITL 328

objective φ with probability one. 329

Version January 12, 2024 submitted to Games 9 of 23

Proposition 1. Given an MITL objective φ and policies µ and (τ, γ), the spatio-temporal robust- 330

ness χφ(µ, τ, γ) > 0 implies almost-sure satisfaction of φ under the agent policies when there is no 331

timing attack. 332

Proof. The proof of this result is deferred to Appendix B. 333

Given Proposition 1, we formally state our problem: 334

Problem 1 (Robust Policy Synthesis for Defender). Given a DSG G and an MITL formula 335

φ, compute an almost-sure defender policy. That is, compute µ such that χφ(µ, τ, γ) ≥ ϵt, where 336

(τ, γ) ∈ BR(µ). 337

5. Solution: Only Actuator Attack 338

We present a solution to robust policy synthesis for defender as described in Problem 339

1, assuming that the adversary only launches an actuator attack. We construct a product 340

DSG P from DSG G and DTBA A. We present procedures to evaluate the spatio-temporal 341

robustness, and compute an optimal policy for the defender on P . 342

5.1. Product DSG 343

In the following, we give the definition of product DSG. 344

Definition 8 (Product Durational Stochastic Game). A PDSG P constructed from a DSG 345

G , DTBA A, and clock valuation set V is a tuple P = (S, s0, UC, UA, In fC, In fA, Pr, Acc). 346

S = SG ×Q×V is a finite set of states, s0 = (sG,0, q0, 0) is the initial state, UC, UA are finite sets 347

of actions. In fC, In fA are information sets of the defender and adversary. Pr : S×UC ×UA 7→ 348

S encodes Pr((s′, q′, v′)|(s, q, v), uC, uA), the probability of a transition from state (s, q, v) to 349

(s′, q′, v′) when the defender and adversary take actions uC and uA. The probability 350

Pr
(
(s′, q′, v′)|(s, q, v), uC, uA

)
:= TG(δ|s, uC, uA, s′)PrG(s′|s, uC, uA) (6)

if and only if (q, v)
L(s′),δ−−−→ (q′, v′), and zero otherwise. Acc = SG × F × V is a finite set of 351

accepting states. 352

The following result shows that the transition probability of P is well-defined. 353

Proposition 2. The function Pr(·) satisfies Pr((s′, q′, v′)|(s, q, v), uC, uA) ∈ [0, 1] and 354

∑
(s′ ,q′ ,v′)

Pr
(
(s′, q′, v′)|(s, q, v), uC, uA

)
= 1. (7)

Proof. The proof is presented in Appendix B. 355

We write s to represent a state (s, q, v) in PDSG P . We denote the clock valuation 356

of s by Time(s). In the sequel, we compute a set of states called generalized accepting 357

maximal end components (GAMECs) of P . Any state s in GAMECs satisfies that the suc- 358

cessor state s′ also belogns to GAMECs under any policy committed by the defender, 359

regardless of the actions taken by the adversary. Therefore, for a path that stays within 360

GAMECs, it is guaranteed that the path corresponds to a run that intersects with F in- 361

finitely many times, and thus the path satisfies specification φ. We can thus translate 362

the problem of satisfying φ to the problem of reaching GAMECs, under any adversary 363

action. The set C = {s|s belongs to some GAMEC} can be computed using the procedure 364

COMPUTE_GAMEC(P) in Algorithm 1. The idea is that at each state, we prune the de- 365

fender’s admissible action set by retaining only those actions that ensure state transitions 366

in P will remain within GAMECs, under any adversary action. 367

The procedure Compute_GAMEC(P) presented in Algorithm 1 takes the product DSG 368

P as its input, and returns set C. The algorithm iteratively updates C by removing a set of 369

Version January 12, 2024 submitted to Games 10 of 23

Algorithm 1 Computing the set of GAMECs C.

1: procedure COMPUTE_GAMEC(P)
2: Input: PDSG P
3: Output: Set of GAMECs C
4: Initialization:D(s)← UC(s)∀s;C ← ∅;Ctemp ← {S}
5: repeat
6: C ← Ctemp, Ctemp ← ∅
7: for N ∈ C do
8: R← ∅
9: Let SCC1, · · · , SCCn be the set of strongly connected components of underlying di-

graph G(N,D)
10: for i = 1, · · · , n do
11: for each state s ∈ SCCi do
12: D(s)← {uC ∈ UC(s)|s′ ∈ N, Pr(s′|s, uC, uA) > 0, ∀uA ∈ UA(s)}
13: if D(s) = ∅ then
14: R← R ∪ {s}
15: end if
16: end for
17: end for
18: while R ̸= ∅ do
19: dequeue s ∈ R from R and N
20: if ∃s′ ∈ N and uC ∈ UC(s

′) such that Pr(s|s′, uC, uA) > 0 for some uA ∈ UA(s
′)

then
21: D(s′)← D(s′) \ {uC}
22: if D(s′) = ∅ then
23: R← R ∪ {s′}
24: end if
25: end if
26: end while
27: for i = 1, · · · , n do
28: if N ∩ SCCi ̸= ∅ then
29: Ctemp ← Ctemp ∪ {N ∩ SCCi}
30: end if
31: end for
32: end for
33: until C = Ctemp
34: for N ∈ C do
35: if AccG ∩ N = ∅ then
36: C ← C \ N
37: end if
38: end for
39: return C
40: end procedure

states R. R includes any state s that is in some strongly connected component (SCC) and 370

has an empty admissible defender action set (line 13). R also includes states s′ from which 371

P can be steered to R under some adversary action (line 20). Lines 35-37 verify accepting 372

conditions defined by the DTBA. The termination of Algorithm 1 is given by the following 373

Proposition. 374

Proposition 3. Algorithm 1 terminates in a finite number of iterations. 375

Proof. The proof of this proposition is given in Appendix B. 376

5.2. Evaluating Spatial Robustness 377

From Equation (1), evaluating the spatial robustness is equivalent to computing the 378

Levenshtein distance between paths on the DSG synthesized under policies µ and (τ, γ) 379

and L. This is equivalent to computing the Levenshtein distance between two automata, 380

Version January 12, 2024 submitted to Games 11 of 23

where the first automaton Pµτγ is the PDSG induced by policies µ and (τ, γ). The second 381

automaton is Ā, the DTBA representing ¬φ. We adopt the approach proposed in [42] to 382

compute the Levenshtein distance between Pµτγ and Ā. 383

We first construct a DSG Gµτγ from the original DSG G. Given policies µ and (τ, γ), 384

we retain only those transitions such that PrG(s′|s, uC, uA) > 0, TG(δ|s, uC, uA, s′) > 0 for 385

some δ, µ(s, uC) > 0, and τ(s, uA) > 0, and remove all other transitions. We augment the 386

alphabet of DTBA A as 2Π ∪ {null}, where null is a symbol that will be used to indicate 387

deletion and insertion operations. The alphabet of Ā is also augmented to include null. 388

The PDSG Pµτγ in Definition 8 can be constructed from Gµτγ and A. Given Pµτγ and 389

Ā , we construct P̂ := Pµτγ × Ā. Following [42], we construct a weighted transducer 390

to capture the cost associated to each edit operation (assumed = 1). We assign a cost 391

c((s, q, v, q̄), (s′, q′, v′, q̄′)) to each transition from state (s, q, v, q̄) to (s′, q′, v′, q̄′) in P̂ . In 392

particular, c((s, q, v, q̄), (s′, q′, v′, q̄′)) = 1 if L(s′) is not the same as the label of the transition 393

from q̄ to q̄′ in Ā. We can then apply a shortest path algorithm on P̂ from the initial state 394

(s0, q0, 0, q̄0) to the union of the GAMECs of P̂ to compute the minimum Levenshtein 395

distance. The correctness of this approach follows from [42, Thm. 2]. 396

The computational complexity of calculating the spatial robustness for any given 397

policies µ and (τ, γ) is O((|2Π| + 1)2|Pµτγ||Ā|), where |Pµτγ| and |Ā| are the sizes of 398

Pµτγ and Ā, respectively [42]. 399

Algorithm 2 Evaluate Temporal Robustness.
1: procedure TEMPORAL(φ, s, δ, M(s′))
2: Input: MITL formula φ, current state s, time duration δ, indicator function M(s′)
3: Output: Temporal robustness χ

φ
t (µ, τ, γ)

4: if φ = π then
5: le f t_temp← min

⋃
s′′
{Time(s′′)− Time(s)}, where s′′ is reachable from s

6: right_temp← min
⋃
s′′
{V − Time(s′′)}, where s′′ is reachable from s

7: return min{le f t_temp, right_temp}
8: else if φ = ϕ1 ∧ ϕ2 then
9: r1 ← TEMPORAL(ϕ1, s, δ, M(s′))

10: r2 ← TEMPORAL(ϕ2, s, δ, M(s′))
11: return min{r1, r2}
12: else if φ = ϕ1 ∨ ϕ2 then
13: r1 ← TEMPORAL(ϕ1, s, δ, M(s′))
14: r2 ← TEMPORAL(ϕ2, s, δ, M(s′))
15: return max{r1, r2}
16: else if φ = ϕ1UIϕ2 then
17: if M(s′) = 0 then
18: r1 ← min

⋃
s′ ,δ,δ′

{
TEMPORAL(ϕ1, s, δ, M(s′)), bµτγ(s, s′)TEMPORAL(ϕ1UI−δϕ2,

s′, δ′, M(s′′)
}

19: else
20: r1 ← min

⋃
s′

{
(Time(s′)− I), (I − Time(s′))

}
21: end if
22: if 0 ∈ I then
23: r2 ← TEMPORAL(ϕ2, s, δ, M(s′))
24: else
25: r2 ← −∞
26: end if
27: return max{r1, r2}
28: end if
29: end procedure

5.3. Evaluating Temporal Robustness 400

In this subsection, we present a procedure to evaluate the temporal robustness. We
introduce some notation. For a time interval I, we use I and I to represent its lower and

Version January 12, 2024 submitted to Games 12 of 23

upper bounds. The upper bound of the clock valuation set is denoted V. The indicator
function M(s) takes value 1 if s is in GAMEC, and 0 otherwise. A state s′ is said to be a
neighboring state of s if Pr(s′|s, uC, uA) > 0 for some uC and uA such that µ(s, uC) > 0 and
τ(s, uA) > 0. Given the policies of the defender and adversary, we define

bµτγ(s, s′) :=

{
1 if s′ is a neighboring state of s
−∞ otherwise

.

The procedure TEMPORAL(φ, s, δ, M(s′)) presented in Algorithm 2 computes the left 401

and right temporal robustness with respect to the MITL objective φ. The left and right tem- 402

poral robustness of π can be computed by searching over a directed graph representation 403

of the product DSG. The algorithm determines the temporal robustness of φ following the 404

robust MITL semantics (Definition 7) by simple algebraic computations over the temporal 405

robustness of all atomic propositions in φ. 406

We detail the working of Algorithm 2, which is a recursive procedure to compute the 407

temporal robustness. It takes an MITL formula φ, current state s, time duration δ, and an 408

indicator function M(s′) as its inputs. If φ = π, then Algorithm 2 computes the minimum 409

left temporal robustness (Line 5) and right temporal robustness (Line 6), respectively. The 410

minimum of these quantities is returned as the temporal robustness. From the robust MITL 411

semantics, Algorithm 2 returns the minimum (maximum) temporal robustness when φ 412

is a conjunction (disjunction). When φ = ϕ1UIϕ2, the robustness is computed following 413

Lines 16–27. Here, I − t := {t′ − t|t′ ∈ I}. Since we focus on the worst-case robustness, we 414

compute the minimum value over times δ and neighboring states s′ in Line 18. We establish 415

the correctness of Algorithm 2 as follows. 416

Theorem 1. Given a PDSG with initial state s0, MITL formula φ, and policies µ and τ, suppose 417

Algorithm 2 returns ϵ ≥ 0. Then, any run on the PDSG synthesized under policies µ and τ can be 418

temporally perturbed by ϵ̂ ∈ [0, ϵ] without violating φ. 419

Proof. The proof is presented in Appendix B. 420

The complexity of Algorithm 2 is O(|cl(φ)|(|S|+ |Pr|)), where |cl(φ)| is the size of 421

the closure of formula φ, |Pr| is the number of nonzero elements in matrix Pr. 422

5.4. Evaluating Spatio-temporal Robustness 423

Table 1. Computational complexities of evaluating spatial and temporal robustness when policies are
given. |Pµτγ| is the size of the product DSG Pµτγ induced by policies µ and (τ, γ). |Ā| is the size of
the timed Büchi automaton of MITL specification ¬φ. |cl(φ)| denotes the size of the closure of φ, and
|Pr| is the number of nonzero elements in matrix Pr. The complexity of Algorithm 3 is (S) + (T).

Robustness Complexity

Spatial (S) O((|2Π|+ 1)2|Pµτγ||Ā|)
Temporal (T) O(|cl(φ)|(|S|+ |Pr|))

We use the results of the previous two subsections to compute the spatio-temporal ro- 424

bustness using the procedure ROBUST(φ, s, δ, M(s′), ϵs) presented in Algorithm 3. From 425

Equation (5), when the spatial robustness is above ϵs, Algorithm 3 returns the temporal 426

robustness. Otherwise, it returns the negative value of the temporal robustness. The com- 427

plexity of Algorithm 3 is O(|cl(φ)|(|S|+ |Pr|) + (|2Π|+ 1)2|Pµτγ||Ā|). Table 1 summarizes 428

the computational complexities of evaluating the spatial and temporal robustness. 429

Version January 12, 2024 submitted to Games 13 of 23

Algorithm 3 Evaluate Spatio-temporal Robustness.
1: procedure ROBUST(φ, s, δ, M(s′), ϵs)
2: Input: MITL formula φ, current state s, time duration δ, indicator function M(s′)
3: Output: Spatio-temporal robustness χφ(µ, τ, γ)
4: if φ = ⊤ then
5: return ∞
6: else if φ = ⊥ then
7: return −∞
8: else
9: if SPATIAL(φ, s) ≥ ϵs then

10: return TEMPORAL(φ, s, δ, M(s′))
11: else
12: return −TEMPORAL(φ, s, δ, M(s′))
13: end if
14: end if
15: end procedure

5.5. Control Policy Synthesis 430

In this subsection, we compute a control policy that solves robust policy synthesis for 431

defender in Problem 1 when there is no timing attack. 432

Algorithm 4 Robust Control Policy Synthesis for Defender.
1: procedure POLICY_SYNTHESIS(P , φ)
2: Input: Product DSG P , MITL formula φ
3: Output: Control policy µ
4: Initialization: Iteration index k ← 1. Initialize µk(s, uC) ← 1

|UC(s)| for all s and uC ∈ UC(s),

and compute adversary policy (τk, γk) ∈ BR(µk). Let Es, Et ← ∅.
5: while true do
6: Compute spatio-temporal robustness χφ(µk, τk, γk) = ROBUST(φ, s0, δ, M(s′)).
7: if χφ(µk, τk, γk) ≥ ϵt then
8: return µk

9: else if 0 ≤ χφ(µk, τk, γk) < ϵt then
10: Et ← Et ∪ {s : ROBUST(φ, s, δ, M(s′)) < ϵt}
11: for s ∈ Et do
12: Let UC(s

′)← UC(s
′) \ {uC : µk(s′, uC) > 0, Prµkτk

(s′, s) > 0} for all s′ /∈ Et ∪ Es
13: if UC(s

′) = ∅ then
14: Et ← Et ∪ {s′}
15: end if
16: end for
17: else
18: Es ← Es ∪ {s : ROBUST(φ, s, δ, M(s′)) < 0}
19: for s ∈ Es do
20: Let UC(s

′)← {uC|µk(s′, uC) > 0, Prµkτk
(s′, s) > 0}

21: if UC(s
′) = ∅ then

22: Es ← Es ∪ {s′}
23: end if
24: end for
25: Update defender’s policy µk+1(s′, uC)← 1

|UC(s′)| for all s′ and uC ∈ UC(s
′)

26: if GAMEC is not reachable from initial state s0 then
27: return message "failure" indicating no solution is found
28: Break
29: end if
30: end if
31: Let k← k + 1.
32: end while
33: end procedure

Version January 12, 2024 submitted to Games 14 of 23

From Proposition 1, solving robust policy synthesis for defender in Problem 1 is 433

equivalent to finding a defender policy so that the spatio-temporal robustness exceeds a 434

desired threshold. This procedure is named as POLICY_SYNTHESIS(P , φ) and is presented 435

in Algorithm 4. We initialize a policy µk, k = 1 (Line 4). We also define sets of states Et 436

and Es that will indicate states/transitions that lead to violations of temporal and spatial 437

robustness. We then compute the best response to µk as (τk, γk), evaluate the spatio- 438

temporal robustness χφ(µk, τk, γk). If χφ(µk, τk, γk) ≥ ϵt, then we synthesize the policy µk
439

returned in Line 6. If 0 ≤ χφ(µk, τk, γk) < ϵt, then the spatial robustness exceeds ϵs, but 440

the temporal robustness is below ϵt. In this case, we eliminate defender actions uC that 441

steer the PDSG into states s in Et with positive probability thereby causing violation of the 442

temporal robustness constraint. If χφ(µk, τk, γk) < 0 (Line 17), then the spatial robustness 443

constraint is violated. In this case, we eliminate defender actions that steer the system into 444

states in Es. If no state in GAMEC is reachable from the initial state s0 of the product DSG 445

P , then the procedure POLICY_SYNTHESIS(P , φ) presented in Algorithm 4 reports failure, 446

indicating that no solution is found for robust policy synthesis for defender in Problem 1 447

and terminates. We establish the converge of Algorithm 4 as follows. 448

Theorem 2. Algorithm 4 terminates within a finite number of iterations. 449

Proof. The proof of this theorem is presented in Appendix B. 450

In the worst case, we have that Algorithm 4 updates ÛC = ∅ with at most |S| × |UC| 451

number of iterations. Thus the complexity of Algorithm 4 is O(|S| × |UC|). We further 452

present the optimality of the policy found by Algorithm 4 in the following theorem. 453

Theorem 3. If Algorithm 4 returns a defender’s policy, denoted as µ∗, then the problem of robust 454

policy synthesis for defender in Problem 1 is feasible. Moreover, the defender’s policy µ∗ is an 455

optimal solution to Problem 1. 456

Proof. The proof is presented in Appendix B. 457

The soundness of Algorithm 4 is given below: 458

Corollary 1. Algorithm 4 is sound but not complete. That is, any control policy returned by 459

Algorithm 4 guarantees probability one of satisfying the given MITL specification, but we cannot 460

conclude that there exists no solution to the problem if Algorithm 4 returns no solution. 461

6. Solution: Actuator and Timing Attacks 462

In this section, we present a solution under both actuator attack and timing attacks. 463

Compared to the case when there is no timing attack, we make the following observa- 464

tions. The evaluation of spatial robustness remains unchanged when the adversary can 465

initiate both actuator and timing attacks. Second, the evaluation of temporal robustness can 466

become inaccurate during a timing attack. This is because timing information perceived by 467

the defender can be arbitrarily manipulated by the adversary. As a result, the defender will 468

not be able to evaluate the temporal robustness, and hence the spatio-temporal robustness 469

during a timing attack. Finally, since the defender cannot accurately evaluate the temporal 470

robustness, Proposition 1 will not hold during a timing attack. In the following, we relax 471

the problem of robust synthesis for defender in Problem 1, and try to compute a defender 472

policy such that the probability of satisfying the φ is maximized in the presence of actuator 473

and timing attacks. The reason the defender can evaluate the probability of satisfying φ is 474

that it knows the transition probability PrG and probability mass function TG . Thus, it can 475

determine the expected probability and time of reaching each state, given policies of the 476

defender and adversary. The relaxed problem is: 477

Version January 12, 2024 submitted to Games 15 of 23

Problem 2 (Policy Synthesis for Defender). Given a DSG G and an MITL objective φ, compute 478

a defender’s policy such that the probability of satisfying φ is maximized, and adversary policy 479

(τ, γ) is the best response to control policy µ. That is maxµ Pφ(µ, τ, γ), where (τ, γ) ∈ BR(µ). 480

Since the timing information perceived by the defender has been manipulated by the 481

adversary, the defender has limited knowledge of the current time. Even in this case, it can 482

still detect unreasonable time sequences, e.g., a time sequence that is not monotonic. To 483

recover from the deficit of timing information, we represent the defender’s policy using a 484

finite state controller, which enables the defender to track the estimated time. 485

Definition 9 (Finite State Controller [25]). A finite state controller (FSC) is a tuple F = 486

(Y, y0, µ), where Y = Λ× {0, 1} is a finite set of internal states, Λ is a set of estimates of clock 487

valuations, the set {0, 1} indicates if a timing attack has been detected (1) or not (0). y0 is the initial 488

internal state. µ is the defender policy, given by: 489

µ =

{
µ0 : Y× S×Y×UC 7→ [0, 1], ifH0 holds;
µ1 : Y× SG ×Q×Y×UC 7→ [0, 1], ifH1 holds,

where µ0 and µ1 respectively denote the control policies that will be executed when hypothesisH0 490

orH1 holds. 491

For an FSC as given in Definition 9, hypothesisH0 represents the scenario where no 492

timing attack is detected by the defender, whileH1 represents the scenario where a timing 493

attack is detected. In the FSC, the defender’s policy specifies the probability of reaching 494

the next internal state by taking an action uC, given the current state of DSG, the detection 495

result of timing attack, and the state of DTBA. 496

Algorithm 5 Computing an optimal control policy.

1: procedure CONTROL_SYNTHESIS(Z)
2: Input: Global DSG P
3: Output: value vector Q
4: Initialization: Q0 ← 0, Q1(s)← 1 for s ∈ Acc, Q1(s)← 0 otherwise, k← 0
5: while max {|Qk+1(s)−Qk(s)| : s ∈ S} > ϵ do
6: k← k + 1
7: for s /∈ Acc do

8: Qk+1(s)← max
µ

min
τ,γ

{
∑
uC

∑
uA

∑
(s′ ,y)

τ((s, y), uA)γ(v′′, v)Q((s′, y′))

· PrZ ((s′, y′)|(s, y), uC, uA)

}
9: end for

10: end while
11: return Qk

12: end procedure

To capture the state evolutions of DSG, DTBA, and FSC, we construct a global DSG. 497

Definition 10 (Global DSG (GDSG)). A GDSG is a tupleZ = (SZ , sZ ,0, UC, UA, In fZ ,C, In fZ ,A,
PrZ , AccZ), where SZ = S× Y is a finite set of states, sZ ,0 = (s0, q0, 0, y0) is the initial state.
UC and UA are finite sets of actions and In fZ ,C and In fZ ,A are the information sets of the defender
and adversary respectively. PrZ : SZ ×UC ×UA × SZ 7→ [0, 1] is a transition function where
PrZ ((s′, q′, v′, y′)|(s, q, v, y), uC, uA) is the probability of a transition from state (s, q, v, y) to
(s′, q′, v′, y) when the defender and adversary take actions uC and uA respectively. The transition
probability is given by

PrZ
(
(s′, q′, v′, y′)|(s, q, v, y), uC, uA

)

Version January 12, 2024 submitted to Games 16 of 23

=

{
∑v′′ γ(v′′|v)µ0(y′, uC|s, q, v′′, y)Pr((s′, q′, v′)|(s, q, v), uC, uA), ifH0 holds;
µ1(y′, uC|s, q, y)TG(δ|s, uC, uA, s′)PrG(s′|s, uC, uA), ifH1 holds;

AccZ = Acc×Y is the set of accepting states. 498

Consider the global DSG. Let Q ∈ R|SZ | be the probability of satisfying φ. Then Q can 499

be computed from Proposition 4. A proof is presented in [39]. 500

Proposition 4. Let Q := max
µ

min
τ,γ

P(φ) be the probability of satisfying φ. Then,

Q((s, y)) = max
µ

min
τ,γ ∑

uC
∑
uA

∑
(s′ ,y)

τ((s, y), uA)Q((s′, y′)) · PrZ
(
(s′, y′)|(s, y), uC, uA

)
, ∀(s, y).

Moreover, the value vector is unique. 501

We use the procedure CONTROL_SYNTHESIS(Z) presented in Algorithm 5 to compute
the policy µ. Guarantees on its termination is presented in [39]. We finally remark on the
complexity of Algorithm 5. We first make the following relaxation to Line 5 of Algorithm 5
so that Qk+1((s, y)) is updated if the following holds

max
µ

min
τ,γ ∑

uC
∑
uA

∑
(s′ ,y)

τ((s, y), uA)Q((s′, y′)) · PrZ
(
(s′, y′)|(s, y), uC, uA

)
≥ (1+ ϵ)Qk((s, y)).

Then, Algorithm 5 converges to some Qk+1(s, y) satisfying ∥Qk+1(s, y)−Qk(s, y)∥∞ < ϵ 502

within |SZ |max(s,y){log(1/Q0((s, y)))/ log(1+ ϵ)} iterations, where parameter Q0((s, y))) 503

is the smallest value of Qk((s, y))) for k = 0, 1, Further, Line 8 of Algorithm 5 can be 504

solved using a linear program in polynomial time, denoted as f . Combining these argu- 505

ments, the complexity of Algorithm 5 is |SZ | f max(s,y){log(1/Q0((s, y)))/ log(1 + ϵ)}. 506

7. Case Study 507

In this section, we present a numerical case study on a signalized traffic network. The 508

case study was implemented using MATLAB on a Macbook Pro with a 2.6GHz Intel Core 509

i5 CPU and 8GB RAM. 510

7.1. Signalized Traffic Network Model 511

We consider a signalized traffic network [43] consisting of 5 intersections and 12 links 512

under the remote control of a transportation management center (TMC). A representation 513

of the signalized traffic network is shown in Fig. 3. We briefly explain how a DSG from 514

Definition 4 can model the network. Each DSG state models the total number of vehicles on 515

a link in the network. Transitions between the states in the DSG models the flow of vehicles. 516

Since vehicle capacity of a link is finite, the number of states in the DSG will be finite. 517

The defender’s action set represents that the TMC can actuate a link by issuing a ‘green 518

signal’ on outgoing intersections of that link. Conversely, the TMC can block a link by 519

issuing a ‘red signal’. The TMC is assumed to control the traffic network over an unreliable 520

wireless channel. Thus, an intelligent adversary can launch man-in-the-middle attacks to 521

tamper with the traffic signal issued by the TMC, or manipulate observations of the TMC. 522

In particular, the adversary can initiate an actuator attack to change the traffic signal and a 523

timing attack to manipulate the time stamped measurement (number of vehicles at each 524

link along with the time index) perceived by the TMC. 525

The TMC is given one of the following objectives: (i) number of vehicles at link 4 is 526

eventually below 10 before deadline d = 6: φ1 = ✸[0,6](x4 ≤ 10); (ii) number of vehicles 527

at links 3 and 4 are eventually below 10 before d = 6: φ2 = ✸[0,6]((x3 ≤ 10) ∧ (x4 ≤ 10)); 528

(iii) number of vehicles at links 3, 4 and 5 are eventually below 10 before d = 6: φ3 = 529

✸[0,6]((x3 ≤ 10) ∧ (x4 ≤ 10) ∧ (x5 ≤ 10)). Spatial and temporal robustness thresholds are 530

Version January 12, 2024 submitted to Games 17 of 23

Figure 3. Representation of a signalized traffic network consisting of 5 intersections and 12 links.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Time

0

2

4

6

8

10

12

14

16

18

20

N
u
m

b
e
r

o
f
V

e
h
ic

le
s
 a

t
e
a
c
h
 L

in
k

Link 3

Link 4

Link 5

Threshold

Figure 4. A sample of the number of vehicles on links 3, 4, and 5 over time using our proposed
approach. In this realization, the number of links on link 5 is above the threshold.

set to ϵs = 1 and ϵt = 1. We compare our approach with two baselines. In Baseline 1, the 531

TMC periodically issues green signals. In the second, In Baseline 2, the TMC always issues 532

green signal for links 3, 4, 5 to greedily minimize the number of vehicles on these links. 533

7.2. Numerical Results 534

In the following, we present the numerical results using our proposed approach and 535

the two baselines. 536

We first report the results when the adversary only launches actuator attack, and the 537

TMC is given specification φ1. We compute a control policy using Algorithm 4. A sample 538

sequence of traffic signals is presented in Table 2. By Proposition 1 and Corollary 1, the 539

MITL specification φ1 is satisfied with probability one.

Table 2. Sample sequence of traffic lights realized at each intersection for the MITL specification
φ1 = ✸[0,6](x4 ≤ 10). The letters ‘R’ and ‘G’ represent ‘red’ and ‘green’ signals.

Intersection
Time 1 2 3 4 5

1 G R R G R
2 R R G G R
3 R G G G R
4 R R R R G
5 R G G G R
6 G G G R G

540

We then consider an adversary that launches both actuator and timing attacks. Sup- 541

pose the TMC is equipped with an FSC with 5 states. We show results of our approach 542

using Algorithm 5 in Fig. 4. In this example, φ3 is violated since the number of vehicles 543

on link 5 exceeds the threshold 10. We also give the probabilities of satisfying each MITL 544

specification using Algorithm 5. Specifications φ1, φ2, and φ3 are satisfied with probabilities 545

.7000, .6857, and .4390, respectively. 546

Version January 12, 2024 submitted to Games 18 of 23

We assume that the TMC commits to deterministic policies in both baselines. In 547

Baseline 1, the adversary launches actuator attacks when the TMC issues a green signal, 548

and does not attack when it issues a red signal. In Baseline 2, the adversary always 549

launches an actuator attack. In both baselines, the adversary launches a timing attack at 550

each time instant to delay the TMC’s observation. As a consequence, both baselines have 551

zero probability of satisfying φ1, φ2, or φ3. 552

The DSG in our experiments had 232 states. For φ1, the GAMEC of the product 553

DSG had 400 states. For φ2 and φ3, the GAMEC had 160 and 80 states respectively. The 554

computation time of Algorithm 4 for φ1 was 264 seconds. Algorithm 5 took 720 seconds. 555

8. Conclusion and Future Work 556

In this paper, we proposed methods to synthesize controllers for cyber-physical sys- 557

tems to satisfy metric interval temporal logic (MITL) tasks in the presence of an adversary 558

while additionally providing robustness guarantees. We considered the fragment of MITL 559

formulae that can be represented by deterministic timed Büchi automata. The adversary 560

could initiate actuator and timing attacks. We modeled the interaction between the de- 561

fender and adversary using a durational stochastic game (DSG). We introduced three 562

notions of robustness degree- spatial robustness, temporal robustness, and spatio-temporal 563

robustness, and presented procedures to estimate these quantities, given the defender and 564

adversary’s policies and current state of the DSG. We further presented a computational 565

procedure to synthesize the defender’s policy that provided a robustness guarantee when 566

the adversary could only initiate an actuator attack. A value iteration based procedure was 567

given to compute a defender’s policy to maximize the probability of satisfying the MITL 568

goal. A case study on a signalized traffic network illustrated our approach. 569

DSGs can be adopted to model interactions between a defender and adversary across 570

various application domains with time-sensitive constraints. Examples include time- 571

sensitive motion planning of drones, product scheduling of industrial control systems, and 572

time-sensitive message transmission in wireless communication in the presence of adver- 573

saries. For future work, we will generalize our definition of DSG to broaden its applications. 574

We will generalize DSG to address partial observations by the CPS and adversary. We 575

will additionally investigate the scenarios where the adversary is nonrational and may not 576

perform its best response to the strategies committed by defender. 577

Author Contributions: Conceptualization, L.N., B.R., A.C., and R.P.; Methodology, L.N., B.R. 578

A.C., and R.P.; Software, L.N. and B.R.; Validation, B.R.; Formal analysis, L.N., B.R., and A.C.; Writing 579

– original draft, L.N. and B.R.; Writing – review & editing, A.C. and R.P.; Supervision, R.P.; Project 580

administration, R.P.. 581

Funding: This work was supported by the Office of Naval Research grant N00014-20-1-2636, 582

National Science Foundation grants CNS 2153136 and CNS 1941670, and Air Force Office of Scientific 583

Research grants FA9550-20-1-0074 and FA9550-22-1-0054. 584

Informed Consent Statement: Not applicable. 585

Data Availability Statement: No new data were created or analyzed in this study. Data sharing 586

is not applicable to this article. 587

Conflicts of Interest: The authors declare no conflict of interest. 588

Appendix A Summary of Notations 589

This appendix summarizes the notations used in this paper, as presented in Table A1. 590

Version January 12, 2024 submitted to Games 19 of 23

Table A1. This table gives a list of notation and symbols used in this paper.

Variable Notation Interpretation

φ MITL formula
ρ Timed word
A Deterministic timed Büchi automaton (DTBA)
v Clock valuation
β Run of DTBA
G Durational stochastic game (DSG)
µ Defender’s policy
τ Actuator attack policy by the adversary
γ Timing attack policy by the adversary

χ
φ
s (µ, τ, γ) Spatial robustness

χ
φ
t (µ, τ, γ) Temporal robustness

χφ(µ, τ, γ) Spatio-temporal robustness
P Product durational stochastic game
F Finite state controller (FSC)
Z Global durational stochastic game (GDSG)

C Set of generalized accepting maximal end
components (GAMECs)

Appendix B Proofs of Technical Results 591

In this appendix, we present the proofs of all the technical results. 592

Proof of Proposition 1. From Equation (4), χ
φ
t (µ, τ, γ) is non-negative. If χφ(µ, τ, γ) > 0 , 593

then I(χφ
s (µ, τ, γ) ≥ ϵs) = 1, and hence χ

φ
s (µ, τ, γ) ≥ ϵs > 0. This implies Bµτγ

G ⊆ L, i.e., 594

all runs obtained under policies µ and (τ, γ) are accepting. This gives Prµτγ(φ) = 1, or 595

almost-sure satisfaction of φ under the respective agent policies. 596

Proof of Proposition 2. The statement that Pr((s′, q′, v′)|(s, q, v), uC, uA) ∈ [0, 1] for all
transitions in P follows from the fact that TG(δ|s, uC, uA, s′) ∈ [0, 1] and PrG(s′|s, uC, uA) ∈
[0, 1]. We have that Pr((s′, q′, v′)|(s, q, v), uC, uA) = 0 iff TG(δ|s, uC, uA, s′) = 0, or PrG(s′|s,
uC, uA) = 0, or both. Moreover, we have that Pr((s′, q′, v′)|(s, q, v), uC, uA) = 1 iff

TG(δ|s, uC, uA, s′) = 1 and PrG(s′|s, uC, uA) = 1. Let Iδ
(q,v),(q′ ,v′) := 1((q, v)

L(s′),δ−−−→ (q′, v′)),
which is an indicator function that takes value 1 if its argument is true, and 0 otherwise.
Then, Equation (7) can be rewritten as:

∑
(s′ ,q′ ,v′)

TG(δ|s, uC, uA, s′)PrG(s′|s, uC, uA)

= ∑
s′

∑
δ

TG(δ|s, uC, uA, s′)Iδ
(q,v),(q′ ,v′)PrG(s′|s, uC, uA) (A1)

This follows from substitution from Equation (6) and product DSG in Definition 8. The 597

result follows by ∑
s′∈SG

PrG(s′|s, uC, uA) = 1 and ∑
δ∈∆

TG(δ|s, uC, uA, s′) = 1. 598

Proof of Proposition 3. We proceed by showing that each loop in Algorithm 1 is executed 599

a finite number of times. The PDSG P has a finite number of states and actions since DSG 600

G has a finite number of states and actions, the DTBA A has a finite number of states, and 601

the clock valuation set V bounded due to the boundedness of time interval I. Therefore, 602

the for-loops in Line 7, 10, 11, and 27 are executed for finite number of times. The while-loop 603

in Line 18 is executed a finite number of times since R ⊆ S is a finite set. Moreover, there 604

are finite number of states that will be added to R (Line 14), and this will be carried out 605

finitely many times. The overall complexity is O(|V|(|V|+ |E|)), where |V| and |E| are the 606

number of vertices and edges in P . 607

Proof of Theorem 1. We leverage the recursive robust MITL semantics to prove the theo- 608

rem and consider the following cases. 609

Version January 12, 2024 submitted to Games 20 of 23

Case 1— φ = π ∈ Π: In this case, the temporal robustness is computed by Lines 4– 610

7 of Algorithm 2: TEMPORAL(φ, s0, δ, M(s′)) = min{le f t_temp, right_temp} = ϵ > 0,. 611

This means there must exist a state s′′ that is reachable from s under policies µ and τ 612

such that s′′ |= π. Without loss of generality, we assume TEMPORAL(φ, s0, δ, M(s′)) = 613

Time(s′′)− Time(s0) = ϵ. Since Time(s0) = 0, we have Time(s′′) = ϵ, i.e., ϵ is the time 614

index of state s′′. Therefore, a shift to the left by ϵ̂ ∈ [0, ϵ] will not affect the satisfaction 615

of π since π ∈ L(s′′) holds true independent of time. If the accepting run is temporally 616

perturbed by more than ϵ time units, the clock valuation becomes negative. This contradicts 617

our assumption that clock valuations take positive values. 618

Case 2— φ = ϕ1 ∧ ϕ2: Consider Lines 8–11 of Algorithm 2. Suppose ϕ1, ϕ2 ∈ Π. Let 619

TEMPORAL(φ, s0, δ, M(s′)) = TEMPORAL(ϕ1, s0, δ, M(s′)) = ϵ > 0. From Line 11, it follows 620

that TEMPORAL(ϕ2, s0, δ, M(s′)) := ϵ′ > ϵ. Since ϕ1, ϕ2 ∈ Π, we can apply Case 1 to 621

TEMPORAL(ϕ1, s0, δ, M(s′)) and TEMPORAL(ϕ2, s0, δ, M(s′)). Therefore, if we shift the run 622

synthesized under policies µ and τ by ϵ̂ ∈ [0, ϵ] time units to the left, ϕ1 will still be satisfied. 623

Moreover, since ϵ < ϵ′, ϕ2 will also be satisfied. Hence, ϕ = ϕ1 ∧ ϕ2 will still be satisfied if 624

we shift the run synthesized under policies µ and τ by at most ϵ̂ < ϵ time units. 625

Case 3 — φ = ϕ1 ∨ ϕ2: Consider Lines 12–15. Suppose ϕ1, ϕ2 ∈ Π. Let TEMPORAL(ϕ1, s0, 626

δ, M(s′)) = ϵ > 0. From Case 1, we can shift any accepting run starting from s0 by at most ϵ 627

time units without violating ϕ1. Then by semantics of the disjunction operator, φ = ϕ1 ∨ ϕ2 628

is also satisfied when the accepting run is shifted by at most ϵ time units. 629

Case 4 — φ = ϕ1UIϕ2: In this case, the temporal robustness is computed by Lines 16–27. 630

We consider the case that ϕ1, ϕ2 ∈ Π. Let t := inf{t′|ϕ2 is satisfied at t′}. 631

If t = 0, ϕ2 is satisfied at state s0, and hence φ is satisfied at s0. Therefore s0 is in 632

GAMEC. From the definition of GAMEC, we have that s0 and its neighboring states are 633

in GAMEC (the defender does not take any action that steers the PDSG outside GAMEC), 634

and hence M(s′) = 1. Thus Algorithm 2 will execute Lines 19–20. We have that r1 ← 635

min
⋃
s′

{
(Time(s′)− I), (I − Time(s′))

}
, where I = sup{t′|t′ ∈ I} and I = inf{t′|t′ ∈ I} are 636

upper and lower bounds of I. Since t = 0, Line 23 will be executed. ϕ2 ∈ Π indicates that 637

r2 = TEMPORAL(ϕ2, s0, δ, M(s′)) can be obtained from Lines 4–7. This gives r1 = r2 = 0, 638

and hence ϵ = 0. We remark that this only indicates that we cannot shift the accepting run 639

to the left temporally without violating φ. Shifting the run to the right might not lead to 640

violation of φ. However, since the temporal robustness is defined as the minimum of left 641

and right temporal robustness, the algorithm returns ϵ = 0. 642

If t > 0, from the semantics of time constrained until operator UI , ϕ1 is satisfied 643

up to time t ∈ I and ϕ2 is satisfied immediately after time t, and thus φ is satisfied. 644

Therefore, we will eventually reach some accepting state so that M(s′) = 1 for some s′. 645

In this case, ϵ = max{r1, r2}, where r1 is given in Line 20 and r2 is given in Lines 22–26 646

of Algorithm 2. Suppose ϵ = r1. From Line 27, we must have r1 ≥ r2. From Line 20, 647

r1 = min{t− I, I − t} = ϵ. Thus, we can shift any accepting run by at most t− I time units 648

to the left without violating φ if ϵ = t− I. After the perturbation, ϕ1 is satisfied at time I and 649

ϕ2 is satisfied immediately after I. The case where ϵ = I − t can be obtained analogously. 650

Suppose ϵ = r2. From Lines 22–26, r2 = TEMPORAL(ϕ2, s0, δ, M(s′)). Since ϕ2 ∈ Π, r2 can 651

be obtained from Lines 4–7. Recall that we consider a bounded clock valuation set. Let 652

V := sup{t|t ∈ I} = I. Then r2 models the maximum distance between the time index 653

at which ϕ2 is satisfied and the upper bound of I. From Case 1, we have that perturbing 654

an accepting run by at most ϵ time units will not violate φ since the run obtained after 655

perturbation satisfies ϕ2 at the boundary of I. 656

Case 5 — ϕ1 and ϕ2 in Cases 2-4 are MITL formulae: In this case, we can apply the previ- 657

ous analyses using the recursive definition of MITL formula. 658

Proof of Theorem 2. We prove the theorem in the following way. At each iteration within 659

the while loop (starting at Line 5), Algorithm 4 executes one of the three cases of the if-else 660

statement (Lines 7, 9, or 17), with each case corresponding to the satisfaction of spatio- 661

temporal robustness constraint, violation of temporal robustness constraint, or violation of 662

Version January 12, 2024 submitted to Games 21 of 23

spatial robustness constraint. We denote the execution of Line 7 as Scenario I, that of Line 9 663

as Scenario II, and of Line 17 as Scenario III. We will show that Algorithm 4 reaches Scenario 664

I at most once, and reaches Scenarios II and III finitely many times. If Algorithm 4 reaches 665

Scenario I, it terminates (Line 8). For Scenarios II and III, we will show that there exists an 666

index k such that if Algorithm 4 reaches Scenario II or III at iteration k, then Scenario I will 667

be executed at iteration k + 1 and hence terminates or Lines 26-29 will be executed and the 668

process will terminate at iteration k. 669

Scenario I — executing Line 7: Suppose Algorithm 4 reaches Scenario I at iteration k. In 670

this case, the control policy µk satisfies the spatio-temporal robustness constraints. By Line 671

8 we have that Scenario I is reached exactly once and hence Algorithm 4 terminates. 672

Scenario II — executing Line 9: Suppose Algorithm 4 reaches Scenario II at iteration k. 673

In this case, the policy µk satisfies the spatial robustness constraint but violates the temporal 674

robustness constraint. Let s be the state that results in temporal robustness constraint 675

violation, and let s′ be a neighboring state of s. We decompose our discussion into the 676

following cases: 677

1. Suppose UC(s
′) = ∅. In this case, state s′ is included in set Et. If adding s′ to Et makes 678

states in GAMEC not reachable from s0, then Algorithm 4 executes Lines 26-29, and 679

terminates by reporting failure. 680

2. Suppose UC(s
′) ̸= ∅. However, the remaining control actions uC ∈ UC(s

′) cannot 681

make GAMEC reachable from the initial state s0. In this case, Algorithm 4 will execute 682

Lines 26-29, and terminates. 683

3. Suppose UC(s
′) ̸= ∅, and GAMEC is reachable from s0. We further assume that 684

all actions uC ∈ UC(s
′) that are admissible by the policy generated at Line 25 result 685

in robustness greater than or equal to ϵt. As a consequence, the remaining control 686

actions in UC(s
′) must steer the system into some neighboring state s′′ of s′ such that 687

χφ(µ, τ, γ, s′′) > ϵt. Therefore, Algorithm 4 will execute Scenario I at iteration k + 1, 688

and thus terminates. 689

4. Suppose UC(s
′) ̸= ∅, and GAMEC is reachable from the initial state s0. Now assume 690

that there exists some action uC ∈ UC(s
′) such that it is admissible by the policy 691

generated at Line 25 and results in robustness below ϵt for some neighboring state s′′ 692

of s. In this case, this uC will be removed according Line 12 at iteration k + 1. Since 693

there are only finitely many states and control actions, this case will converge to one 694

of the cases discussed in (1), (2) or (3) in a finite number of iterations. 695

Scenario III — executing Line 17: Suppose Algorithm 4 reaches Scenario III at iteration k. In 696

this case, the control policy µk violates the spatial robustness constraint. We use s to denote 697

the state that violates spatial robustness constraint, and use s′ to denote the neighboring 698

state of s. We analyze Scenario III by dividing our discussion into the following cases. 699

1. Suppose UC(s
′) = ∅. From Line 18, s′ is included in set Es. If adding s′ to Es makes 700

states in GAMEC not reachable from s0, then Algorithm 4 executes Lines 26-29, and 701

terminates by reporting failure. 702

2. Suppose UC(s
′) ̸= ∅ and GAMEC is not reachable from the s0 for all uC ∈ UC(s

′). In 703

this case, Algorithm 4 will execute Lines 26-29, and terminate. 704

3. Suppose UC(s
′) ̸= ∅, and GAMEC is reachable from s0. Assume that all actions 705

uC ∈ UC(s
′) that are admissible by the policy generated at Line 25 result in robustness 706

≥ ϵt. In this case, the game must be steered to a neighboring state s′′ of s′ such that 707

χφ(µ, τ, γ, s′′) > ϵt. Then, Algorithm 4 will execute Scenario I at iteration k + 1, and 708

terminate. 709

4. Suppose UC(s
′) ̸= ∅, and GAMEC is reachable from s0. Now assume that the policy 710

generated at Line 25 results in robustness below ϵt for some neighboring state s′′ of s. 711

In this case, the control action uC will be removed according Lines 12 and 20 at iteration 712

k + 1. Since there are only finitely many states and control actions, this case will 713

converge to one of the cases discussed in (1), (2) or (3) in a finite number of iterations. 714

Version January 12, 2024 submitted to Games 22 of 23

From the preceding discussion, the control action set UC will converge to a set ÛC that 715

will never lead Algorithm 4 to Scenarios II or III. In the worst case, ÛC = ∅ when there will 716

be at most |S| × |UC| actions being removed due to Scenarios II and III, leading Algorithm 717

4 to Line 28 where it terminates by reporting failure. Therefore, Algorithm 4 converges to 718

a set ÛC that will never cause violations of the robustness constraints and the game can 719

be driven to GAMEC in a finite number of iterations. If no such set exists, it terminates by 720

reporting failure. If ÛC ̸= ∅, then Algorithm 4 returns a policy over ÛC. 721

Proof of Theorem 3. Suppose Algorithm 4 returns a policy µ∗. From Theorem 2, µ∗ is 722

defined over ÛC ̸= ∅ (otherwise µ∗ should not be returned by Algorithm 4 since no 723

admissible defender action is available). From Lines 10-16 in Algorithm 4, the defender’s 724

policy µ∗ will not result in temporal robustness below ϵt. From Lines 17-23, µ∗ guarantees 725

positive spatio-temporal robustness. Therefore, if µ∗ is returned by Algorithm 4, we must 726

have spatio-temporal robustness χφ(µ∗, τ∗, γ∗, s) ≥ ϵt, where (τ∗, γ∗) are best responses 727

of the adversary. Thus, µ∗ is a feasible solution to robust policy synthesis for defender in 728

Problem 1. From Proposition 1, the probability of satisfying the MITL formula φ equals 1, 729

which is the maximum value that can be achieved for any control policy. Therefore, µ∗ is 730

an optimal policy. 731

References 732

1. Baheti, R.; Gill, H. Cyber-physical systems. The Impact of Control Technology 2011, 12, 161–166. https://doi.org/10.1109/ICMECH. 733

2019.8722929. 734

2. Baier, C.; Katoen, J.P.; Larsen, K.G. Principles of Model Checking; MIT Press, 2008. 735

3. Alur, R.; Dill, D.L. A theory of timed automata. Theoretical Computer Science 1994, 126, 183–235. https://doi.org/10.1016/0304-3 736

975(94)90010-8. 737

4. Kress-Gazit, H.; Fainekos, G.E.; Pappas, G.J. Temporal-logic-based reactive mission and motion planning. IEEE Transactions on 738

Robotics 2009, 25, 1370–1381. https://doi.org/10.1109/TRO.2009.2030225. 739

5. Ding, X.; Smith, S.L.; Belta, C.; Rus, D. Optimal control of Markov decision processes with linear temporal logic constraints. IEEE 740

Transactions on Automatic Control 2014, 59, 1244–1257. https://doi.org/10.1109/TAC.2014.2298143. 741

6. Zhou, Y.; Maity, D.; Baras, J.S. Timed automata approach for motion planning using metric interval temporal logic. In Proceedings 742

of the European Control Conference. IEEE, 2016, pp. 690–695. https://doi.org/10.1109/ECC.2016.7810369. 743

7. Fu, J.; Topcu, U. Computational methods for stochastic control with metric interval temporal logic specifications. In Proceedings 744

of the Conference on Decision and Control. IEEE, 2015, pp. 7440–7447. https://doi.org/10.1109/CDC.2015.7403395. 745

8. Fainekos, G.E.; Pappas, G.J. Robustness of temporal logic specifications for continuous-time signals. Theoretical Computer Science 746

2009, 410, 4262–4291. https://doi.org/10.1016/j.tcs.2009.06.021. 747

9. Donzé, A.; Maler, O. Robust satisfaction of temporal logic over real-valued signals. In Proceedings of the International Conference 748

on Formal Modeling and Analysis of Timed Systems. Springer, 2010, pp. 92–106. https://doi.org/https://doi.org/10.1007/978- 749

3-642-15297-9_9. 750

10. Niu, L.; Clark, A. Optimal Secure Control with Linear Temporal Logic Constraints. IEEE Transactions on Automatic Control 2020, 751

65. https://doi.org/10.1109/TAC.2019.2930039. 752

11. Zhu, M.; Martinez, S. Stackelberg-game analysis of correlated attacks in cyber-physical systems. In Proceedings of the American 753

Control Conference. IEEE, 2011, pp. 4063–4068. https://doi.org/10.1109/ACC.2011.5991463. 754

12. Wang, J.; Tu, W.; Hui, L.C.; Yiu, S.M.; Wang, E.K. Detecting time synchronization attacks in cyber-physical systems with 755

machine learning techniques. In Proceedings of the International Conference on Distributed Computing Systems. IEEE, 2017, pp. 756

2246–2251. https://doi.org/10.1109/ICDCS.2017.25. 757

13. Jewell, W.S. Markov-renewal programming: Formulation, finite return models. Operations Research 1963, 11, 938. https: 758

//doi.org/10.1287/opre.11.6.938. 759

14. Ross, S.M. Introduction to Stochastic Dynamic Programming; Academic Press, 2014. 760

15. Stidham, S.; Weber, R. A survey of Markov decision models for control of networks of queues. Queueing Systems 1993, 13, 291–314. 761

https://doi.org/10.1007/BF01158935. 762

16. Leitmann, G. On generalized Stackelberg strategies. Journal of Optimization Theory and Applications 1978, 26, 637–643. https: 763

//doi.org/10.1142/S0129054103002114. 764

17. Wei, L.; Sarwat, A.I.; Saad, W.; Biswas, S. Stochastic games for power grid protection against coordinated cyber-physical attacks. 765

IEEE Transactions on Smart Grid 2016, 9, 684–694. https://doi.org/10.1109/TSG.2016.2561266. 766

18. Garnaev, A.; Baykal-Gursoy, M.; Poor, H.V. A game theoretic analysis of secret and reliable communication with active and 767

passive adversarial modes. IEEE Transactions on Wireless Communications 2015, 15, 2155–2163. https://doi.org/10.1109/TWC.20 768

15.2498934. 769

https://doi.org/10.1109/ICMECH.2019.8722929
https://doi.org/10.1109/ICMECH.2019.8722929
https://doi.org/10.1109/ICMECH.2019.8722929
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1109/TAC.2014.2298143
https://doi.org/10.1109/ECC.2016.7810369
https://doi.org/10.1109/CDC.2015.7403395
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1109/TAC.2019.2930039
https://doi.org/10.1109/ACC.2011.5991463
https://doi.org/10.1109/ICDCS.2017.25
https://doi.org/10.1287/opre.11.6.938
https://doi.org/10.1287/opre.11.6.938
https://doi.org/10.1287/opre.11.6.938
https://doi.org/10.1007/BF01158935
https://doi.org/10.1142/S0129054103002114
https://doi.org/10.1142/S0129054103002114
https://doi.org/10.1142/S0129054103002114
https://doi.org/10.1109/TSG.2016.2561266
https://doi.org/10.1109/TWC.2015.2498934
https://doi.org/10.1109/TWC.2015.2498934
https://doi.org/10.1109/TWC.2015.2498934

Version January 12, 2024 submitted to Games 23 of 23

19. Bouyer, P.; Laroussinie, F.; Markey, N.; Ouaknine, J.; Worrell, J. Timed temporal logics. In Models, Algorithms, Logics and Tools; 770

Springer, 2017; pp. 211–230. https://doi.org/https://doi.org/10.1007/978-3-319-63121-9_11. 771

20. Alur, R.; Feder, T.; Henzinger, T.A. The benefits of relaxing punctuality. Journal of the ACM 1996, 43, 116–146. https: 772

//doi.org/10.1145/227595.227602. 773

21. Maler, O.; Nickovic, D.; Pnueli, A. From MITL to timed automata. In Proceedings of the International Conference on Formal 774

Modeling and Analysis of Timed Systems. Springer, 2006, pp. 274–289. https://doi.org/10.1007/11867340_20. 775

22. Karaman, S.; Frazzoli, E. Vehicle routing problem with metric temporal logic specifications. In Proceedings of the Conference on 776

Decision and Control. IEEE, 2008, pp. 3953–3958. https://doi.org/10.1109/CDC.2008.4739366. 777

23. Liu, J.; Prabhakar, P. Switching control of dynamical systems from metric temporal logic specifications. In Proceedings of the 778

International Conference on Robotics and Automation. IEEE, 2014, pp. 5333–5338. https://doi.org/10.1109/ICRA.2014.6907643. 779

24. Nikou, A.; Tumova, J.; Dimarogonas, D.V. Cooperative task planning of multi-agent systems under timed temporal specifications. 780

In Proceedings of the American Control Conference. IEEE, 2016, pp. 7104–7109. https://doi.org/10.1109/ACC.2016.7526793. 781

25. Hansen, E.A. Solving POMDPs by searching in policy space. In Proceedings of the Conference on Uncertainty in Artificial 782

Intelligence, 1998, pp. 211–219. https://doi.org/10.5555/2074094.2074119. 783

26. Sharan, R.; Burdick, J. Finite state control of POMDPs with LTL specifications. In Proceedings of the American Control Conference. 784

IEEE, 2014, p. 501. https://doi.org/10.1109/ACC.2014.6858909. 785

27. Ramasubramanian, B.; Clark, A.; Bushnell, L.; Poovendran, R. Secure control under partial observability with temporal logic 786

constraints. In Proceedings of the American Control Conference. IEEE, 2019, pp. 1181–1188. https://doi.org/10.23919/ACC.20 787

19.8814630. 788

28. Ramasubramanian, B.; Niu, L.; Clark, A.; Bushnell, L.; Poovendran, R. Secure control in partially observable environments to 789

satisfy LTL specifications. IEEE Transactions on Automatic Control 2021, 66, 5665–5679. https://doi.org/doi:10.1109/TAC.2020.303 790

9484. 791

29. Zhao, G.; Li, H.; Hou, T. Input–output dynamical stability analysis for cyber-physical systems via logical networks. IET Control 792

Theory & Applications 2020, 14, 2566–2572. https://doi.org/10.1049/iet-cta.2020.0197. 793

30. Zhao, G.; Li, H. Robustness analysis of logical networks and its application in infinite systems. Journal of the Franklin Institute 794

2020, 357, 2882–2891. https://doi.org/https://doi.org/10.1016/j.jfranklin.2019.12.002. 795

31. Simon, D. Optimal State Estimation: Kalman, H infinity, and Nonlinear Approaches; John Wiley & Sons, 2006. 796

32. Angeli, D. A Lyapunov approach to incremental stability properties. IEEE Transactions on Automatic Control 2002, 47, 410–421. 797

https://doi.org/10.1109/9.989067. 798

33. Rizk, A.; Batt, G.; Fages, F.; Soliman, S. A general computational method for robustness analysis with applications to synthetic 799

gene networks. Bioinformatics 2009, 25, i169–i178. https://doi.org/10.1093/bioinformatics/btp200. 800

34. Jakšić, S.; Bartocci, E.; Grosu, R.; Nguyen, T.; Ničković, D. Quantitative monitoring of STL with edit distance. Formal Methods in 801

System Design 2018, 53, 83–112. https://doi.org/10.1007/s10703-018-0319-x. 802

35. Aksaray, D.; Jones, A.; Kong, Z.; Schwager, M.; Belta, C. Q-learning for robust satisfaction of signal temporal logic specifications. In 803

Proceedings of the Conference on Decision and Control. IEEE, 2016, pp. 6565–6570. https://doi.org/10.1109/CDC.2016.7799279. 804

36. Lindemann, L.; Dimarogonas, D.V. Robust control for signal temporal logic specifications using discrete average space robustness. 805

Automatica 2019, 101, 377–387. https://doi.org/10.1016/j.automatica.2018.12.022. 806

37. Rodionova, A.; Lindemann, L.; Morari, M.; Pappas, G. Temporal robustness of temporal logic specifications: Analysis and control 807

design. ACM Transactions on Embedded Computing Systems 2022, 22, 1–44. https://doi.org/10.1145/3550072. 808

38. Rodionova, A.; Lindemann, L.; Morari, M.; Pappas, G.J. Combined left and right temporal robustness for control under STL 809

specifications. IEEE Control Systems Letters 2022, 7, 619–624. https://doi.org/10.1109/LCSYS.2022.3209928. 810

39. Niu, L.; Ramasubramanian, B.; Clark, A.; Bushnell, L.; Poovendran, R. Control Synthesis for Cyber-Physical Systems to Satisfy 811

Metric Interval Temporal Logic Objectives under Timing and Actuator Attacks. In Proceedings of the International Conference 812

on Cyber-Physical Systems. ACM/ IEEE, 2020, pp. 162–173. https://doi.org/10.1109/ICCPS48487.2020.00023. 813

40. Ouaknine, J.; Worrell, J. Some recent results in metric temporal logic. In Proceedings of the International Conference on Formal 814

Modeling and Analysis of Timed Systems. Springer, 2008, pp. 1–13. https://doi.org/10.1007/978-3-540-85778-5_1. 815

41. Levenshtein, V.I. Binary codes capable of correcting deletions, insertions, and reversals. In Proceedings of the Soviet Physics 816

Doklady, 1966, Vol. 10, pp. 707–710. 817

42. Mohri, M. Edit-distance of weighted automata: General definitions and algorithms. International Journal of Foundations of Computer 818

Science 2003, 14, 957–982. https://doi.org/10.1142/S0129054103002114. 819

43. Coogan, S.; Gol, E.A.; Arcak, M.; Belta, C. Traffic network control from temporal logic specifications. IEEE Transactions on Control 820

of Network Systems 2015, 3, 162–172. https://doi.org/10.1109/TCNS.2015.2428471. 821

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 822

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 823

people or property resulting from any ideas, methods, instructions or products referred to in the content. 824

https://doi.org/https://doi.org/10.1007/978-3-319-63121-9_11
https://doi.org/10.1145/227595.227602
https://doi.org/10.1145/227595.227602
https://doi.org/10.1145/227595.227602
https://doi.org/10.1007/11867340_20
https://doi.org/10.1109/CDC.2008.4739366
https://doi.org/10.1109/ICRA.2014.6907643
https://doi.org/10.1109/ACC.2016.7526793
https://doi.org/10.5555/2074094.2074119
https://doi.org/10.1109/ACC.2014.6858909
https://doi.org/10.23919/ACC.2019.8814630
https://doi.org/10.23919/ACC.2019.8814630
https://doi.org/10.23919/ACC.2019.8814630
https://doi.org/doi: 10.1109/TAC.2020.3039484
https://doi.org/doi: 10.1109/TAC.2020.3039484
https://doi.org/doi: 10.1109/TAC.2020.3039484
https://doi.org/10.1049/iet-cta.2020.0197
https://doi.org/https://doi.org/10.1016/j.jfranklin.2019.12.002
https://doi.org/10.1109/9.989067
https://doi.org/10.1093/bioinformatics/btp200
https://doi.org/10.1007/s10703-018-0319-x
https://doi.org/10.1109/CDC.2016.7799279
https://doi.org/10.1016/j.automatica.2018.12.022
https://doi.org/10.1145/3550072
https://doi.org/10.1109/LCSYS.2022.3209928
https://doi.org/10.1109/ICCPS48487.2020.00023
https://doi.org/10.1007/978-3-540-85778-5_1
https://doi.org/10.1142/S0129054103002114
https://doi.org/10.1109/TCNS.2015.2428471

	Introduction
	Related Work
	MITL and Timed Automata
	Problem Setup and Formulation
	Environment, Defender, and Adversary Models
	Definitions of Robustness Degree
	Spatial Robustness
	Temporal Robustness
	Spatio-temporal Robustness
	Robust MITL Semantics

	Problem Statement

	Solution: Only Actuator Attack
	Product DSG
	Evaluating Spatial Robustness
	Evaluating Temporal Robustness
	Evaluating Spatio-temporal Robustness
	Control Policy Synthesis

	Solution: Actuator and Timing Attacks
	Case Study
	Signalized Traffic Network Model
	Numerical Results

	Conclusion and Future Work
	Appendix A
	Appendix B
	References

