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Abstract: This paper studies the synthesis of controllers for cyber-physical systems (CPSs) that are
required to carry out complex time-sensitive tasks, in the presence of an adversary. The time-sensitive
task is specified as a formula in metric interval temporal logic (MITL). CPS that operate in adversarial
environments have typically been abstracted as stochastic games (SGs). However, since traditional
SG models do not incorporate a notion of time, they cannot be used in a setting where the objective is
time-sensitive. To address this, we introduce durational stochastic games (DSGs). DSGs generalize
SGs to incorporate a notion of time and model the adversary’s abilities to tamper with the control

input (actuator attack) and manipulate timing information perceived by the CPS (timing attack).

We define notions of spatial, temporal, and spatio-temporal robustness to quantify the amounts by
which system trajectories under the synthesized policy can be perturbed in space and in time without
affecting satisfaction of the MITL objective. In the case of an actuator attack, we design computational
procedures to synthesize controllers that will satisfy the MITL task along with a guarantee on its
robustness. In the presence of a timing attack, we relax the robustness constraint to develop a value
iteration-based procedure to compute the CPS policy as a finite state controller to maximize the
probability of satisfying the MITL task. A numerical evaluation of our approach on a signalized
traffic network is presented to illustrate our results.

Keywords: MITL specification; control synthesis; adversary; robustness; Stackelberg game

1. Introduction

Cyber-physical systems (CPSs) are playing increasingly important roles in multiple
applications, including autonomous vehicles, robotics, and advanced manufacturing [1]. In
many of these applications, the CPS is expected to satisfy complex time-critical objectives
in dynamic environments with autonomy. An example is a scenario where a drone has to
periodically surveil a target region in its environment. One way to specify requirements on
the CPS behavior is through a temporal logic framework [2] like metric interval temporal
logic (MITL) or signal temporal logic (STL). Verification of satisfaction of the temporal
logic objective can then be achieved by applying principles from model checking [2,3] to a
finite transition system that abstracts the CPS [4-7]. Solution techniques to verify such an
objective usually return a ‘yes/no’ output, indicating if the behavior of the CPS will satisfy
the desired task and if it is possible to synthesize a control policy to satisfy this objective.

However, such binary-valued verification results may not be adequate when an
adversary can inject inputs that affect the behavior of the CPS. Small perturbations can
result in significantly large changes in the output of a CPS, and can lead to violations of the
desired task. The authors of [8,9] defined a notion of robustness degree to quantify the extent
to which a CPS could tolerate deviations from its nominal behavior without resulting in
violation of the desired specification.
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For time-critical CPS, an adversary could launch attacks on clocks of the system (by
timing attack) and the inputs to the system (by actuator attack). In the latter case, stochastic
games (SGs) have been used to model the interaction between the CPS and adversary [10].
However, SGs do not include information about the time taken for a transition between two
states. To bridge this gap, we introduce durational stochastic games (DSGs). In addition to
transition probabilities between states under given actions of the CPS and adversary, a DSG
encodes the time taken for the transition as a probability mass function. Although DSGs
present a modeling formalism for time-critical objectives, they introduce an additional
attack surface that can be exploited by an adversary.

In this paper, we synthesize controllers to satisfy an MITL specification which can be
represented by a deterministic timed Biichi automaton with a desired robustness guarantee.
The robustness guarantee quantifies how sensitive the synthesized policy (that satisfies
the MITL task) will be to disturbances and adversarial inputs. The adversary is assumed
to have the following abilities: it can tamper with the input to the defender through an
actuator attack [11], and it can affect the time index observed by the CPS by effecting a
timing attack [12]. An actuator attack could steer the DSG away from a target set of states,
while a timing attack will prevent it from satisfying the objective within the specified time
interval.

To address perturbations originating from different attack surfaces (timing information
and system inputs), we develop three notions of robustness, namely spatial, temporal, and
spatio-temporal robustness. The spatial robustness is defined over discrete timed words,
and quantifies the maximum perturbation that can be tolerated by timed words so that the
desired tasks can still be satisfied in the absence of timing attacks. The temporal robustness
characterizes the maximum timing perturbation that can be tolerated by a CPS such that
the given MITL objective will not be violated. We introduce a notion of spatio-temporal
robustness that unifies the concepts of spatial and temporal robustness. Using these three
notions of robustness, we develop algorithms to estimate them and compute controllers for
CPSs to guarantee that the given MITL objective can be satisfied with desired robustness
guarantee. This paper makes the following contributions.

*  Weintroduce durational stochastic games (DSGs) to model the interaction between
the CPS which has to satisfy a time-critical objective and an adversary who can initiate
actuator and timing attacks.

*  We define notions of spatial, temporal, and spatio-temporal robustness which quan-
tify the robustness of system trajectories to spatial, temporal, and spatio-temporal
perturbations, respectively, and present computational procedures to estimate them.
We design an algorithm to compute a policy for the CPS (defender) with robustness
guarantee when the adversary is limited to effecting only actuator attacks.

*  We demonstrate that the defender cannot estimate the spatio-temporal robustness
correctly when the adversary can initiate both actuator and timing attacks. We relax
the robustness constraints in such cases and present a value iteration based procedure
to compute the defender’s policy, represented as a finite state controller, to maximize
the probability of satisfying the MITL objective.

*  We evaluate our approach on a signalized traffic network. We compare our approach
with two baselines, and show that it outperforms both baselines.

The remainder of this paper is organized as follows. Section 2 discusses related work.
Section 3 gives background on MITL and deterministic timed Biichi automata. We define
the DSG and notions of robustness in Section 4 and formally state the problem of interest.
Sections 5 and 6 respectively present our results when the adversary is limited to initiating
only actuator attacks and when it can effect both actuator and timing attacks. Experimental
results are presented in Section 7. Section 8 concludes the paper.

2. Related Work

For a single agent, semi-Markov decision processes (SMDPs) [13] can be used to model
Markovian dynamics where time taken for transitions between states is a random variable.
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SMDPs have been used in production scheduling [14] and optimization of queues [15].

Stochastic games (SGs) generalize MDPs when there is more than one agent taking an
action [16]. SGs have been widely adopted to model strategic interactions between CPS
and adversaries. For example, a zero-sum SG was formulated in [17] to allocate resources
to protect power systems against malicious attacks. Two SGs were developed in [18] to
detect intrusions to achieve secret and reliable communications. The satisfaction of complex
objectives modeled by linear temporal logic (LTL) formulae for zero-sum two-player SGs
was presented in [10], where the authors synthesized controllers to maximize the probability
of satisfying the LTL formula. However, this approach will not apply when the system has
to satisfy a time-critical specification and the adversary can launch a timing attack.

Timed automata (TA) [3] attach finitely many clock constraints to each state. A
transition between any two states will be influenced by the satisfaction of clock constraints
in the respective states. There has been significant work in the formulation of timed
temporal logic frameworks, a detailed survey of which is presented in [19]. Metric interval
temporal logic (MITL) [20] is one such fragment that allows for the specification of formulae
that explicitly depend on time. Moreover, an MITL formula can be represented as a TA
[20,21] that will have a feasible path in it if and only if the MITL formula is true.

Control synthesis under metric temporal logic constraints was studied for motion
planning applications in [6,7,22,23]. The authors of [22] considered a vehicle routing
problem to meet MTL specifications by solving a mixed integer linear program. Timed
automaton-based control synthesis under a subclass of MITL specifications was studied
in [6,7]. Cooperative task planning of multi-agent system under MITL specifications was
studied in [24]. In comparison, we consider actions of an adversarial player, whose objective
is opposite to that of the defender. This leads to a modeling of the interaction between the
adversary and defender as an SG. Moreover, they limited their focus to a certain fragment
of MITL, while this paper offers a generalized treatment to arbitrary MITL formulae.

Finite state controllers (FSCs) were used to simplify the policy iteration procedure for

POMDPs in [25]. The satisfaction of an LTL formula of a POMDP was presented in [26].

This was extended to the case with an adversary, who also only had partial observation
of the environment, and whose goal was to prevent the defender from satisfying the LTL
formula in [27,28]. These treatments, however, did not account for the presence of timing
constraints on the satisfaction of a temporal logic formula.

Control synthesis for control systems under disturbances with robustness guarantees
has been extensively studied [29-32]. Such robustness guarantees can be categorized
as a notion of spatial robustness. Robust satisfaction of temporal logic tasks have been
studied for signal monitoring and property verification. A notion of robustness degree for
continuous signals was defined in [8] by computing a distance between the given timed
behavior and the set of behaviors that satisfy a property expressed in temporal logic. Our
notion of spatial robustness is defined over discrete timed words using the Levenshtein
distance, which distinguishes our approach from [8]. The robustness degree between two
LTL formulae was introduced in [33]. The authors of [34] adopted a different approach
and used the weighted edit distance to quantify a measure of robustness. The notion of
temporal robustness was also investigated in [9]. There are three differences between our
definition of temporal robustness and that in [9]. First, the temporal robustness in [9] is
defined for a specific trace. In our framework, since the DSG is not deterministic, there
could be multiple traces that satisfy the MITL objective under the defender and adversary
policies. Therefore, we define temporal robustness with respect to policies of the defender
and adversary and the MITL specification. Second, the temporal robustness of a real-valued
signal is computed as the maximum amount of time units by which we can shift on the
rising/falling edge of a ‘characteristic function” in [9]. In comparison, we work with discrete
timed words. Finally, our work considers the presence of an adversary while [9] assumes a
single agent. Robust control under signal temporal logic (STL) formulae has been studied
based on notions of space robustness [35,36] and temporal robustness [37,38]. These works
did not consider the presence of an adversary.

89

90

91

92

93

94

95

926

97



Version January 12, 2024 submitted to Games 40f23

A preliminary version of this paper [39] synthesized policies to satisfy MITL objectives a3
under actuator and timing attacks without robustness guarantees. In this paper, we define 14
three robustness degrees, and develop algorithms to compute these quantities. We show 145
that any defender policy that gives positive robustness degree is an almost-sure satisfaction 1as
policy, which is stronger than quantitative satisfaction policies synthesized in [39]. 147

3. MITL and Timed Automata 148

We introduce the syntax and semantics of metric interval temporal logic, and its 14
equivalent representation as a timed automaton. We use R, R>q, N, Q>¢ to denote the 1s0
sets of real numbers, non-negative reals, positive integers, and non-negative rationals. 1s:
Vectors are represented by bold symbols. The comparison between vectors vi and vy is  1s2
element-wise, and v(i) denotes the i-th element of v. 153

Given a set of atomic propositions I1, a metric interval temporal logic (MITL) formula
is defined inductively as

¢ = T|7t|~glp1 A @2| 911 92,

where 7t € ITis an atomic proposition, and I is a non-singular time interval with integer 1sa
end-points. MITL admits derived operators like ‘constrained eventually’ (¢ := TUj¢@) 155
and ‘constrained always’ (O;¢ := —(<$1—¢)). Throughout this paper, we assume that [ is  1se
bounded. We further rewrite the given MITL formula in the negation normal form so that s
negations appear only in front of atomic propositions. We augment the atomic proposition 1ss
set I1 so that any atomic proposition 7t and its negation —7 are both included in IT. 150

We focus on the pointwise MITL semantics [40]. A timed word is an infinite sequence 1eo
p = (ag, to)(as,ty) ..., where a; € 211, t; € R>q is the time index with t;,; > t; Vi > 0. We 1
denote ag, a;, - - - as a word over I1, and t(, f1, - - - as a time sequence. With p(i) = (a;,t;), 1e2
we define: UNTIME(p) := ag, a1, - - - ,and VAL(p) := to, t1,- - - . We interpret MITL formulae 1e3
over timed words as follows. 164

Definition 1 (MITL Semantics). Given a timed word p and an MITL formula ¢, the satisfaction  1es

of ¢ at position j, denoted as (p, ) |= ¢, is defined inductively as follows: 166
1. (p,j) & T ifand only if (iff) (p,]) is true; 167
2. (p,]) |: 7T lﬁ(ﬂ S ﬂj,' 168
3. (o)) E—eiff (o,j) does not satisfy ¢; 160
4. (o) E o1 Ae2iff (o,)) = 1and (p,]) = @2
5 (0,]) E eiUia iff 3k > jsuch that (p,k) = @2, ty —t; € 1, and (p,m) |= @1 holds for all  1n

j<m<k 172

We denote p |= ¢if (p,0) |= ¢. The satisfaction of an MITL formula can be equivalently 17
associated to accepting words of a timed Biichi automaton (TBA) [20]. Let C = {c1, -+ ,cpm} 17a
be a finite set of clocks. Define a set of clock constraints ®(C) over Cas & = T|Ll|c < s
8]&1 A &, where e {<, >, <, >}, ¢,c’ € Care clocks, and § € Q is a non-negative rational 17
number. In this paper, we focus on a subclass of MITL formulae that can be equivalently 177
represented as deterministic timed Biichi automaton defined as follows. 178

Definition 2 (Deterministic Timed Biichi Automaton [3]). A deterministic timed Biichi au- 17e
tomaton (DTBA) is a tuple A = (Q,2", g9, C,®(C), E, F), where Q is a finite set of states, 21 is 150
an alphabet over atomic propositions in T1, qq is the initial state, E C Q x Q x 211 x 2€ x ®(C)is 1e
the set of transitions, and F C Q is the set of accepting states. A transition < q,q',a,C',¢ >E E 12
if A enables the transition from q to q' when a subset of atomic propositions a € 21 and clock s
constraints ¢ € ®(C) evaluate to true. The clocks in C' C C are reset to zero after the transition. — 1isa

We present the DTBA representing MITL formula ¢ = <37 as an example in Fig. e
1. In this figure, the states Q and transitions E are represented by circles and arrows, 1ss
respectively. Here the initial state is go. The set of accepting states is F = {g}. Consider 1
the transition from initial state g to state ;. The transition < g, g2, 7T, ¢, ¢ > can take place 1ss

[

7
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do e N S

O

Figure 1. The deterministic timed Biichi automaton (DTBA) representing metric interval temporal
logic formula ¢ = < 371, The states and transitions of the DTBA are represented by circles and
arrows, respectively. The initial state of this DTBA is g9 and the accepting state is q,. The formula ¢
can be satisfied if DTBA reaches state 4.

if atomic proposition 77 is evaluated to be true and clock constraint ¢(c) defined on clock ¢
satisfies 2 < ¢ < 3. Furthermore, the clock c is reset to zero after the transition.

Given the set of clocks C, v : C — V is the valuation of C, where V C QIC|. Let v(c)
be the valuation of clock c € C. Wesay v = 0if v(c) = O forall c € C. Given é € R,
welet v+ 6 := [v(1) +6,---,v(|C|) +6]T. A configuration of A is a pair (q,v), where
g € Q is a state of A. Suppose a transition < g,4,a,C’,& > is taken after § time units.
Then the DTBA is transited from configuration (g,v) to (§/,v + J) such that v+ = ¢,
v/(c) = v(c)+dforallc ¢ C',and v/(c) = 0 for all c € C'. We denote the transition

between these configurations as (g, V) LEN (q',v+0J). A run of A is a sequence of such

. . . R . .
transitions between configurations  := (go, vo) 200, (q1,v1) - - -. Afeasible run f on A is
accepting iff it intersects with F infinitely often.

4. Problem Setup and Formulation

In this section, we propose durational stochastic games that generalize stochastic games,
and present the defender and adversary models in terms of information available to them.
We then define three robustness degrees, and state the problem of interest.

4.1. Environment, Defender, and Adversary Models

We introduce durational stochastic games as a generalization of stochastic games [10].
Different from SGs, DSGs model (i) timing information for transitions between states, and
(ii) an attack surface resulting from the timing information. An SG is defined as follows.

Definition 3 (Stochastic Game). A (labeled) stochastic game SG is a tuple SG = (S, Uc, Uy, Pr,
I1, L), where S is a finite set of states, Uc is a finite set of actions of the defender, U, is a finite
set of actions of an adversary, Pr : S x Uc x Uy X S — [0,1] is a transition function where
Pr(s,uc,ua,s'") is the probability of a transition from state s to state s’ when the defender takes
action uc and the adversary takes action u 4. T1is a set of atomic propositions. L : S — 2l isa
labeling function mapping each state to a subset of propositions in I1.

The SG in Definition 3 cannot be used to verify satisfaction of an MITL objective since
it does not include a notion of time. We define durational stochastic games to bridge this gap.
DSGs incorporate a notion of time taken for a transition between states, and also models
the ability of an adversary to modify this timing information.

Definition 4 (Durational Stochastic Game). A (labeled) durational stochastic game (DSG) is
a tuple G = (Sg,sgo, Uc, Ua, Infg c,Infg a, Prg, Tg,11,L,Cl). Sg is a finite set of states, sg
is the initial state, U, Uy are finite sets of actions. Infgc : Sg X R>g — (Sg x R>¢)* and
Infga : Sg x R>g — (Sg x R>q x Uc)* are information sets of the defender and adversary,
respectively, where (-)* is the Kleene operator. Prg : Sg x Uc x Ux x Sg + [0,1] encodes

203

204

205

206
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o
Tg(lng'O, Uc, Uy, 33) =08 Tg(3|Sg’0, Uc, Uy, Sl) =0.2

03 5=1 L(Sl) = {T[l! nZ}

5§=1 Prg(sslsz, uc,up) = 1
S S3
Ts(1lsz, uc, ug, s3) = 0.5 T5(2]s3,uc, ug, s3) = 0.5

Figure 2. This figure presents an example of a DSG consisting of 4 states, denoted as Sg =

{5g/0,51,52,53}. The transition probabilities Prg and the probability mass function Tg for some
transitions are given in the figure. The labeling function L for state s1 is given as L(s1) = {my, 712}

Prg (52; |sg, ¢, ua), the transition probability from state sg to s’g when the controller and adversary — 22s
take actions uc and us. Tg : Sg x Uc X Uy x Sg x A — [0,1] is a probability mass function. zza
Tg(d]sg, uc,ua,sg) denotes the probability that a transition from sg to s; under actions uc and 22
uy takes 6 € A time units, where A is a finite set of time units that each transition of DSG can 226
possibly take to complete. T1 is a set of atomic propositions. L : Sg + 21 is a labeling function that 27
maps each state to atomic propositions in I1 that are true in that state, and Cl is a finite set of clocks. zzs

The set of admissible actions that can be taken by the defender (adversary) in a state 220

s € Sg is denoted Uc(s) (Ua(s)). A path on G is a sequence of states w := s N,

%
Uc,i A
S1... 5—) Si11-..such thatsg = 56,0 PT’g(Si+1|Sl’, uc,i, uAi) > 0, and Tg(§|si, Uci, UAi, 23

si+1) > 0 for some uc; € Uc(si), ua; € Ua(si),and é € Aforalli > 0. Consider the DSG  za:
with Sg = {sg,51,52,53}, Uc = {uc}, and Uy = {u} presented in Fig. 2 as an example. 2s:

We have that w = sg C—uA> % s3 is a finite path. We denote the set of finite (infinite) 234

paths by (Sg x R>¢)* ((Sg x R>0)?). Given a path w, L(w) := L(sgp),L(s1),...,is the =3
sequence of atomic propositions corresponding to states in w. The sequence of state-time 236
tuples in w is obtained as (so, ko), (s1,k1), ..., wherek; +6; = k; 1,i =0,1,.... 237

For the defender, a deterministic policy p : (Sg X R>0)* — Uc is a map from the set of =
finite paths to its actions. A randomized policy p : (Sg X R>¢)* — D(Uc) maps the set of 230
finite paths to a probability distribution over its actions. A policy is memoryless if it only 240
depends on the the most recent state. 241

Considerapathwin G. Atastate s, the information set of the defenderis Infg - (s, kc) := ze
{(sg0,0),...,(s,kc)}, where k¢ is the time perceived by the defender when it reaches s 243

along w. For example, given the finite path w = s —> MC—> s3 for the DSG pre- 24

sented in Fig. 2, information set Infg -(s2, kc) = {(SQ,O,O), (sl, )}. For the adversary, 2as
Infg a(s,ka) :={(sg0,0),...,(s,ka)} U{p}, where k4 is the time observed by the adver- zas
sary at s, and y is the defender’s policy. Information sets of the defender and adversary are 247
givenby Infg c(s, kc) = Ulnf c(s,kc)and Infg a(s,ka) == Ulnng(s ka). 248

We assume that the 1n1t1a1 time is 0, and this is known to both agents. The adversary 2
having knowledge of the policy u committed to by the defender introduces an asymmetry zso
between the information sets of the two agents. We note that although the adversary is  2s:
aware of the defender’s randomized policy, it does not know the exact action u¢. Thisis also sz
known as the Stackelberg setting in game theory. We assume a concurrent Stackelberg setting  2ss

in that both the defender and adversary take their actions at each state simultaneously. 254
The solution concept to a Stackelberg game is Stackelberg equilibrium, which is 2ss
defined as follows. 256

Definition 5 (Stackelberg Equilibrium [16]). A tuple (i, (T, 7)) is a Stackelberg equilibrium if ~ 2s7
pu = argmax, Qc (¢, BR(p')), where Qc(u, (t,7)) and Qa(p, (T,7)) are the expected utilities  2ss
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of the defender and adversary under policies y and (t,y), respectively, and BR(u') = {(t,7) :

(T,7) = argmaxQ4 (i, (t',7"))}.
(')

If BR(') contains multiple adversary policies, the defender will arbitrarily pick one.
During an actuator attack, the adversary can manipulate state transitions in G since its
actions u 4 will influence the transition probabilities Prg. The adversary could also exploit
the attack surface that will be introduced as a consequence of including timing information.
We term this a timing attack. In this paper, we consider the worst-case scenario, and
assume that the adversary knows the correct time index at each time k. However, it can
manipulate timing information perceived by the defender through Tg. Thus, the time index
k¢ perceived by the defender need not be the same as that known to the adversary, k4.

The adversary launches actuator and timing attacks through attack policies. An
actuator attack policy T : (Sg X R>¢)* +— U, specifies the action taken by the adversary, given
the set of finite paths. A timing attack policy v : V x V [0, 1] takes as its input the correct
clock valuation, and yields a probability distribution over clock valuations. This models
the ability of the adversary to manipulate clock valuations. For an intelligent adversary,
it should launch the timing attack such that resulting sequence of clock valuations is
monotone when the clocks are not reset. The reason is such non-monotone clock valuations
informs the defender the presence of timing attack, and thus the defender can simply ignore
the perceived clock valuations.

4.2. Definitions of Robustness Degree

In this subsection, we define three robustness degrees defined with respect to policies
on the DSG G.

4.2.1. Spatial Robustness

The spatial robustness, denoted as Xf (u,7,7), represents the minimum distance
between any accepting (resp. non-accepting) path on the DSG induced by policies # and
(7,7) and the language of the MITL specification, without regard to the timing information.
We define the spatial robustness using the Levenshtein distance, which is used to measure
the distance between strings [41].

Definition 6 (Levenshtein Distance [41]). The Levenshtein distance between sequences of sym-
bols w1 and wo, denoted dy (w1, wy), is the minimum number of edit operations (insertions, substi-
tutions, or deletions) that can be applied to wq so that wy can be converted to w,.

Consider timed words w; = (40,0)(q1,1)(42,2) ... and wp = (40,0)(4},1)(92,2) ...
that differ at position 1, where g1 # ’7/1' Then, d; (wy,wp) = 1, since wy can be converted
to wy by substituting g; with q}. Relying on the Levenshtein distance in Definition 6, we
define the spatial robustness x¢ (1, T,7) for policies u and (7, ) on a DSG G with respect to
MITL formula ¢ as

. s RUTY )
MiN,, By g dp(wq,wy), if Bg ' CL;

x(wty) = 1)

— N, gt er dr (w1, wy), otherwise.

In Equation (1), ng is the set of paths enabled on G under policies y and (7,7), and
L contains the set of paths on G that satisfy ¢. We note that since d (-,-) > 0, any path
w e ng synthesized under policies u and T that satisfies ¢ will result in x¥ (i, T, y) > 0.

If, for some w € ng, w ¢ L, then x¢ (u,7,7) <0.

4.2.2. Temporal Robustness

The temporal robustness x{ (4, T,y) captures the maximum time units by which any
accepting path synthesized under policies y and (7,7) can be temporally perturbed so
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that the MITL formula ¢ is not violated. Given an accepting run w and k € Q, we let
VAL(w) + k := vo + k,v1 +k, ... We define the left temporal robustness x{"~ (1, T,7) and

right temporal robustness x”" (i, 7, 7) as:

x{ (u,7,7) = max ﬂ {k|w" = ¢ Vo' s.t. 0 < vAL(w) — VAL(w') <k € Q}, (2)
weBgm

T(wty) =max (] {kjw' | @ V' st 0 < VAL(w') — VAL(w) <k € Q). (3)
wEBgm

"y
Xt

The left (right) temporal robustness x”~ (1,7, 7) (x!"" (1,7, 7)) indicates that an accepting
run w induced by y and (7, y) can be perturbed up to k time units to the left (right) without
violating ¢. These definitions also ensure that any perturbation smaller than x{"~ (4, T, 7)
+
(

or x{"" (1,7, v) will not violate ¢. The temporal robustness is then:

0 _ min{x{"” (T, ), x0T (T )} BT C L
Xi(mT,7) = ) , (4)
A, otherwise

where A is a symbol indicating that policies # and (7, ) can lead to non-accepting runs.

4.2.3. Spatio-temporal Robustness

We define the spatio-temporal robustness x?(, T, ) to unify notions of spatial and
temporal robustness as:

X ty) =1 (T, 7) > e)xf (w,t,7), 6)

where I(x{ (1, 7,7) > €;) is an indicator function that equals to 1 if x¢ (1, T,7) > € and
—1 otherwise. In other words, the spatio-temporal robustness x?(y, T,7y) captures the
maximum time units by which any accepting run can be perturbed without violating the
MITL specification ¢, given a desired spatial robustness €5, under policies i and (7, 7).
Note that when the spatio-temporal robustness is —A, we have that policies y and (7, )
lead to non-accepting runs.

4.2.4. Robust MITL Semantics

Given the spatio-temporal robustness in Equation (5), we can use a real-valued func-
tion ?(p, j) to reason about the satisfaction of ¢ such that (p,j) = ¢ = {?(p,j) > 0.

Definition 7 (Robust MITL Semantics). Let p be a timed word. We define a real-valued function
C?(p, j) such that the satisfaction of an MITL formula ¢ at position j by a timed word p, written
(0,7) = @:=C%p,j) > 0, can be recursively defined as:

L &%p.j) = fle.j); ‘ ‘

2. {09 (p, j) = min{g% (p, /), £% (0, /) };

3. gnY2(p,f) = max{¢¥ (. ), £ (0, 1)}

4. gq)lu[”’bm (0 ]) = MaXy ¢ [j4a,j+b) {min{Z?*(p, t/)rmint”e[j,t’] g (p,t")}}

where f(p,j) = I(mingg, dp (o, w) > €5)k, and k = max{k|(¢',]) = ¢ Vo' s.t. 0 < |VAL(p) —
vaL(p')| < K},

4.3. Problem Statement

Before formally stating the problem of interest, we prove a result which shows that
a defender’s policy that provides positive spatio-temporal robustness satisfies the MITL
objective ¢ with probability one.
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Proposition 1. Given an MITL objective ¢ and policies y and (T, y), the spatio-temporal robust-
ness x? (i, T,7y) > 0 implies almost-sure satisfaction of ¢ under the agent policies when there is no
timing attack.

Proof. The proof of this result is deferred to Appendix B. [

Given Proposition 1, we formally state our problem:

Problem 1 (Robust Policy Synthesis for Defender). Given a DSG G and an MITL formula
@, compute an almost-sure defender policy. That is, compute y such that x9(u, T,y) > €, where

(T,7) € BR(n).

5. Solution: Only Actuator Attack

We present a solution to robust policy synthesis for defender as described in Problem
1, assuming that the adversary only launches an actuator attack. We construct a product
DSG P from DSG G and DTBA A. We present procedures to evaluate the spatio-temporal
robustness, and compute an optimal policy for the defender on P.

5.1. Product DSG
In the following, we give the definition of product DSG.

Definition 8 (Product Durational Stochastic Game). A PDSG P constructed from a DSG
G , DTBA A, and clock valuation set V is a tuple P = (S,so, Uc,Ua, Infc,Infa, Pr, Acc).
S = Sg x Q x V is a finite set of states, sy = (5g 0, o, 0) is the initial state, Uc, U4 are finite sets
of actions. Infc, Inf are information sets of the defender and adversary. Pr : S x Uc x Uy —
S encodes Pr((s',q',v')|(s,q,v), uc,uns), the probability of a transition from state (s,q,v) to
(s',q',v") when the defender and adversary take actions uc and u 4. The probability

Pr((s',q',v)I(s,q,v),uc,ua) = Tg(dls,uc, ua,s')Prg(s'ls, uc, ua) (6)
if and only if (q,v) Lo, (q',v"), and zero otherwise. Acc = Sg x F X V is a finite set of
accepting states.

The following result shows that the transition probability of P is well-defined.
Proposition 2. The function Pr(-) satisfies Pr((s’,q',v')|(s,q,v),uc,u4) € [0,1] and

Y. Pr((s',q . V)|(s,9,v),uc,us) =1. 7)
(s"q'¥")

Proof. The proof is presented in Appendix B. O

We write s to represent a state (s, g, v) in PDSG P. We denote the clock valuation
of s by Time(s). In the sequel, we compute a set of states called generalized accepting
maximal end components (GAMECs) of P. Any state s in GAMECs satisfies that the suc-
cessor state ¢’ also belogns to GAMECs under any policy committed by the defender,
regardless of the actions taken by the adversary. Therefore, for a path that stays within
GAMEC s, it is guaranteed that the path corresponds to a run that intersects with F in-
finitely many times, and thus the path satisfies specification ¢. We can thus translate
the problem of satisfying ¢ to the problem of reaching GAMECs, under any adversary
action. The set C = {s|s belongs to some GAMEC} can be computed using the procedure
COMPUTE_GAMEC(P) in Algorithm 1. The idea is that at each state, we prune the de-
fender’s admissible action set by retaining only those actions that ensure state transitions
in P will remain within GAMECs, under any adversary action.

The procedure Compute_ GAMEC(P) presented in Algorithm 1 takes the product DSG
P as its input, and returns set C. The algorithm iteratively updates C by removing a set of
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Algorithm 1 Computing the set of GAMECs C.

1: procedure COMPUTE_GAMEC(P)

2:  Input: PDSG P

3: Output: Set of GAMECs C

4: Initialization:D (s) < Uc(5)V5;C < @;Cremp < {S}
5: repeat
6
7
8
9

C < Ctemp, Cremp < @

for N € Cdo
R+O
: Let SCCy,--- ,SCC), be the set of strongly connected components of underlying di-
graph Gy p)
10: fori=1,--- ,ndo
11: for each state s € SCC; do
12: D(s) « {uc € Uc(s)|s" € N, Pr(s'|s, uc,ua) >0, Vuy € Ua(s)}
13: if D(s) = @ then
14: R+ RU{s}
15: end if
16: end for
17: end for
18: while R # @ do
19: dequeue s € R from Rand N
20: if 35’ € N and uc € Uc(s') such that Pr(s|s’,uc,uy) > 0 for some uy € Uy(s')
then

21: D(s') + D(s') \ {uc}
22: if D(s') = @ then
23: R+ RU{s'}
24: end if
25: end if
26: end while
27: fori=1,--- ,ndo
28: if NN SCC; # @ then
29: ctgnlp — Ctgmp U {N n SCCZ'}
30: end if
31: end for
32: end for

33: until C = Cremp
34: for N € C do

35: if Accg NN = @ then
36 C«+C\N

37: end if

38: end for

39: return C

40: end procedure

states R. R includes any state s that is in some strongly connected component (SCC) and
has an empty admissible defender action set (line 13). R also includes states s’ from which
P can be steered to R under some adversary action (line 20). Lines 35-37 verify accepting
conditions defined by the DTBA. The termination of Algorithm 1 is given by the following
Proposition.

Proposition 3. Algorithm 1 terminates in a finite number of iterations.

Proof. The proof of this proposition is given in Appendix B. O

5.2. Evaluating Spatial Robustness

From Equation (1), evaluating the spatial robustness is equivalent to computing the
Levenshtein distance between paths on the DSG synthesized under policies y and (7, )
and L. This is equivalent to computing the Levenshtein distance between two automata,

380
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where the first automaton P#*7 is the PDSG induced by policies i and (7, ). The second
automaton is A, the DTBA representing ~¢. We adopt the approach proposed in [42] to
compute the Levenshtein distance between P#™ and A.

We first construct a DSG G*™7 from the original DSG G. Given policies u# and (7, ),
we retain only those transitions such that Prg(s'|[s, uc,us) > 0, Tg(8]s, uc,ua,s’) > 0 for
some J, u(s,uc) > 0,and (s, u4) > 0, and remove all other transitions. We augment the
alphabet of DTBA A as 2" U {null}, where null is a symbol that will be used to indicate
deletion and insertion operations. The alphabet of A is also augmented to include null.
The PDSG PH™ in Definition 8 can be constructed from GF™" and A. Given P*™7 and
A, we construct P := PF7 x A. Following [42], we construct a weighted transducer
to capture the cost associated to each edit operation (assumed = 1). We assign a cost
c((s,q,v,3),(s",4',v',7)) to each transition from state (s,q,v,3) to (s',4',v/,§) in P. In
particular, c((s,q,v,3),(s',q',v',§’)) = 1if L(s") is not the same as the label of the transition
from 7 to 7’ in A. We can then apply a shortest path algorithm on P from the initial state
(50,90,0,4o) to the union of the GAMECs of P to compute the minimum Levenshtein
distance. The correctness of this approach follows from [42, Thm. 2].

The computational complexity of calculating the spatial robustness for any given
policies  and (7,) is O((|2"}| + 1)2|P#™7||A]), where |P#T7| and |A| are the sizes of
PHTY and A, respectively [42].

Algorithm 2 Evaluate Temporal Robustness.

1: procedure TEMPORAL(, 5,6, M(s'))
2 Input: MITL formula ¢, current state s, time duration 6, indicator function M(s’)
3: Output: Temporal robustness )(f( W)
4 if ¢ = 7t then
5 left_temp <+ min J{Time(s") — Time(s)}, where §”’ is reachable from s
5//

6: right_temp <+ min J{V — Time(s")}, where s” is reachable from s
5//

: return min{left_temp, right_temp}
8: else if ¢ = ¢; A ¢, then

9: r1 < TEMPORAL(¢y, 5,6, M(s'))
10: 7o < TEMPORAL(¢, 5,6, M(s'))
11: return min{ry,rp}
12: else if ¢ = ¢1 V ¢, then
13: r1 < TEMPORAL(¢1, 5,6, M(s))
14: ro < TEMPORAL(¢y, 5,6, M(s'))
15: return max{ry,7,}
16: else if ¢ = ¢1U P, then
17: if M(s') = 0 then
18: 2] +— min | {TEMPORAL(¢1,s,8, M(s')),b"™(s,s") TEMPORAL (¢1U;_s¢p2,

s',0,0'
5// (5’,M(5N)}

19: else
20: r1 < minU{ (Time(s") — I), (I — Time(s")) }
21: end if ’
22: if 0 € I then
23: 7o < TEMPORAL(¢, 5,6, M(s'))
24: else
25: Ty $— —00
26: end if
27: return max{ry, 7, }
28: end if

29: end procedure

5.3. Evaluating Temporal Robustness

In this subsection, we present a procedure to evaluate the temporal robustness. We
introduce some notation. For a time interval I, we use I and I to represent its lower and
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upper bounds. The upper bound of the clock valuation set is denoted V. The indicator
function M(s) takes value 1 if s is in GAMEC, and 0 otherwise. A state s’ is said to be a
neighboring state of s if Pr(s’|s, uc,u4) > 0 for some uc and u 4 such that p(s, uc) > 0 and
T(s,u4) > 0. Given the policies of the defender and adversary, we define

1 if s’ is a neighboring state of s
—oco  otherwise '

bH (s,8") := {

The procedure TEMPORAL(g, 5,8, M(s')) presented in Algorithm 2 computes the left 4o

and right temporal robustness with respect to the MITL objective ¢. The left and right tem- 402
poral robustness of 7t can be computed by searching over a directed graph representation 4os
of the product DSG. The algorithm determines the temporal robustness of ¢ following the 40s
robust MITL semantics (Definition 7) by simple algebraic computations over the temporal o5
robustness of all atomic propositions in ¢. 206
We detail the working of Algorithm 2, which is a recursive procedure to compute the o7
temporal robustness. It takes an MITL formula ¢, current state s, time duration J, and an  4cs
indicator function M(s’) as its inputs. If ¢ = 7, then Algorithm 2 computes the minimum  so
left temporal robustness (Line 5) and right temporal robustness (Line 6), respectively. The 410
minimum of these quantities is returned as the temporal robustness. From the robust MITL 41
semantics, Algorithm 2 returns the minimum (maximum) temporal robustness when ¢ a2
is a conjunction (disjunction). When ¢ = ¢1Uj¢,, the robustness is computed following a1
Lines 16-27. Here, I — t := {# — t|t € I}. Since we focus on the worst-case robustness, we s
compute the minimum value over times ¢ and neighboring states s’ in Line 18. We establish a1
the correctness of Algorithm 2 as follows. a16

Theorem 1. Given a PDSG with initial state sg, MITL formula ¢, and policies y and T, suppose a1z
Algorithm 2 returns € > 0. Then, any run on the PDSG synthesized under policies y and T can be  as

temporally perturbed by & € [0, €] without violating ¢. a10
Proof. The proof is presented in Appendix B. O 420

The complexity of Algorithm 2 is O(|cl(¢)|(|S| + |Pr|)), where |cl(¢)| is the size of ez
the closure of formula ¢, |Pr| is the number of nonzero elements in matrix Pr. 422
5.4. Evaluating Spatio-temporal Robustness az3

Table 1. Computational complexities of evaluating spatial and temporal robustness when policies are

given. |PFT7| is the size of the product DSG P#*7 induced by policies y and (7, 7). |A] is the size of

the timed Biichi automaton of MITL specification —¢. |cl(¢)| denotes the size of the closure of ¢, and
|Pr| is the number of nonzero elements in matrix Pr. The complexity of Algorithm 3 is (S) + (T).

Robustness Complexity
Spatial (S)  O(([2"] + 1)2|PH™[| A])
Temporal (T)  O(|cl(¢)[(|S| +[Prl))

We use the results of the previous two subsections to compute the spatio-temporal ro- 42
bustness using the procedure ROBUST(¢, 5,6, M(s'), €;) presented in Algorithm 3. From s
Equation (5), when the spatial robustness is above €5, Algorithm 3 returns the temporal 426
robustness. Otherwise, it returns the negative value of the temporal robustness. The com- 427
plexity of Algorithm 3is O(|cl(¢)|(|S| + |Pr|) + (]2 | +1)2|P#*7||.A]). Table 1 summarizes sz
the computational complexities of evaluating the spatial and temporal robustness. a20



Version January 12, 2024 submitted to Games 13 0f 23

Algorithm 3 Evaluate Spatio-temporal Robustness.

1: procedure ROBUST(¢, 5,6, M(s), €5)
2: Input: MITL formula ¢, current state s, time duration 4, indicator function M(s')
3 Output: Spatio-temporal robustness x? (i, T, )
4: if p = T then
5: return oo
6: else if p = | then
7 return —oo
8 else
9 if SPATIAL(¢,s) > € then
10: return TEMPORAL(g, 5,8, M(s'))
11: else
12: return —TEMPORAL(¢, 5,6, M(s'))
13: end if
14: end if

15: end procedure

5.5. Control Policy Synthesis 430

In this subsection, we compute a control policy that solves robust policy synthesis for as:
defender in Problem 1 when there is no timing attack. a32

Algorithm 4 Robust Control Policy Synthesis for Defender.
1: procedure POLICY_SYNTHESIS(P, ¢)
2 Input: Product DSG P, MITL formula ¢
3: Output: Control policy u
4 Initialization: Iteration index k < 1. Initialize p* (s, uc) +

e ( I for all s and uc € Uc(s),

and compute adversary policy (7%, /X) € BR(y¥). Let &, & + @.

5: while true do
6: Compute spatio-temporal robustness x? (1X, 7%, 9) = RoBUST (¢, 50,9, M(s')).
7: if X‘P(yk, T*, 'yk) > ¢; then
8: return y
9: elseif 0 < X‘P(yk,fk,'yk) < ¢; then
10: &t + & U {s: ROBUST(¢,5,6, M(s')) < €t}
11: fors € & do
12: Let Uc(s') + Uc(s') \ {uc : p¥ (s, uc) > 0,Pri*™ (s,s) > 0} forall s’ ¢ & UE;
13: if Uc(s') = @ then
14: Er+— & U {5/}
15: end if
16: end for
17: else
18: Es + & U {s : ROBUST(g,5,8, M(s')) < 0}
19: fors € & do
20: Let Uc(s') < {uc|p*(s',uc) > 0,Pri™ (s',5) > 0}
21 if Uc(s') = @ then
22: &+ EU{s'}
23: end if
24: end for
25: Update defender’s policy p*+1(s’, uc) + =@ ( ol forall s’ and uc € Uc(s')
26: if GAMEC is not reachable from initial state sy then
27: return message "failure" indicating no solution is found
28: Break
29: end if
30: end if
31: Letk «+ k+1.

32: end while
33: end procedure
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From Proposition 1, solving robust policy synthesis for defender in Problem 1 is
equivalent to finding a defender policy so that the spatio-temporal robustness exceeds a
desired threshold. This procedure is named as POLICY_SYNTHESIS(P, ¢) and is presented
in Algorithm 4. We initialize a policy u*, k = 1 (Line 4). We also define sets of states &
and & that will indicate states/transitions that lead to violations of temporal and spatial
robustness. We then compute the best response to ¥ as (t,7¥), evaluate the spatio-
temporal robustness x? (1, T, v). If x? (u*, 75, 9%) > €}, then we synthesize the policy p*
returned in Line 6. If 0 < )(‘P(yk, Tk, 'yk ) < €t, then the spatial robustness exceeds €, but
the temporal robustness is below ;. In this case, we eliminate defender actions u¢ that
steer the PDSG into states s in & with positive probability thereby causing violation of the
temporal robustness constraint. If x? (¥, 5,9%) < 0 (Line 17), then the spatial robustness
constraint is violated. In this case, we eliminate defender actions that steer the system into
states in &;. If no state in GAMEC is reachable from the initial state 5o of the product DSG
P, then the procedure POLICY_SYNTHESIS(P, ¢) presented in Algorithm 4 reports failure,
indicating that no solution is found for robust policy synthesis for defender in Problem 1
and terminates. We establish the converge of Algorithm 4 as follows.

Theorem 2. Algorithm 4 terminates within a finite number of iterations.

Proof. The proof of this theorem is presented in Appendix B. O

In the worst case, we have that Algorithm 4 updates Uc = @ with at most |S| x |Uc|
number of iterations. Thus the complexity of Algorithm 4 is O(|S| x |Uc|). We further
present the optimality of the policy found by Algorithm 4 in the following theorem.

Theorem 3. If Algorithm 4 returns a defender’s policy, denoted as u*, then the problem of robust
policy synthesis for defender in Problem 1 is feasible. Moreover, the defender’s policy y* is an
optimal solution to Problem 1.

Proof. The proof is presented in Appendix B. [

The soundness of Algorithm 4 is given below:

Corollary 1. Algorithm 4 is sound but not complete. That is, any control policy returned by
Algorithm 4 guarantees probability one of satisfying the given MITL specification, but we cannot
conclude that there exists no solution to the problem if Algorithm 4 returns no solution.

6. Solution: Actuator and Timing Attacks

In this section, we present a solution under both actuator attack and timing attacks.

Compared to the case when there is no timing attack, we make the following observa-
tions. The evaluation of spatial robustness remains unchanged when the adversary can
initiate both actuator and timing attacks. Second, the evaluation of temporal robustness can
become inaccurate during a timing attack. This is because timing information perceived by
the defender can be arbitrarily manipulated by the adversary. As a result, the defender will
not be able to evaluate the temporal robustness, and hence the spatio-temporal robustness
during a timing attack. Finally, since the defender cannot accurately evaluate the temporal
robustness, Proposition 1 will not hold during a timing attack. In the following, we relax
the problem of robust synthesis for defender in Problem 1, and try to compute a defender
policy such that the probability of satisfying the ¢ is maximized in the presence of actuator
and timing attacks. The reason the defender can evaluate the probability of satisfying ¢ is
that it knows the transition probability Prg and probability mass function Tg. Thus, it can
determine the expected probability and time of reaching each state, given policies of the
defender and adversary. The relaxed problem is:

449

450

458
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Problem 2 (Policy Synthesis for Defender). Given a DSG G and an MITL objective ¢, compute  aze
a defender’s policy such that the probability of satisfying ¢ is maximized, and adversary policy s
(T, ) is the best response to control policy p. That is max, P?(u, T,y), where (T,7) € BR(p).  aso

Since the timing information perceived by the defender has been manipulated by the e
adversary, the defender has limited knowledge of the current time. Even in this case, it can  ae2
still detect unreasonable time sequences, e.g., a time sequence that is not monotonic. To  4es
recover from the deficit of timing information, we represent the defender’s policy using a  ass
finite state controller, which enables the defender to track the estimated time. 485

Definition 9 (Finite State Controller [25]). A finite state controller (FSC) is a tuple F = ase
(Y,yo, 1), where Y = A x {0,1} is a finite set of internal states, A is a set of estimates of clock sz
valuations, the set {0, 1} indicates if a timing attack has been detected (1) or not (0). yq is the initial  ass
internal state. y is the defender policy, given by: a80

~J oY xS xY xUc — [0,1], if Ho holds;
© 1Y X Sg x QX Y x Ue — [0,1], if Hy holds,

where g and yy respectively denote the control policies that will be executed when hypothesis Hy o
or Hq holds. 401

For an FSC as given in Definition 9, hypothesis H represents the scenario where no 4=
timing attack is detected by the defender, while H; represents the scenario where a timing  ses
attack is detected. In the FSC, the defender’s policy specifies the probability of reaching ass
the next internal state by taking an action u¢, given the current state of DSG, the detection 4es
result of timing attack, and the state of DTBA. 406

Algorithm 5 Computing an optimal control policy.

1: procedure CONTROL_SYNTHESIS(Z)

2:  Input: Global DSG P

3: Output: value vector Q

4 Initialization: Q° <— 0, Q'(s) <+ 1fors € Acc, Q!(s) + 0 otherwise, k <+ 0
5. while max {|Q"1(s) — Q¥(s)| :s € S} > e do

6 k< k+1

7 fors ¢ Acc do

5 Q1)  maxmin { £X T (5 14)7(v",0)Q(,9)

Y ucua (s'y)

Pra ()l sy c,ua) |

9: end for
10: end while
11: return QF
12: end procedure

To capture the state evolutions of DSG, DTBA, and FSC, we construct a global DSG. 4907

Definition 10 (Global DSG (GDSG)). AGDSGisatuple Z = (Sz,5z 9, Uc, Ua, Infz ¢, Infz 4,
Prz,Accz), where Sz = S x Y is a finite set of states, sz o = (so,q0,0,Y0) is the initial state.
Uc and U 4 are finite sets of actions and Infz c and Infz 4 are the information sets of the defender
and adversary respectively. Prz : Sz X Uc x U X Sz + [0,1] is a transition function where
Prz((s',q',v',y")|(s,q,v,y),uc,us) is the probability of a transition from state (s,q,v,y) to
(s',q',v',y) when the defender and adversary take actions uc and u 4 respectively. The transition
probability is given by

Prz ((S/, 7.V, y)|(s,q,v,y), uc, uA)
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_ S By (VI oy ucls, q,9", y)Pr((s',q',v")[(s,q,v), uc,ua),  if Ho holds;
1231 (]/// MclS, q,]/)Tg (5|S/ Uc, uArS/)Prg (S/|S/ Uc, uA)/ lle hOZdS;

Accz = Acc x Y is the set of accepting states. a08

Consider the global DSG. Let Q € RI5z be the probability of satisfying ¢. Then Q can  aso
be computed from Proposition 4. A proof is presented in [39]. 500

Proposition 4. Let Q := maxminP(¢) be the probability of satisfying ¢. Then,

oY
Q((s,y)) maxmzynZZ Y, ( A)Q(s,y) - Prz((s,y)I(s,y),uc,ua), ¥(s,y).
g ug (s"y)
Moreover, the value vector is unique. 501

We use the procedure CONTROL_SYNTHESIS(Z) presented in Algorithm 5 to compute
the policy p. Guarantees on its termination is presented in [39]. We finally remark on the
complexity of Algorithm 5. We first make the following relaxation to Line 5 of Algorithm 5
so that Q“*1((s,y)) is updated if the following holds

maxmin} ) ), 7( Q" y)) - Prz((s',y)(s,y),uc,ua) > (1+€)Q((s,))-

T uc LlA 5/ y)

Then, Algorithm 5 converges to some Q1(s, ) satisfying || Q**1(s,y) — Q%(s,y)[|cc < € 502
within [S z| max, ) {log(1 /Q%(s,y)))/ log(1+€)} iterations, where parameter Q°((s,y))) sos
is the smallest value of Q*((s,y))) for k = 0,1,.... Further, Line 8 of Algorithm 5 can be  sos
solved using a linear program in polynomial time, denoted as f. Combining these argu- sos
ments, the complexity of Algorithm 51is [Sz|f max(, ) {log(1/Q%((s,v)))/ log(1 +¢)}. s06

7. Case Study s07

In this section, we present a numerical case study on a signalized traffic network. The  sos
case study was implemented using MATLAB on a Macbook Pro with a 2.6GHz Intel Core sos
i5 CPU and 8GB RAM. 510

7.1. Signalized Traffic Network Model s11

We consider a signalized traffic network [43] consisting of 5 intersections and 12 links ~ s:2
under the remote control of a transportation management center (TMC). A representation s
of the signalized traffic network is shown in Fig. 3. We briefly explain how a DSG from = s1s
Definition 4 can model the network. Each DSG state models the total number of vehicles on  s1s
a link in the network. Transitions between the states in the DSG models the flow of vehicles. s
Since vehicle capacity of a link is finite, the number of states in the DSG will be finite. sz
The defender’s action set represents that the TMC can actuate a link by issuing a ‘green  sis
signal’ on outgoing intersections of that link. Conversely, the TMC can block a link by s
issuing a ‘red signal’. The TMC is assumed to control the traffic network over an unreliable  szo
wireless channel. Thus, an intelligent adversary can launch man-in-the-middle attacks to sz
tamper with the traffic signal issued by the TMC, or manipulate observations of the TMC. sz:
In particular, the adversary can initiate an actuator attack to change the traffic signal and a  szs
timing attack to manipulate the time stamped measurement (number of vehicles at each  s24
link along with the time index) perceived by the TMC. 525

The TMC is given one of the following objectives: (i) number of vehicles at link 4 is  s26
eventually below 10 before deadline d = 6: g1 = Ojg g (x4 < 10); (ii) number of vehicles =2
at links 3 and 4 are eventually below 10 before d = 6: ¢ = Cg6)((x3 < 10) A (x4 < 10)); =2
(iii) number of vehicles at links 3, 4 and 5 are eventually below 10 before d = 6: ¢3 = 520
Oro,6)((x3 <10) A (x4 < 10) A (x5 < 10)). Spatial and temporal robustness thresholds are  sso
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Figure 3. Representation of a signalized traffic network consisting of 5 intersections and 12 links.
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Figure 4. A sample of the number of vehicles on links 3, 4, and 5 over time using our proposed
approach. In this realization, the number of links on link 5 is above the threshold.

set to €, = 1 and €; = 1. We compare our approach with two baselines. In Baseline 1, the
TMC periodically issues green signals. In the second, In Baseline 2, the TMC always issues
green signal for links 3, 4,5 to greedily minimize the number of vehicles on these links.

7.2. Numerical Results

In the following, we present the numerical results using our proposed approach and
the two baselines.

We first report the results when the adversary only launches actuator attack, and the
TMC is given specification ¢;. We compute a control policy using Algorithm 4. A sample
sequence of traffic signals is presented in Table 2. By Proposition 1 and Corollary 1, the
MITL specification ¢ is satisfied with probability one.

Table 2. Sample sequence of traffic lights realized at each intersection for the MITL specification
@1 = ©[gg (x4 < 10). The letters ‘R” and ‘G’ represent ‘red” and ‘green’ signals.

Intersection
Time 1\2\3\4\5
1 G|IR|R|G|R
2 R|IR|G|G|R
3 R|G|G|G|R
4 R|IR|R|R|G
5 R|G|G|G|R
6 G|IG|G|R|G

We then consider an adversary that launches both actuator and timing attacks. Sup-
pose the TMC is equipped with an FSC with 5 states. We show results of our approach
using Algorithm 5 in Fig. 4. In this example, @3 is violated since the number of vehicles
on link 5 exceeds the threshold 10. We also give the probabilities of satisfying each MITL
specification using Algorithm 5. Specifications ¢1, ¢, and @3 are satisfied with probabilities
.7000, .6857, and .4390, respectively.
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We assume that the TMC commits to deterministic policies in both baselines. In
Baseline 1, the adversary launches actuator attacks when the TMC issues a green signal,
and does not attack when it issues a red signal. In Baseline 2, the adversary always
launches an actuator attack. In both baselines, the adversary launches a timing attack at
each time instant to delay the TMC’s observation. As a consequence, both baselines have
zero probability of satisfying ¢, @2, or @3.

The DSG in our experiments had 232 states. For ¢, the GAMEC of the product
DSG had 400 states. For ¢, and ¢3, the GAMEC had 160 and 80 states respectively. The
computation time of Algorithm 4 for ¢; was 264 seconds. Algorithm 5 took 720 seconds.

8. Conclusion and Future Work

In this paper, we proposed methods to synthesize controllers for cyber-physical sys-
tems to satisfy metric interval temporal logic (MITL) tasks in the presence of an adversary
while additionally providing robustness guarantees. We considered the fragment of MITL
formulae that can be represented by deterministic timed Biichi automata. The adversary
could initiate actuator and timing attacks. We modeled the interaction between the de-
fender and adversary using a durational stochastic game (DSG). We introduced three
notions of robustness degree- spatial robustness, temporal robustness, and spatio-temporal
robustness, and presented procedures to estimate these quantities, given the defender and
adversary’s policies and current state of the DSG. We further presented a computational
procedure to synthesize the defender’s policy that provided a robustness guarantee when
the adversary could only initiate an actuator attack. A value iteration based procedure was
given to compute a defender’s policy to maximize the probability of satisfying the MITL
goal. A case study on a signalized traffic network illustrated our approach.

DSGs can be adopted to model interactions between a defender and adversary across
various application domains with time-sensitive constraints. Examples include time-
sensitive motion planning of drones, product scheduling of industrial control systems, and
time-sensitive message transmission in wireless communication in the presence of adver-
saries. For future work, we will generalize our definition of DSG to broaden its applications.
We will generalize DSG to address partial observations by the CPS and adversary. We
will additionally investigate the scenarios where the adversary is nonrational and may not
perform its best response to the strategies committed by defender.
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Appendix A Summary of Notations

This appendix summarizes the notations used in this paper, as presented in Table Al.
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Table A1l. This table gives a list of notation and symbols used in this paper.

Variable Notation Interpretation

MITL formula
Timed word
Deterministic timed Biichi automaton (DTBA)
Clock valuation
Run of DTBA
Durational stochastic game (DSG)
Defender’s policy
Actuator attack policy by the adversary
Timing attack policy by the adversary
(u,7,7) Spatial robustness
(n,t,7) Temporal robustness
(u,7,7) Spatio-temporal robustness
Product durational stochastic game
Finite state controller (FSC)
Global durational stochastic game (GDSG)
Set of generalized accepting maximal end
components (GAMECs)
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Appendix B Proofs of Technical Results

In this appendix, we present the proofs of all the technical results.

Proof of Proposition 1. From Equation (4), x{ (1, T, 7) is non-negative. If x¥(y, 7,7) >0,
then I(Xf(y, T,7) > €5) = 1, and hence ;(g)(y, T,77) > € > 0. This implies ng CL,ie.,
all runs obtained under policies y and (7, ) are accepting. This gives Pr*™(¢) = 1, or
almost-sure satisfaction of ¢ under the respective agent policies. [

Proof of Proposition 2. The statement that Pr((s’,q’,v')|(s,q,v), uc,us) € [0,1] for all
transitions in P follows from the fact that Tg(d|s, uc,ua,s’) € [0,1] and Prg(s'|s, uc,ua) €
[0,1]. We have that Pr((s’,q',v")|(s,q,v),uc,us) = 0iff Tg(8|s, uc,ua,s’) =0, or Prg(s'|s,

uc,uy) = 0, or both. Moreover, we have that Pr((s’,q',v')|(s,q,v),uc,us) = 1 iff
),6
Tg(6|s,uc,ua,s’) =1and Prg(s'|s,uc,us) = 1. Let 1(5{1 g = 1((q,v) & (q',v)),

which is an indicator function that takes value 1 if its argument is true, and 0 otherwise.
Then, Equation (7) can be rewritten as:

Y. Tg(éls,uc,ua,s)Prg(s'|s, uc,ua)
("' V')

:ZZTQ((HS,uc,uA,s’)Ifqlv)’(q,,v,)Prg(s’|s,uc,uA) (A1)
s' 6

This follows from substitution from Equation (6) and product DSG in Definition 8. The
result follows by Y. Prg(s'|s,uc,ua) =1and Y Tg(d|s,uc,us,s’) =1. O
s'eSg oA

Proof of Proposition 3. We proceed by showing that each loop in Algorithm 1 is executed
a finite number of times. The PDSG P has a finite number of states and actions since DSG
G has a finite number of states and actions, the DTBA A has a finite number of states, and
the clock valuation set V bounded due to the boundedness of time interval I. Therefore,
the for-loops in Line 7, 10, 11, and 27 are executed for finite number of times. The while-loop
in Line 18 is executed a finite number of times since R C S is a finite set. Moreover, there
are finite number of states that will be added to R (Line 14), and this will be carried out
finitely many times. The overall complexity is O(|V|(|V| + |E|)), where |V| and |E| are the
number of vertices and edges in P. [

Proof of Theorem 1. We leverage the recursive robust MITL semantics to prove the theo-
rem and consider the following cases.

597

599

600

601

602

603

604

605
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Case 1— ¢ = 7t € IT: In this case, the temporal robustness is computed by Lines 4-
7 of Algorithm 2: TEMPORAL(¢, 50,6, M(s')) = min{left_temp,right_temp} = € > 0,.
This means there must exist a state s” that is reachable from s under policies y and T
such that s” |= 7. Without loss of generality, we assume TEMPORAL(@, 59,8, M(s')) =
Time(s") — Time(sg) = €. Since Time(sg) = 0, we have Time(s") = ¢, i.e., € is the time
index of state s”. Therefore, a shift to the left by é € [0, €] will not affect the satisfaction
of 7t since 7t € L(s") holds true independent of time. If the accepting run is temporally
perturbed by more than € time units, the clock valuation becomes negative. This contradicts
our assumption that clock valuations take positive values.

Case 2— ¢ = ¢1 A ¢o: Consider Lines 8-11 of Algorithm 2. Suppose ¢1, ¢ € I1. Let
TEMPORAL(¢, 50,8, M(s')) = TEMPORAL(¢1, 50,8, M(s')) = € > 0. From Line 11, it follows
that TEMPORAL(¢, 50,0, M(s')) := €’ > e. Since ¢1,¢2 € II, we can apply Case 1 to
TEMPORAL(¢, 80,6, M(s")) and TEMPORAL(¢, 59,8, M(s')). Therefore, if we shift the run
synthesized under policies ;1 and T by é € [0, €] time units to the left, ¢, will still be satisfied.
Moreover, since € < €, ¢, will also be satisfied. Hence, ¢ = ¢1 A ¢ will still be satisfied if
we shift the run synthesized under policies # and T by at most é < € time units.

Case 3— ¢ = ¢1 V ¢: Consider Lines 12-15. Suppose ¢1, ¢ € I1. Let TEMPORAL(¢1, 50,
8, M(s')) = e > 0. From Case 1, we can shift any accepting run starting from sy by at most e
time units without violating ¢;. Then by semantics of the disjunction operator, ¢ = ¢1 V ¢»
is also satisfied when the accepting run is shifted by at most € time units.

Case 4 — ¢ = ¢1U1¢o: In this case, the temporal robustness is computed by Lines 16-27.
We consider the case that ¢, ¢ € IL. Let t := inf{t'|¢, is satisfied at ¢'}.

If t = 0, ¢ is satisfied at state sy, and hence ¢ is satisfied at s9. Therefore sy is in
GAMEC. From the definition of GAMEC, we have that sy and its neighboring states are
in GAMEC (the defender does not take any action that steers the PDSG outside GAMEC),
and hence M(s') = 1. Thus Algorithm 2 will execute Lines 19-20. We have that r; <
min U{(Time(s") — I), (I — Time(s")) }, where I = sup{t'|t’ € I} and I = inf{t'|t’ € I} are

5/

upper and lower bounds of I. Since t = 0, Line 23 will be executed. ¢, € I1indicates that
ro = TEMPORAL(¢s, 59,6, M(s')) can be obtained from Lines 4-7. This gives r; = r, = 0,
and hence € = 0. We remark that this only indicates that we cannot shift the accepting run
to the left temporally without violating ¢. Shifting the run to the right might not lead to
violation of ¢. However, since the temporal robustness is defined as the minimum of left
and right temporal robustness, the algorithm returns € = 0.

If t > 0, from the semantics of time constrained until operator U}, ¢; is satisfied
up to time t € I and ¢, is satisfied immediately after time ¢, and thus ¢ is satisfied.
Therefore, we will eventually reach some accepting state so that M(s') = 1 for some s’
In this case, € = max{ry, 12}, where rq is given in Line 20 and r, is given in Lines 22-26
of Algorithm 2. Suppose € = r;. From Line 27, we must have r; > r,. From Line 20,
r1 = min{t — I, [ — t} = €. Thus, we can shift any accepting run by at most ¢ — I time units
to the left without violating ¢ if e = t — I. After the perturbation, ¢, is satisfied at time I and
¢, is satisfied immediately after I. The case where € = I — t can be obtained analogously.
Suppose € = ry. From Lines 22-26, r, = TEMPORAL (¢, 50,6, M(s')). Since ¢, € I1, r, can
be obtained from Lines 4-7. Recall that we consider a bounded clock valuation set. Let
V := sup{t|t € I} = I. Then r, models the maximum distance between the time index
at which ¢, is satisfied and the upper bound of I. From Case 1, we have that perturbing
an accepting run by at most € time units will not violate ¢ since the run obtained after
perturbation satisfies ¢, at the boundary of I.

Case 5 — ¢1 and ¢y in Cases 2-4 are MITL formulae: In this case, we can apply the previ-
ous analyses using the recursive definition of MITL formula. O

Proof of Theorem 2. We prove the theorem in the following way. At each iteration within
the while loop (starting at Line 5), Algorithm 4 executes one of the three cases of the if-else
statement (Lines 7, 9, or 17), with each case corresponding to the satisfaction of spatio-
temporal robustness constraint, violation of temporal robustness constraint, or violation of
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spatial robustness constraint. We denote the execution of Line 7 as Scenario I, that of Line 9
as Scenario II, and of Line 17 as Scenario III. We will show that Algorithm 4 reaches Scenario
I at most once, and reaches Scenarios II and III finitely many times. If Algorithm 4 reaches
Scenario I, it terminates (Line 8). For Scenarios II and III, we will show that there exists an
index k such that if Algorithm 4 reaches Scenario II or III at iteration k, then Scenario I will
be executed at iteration k + 1 and hence terminates or Lines 26-29 will be executed and the
process will terminate at iteration k.

Scenario I — executing Line 7: Suppose Algorithm 4 reaches Scenario I at iteration k. In

this case, the control policy p* satisfies the spatio-temporal robustness constraints. By Line
8 we have that Scenario I is reached exactly once and hence Algorithm 4 terminates.
Scenario 1l — executing Line 9: Suppose Algorithm 4 reaches Scenario II at iteration k.

In this case, the policy y* satisfies the spatial robustness constraint but violates the temporal
robustness constraint. Let s be the state that results in temporal robustness constraint
violation, and let s” be a neighboring state of s. We decompose our discussion into the
following cases:

1. Suppose Uc(s') = @. In this case, state s’ is included in set &. If adding s’ to & makes
states in GAMEC not reachable from s, then Algorithm 4 executes Lines 26-29, and
terminates by reporting failure.

2. Suppose Uc(s') # @. However, the remaining control actions uc € Uc(s') cannot
make GAMEC reachable from the initial state sp. In this case, Algorithm 4 will execute
Lines 26-29, and terminates.

3. Suppose Uc(s') # @, and GAMEC is reachable from sy. We further assume that
all actions uc € Uc(s') that are admissible by the policy generated at Line 25 result
in robustness greater than or equal to €;. As a consequence, the remaining control
actions in U (s") must steer the system into some neighboring state s” of s’ such that
x?(u,T,7,8") > €. Therefore, Algorithm 4 will execute Scenario I at iteration k + 1,
and thus terminates.

4. Suppose Uc(s') # @, and GAMEC is reachable from the initial state s9. Now assume
that there exists some action uc € Uc(s') such that it is admissible by the policy
generated at Line 25 and results in robustness below ¢; for some neighboring state s
of 5. In this case, this uc will be removed according Line 12 at iteration k + 1. Since
there are only finitely many states and control actions, this case will converge to one
of the cases discussed in (1), (2) or (3) in a finite number of iterations.

Scenario 1II — executing Line 17: Suppose Algorithm 4 reaches Scenario III at iteration k. In

this case, the control policy p violates the spatial robustness constraint. We use s to denote
the state that violates spatial robustness constraint, and use s’ to denote the neighboring
state of s. We analyze Scenario III by dividing our discussion into the following cases.

1. Suppose Uc(s') = @. From Line 18, s’ is included in set &. If adding s’ to & makes
states in GAMEC not reachable from s, then Algorithm 4 executes Lines 26-29, and
terminates by reporting failure.

2. Suppose Uc(s') # @ and GAMEC is not reachable from the s¢ for all uc € Uc(s'). In
this case, Algorithm 4 will execute Lines 26-29, and terminate.

3. Suppose Uc(s') # @, and GAMEC is reachable from sp. Assume that all actions
uc € Uc(s') that are admissible by the policy generated at Line 25 result in robustness
> ;. In this case, the game must be steered to a neighboring state s” of s’ such that
x?(u,7,7,8") > €. Then, Algorithm 4 will execute Scenario I at iteration k + 1, and
terminate.

4. Suppose Uc(s') # @, and GAMEC is reachable from sy. Now assume that the policy
generated at Line 25 results in robustness below ¢; for some neighboring state s” of s.
In this case, the control action u¢ will be removed according Lines 12 and 20 at iteration
k + 1. Since there are only finitely many states and control actions, this case will
converge to one of the cases discussed in (1), (2) or (3) in a finite number of iterations.
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From the preceding discussion, the control action set U will converge to a set U that
will never lead Algorithm 4 to Scenarios IT or III. In the worst case, Uc = @ when there will
be at most |S| x |Uc| actions being removed due to Scenarios II and III, leading Algorithm
4 to Line 28 where it terminates by reporting failure. Therefore, Algorithm 4 converges to
a set U that will never cause violations of the robustness constraints and the game can
be driven to GAMEC in a finite number of iterations. If no such set exists, it terminates by
reporting failure. If Uc # @, then Algorithm 4 returns a policy over Uc. [

Proof of Theorem 3. Suppose Algorithm 4 returns a policy p*. From Theorem 2, u* is
defined over Uc # @ (otherwise u* should not be returned by Algorithm 4 since no
admissible defender action is available). From Lines 10-16 in Algorithm 4, the defender’s
policy »* will not result in temporal robustness below €;. From Lines 17-23, u* guarantees
positive spatio-temporal robustness. Therefore, if y* is returned by Algorithm 4, we must
have spatio-temporal robustness x?(u*, %, v*,s) > €;, where (7%, 7*) are best responses
of the adversary. Thus, u* is a feasible solution to robust policy synthesis for defender in
Problem 1. From Proposition 1, the probability of satisfying the MITL formula ¢ equals 1,
which is the maximum value that can be achieved for any control policy. Therefore, u* is
an optimal policy. O
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