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Abstract

Stochastic (sub)gradient methods require step size schedule tuning to perform well in
practice. Classical tuning strategies decay the step size polynomially and lead to opti-
mal sublinear rates on (strongly) convex problems. An alternative schedule, popular
in nonconvex optimization, is called geometric step decay and proceeds by halving
the step size after every few epochs. In recent work, geometric step decay was shown
to improve exponentially upon classical sublinear rates for the class of sharp con-
vex functions. In this work, we ask whether geometric step decay similarly improves
stochastic algorithms for the class of sharp weakly convex problems. Such losses fea-
ture in modern statistical recovery problems and lead to a new challenge not present
in the convex setting: the region of convergence is local, so one must bound the prob-
ability of escape. Our main result shows that for a large class of stochastic, sharp,
nonsmooth, and nonconvex problems a geometric step decay schedule endows well-
known algorithms with a local linear (or nearly linear) rate of convergence to global
minimizers. This guarantee applies to the stochastic projected subgradient, proximal
point, and prox-linear algorithms. As an application of our main result, we analyze
two statistical recovery tasks—phase retrieval and blind deconvolution—and match
the best known guarantees under Gaussian measurement models and establish new
guarantees under heavy-tailed distributions.

Research of Drusvyatskiy was supported by the NSF DMS 1651851 and CCF 1740551 awards. Research
of Damek Davis supported by an Alfred P. Sloan research fellowship and NSF-DMS award 2047637.

B Dmitriy Drusvyatskiy
ddrusv@uw.edu
https://www.math.washington.edu/~ ddrusv

Damek Davis
https://people.orie.cornell.edu/dsd95/

Vasileios Charisopoulos
https://people.orie.cornell.edu/vc333/

1 School of ORIE, Cornell University, Ithaca, NY 14850, USA
2 Department of Mathematics, University of Washington, Seattle, WA 98195, USA

Published online: 05 September 2023 123



D. Davis et al.

Mathematics Subject Classification ~ 65K05 - 65K10 - 90C15 - 90C30

1 Introduction

Stochastic (sub)gradient methods form the algorithmic core of much of modern sta-
tistical and machine learning. Such algorithms are typically sensitive to algorithm
parameters, and require extensive step size tuning to achieve adequate performance.
Classical tuning strategies decay the step size polynomially and lead to optimal sub-
linear rates of convergence on convex and strongly convex problems

mip f(x) =E,[f(x 2)] (SO)

where the loss functions f(-, z) are convex and X is a closed convex set [45]. An
alternative schedule, called geometric step decay, decreases the step size geometrically
by halving it after every few epochs. In recent work [66], geometric step decay was
shown to improve exponentially upon classical sublinear rates under the sharpness
assumption:

f(x) - min f 2 - dist(x, X*)  Vxe X, (1.1)

wherel > 0 is some constant and * = argmin, x f (x) is the solution set. This result
complements early works of Goffin [27] and Shor [62], which show that deterministic
subgradient methods converge linearly on sharp convex functions if their step sizes
decay geometrically. The work [66] also reveals a departure from the smooth strongly
convex setting, where deterministic linear rates degrade to sublinear rates when the
gradient is corrupted by noise [45].

Beyond the convex setting, sharp problems appear often in nonconvex statistical
recovery problems, for example, in robust matrix sensing [40], phase retrieval [18, 20],
blind deconvolution [8], and quadratic/bilinear sensing and matrix completion [7]. For
such problems, sharpness is surprisingly common and corresponds to strong identifia-
bility of the statistical model. In such settings, sharpness endows standard deterministic
first-order algorithms with rapid local convergence guarantees, enabling the recovery
of signals at optimal or near-optimal sample complexity in a variety of nonconvex
problems. Despite this, we do not know whether stochastic algorithms equipped with
geometric step decay—or any other step size schedule—linearly converge on sharp
nonconvex problems.! Such algorithms, if available, could pave the way for new sam-
ple efficient strategies for these and other statistical recovery problems.

The main result of this work shows that for a large class of stochastic, sharp,
nonsmooth, and nonconvex problems

a geometric step decay schedule endows well-known algorithms

1 There are some exceptions for highly-structured problems, such as interpolation problems where all terms
in the expectation share the same minimizer [3, 63].
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Stochastic algorithms with geometric step decay converge linearly...

with a local nearly linear? rate of convergence to minimizers.

This guarantee takes hold as soon as the algorithms are initialized in a small
neighborhood around the set of minimizers and applies, for example, to the stochas-
tic projected subgradient, proximal point, and prox-linear algorithms. Beyond sharp
growth (1.1), we also analyze losses that grow sharply away from some closed set
S, which is strictly larger than X *. Such sets S are akin to “active manifolds" in the
sense of Lewis [38] and Wright [64]. For example, the loss f(x, y) = x + | y| is not
sharp relative to its minimizer, but is sharp relative to the x -axis. For these problems,
our algorithms converge nearly linearly to the set S. Finally, we illustrate the result
with two statistical recovery problems: phase retrieval and blind deconvolution. For
these recovery tasks, our results match the best known computational and sample com-
plexity guarantees under Gaussian measurement models and establish new guarantees
under heavy-tailed distributions.

Related work

Our paper is closely related to a number of influential techniques in stochastic, convex,
and nonlinear optimization. We now survey these related topics.

Stochastic model-based methods. In this work, we use algorithms that iteratively
sample and minimize simple stochastic convex models of the loss function. Through-
out, we call these methods model-based algorithms. Such algorithms include the
stochastic projected subgradient, prox-linear, and proximal point methods. Stochas-
tic model-based algorithms are known to converge globally to stationary points at

a sublinear rate on a large class of nonsmooth and nonconvex problems [11, 19].
Some model-based algorithms also possess superior stability properties and can be
less sensitive to step size choice than traditional stochastic subgradient methods [3,
4].

Geometrically decaying learning rate in deterministic optimization. polynomially
decaying step-sizes are common in stochastic optimization [35, 53, 55]. In contrast, we
develop algorithms with step sizes that decay geometrically. Geometrically decaying
step sizes were first analyzed in convex optimization by Shor [62, Thm 2.7, Sec. 2.3]
and Goffin [27]. This step size schedule is also closely related to the step size rules of
Eremin [21] and Polyak [52]. Similar schedules are known to accelerate convex sub-
gradient methods under Holder growth as shown in [32, 67]. Geometrically decaying
step sizes for deterministic subgradient methods under weak convexity were system-
atically studied in [12]. The method of this work succeeds under similar assumptions
on the population objective as in [12]: sharpness (A2), Lipschitz continuity (A5), and
weak convexity (A3), (A4). In contrast to [12] which analyzes a deterministic sub-
gradient method (based on linear approximations of the objective), the method of this
work requires only stochastic estimates of the objective and converges under a wider
family of nonlinear approximations of the objective (see Example 2.1). Surprisingly,

2 Here, the term “nearly linear” signifies that the oracle / sample complexity of the method is Qog3(1/€))
—i.e., it depends polylogarithmically on 7€, in contrast to standard “linear” convergence where in the oracle
complexity scales as O (log(1/€)) .
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the method only incurs an additional cost of log(1/€) (stochastic) oracle evaluations,
which arises due to our restart scheme. It is an intriguing open question whether one
can remove this additional dependence on log*(1/€) .

Geometric step decay in stochastic optimization. The geometric step decay schedule
is common in practice: for example, see Krizhevsky et. al. [33] and He et al. [29]. It

is a standard option in the popular deep learning libraries, such as Pytorch [49] and
TensorFlow [1]. Geometric step decay has been analyzed in a number of recent papers
in stochastic convex optimization, including [5, 25, 26, 34, 66, 68]. Among these
papers, the work [66] relates most to ours. There, the authors propose two geometric
step decay strategies that converge linearly on convex functions that are sharp and have
bounded stochastic subgradients. These algorithms either use a moving ball constraint
or follow a proximal-point type procedure. We follow the latter strategy, too, at least to
obtain high-probability guarantees. The paper [66] differs from our work in that they
assume convexity and a uniform bound on the stochastic subgradients. In contrast,
we do not assume convexity and only assume that stochastic subgradients have a
finite second moment. We are aware of only one subgradient method for stochastic
nonconvex problems that converges linearly [3] under favorable assumptions. In [3],
the authors develop a “clipped" subgradient method, which resembles a safeguarded
stochastic Polyak step. In contrast to our work, their algorithms converge linearly
only under “perfect interpolation,” meaning that all terms in the expectation share a
minimizer. Formally, the interpolation condition therein stipulates that, almost surely
over z,

il;(lf f(xsz)= f(x.z), foranyx e arg rr)l(inE[f(x, z)].

We do not make this assumption here. Indeed, the statistical recovery problems from
Sect. 4 do not satisfy the interpolation condition in the presence of corruptions.

Restarts in deterministic optimization. Restart techniques have a long history in
nonlinear programming, such as for conjugate gradient and limited memory quasi-
Newton methods. They have also been used more recently to improve the complexity
of algorithms in deterministic convex optimization. For example, restart schemes can
accelerate sublinear convergence rates for convex problems that satisfy growth con-
ditions as shown by Nesterov [47] and Nemirovskii and Nesterov [44], Renegar [54],
O’Donoghue and Candes [48], Roulet and d’Aspremont [58], Freund and Lu [24],
and Fercoq and Qu [22, 23] and others. In the nonconvex setting, stochastic restart
methods are challenging to analyze, since the region of linear convergence is local.
To overcome this challenge, one must bound the probability that the iterates leave
this region. One of our main technical contributions is a technique for bounding this
probability.

Finite sums. For finite sums, stochastic algorithms that converge linearly are more
common. For example, for finite sums that are sharp and convex, Bertsekas and
Nedic [43] prove that an incremental Polyak-type algorithm converges linearly. For
finite sums that are smooth and strongly convex, variance reduced methods, such as
SAG [59], SAGA [14], SDCA [60], SVRG [31], MISO/Finito [15, 41], SMART [10]
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and their proximal extensions converge linearly. The algorithms we develop here do
not assume a finite sum structure.

Verifying sharpness. Sharp growth is a central assumption in this work. This property
is surprisingly common in statistical recovery problems. For example, sharp growth
has been established for robust matrix sensing [40], phase retrieval [18, 20], blind
deconvolution [8], quadratic and bilinear sensing and matrix completion [7] problems.
Consequently, the results of this paper apply in these settings.

Notation

We will mostly follow standard notation used in convex analysis and stochastic opti-
mization. Throughout, the symbol RY will denote a d—di\ynensional Euclidean space
with the inner product:, - and the induced norm x “x;% . We denote the open
ball of radius € > 0 around a point x € R? by the symbol Be(x); moreover, we write
S%1 for the unit sphere inRY. Given an event A, we write A for its complement. We
also let 1 4 denote the indicator function of A, meaning a function that evaluates to
one on A and zero off it. For any set Q€ R, the distance function and the projection
map are defined by

dist(x, Q) := ;22 Y- X and pron(x) = argmin,co y - X ,

respectively. Consider a function f: R - RU{#=}  and a point x , with f(x) finite.
The Fréchet subdifferential of fat x , denoted byd f(x), consists of all vectorsv € R4
satisfying

fliy)= f(x)+v, y=x+ o y-x asy - x-

A function f is called P-weakly convex on an open convex set U if the perturbed
function f + g 2 is convex on U . The subgradients of such functions automatically
satisfy the uniform approximation property (see [56]):

fly)z f(x)+v, y-x- gy—x 2 forallx,ye U, vedf(x)

2 Algorithms, assumptions, and main results

In this section, we formalize our target problem and introduce algorithms to solve it.
We then outline our main results. The complete theorem statements and proofs appear
in Sect. 3. Throughout, we consider the minimization problem

mip f(x)- (2.1)
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for some function f : RY > R and a closed convex set X € R . We define the set
X* = argmin,.x f (x) and assume it to be nonempty. We also fix a probability space
(, F, P) and equip RY with the Borel 0-algebra and make the following assumption.
(A1) (Sampling) It is possible to generate i.i.d. realizations z;, zp, . . . ~ P.

The algorithms we develop rely on a stochastic oracle model for Problem ( SO)
that was recently introduced in [11]. These algorithms assume access to a family
of functions f (-, z)—called stochastic models—indexed by basepoints x € R¢ and
random elements z ~ P . Given these models, the generic stochastic model-based
algorithm of [11] iterates the steps:

Sample z; ~ P;
1
20

(2.2)

Set yk+1 = argmin,cx fy,((y, zx) + V= Yk 2

In this work, model-based algorithms form the core of the following restart strategy:
given inner and outer loop sizes K and T, respectively, as well as initial step§ige> 0,
perform:

Fort=0s---T-1:
Initialize yg = x;, 0 = 27 ‘0, and run K iterations of (2.2); (2.3)

Sample x;+ 1 uniformly from yg, - - - yk-

This restart strategy is common in machine learning practice and is called geometric
step decay. Restart schemes date back to the fundamental work of Nesterov [47] and
Nemirovskii and Nesterov [44] and more recently appear in [22, 23, 25, 48, 54, 58, 66].
These strategies often improve the convergence guarantees of the algorithm they restart
under growth assumptions, for example, by boosting an algorithm that converges
sublinearly to one that converges linearly. In this work, we will show that restart
scheme (2.3) similarly improves (2.2) for a large class of weakly convex stochastic
optimization problems.

2.1 Assumptions

In this section, we formalize our assumptions on sharp growth of (2.1) as well as on
accuracy, regularity, and Lipschitz continuity of the models.

Sharp Growth

We assume that f(-) grows sharply as x moves in the direction normal to a closed set
S

(A2) (Sharpness) There exists a constant H > 0 and a closed set S € X satisfying
X* € S such that the following bound holds:

f(x)- inf ) f(z)zp- dist(x, S)  VxeX. (2.4)

zeprojs (x
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This property generalizes the classical sharp growth condition (1.1), whereS = X *
The setting S =X * is well-studied in nonlinear programming and often underlies
rapid convergence guarantees for deterministic local search algorithms. Beyond the
classical setting, S could be a sublevel set of f or an “active manifold” in the sense
of Lewis [38]; see Sect. D. When S = X *, we design stochastic algorithms that do
not necessarily converge to global minimizers, but instead nearly linearly converge to
S with high probability. Finally, we note that when S = X * the results of this paper
remain valid if (2.4) only holds in a neighborhood of the solution set>

Accuracy and Regularity

We assume that the models are convex and under-approximate fip to quadratic error.

(A3) (One-sided accuracy) There exists/] > 0 and an open convex set U containing
X and a measurable function (x,y,z) » fx(y,z), definedon U x U x
satisfying

E.[fi(x2]1= f(x) VxeU
and

E(fly )= fO)1S 0 y=x 2 WayeU.

(A4) (Convex models) The function fy (-, z) is convexVx € Uand a.e. z €

Models satisfying (A3) and (A4), and their algorithmic implications, were analyzed
in [11, Assumption B]; a closely related family of models was investigated in [3, 4].
Assumptions (A3) and (A4) imply that f is /l-weakly convex on U, meaning that the
assignment x - f(x) + 5 X 2 is convex [11, Lemma 4.1]. While we assume (A3)
throughout the paper, we show in Remark 2 that our results hold under an even weaker
assumption. For certain losses, models that satisfy (A3) and (A4) are easy to construct,
as the following example shows.

Example 2.1 (Convex Composite Class) Stochastic convex composite losses take the
form

f(x)=E,f(x;z2) with f(x,z)= hlc(x;2), 2),
where h(-, z) are Lipschitz and convex and the nonlinear maps q-, z) are C'-smooth

with Lipschitz Jacobian. Such losses appear often in data science and signal processing
(see [7, 16, 19] and references therein). For this problem class, natural models include

(subgradient) fi(yz2) = flx,2)+V c(x,z2) V,y - x foranyV €
Oh(c(x: 2), 2).
(prox-linear) f(y: z) = h(c(x: z) +V c(x z)(y - x) 2)-

(proximal point) fi(y.z) = f(y, z) + Q x-y 2

31n particular, in the tube T described in Assumption (A5).
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0.5 0.5
Fig. 1 Illustration of one-sided models: f(x) = | x2-1]|, fo.s(y) =1 1.25- y| (figure adapted from [11])

where 1 is large enough to guarantee the proximal model is conve¥. If a lower bound
( z) oninf f(-, z) is known, one can also choose a clipped model

(clipped) fx(y: z) = max{ fx(y, 2), (2)},

for any of the models fx(-, z) above, as was suggested by [3]. Intuitively, models
that better approximate f (x, z) are likely to perform better in practice; see [3] for
theoretical evidence supporting this claim. Fig. 1 contains a graphical illustration of
one-sided models.

Lipschitz continuity

We assume that the models are Lipschitz on a tube surroundingS.

(A5) (Lipschitz property) Define the tube
yu
Ty = xeX| clist(x,ssT Yy > 0

We assume that there exists a measurable function L: R x - R 4 such that

Lix, z) < (2.5)

min
ved fy(x,2)
forall x € To and a.e. z€ . Moreover, we assume there existsL > 0 such that

sup E, L(x 2)? <L

xe'l,

This Lipschitz property is local and differs from the global assumption of [ 11, Assump-
tion B4]. The property holds only in T, since our algorithms will be initialized in this
tube and will never leave it with high probability. > The local nature of this property

is crucial to signal recovery applications, for example, blind deconvolution and phase
retrieval. In these problems, global Lipschitz continuity does not hold; see Sect. 4.

4 One could choose the product of the Lipschitz constants of h and V.

5 The set T, is a natural region to initialize in since it is provably the widest tube around the solution set
containing no extraneous stationary points; see [12, Lemma 2.1] and the discussion following [8, Lemma
3.1].
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Remark 1 (Finite-sums) While our results are stated in terms of the streaming model,
they are also applicable to the finite-sum setting, where our loss function is in the form

f(X! l)

i=1

f(x) =

Indeed, with P = Unif({1.---m}) =P( zc=1i)= L1 foranyk eN,i e[m],
we recover

f(x:i)= f(x)

i=1

ERE

E.[f(x zi)] =

2.2 Algorithms and results

Stochastic model-based algorithms (Algorithm 1) iteratively sample and minimize
stochastic convex models of the loss function.® When equipped with models satisfy-
ing (A3), (A4) and a global Lipschitz condition, these algorithms converge to stationary
points of (2.1) at a sublinear rate [11, 19]. In this section, we show that such sublin-

ear rates can be improved to local linear (or nearly linear) rates by using the restart
strategy outlined in (2.2)—(2.3). We introduce two such strategies that succeed with
probability 1 - &, for any O > 0. The first (Algorithm 2) allows for arbitrary setsS in
Assumption (A2), but its sample complexity and initialization region scale poorly in

0. The second (Algorithm 5) assumesS = X *, but has much better dependence onO.

Algorithm 1: MBA(y,, O, K, is_conv)

Input: yg € R?, a 2 0, iteration count K, flag is_conv € {true, false}
Stepk = 0,---.K:

l Sample zy ~ P l
. 1 :
I setyys 1 = argmingex  fy, (v zk) + TR 2

If is_conv
1 K+1 .
Return =57 = Yk
Else
Return yg+, where K™ € {0, - - -, K} is selected uniformly at random;

6 Note that Algorithm 1 can be implemented using O (d) memory by maintaining a running average (in
the convex case) or by terminating the iteration after K* ~ Unif {0, - - - ,K} steps (in the nonconvex case).
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Algorithm 2: RMBA(xo 0, K, T> is_conv)

Input: xg € RY, 0y 2 0, counters K e N, T e N, flagis_conv e{true, false}

a, = 27 ta
MBA(x¢» @, K, is_conv)-

Xt+1 -

Return x1

Given assumptions (A1)—(A5), the following theorem shows that the first restart
strategy (Algorithm 2—Restarted Model Based Algorithm (RMBA)) converges nearly
linearly to S with high probability.

Theorem 2.1 (Informal) Fix a target accuracy € > 0, failure probability d € (0, %),
and a pointx g € Ty‘/5 for some y € ( 0. 1). Then with appropriate parameter set-
tings, the point x = RMBA(xo, Oy, K, T, falsd will satisfy dist (x, S) <€ with
probability at least 1- 49. Moreover, the number of samples z ~ P generated by the
algorithm is at most

L %2 o yum

o
ou log £

Theorem 2.1 has interesting consequences not only for convergence to global min-
imizers, but also for “active manifold identification." For example, when S =X *,
Theorem 2.1 shows that with constant probability, Algorithm 2 converges nearly lin-
early to the true solution set. When S = X * and is instead an “active manifold” in
the sense of Lewis [38], Algorithm 2 nearly linearly converges to the active mani-
fold. In our numerical evaluation, we illustrate this phenomenon for a sparse logistic
regression problem. We empirically observe that the method converges linearly to the
support of the solution, even though the overall convergence to the true solution may
be sublinear.

In our numerical experiments, we find that Algorithm 2 succeeds for a wide variety
of parameter settings, which may not necessarily satisfy the conditions set forth by
the theory. Theorem 2.1, on the other hand, only guarantees Algorithm 2 succeeds
with high probability when we greatly increase its sample complexity and initialize it
close to S. We would like to boost Algorithm 2 into a new algorithm whose sample
complexity and initialization requirements scale only polylogarithmicaly in 1/0. As
a first attempt, we discuss the following two probabilistic techniques, both of which
have limitations:

(Markov) One approach is to call Algorithm 2 multiple times for a moderately
small value O and pick out the “best" iterate from the batch. This approach is
flawed since, even in the convex setting, there is no procedure to test which iterate
is “best" without increasing sample complexity.

(Ensemble) An alternative approach is based on a well-known resampling trick,
which applies when S = { x} is a singleton set [45, p. 243], [30], [63, Algorithm
1]: Run m trials of Algorithm 2 with any fixed 0 < 1/4, and denote the returned
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points by {x;}L . Then with high probability, the majority of the points {xi},
will be close to x Finally, to find an estimate nearx , choose any point that has at
least m/ 2 other points close to it.

The ensemble technique is promising, but it requiresS to be a singleton. This lim-
its its applicability since many low-rank recovery problems (e.g. blind deconvolution,
matrix completion, robust PCA) have uncountably many solutions. We overcome this
issue by embedding Algorithm 2 and the ensemble method within a proximal-point
method. At each stage of this algorithm, we run multiple copies of a stochastic-
model based method on a quadratically regularized problem that has a unique solution.
Among those copies, we use the ensemble technique to pick out a “successful" iterate.
We summarize the resulting nested procedure in Algorithms 3-5: Algorithm 3 (Proxi-
mal Model-Based Algorithm—PMBA) is a generic model-based algorithm applied on
a quadratically regularized problem; Algorithm 4 (Ensemble PMBA—EPMBA) calls
Algorithm 3 as suggested by the ensemble technique; finally, Algorithm 5 (Restarted
PMBA (RPMBA)) updates the regularization term, in the style of a proximal point
method.

Algorithm 3: PMBA(yy, P, O,K)

Input: yg € RY, prox1mal parameter P > 1, scalar @ > 0, and iteration count K

lSample zx~ P l

p
5 Y= Yo

) 1
I setyps 1 = argmingex  fy, (v k) + TR 2+ 5

Sample K* € {0, - - -, K} uniformly at random.
Return y g+

Algorithm 4: EPMBA(yo, P, O.K, m, )

Input: yg RY, proximal parameter P > 1, scalar 0 > 0, iteration count K , trial count m, relative
error tolerance
Stepj = 1,--- m:
Sety] = PMBA(yp. P, O.K).
Stepj = 1,-- - m:
if |By (}’]) n{YI}:n 1> m
Return y

We will establish the following guarantee. In the theorem, we assumeS = X *

Theorem 2.2 (Informal) Fix a target accuracy € > 0, failure probability & € (0, 1),

and a point xg € Ty for some y € ( 0 1) Then with appropriate parameter settings,

the point x = RPMBA(xqs Pys Ops K: &y M, T) will satisfy dist (x, X*) <€ with
probability at least 1— 8. Moreover the total number of samples z ~ P generated by
the algorithm is at most
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Algorithm 5: RPMBA(xo, Py, Oy K, o M, T)

Input: xq € RY, proximal parameter Py > 17, initial accuracy ¢ > 0, stepsize 0y > 0, counts
K: M, TeN

Py = 2'p
=270
a, = 27tay
xe+1 := EPMBA(X Prs Oy Ko My ¢)-

Return x4+ 1

y 1/n
&

L
m log 5

Theorem 2.2 resolves the initialization and sample complexity issues of Theo-
rem 2.1. Incidentally, its claimed sample complexity also depends more favorably
on € and on the problem parameters M and /]. Theorem 2.2 is new in the weakly
convex setting and also improves on prior work by Xu et al. [66] for convex prob-
lems. There, the results require stochastic subgradients to be almost surely bounded,
hence, sub-Gaussian. In contrast, Theorem 2.2 guarantees that dist(x, X*) <& with
high-probability assuming only the local second moment bound (A5).

3 Proofs of main results

In this section, we establish high-probability nearly linear convergence guarantees for
Algorithm 2 and linear convergence guarantees for Algorithm 5 —the main contribu-
tions of this work. Throughout this section, we assume that Assumptions (A1)—(A5)
hold.

3.1 Warm-up: convex setting

We begin with a short proof of nearly linear convergence for Algorithm 2 in the convex
setting. We use this simplified case to explain the general proof strategy and point out
the difficulty of extending the argument to the weakly convex setting. Since we restrict
ourselves to the convex setting, throughout this section (Sect. 3.1) we suppose:

 Assumption (A3) holds with 7 = 0 and Assumption (A2) holds withS = X *.
* The models fx(-, z) are L (z)-Lipschitz on R? forall x, whereL : - R isa

measurable function satisfying E, L(z)? <L.

In particular, the tube T is the entire space T, = R 9, which alleviates the main diffi-
culty of the weakly convex setting. The proof of convergence relies on the following
known sublinear convergence guarantee for Algorithm 1.
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Theorem 3.1 ([11, Theorem 4.1]). Fix an initial point yo € R9 and let a = %
for some C > 0. Then for any index K € N, the point y = MBA(yy, @ K, true
satisfies

3dist®(yo, X*) + C2L2‘

C K+1

E f(y)—n}(inf < (3.1)

The proof of nearly linear convergence now follows by iteratively applying Theo-
rem 3.1 with a carefully chosen parameter C > 0. The key idea of the proof is much
the same as in the deterministic setting [44, 47, 58]. The proof proceeds by induction
on the outer iteration counter ¢ . At the start of each inner iteration, we choose C to
minimize the ratio in Equation (3.1), taking into account an inductive estimate on
the initial square error dist *(yp, X*). We then run the inner loop until the estimate
decreases by a fixed fraction. This strategy differs from deterministic setting in only
one way: since the output of the inner loop is random, we extract a bound on the initial
distance using Markov’s inequality.

Theorem 3.2 (Nearly linear convergence under convexity). Fix an initial point xg €
R4, real€ > 0,6 € (0, 1), and an upper bound R = dist(xo» X*). Define parameters

2 2
RO

2L2(K + 1)

R L
T:= 10g2 ?O ’ K:= 8- T2 . a ’ aO =

Then with probability at least 1 — &, the point xy = RMBA(xo 0y K, T, trué
satisfies dist(x, X*) < &. Moreover, the total number of samples zx ~ P generated
by the algorithm is bounded by

TK<8 ~ ’ log, 20 ’
- THEC
Proof In what follows, set C; = }fg + and note the equality O, = % for every
L2 2

index t in Algorithm 2. Let E ; denote the event that dist(x,, S) < 27t Ry. We wish
to show the inequality

32
L
E 2 E - p— 2
P(Ei+1) 2 P(Ey) LT% (3.2)
forallt € {0, - - . ,T}. To that end, observe
P(Ew+1) 2 P(Ew+1 | E)P(Ey)- (3.3)

To lower bound the right-hand-side, observe by Markov’s inequality the estimate

E dist(x+1- X*) | E; _ E dist(x;+1, X*)1g,
PRGN ~ 2 (+UR\P(E,)

P(Efiq | Eo) < (3.4)
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Combining assumption (A2) and Theorem 3.1, we deduce

1 . *
< >E dlstz(x“j( Mg, + C2L2
vc, K+1

E dist(x+1, X*)1g, <E H_l(f(xt”)—n}(in f1E,

< 2—(1+2z)B5+ Ctsz ) 2%,_[Ro|-_
HC, K+1 U K+1

(3.5)
Therefore, combining (3.3), (3.4), and (3.5) we arrive at the claimed estimate

¥ ¥
! ? L P(E;) 2P(E;) - —&

P(E+1) 2 1- S .
o P(E) 1 K+ 1 UK+ 1

Iterating (3.2) and using the definition of T and K, we conclude that with probability

2¥2rL
P(Er)2 1- +———21-9,
U K+ 1

the estimate
dist(xy» X*) < 27 TRy < ¢,

holds as claimed. This completes the proof.

3.2 Weakly convex setting

We now present the convergence guarantees for Algorithm 2 in the weakly convex
setting under Assumptions (A1)—(A5). The proof of nearly linear convergence pro-
ceeds by inductively applying the following Lemma, which is similar to Lemma 3.1.
Compared to the convex setting, the weakly convex setting presents a new challenge:
the region of nearly linear convergence, Ty, is local. The iterates of Algorithm 2 must
therefore be shown to never leave Ty with high probability. We show this through a
stopping time argument in the proof of the following Lemma (see Sect. A.1).

Lemma 3.3 Fix real numbers S € (0, 1),y € (0, 2), K e N, and @ > 0. Let yo be a
random vector and let B denote the event {yy € TyJ 3}. Define

yk+ = MBA(yp @, K, false-

Then for any € > 0, the estimate dist(yk-, S) < & holds with probability at least

2
0 YH "4 K+ 1)L202
n 2 1 7] ( )
P(B)-6- - KL?&?- -
(B) yu €  (2-y)u(K+ 1a

The proof of nearly linear convergence of Algorithm 2 in the weakly convex setting
now follows by inductively applying Lemma 3.3.
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Theorem 3.4 (Nearly linear convergence under weak convexity) Fix real numbers
€> 0,0, € (0, 1),y (0 2). Let Ry denote the initial distance estimate satisfying
dist(xg, S) € Ry < # Furthermore, define algorithm parameters

2 2
- RO

- Ro _ 6 5 L a
e - B )

2
Then with probability at least 1 — (8/3)R(2) yn—u - 0, the point x7 = RMBA

(xor Op» K, T, falsé satisfies dist(x, S) < &. Moreover, the total number of sam-
ples zx ~ P generated by the algorithm is bounded by

TK< 10 L ° log, X0 ’
C(2-y)? oM 82

Proof For all t, let E; be the event {dist(x;, S) < 27! - Ro}. In addition, define &; :=
2
R} yi,_, . We claim that the inequality
4L

P(E;+1) 2P (E.) - 26,272 - VI
(t+1) t. 1 (2—y)l.l K+1

holds forall t € {0, 1--.,T}. To see this, apply Lemma 3.3 withy ¢ = x;, €=
(v VR 5:=5,272% a= 27ta, thereby yielding

2

o YE "4 (K + 1L2a?
_ n 2 1 n ( )La

P(Et+1) 2P (E) - 81272 - ——  KL02- _.
(Eeri) 2P (E) -0, Vi ‘& T (2-y)u(K+ 1,

i} 4L
2P (E) - 20,27% - e
Q-y)u K+1

where the last inequality follows from the definitions of @ and R . Iterating the
inequality, we conclude

T-1
P(Er)2 1-26 272
i=0

aLT

_ - 5 - &,
(Z_V)vaz1 (8/3)9; - &, (3.6)

This completes the proof.

2
Observe that the probability of success 1 — (8/3) Ré yip - 07 in Theorem 3.4

depends both on the initialization quality R ¢ and on &,. Moreover, 0, also appears

. . . 2 . .
inversely in the sample complexity O % . In the next section, we introduce an
2U

algorithm with probability of success independent of Ry and with sample complexity
that depends only logarithmically on its success probability.
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We close this section with the following remark, which shows that the results of
Theorem 3.4 extend beyond the weakly convex setting.

Remark 2 (Beyond weakly convex problems). Assumptions (A3) and (A4) imply that
f isN-weakly convex on U, meaning that the assignmentx f(x)+ 5 X 2 is convex
[11, Lemma 4.1]. Revisiting the proof of Lemma 3.3, however, we see that (A3) may
be replaced by the following weaker assumption:

(A3) (Two-point accuracy) There existd] > 0 and an open convex set U containing
X' and a measurable function (x, y,z) - fx(y: z), definedon U x U x |
satisfying

E.[fx(x21= f(x) VxeU,
and
E. [fx(}” z) - f(y)] < g y—x 2 Vxe U ye argminzeprojs(x) f(Z)

In the case S = X *, this assumption requires the model to touch the function at x and
to lower bound it, up to quadratic error, at its nearest minimizer. This condition does
not imply that f is weakly convex.

3.3 Convergence with high probability

In this section, we show that Algorithm 5 succeeds with high probability. Throughout
this section (Sect. 3.3), we impose Assumptions (A1)—(A5) withS = X *.

The following lemma guarantees that with appropriate step size, the proximal point
of the problem (2.1) at y € Ty lies in projx - (y). We present the proof in Sect. B.2.

Lemma 35 Fixye (0,2),P >1,and a pointye Ty. Then the proximal subproblem
0 !
. _ 2

)l;l;l)r(l flx) + 5 X—y 3.7)

. . e = . 2=y
is strongly convex End therefore has a unique minimizey. Moreover, ifP < =g~ 1],
then the inclusion y € projx - (y) holds.

Lemma 3.5 shows that, unlike Algorithm 1, we can expect the output of Algorithm 3
to be near the minimizeryy € X * of the proximal subproblem f(y) + %) y—yo % at
least with constant probability. This lemma underlies the validity of Lemma 3.6. We
present its proof in Sect. B.3.

Lemma 3.6 Fixreal numbers O €(0.1),Y €(0.2),ad> 0K €N, and P
satisfying 1 <P < 22_—)%%5 g Choose any point yg € Tng and set yg =

argming.x f(x)+ 5 x = yo 2 - Define

yk+ = PMBA(yp, P, O.K)-
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Then for all € > 0, with probability at least

2
n o L. (K+)la+@ t+n-5 F

PE)=1-6- —— KL02- _.

@ Vi 2 (o-m(K+ D

we have yx+ — yo . <¢

The next lemma shows that we can boost the success probability of the inner
loop arbitrarily high at only a logarithmic cost. This is an immediate application of
Lemma 3.6 and the ensemble technique described in Sect. 2.2, which is formally stated
in Lemma B.1.

Corollary 3.7 Assume the setting of Lemma 3.6 and suppose P(€/ 3) = 2/3. Then for
any O > 0, in the regime M > 48 log(1/9 ), the point
y = EPMBA(yy, P, O.K, M, €/3)
satisfies
P(y-¥ ige
Finally, we are ready to establish high probability convergence guarantees of Algo-
rithm 5.

Theorem 3.8 (Linear convergence with high probability) Fix constanyse ( 0, 2),€ >
0, and9 e (0, 1). Let Ry denote the initial distance estimate satisfying didtxo, X*) <
Ry < %. Furthermore, define algorithm parameters

1Y Ro R}
p = —, = —, a, = —_—
%~ 2R, 07 3 0 2(K + 1)
and
$ % R 864L 2
M= "4810g(T/3 )" T= log — K= ==

Then with probability at least 1- 0 , the point
xr = RPMBA(xo: Po: G, K+ o0 M, T)

satisfies dist(x» X*) < &. Moreover, the total number of samples zx ~ P generated
by the algorithm is bounded by
[ T
krms 04 g log, S0 . |48 \log2 F )
s T 08, 3 og >
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Proof For all t, let E; be the event {dist(x,, X*) < 27 - Rg}. Our goal is to show for
all't € {0, - - - ,T} the estimate P(E;) = 1 - t0/ T holds.

We proceed by induction. The base case follows since P(Eg) = 1 by definition
of Ro. Now suppose that the claimed estimate P(E,) = 1 - t0/Tis true for index
t . We will show it remains true with t replaced by t + 1. We will apply Lemma 3.6
conditionally with yp = x; and error tolerance . in the event F;. To this end, we define
0, = R(Z) % ? and setp = p,0 :=5:2” %, a = a ;. Before we apply the %emma, we
verify thatP meets the conditions of Lemma 3.6, namely thdt <p < %«% n.
Indeed, given thatp = W%%T - n(by definition of&;), the bounds follow immediately
from the restrictions® < 1/16 andy < 2. In particular, it is straightforward to verify
the bound

mi-2 2ty
-n Jf—=_—. 3.8
p-nzy 5 = iR (3.8)

Now Lemma 3.6 yields that the random vector yx* = PMBA(x; P;» O,, K,) satisfies

P( yk = yo ¢ | B yo = xi)
2
(K+ )La+@ '+n) -5 5

>1-527%- L KLz - i2

yu t (o-n(K+ 1)
s 1o 282 9 LRy _ 361

2- 20+ g2 (p—8) K+1 (p-n)(K+1)
>1- 2027 % - Lah _ 144y LERLN 23,

K+1 K+1
where the second inequality follows from (3.8), while the third inequality uses the def-

inition of K and the bound®; < 1/16 andL 2 U . Therefore, since M = 48 log( T/3),
we may apply Corollary 3.7 (conditionally) to deduce

P(X[+1___y() 3t|£t,y0=xt)2 1_6/T
Consequently,

P dist(xs 1 X*) < 27("VRy 2P dist(xs 1, X*) < 27 (*VRy | E, P(E)
1 2
2Ey, P xs1-y  2("VR|Eoyo=x  P(E)

2(1-6/T)N1-td/T)
21-(t+ 1)0/T,

as desired. This completes the proof.
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4 Consequences for statistical recovery problems

Recent work has shown that a variety of statistical recovery problems are both sharp and
weakly convex. Prominent examples include robust matrix sensing [40], phase retrieval
[18], blind deconvolution [8], quadratic and bilinear sensing and matrix completion

[7]. In this section, we briefly comment on how our current work leads to linearly
convergent streaming algorithms for robust phase retrieval and blind deconvolution
problems.

4.1 Robust Phase retrieval

Phase retrieval is a common task in computational science, with numerous applications
including imaging, X-ray crystallography, and speech processing. In this section, we
consider the real counterpart of this problem. For details and a historical account of
the phase retrieval problem, see for example [6, 18, 28, 61]. Throughout this section,
we fix a signal x € R? and consider the following measurement model.

Assumption A (Robust Phase Retrieval) Consider random a € R4, £ R ,andu €
{0, 1} and the measurement model

We make the following assumptions on the random data.

1. The variable u is independent of ¢ and a. The failure probability py,; satisfies
Dtail := P(u = 0)< 1/2.

2. The first absolute moment of § is finite, E[|E [] < .
3. There exist constants fj, £, L > 0 such that for all v, w € S9!, we have

_ 1 2
G<E [l avVv awl E aqv2a? <L E aqv? <.

Based on the above assumptions, the following theorem develops three models for
the robust phase retrieval problem. We defer the proof to Sect. C.1.

Theorem 4.1 (Phase retrieval parameters). Consider the population data = (a> u, §)
and form the optimization problem

min f(x)=E,[f(x,2)] where f(x:z):=| ax - b|

Then the sharpness property (A2) holds with S =X ~ ={% X}andpu=( 1-
2 pi)d x . Moreover, given a measurable selection Ax, z) € 8 f(x. z), the models

(subgradient) f5(y,z) = f(x,z) + G(x.z), y- x,
(clipped subgradient) f'(y, z) = max{f(x,z) + G(x z), y - x, 0},
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(prox-linear) f'(y.z)=| a-x2-b+2ax ay- x|
satisfy Assumptions (A1)—(A5) with

(1- 2 pa)¥

n=2n L(xz)=2ax| a and,L<2Lx 1+ 7

With this theorem in hand, we deduce that on the phase retrieval problem, Algo-
rithm 5 with subgradient, clipped subgradient, and prox-linear models converges
linearly toX * with high probability, whenever the method is initialized within constant
relative error of the optimal solution.

Theorem 4.2  Fix constantsy € (0, 2),€> 0, and9 € (0, 1). Consider the subgradi-
ent, clipped subgradient, and prox-linear oracles developed in Theorem 4.1. Suppose
we are given a point Xg satisfying

(1- 2 prai))F -
Eeee— .

dist(xo, {£x}) <y an

Set parameters Pg: Qy: K; o, M, T as in Theorem 3.8. In addition, define the iter-
atext = R_PMBA(XOY_PO, Ay, K: o M, T). Then with probability 1 — & , we have
dist(x7, {x}) <& x after

//_

o\

\2 o\
(1-2 )0/ TN

(- 2pa)@ | \lo8 B ) /I
-2 pfall) & € & o

1+ 0= 2pfaﬂ)u

stochastic subgradient, stochastic clipped subgradient, or stochastic prox-linear iter-
ations.

We now examine Theorem 4.2 in the setting where the measurement vectors a
follow a Gaussian distribution. We note, however, that the results of this section extend
far beyond the Gaussian setting to heavy tailed distributions.

Example 4.1 (Gaussian setting) Let us analyze the population setting where a ~ ~
N(0, Ixg). In this case, it is straightforward to show by direct computation that

N
g 1 n=1 L d-
Consequently, if xo € R9 has error dist (xo, {£x}) < c(1- 2 pi)) - x for some

numerical constant ¢, then with probability 1 - d, Algorithm 5 will produce a point
xr satisfying dist(xr, {* x}) <& x using only

e _log =
(1-2pa)? *® €

samples. We note that the spectral initialization of Duchi and Ruan [18, Proposi-
tion 3] produces such a point xo with sample complexity O (d(1 = 2 pri)™2) with
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high probability. Therefore, when taken together, combining this spectral initializa-
tion with Algorithén 6'5 pr%ducgs % poént x7 satisfying dist(x7, {+x}) <& x with
6} d___Jog L log log + /0  samples, which is the best known sample com-

plexity for Gaussian robust phase retrieval, up to logarithmic factors. We note that by
leveraging standard concentration results, it is possible to prove similar results for
empirical average minimization miny % of (x, z;), provided z; are i.i.d samples
of z and the number of samples satisfiesm d (1-2 pfaﬂ)_ 2

4.2 Robust blind deconvolution

We next apply the proposed algorithms to the blind deconvolution problem. For a
detailed discussion of the the problem, see for example the papers [2, 39]. Henceforth,
fix integers d1, d» € N and an underlying signal (x, y) € R x R, Define the
quantity

D= x vy

Without loss of generality, we will assume x y .3We consider the following
measurement model:

Assumption B (Robust Blind Deconvolution). Consider random € R %, r e R%,
é e R, and u € {0, 1} and the measurement model

b=, x r,}_1+ u-§&.

We make the following assumptions on the random data.

1. The variable u is independent of €, , and r . The failure probability g satisfies
Dfail := P(u = 0) < 1/2.
2. WehaveE[|é[| <» . _
3. There exists constants fj, & L > 0 such that forall M € R&*d2 with M =1
and rank(M) < 2, we have
F<ETl, Mr[1sT

4. There exists constants L > 0 such that for all v e S91~ L we Sd2- 1 we have

E(,v r rowt| )2 <L

Based on the above assumptions, the following theorem develops three models for
the robust blind deconvolution problem. We defer the proof to Sect. C.2.

Theorem 4.3 (Blind deconvolution parameters). Fix a realV > 1 and define the set:

X={( x y)eRU*d: x D, sv D}.<v
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Consider the population data z = (as us € Jand the form the optimization problem

r)l;l’iyn f(x,y) :=E [f((x,y), 2] where f((x,y)z):=|, x r.y- bl

Then the optimal solution setis X* ={(a x, 1/a)y)| (1) <|a| <V} andf
satisfies the sharpness assumption (A2) withS = X * and

N _

p(1-2pa) D

= _‘V%'
2 2(v+ 1)

Moreover, given a measurable selection G(x, y), z) € @ f((x, y), z), the models

(subgradient) f(sxyy)((ﬁ, yhz)= f((xy) z)+ GU(x:y)z), (%, 7)-(xy),
(clipped subgradient)

fE (R, 30 2) = max{ {(x: y). 2) + G((x: y)s 2), (%, 5) = (x: ), 0},

(prox-linear)

l v 1 —_ —
f(l))(ry)((x:y)' Z)=|y X r,y—(, X r’y+ UE)
+, x r,y-y+ ry,” x-x|

satisfy Assumptions (A1)—(A5) with

N
n=" Lxy)z)=|, x| r r oyl | and L=yL D.

With this theorem in hand, we deduce that on the blind deconvolution problem,
Algorithm 5 with subgradient, clipped subgradient, and prox-linear models converges
linearly toX * with high probability, whenever the method is initialized within constant
relative error of the solution set.

Theorem 4.4  Fix constantsy € (0, 2),€> 0, and9 e (0, 1). Consider the subgradi-
ent, clipped subgradient, and prox-linear oracles developed in Theorem 4.1. Suppose
we are given a pair (xo: yo) € R%* %2 satisfying

N _
p(1-2paq) D
Pl &

d'St(( 5 rX* < —
istllxor yo) X*) <y 8 2(v+ YN

Set parametersPy, Gy; K, o M, T as in Theorem 3.8. In addition, we define the iterate
(xr» yr) = RPMBA((x0: yo)s Po» G» K o M, T). Then with probability 1~ & , we
have dist((x7, yr), X ) <€ D after

(
o \

( AN

~ 2 (1_ 2 ai) /77
—VZL lo —(1 = 2w/ T lo \log i - )
A= 2pa) ° £ & 5
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stochastic subgradient, stochastic clipped subgradient, or stochastic prox-linear iter-
ations.

We now examine Theorem 4.4 in the setting where the measurement vectors , r
follow a Gaussian distribution. We note, however, that the results of this section extend
far beyond the Gaussian setting to heavy tailed distributions.

Example 4.2 (Gaussian setting). Let us analyze the population setting where (, r) ~
N(0: I(d,+ dy)x( dy+ d,))- In this case, one can show by direct computation that

0
g 1 n 1, L di + do-

N
Consequently, if(xqs yo) € R 9 has error dis{(xqs yo)» X*) < ¢(1-2 prayt)- DV,
for some numerical constant ¢ > 0, then with probability 1 - &, Algorithm 5 will
produce a pair (x7, yr) satisfying dist((x7, yr)» X*) <& D using only

56
VZ(dl + dz) 1 log %

(1= 2 prai)? 8 g g 5

samples. We note that the spectral initialization of Charisopoulos et al. [8, Theorem 5.4
and Corollary 5.5] can produce such a paiixg, yg)wvith sample complexity O(V2(d; +
do)(1- 2 prai) ™ %) with high probability withv < 3. Therefore, when taken together,
combining this spectral initialization with Algorithm 5 producgs 8 paig gx%, yé)
satisfying dist (x7, yr), X*) <& x withO (%7 log £ log log + /0
samples, which is the best known sample complexity for Gaussian robust blind decon-
volution, up to logarithmic factors. We note by leveraging standard concentration
results, it is possible to prove similar results for empirical =~ average minimization
miny, yje X % I"= 1 f((x, y), zi), provided z; are i.i.d samples of z and the number

of samples satisfiesm ( dy + d)(1- 2 pfaﬂ)'z.

5 Numerical Experiments

We now evaluate how Algorithm 2 performs both on the statistical recovery problems
of Sect. 4 and on a sparse logistic regression problem. We test the convergence behav-
ior, sensitivity to step size, and convergence to an active manifold. While testing the
algorithms, we found that Algorithms 2 and 5 perform similarly, despite Algorithm 5
having superior theoretical guarantees. Thus, we do not evaluate Algorithm 5. The
problems of Sect. 4 are both convex composite losses of the form in Example 2.1.
For these problems, we therefore implement all four models from Example 2.1, using
the closed-form solutions developed in [11, Section 5]. For the sparse logistic regres-
sion problem, we implement the stochastic proximal gradient method and measure
convergence to the support set of the optimal solution. We provide a reference imple-
mentation [9] of the methods in Julia.
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5.1 Convergence behavior

In this section, we demonstrate that Algorithm 2 converges nearly linearly on the
Gaussian robust phase retrieval and blind deconvolution problems of Sect. 4 for a par-
ticular dimension, noise distribution, corruption frequency, and initialization quality.
In phase retrieval, we set & 100 and in blind deconvolution, we setijd= d» = d- The
measurements are corrupted independently with probability pg,;: for phase retrieval,
the corruption obeys ¢ = |g|, g ~ N(0.100), while for blind deconvolution, it
obeys & ~ N(0, 100). The algorithms are all randomly initialized at a fixed distance
Ry > 0 from the ground truth. The ground truth is normalized in all cases. We use
Examples 4.1 and 4.2 to estimate., /], andM, and we sety = 1, Rg = 0-25, 6 = JIT*O’

and target accuracy € = 107 ° to obtain T, K and Oy parameters as in Theorem 3.4

Figures 2 and 3 depict the convergence behavior of Algorithm 2 on robust phase
retrieval and blind deconvolution problems in finite sample and streaming settings,
respectively. In these plots, solid lines with markers show the mean behavior over
10 runs, while the transparent overlays show one sample standard deviation above
and below the mean. In the finite-sample instances, we use m = 8 - d measurements
and corrupt a fixed fraction p ¢, with large magnitude sparse noise; see Fig. 2. In
the streaming instances, we draw a new i.i.d. sample at each iteration and corrupt it
independently with probability pr.i1; see Fig. 3. In both figures, we plot in red the rate
guaranteed by Theorem 3.4 and observe that the algorithms behave consistently with
these guarantees. In presence of noise, the algorithms all converge nearly linearly at the
rate predicted by Theorem 3.4, while in the noiseless case, all except the subgradient
method converge to an exact solution (modulo numerical accuracy) within far fewer
iterations.

5.1.1 Experiments on large-scale problems

We next demonstrate the performance of Algorithm 2 using the subgradient model
on large-scale synthetic instances of phase retrieval and blind deconvolution in the
finite sample setting with d = 512 % 512. At each step, we sample a random subset
of measurements of size S € {32, d,d}. The measurement matrices are sampled
from the randomized Hadamard ensemble which consists of k vertically stacked d d
Hadamard matrices composed with random binary masks:

er 511

HgS; 5 6
[ . J, where S; = diag Z,-,j ‘Jj.:l, Zi,j ~ Unif({x 1})

Hg Sk

and Hy isthe d x d Walsh-Hadamard matrix. We fix k = 8, pfi1 = 0, y = 1and
6, = 1/3 and initialize our algorithm randomly at distance = 0-25 from the ground
truth. We estimatel, /1 and M using Examples 4.1 and 4.2, adjusted to take into account
the batch size S.
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Fig. 2 Convergence behavior for d = 100 with finite sample size m = 8 - d. Phase Retrieval (left column),
Blind Deconvolution (right column), pfaj) = 0-0 (top row), pgaj] = 0-2 (bottom row). Average over 10 runs

We plot the distance from the solution as a function of the number of passes over
the dataset in Fig. 4. The plots verify that Algorithm 2 converges nearly linearly to a
solution at a dimension-independent rate. Moreover, they indicate that using a larger

batch size S does not lead to a reduction over the number of passes required to reach
a fixed accuracy.

5.2 Sensitivity to step size

We next explore how Algorithm 2 performs when @ is misspecified. Throughout,
we scale Oy by A := 2P for integers p between — 10 and 10. We run 25 trials of the
algorithm and for each model and scalarA, we report two different metrics:

* We report the sample mean and standard deviation of the number of “inner” loop
iterations, or samples, needed to reach accuracye = 10~ °. We use the parameters
of Sect. 5.1 to cap the number of total iterations by

16 L 2 | Ry °
-y &u B %

as Theorem 3.4 prescribes. This number is depicted as a dotted line in the figure.
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Fig. 3 Convergence behavior for d

100 with streaming data. Phase Retrieval (left column), Blind
Deconvolution (right column), pgaj) = 0-0 (top row), pfaj) = 0-2 (bottom row). Average over 10 runs

* We report the sample mean and standard deviation of the distance of the final
iterate to the solution set.

Figures 5 and 6 show the results for phase retrieval and blind deconvolution prob-
lems with d = 100 and p,1 € {0: 0-2}. In these plots, solid lines with markers show
the mean behavior over 25 runs, while the transparent overlays show one sample stan-
dard deviation above and below the mean. The plots show that Algorithm 2 continues
to perform as predicted by Theorem 3.4 even if & is misspecified by a few orders of
magnitude.

The prox-linear, proximal point, and clipped models perform similarly in all plots.
As reported in [4], the prox-linear and clipped methods produce the same iterates. The
iterates produced by the stochastic proximal point method and stochastic prox-linear
are not identical, but they are practically indistinguishable. This is due to two factors:
the proximal and prox-linear models agree up to an error that increases quadratically

as we move from the basepoint, and the proximal subproblems force iterates to remain

near the basepoint. Running the proximal point method for a much larger stepsize

produces different iterates than the prox-linear method, though then the method fails
to converge within the specified level of accuracy.
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Fig.4 Convergence behavior of Algorithm 2 using the subgradient model withd = 128 x 128 (top row)
and d = 512 x 512 (bottom row) and finite sample size m = 8d. Phase retrieval (left column) and blind
deconvolution (right column)

5.3 Activity identification

In this section, we demonstrate that Algorithm 2 nearly linearly converges to the
active set of nonzero components in a sparse logistic regression problem. We model
our experiment on [37, Section 6.2]. There, the authors find a sparse classifier for dis-
tinguishing between digits 6 and 7 from the MNIST dataset of handwritten digits [ 36].
In this problem, we are given a set of N = 12183 samples (x;, y;) € R? x {- 1, 1},
representing 28 x 28 dimensional images of digits and their labels, and we seek a
target vector z:= (W, b) € R9*1 so thatW is sparse and signw, x;+ b) = sign(y;)
for most i . To find z, we minimize the function

N

_— . ,
msz_lf(Z’l) T W

where each component is a logistic loss:
f(z;i)= fW, b;i):= log(1+ exp(-yi(w, x;i + b)))- (5.1)

We let(W, b) denote the minimizer of the logistic loss, which we find using the standard
proximal gradient algorithm. Given W, we denote its support set by S :={i € [d]:
|[W;| > } , where accounts for the numerical precision of the system.
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Fig. 5 Sensitivity to step size for the phase retrieval problem with d= 100, pf,j) = 0-2 (top row), pgajl = 0

(bottom row). Left: average number of iterations to achieve distance 10 ~>. Right: average final distance
with a fixed computational budget

Our goal is to converge nearly linearly to the set
S={w, b)e R |wg = 0}
To that end, we will apply Algorithm 2 with the stochastic proximal gradient model:
f.((y;a)i)= flzi)+V f(zi) (yya)-z+T y ;-

Algorithm 2 equipped with this model results in the standard stochastic proximal
gradient method. To gpply the algorithm, we set parameters using Theorem 3.4. We
sety= 1,0 = 1/ 10, &= 10" °. We initialize Wy = 0, by = 0and set Ry =

W, b) ({Wo by) . We estimateL by the formulalL := L ™ 3 Xi % Finally, we

m =

estimate U by grid search over (T, p) using the formula:py=71- d-27P.

5.3.1 Evaluation

We compare the performance of Algorithm 2 with the Regularized Dual Averaging
method (RDA) [46, 65], which was shown to have favorable manifold identification

123



Stochastic algorithms with geometric step decay converge linearly...

T T T T T 100
107 b
1071
é 1068 - b 102
: z 108
g &
E 066 - g
£ 10 &
5 £
g Z 107!
Z
- —4— Subgradient _| |—+—Subgradient
10%4 | —=— Clipped 7 107" F | —=— Clipped
—+— Proximal —+— Proximal
—e— Prox-linear —o— Prox-linear
--- Upper bound 107 |- - - Initial distance
N . . . .
1073 1072 10-1 100 10t 102 10-3 10-2 10! 100 10t 10?
A A
10 3 10°
10-*
21001 3
: Z 10
] &
H I
5 10°F § £ 107
g <
Z
—— Subgradient —— Subgradient
—=— Clipped 10712 | | =~ Clipped
—+— Proximal —+— Proximal
104 | | —*— Prox-linear 4 —o— Prox-linear
- - Upper bound - -~ Initial distance
- : 1015 -
1073 1072 107! 10° 10" 10° 10-3 10-2 10-1 100 10! 102
A A
Fig. 6 Sensitivity to step size for the blind convolution problem withd = 100, pgj = 0-2 (top row),

Prail = 0 (bottom row). Left: average number of iterations to achieve distance 10 ~ 5, Right: average final
distance with a fixed computational budget

properties in [37]. In our setting, the latter method solves the following subproblem:

9.
2

_w 4
(Wit 1) bes1) € argming,,  ger b T W1+§“<’LE

ANAN

p
w
, S 62

2

where g; in (5.2) is the running average over all stochastic gradients g =V f(z; i})
sampled up to step t, and Y is a tunable parameter which is again determined by a
simple grid search. Following the discussion in [37], RDA is initialized Wy, bg) = 0;
therefore we choose the same initial point (W, bg) for both methods. In addition to
RDA, we also performed a comparison with the standard stochastic proximal gradient
method, equipped with a range of polynomially decaying step sizes of the form

Av:=ck™ P pe{1/2,2/3,3/4,1).

We found that the stochastic proximal gradient method performed comparably with
RDA in all metrics, and therefore chose to omit it below.
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Fig. 7 Performance of RMBA vs. RDA on the sparse logistic regression problem. Left: function value gap.
Right: distance to the support set and the solution found by the proximal gradient method

The convergence plots in Fig. 7 confirm that the iterates of Algorithm 2 converge
to the set S at a nearly linear rate, while the function values converge at a sublinear
rate. In contrast, the iterates generated by RDA converge sublinearly in both metrics.

A Proofs from Sect. 3.2

We will need the following elementary lemma.

LemmaA.1 Suppose Assumptions (A4) and (A5) hold. Fix an arbitrary y € ( 0, 2)
and consider two points y € Ty and x € R9. Then the estimate holds:

fy(y, z) < fy(x, z2)+ L(y.z) x-y
Proof Let V €0 fy( y, z) be the minimal norm subgradient. Then, by definition
fy(y: z) fy(x, z)+v, y-— x .Applying (2.5) and Cauchy-Schwarz completes

the proof.

A.1 Proof of Lemma 3.3

Throughout the proof, we suppose that Assumptions (A1)—(A5) hold. We fei denote
the O-algebra generated by the history of the algorithm up to iteration k and define the
shorthand for conditional expectation Ex [-] := E [- | Fk]. Define the stopping time

T:= min{k 2 0| yx € Ty},
and the sequence of events
B:={yeT,’3 and Ac:={r> knB
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Define also for all indices k, the quantity:
Dy = dist(yr S)-

Recall that our goal is to lower bound P(Dg+ <¢€) . To this end, we successively
compute

P(Dk- <€) 2P (Dg+ <€ and Ax)
=P (Dg- <€| Ax)P(Ax)

(1-P(Dk- 2¢| Ax)) P(Ax)

B E[Dk* | Akl
&

E Dk-1
=P(Ax) - ——

> 1 P(Ax) (A.1)

where (A.1) follows from Markov’s inequality. The result will now follow immediately
from the following two propositions, which establish an upper bound ol Dg+ 14,

and a lower bound onP(Ax), respectively. We note that the first proposition is a quick
modification of [11, Lemma 4.2]. We include a proof for completeness.

Proposition A.2  The following bounds hold:

1 2
Ex Di, la, < Dila, +L20%—-(2-y)ua Dila, (A.2)
2
6 XX+ (K + Va2
E Dx-1a, < (A.3)

(2-y)u(K+ Do

Proof The loss functiony — f,, (y, z) + 2%, y = yk 2is strongly convex onX with

constant 170" and yj+ 1 is its minimizer. Hence for any y € X , the inequality holds:
5 1 26 1 2 1 2
v z)+ s y=yw > 2 fruevz)* 50 Yir1 = Yk © 55 Y~ Yiet

Rearranging and taking expectations, we successively deduce that provided y € Ty,
we have

1 1 2
—= B oy 2 vty oy’

20
<Ex frly zi) = f (e zid)
<SEx fu(yzi) = fy (e zi) + Ly 2) yrs1 = yi (A.4)

< fly) = fly) + g y=yk 2+ sup  EJLW. 2)?2]- Exl yie1 = yi 2],

we T2

(A.5)
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where (A.4) follows from Lemma A.1 while inequality (A.5) follows from Cauchy-
Schwarz and Agsumption (A3).

Define c:=  Ey[ yk+1— yx 2] and notice c= E, yx— yk+1 . Then, rearranging
(A.5), we immediately deduce that if yx € Ty, we have

1
SgEk _inf - < — inf Ex y- 2
20 k yeprojs (yk) Y Ykl 200 yeprojs (y) k Y~ Yk+1
Cf—l+r] c?
= Di- Jg+le=(flp) = _inf  f(y)
2 ‘ 2a ‘ (f)’k) YEPFlO[J'ls(yk)fy
a- 14 2
< 5 nD%—;—a+Lc—uDk
a-l+p al?
< D2+ — - Dy
D ikt 5 TH Dk

where the third inequality follows from assumption (A2), and the fourth inequality
follows by maximizing the right-hand-side in ¢ € R. Then, dividing through by 2%,
and multiplying by 14,, we arrive at

1 2 1 2
Ex Diilan, SEx Diila, < (1+an) Df+a?l?- 200Dy 1a,

IA

D +a’?>-a (Qu-nD Dx 1a,

IA

Dila, + @’ —a(2-y)u Dxla,

where the first inequality follows since A y+1 & Ay, the second inequality follows
since A is F measurable, and the fourth inequality follows since on the event A,
we have yx € Ty. This completes the proof of (A.2). Next, applying the law of total
expectation, we obtain

1 2 1 2
E Diila., SE Dl +a’l’>-(2-y)auE Dila, -

Iterating the inequality and rearranging, we deduce

K 1 2
(2-y)auE Dila, <(K+ DO%L2+E Djlg,
k=0

Dividing throughby (K + 1)(2 -y )ay , we recognize the left-hand side as
E Dk-1a,. , and therefore

o VT 2+(K+ 1)az|2

& Prlace = Ty K+ Did

Finally, note E Dg-1a, <E Dg-1a,. since Ag S Ag-. This completes the
proof of the proposition.
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Now we will estimate the probability of the event Ax.
Proposition A.3  The estimate holds:

n 2

Ka2|?
yu

P(Ak)z2P(B)- 0+

Proof Observe the decomposition
P(B)=P(Band 1< K)+P(BandT> K)=P(Band 1< K) + P(Ak),

and therefore
P(Ax) 2P(B) -P(Band T< K)- (A.6)

We aim to upper bound P(B and T< K). To this end, let Yy = D?

iar 1B denote the
stopped process. We successively compute

yu 2 _E Vilrek

P(Bandt< K)=P Yrl;<x > — 5 (A.7)
n yu
m
where the last estimate uses Markov’s inequality. Next, observe
E Yrl;<x <E [Ykle>k]+E Yklr<xk =E [YkI- (A.8)
We next upper bound E[Yk]. To this end, observe
Bk Yks1 =Ex Yk+1lrsk1 +Ex Yk2+11r>k
= Yilrsk + Ex Dfyqla,
< Yilrsk + Dila, +a®L® = (2~ y)ap Dila, (A.9)

IN

Yilesk + Dy 1o il + a°L? = Yy + a’L?

where (A.9) follows from (A.2). We now use the law of total expectation to iterate the
above inequality:

2
E[Yk]<E [Yo] + KO?L? < Di1p+ KO?><§ % + KO’ (A.10)

Combining the estimates (A.6), (A.7), (A.8), and (A.10) completes the proof.
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B Proofs from Sect. 3.3
B.1 The ensemble method

LemmaB.1 (Ensemble method). Let {x;}IZ, be i.i.d. realizations of a random vector
x € RY. Suppose that the estimate holds:

P( x-x PE) =

where p € (%, 1) and € > 0 are some real numbers andx € R is a vector. Then with
probability at least 1 - exp(— ﬁm(p - %)Z), there exists an index i* satisfying

m
| Boe(xi+) 0 {x;}L ] > 5 (B.1)

and for any index i* satisfying (B.1) it must be that x;» — x 3€, <

Proof By Chernoff’s bound, with probability at least 1 — exp(— ﬁm( p- %)2), the
estimate holds:

m
{i: xi—x |>S-28}

In particular, there exists an index i * satisfying (B.1) Fix such an index i *. Clearly,
there must exist another index j satisfying x; € Be(x) N Boe(x;+). We therefore
conlude x;+ — x Xj* < Xj Xj —+x 3€. THis completes the proof.

B.2 Proof of Lemma 3.5

Fix y € ( 0,2) and a point y € Ty. Recall that f is N-weakly convex on an open
convex set containing X [11, Lemma 4.1]. Consequently, the proximal subproblem
(3.7) is (p — n)-strongly convex. Before proving the remaining portion of the lemma,
we first show that subgradients of the extended valued function f + dx are bounded
below. This was essentially already observed in [12, Lemma 2.1]. We provide a quick
proof for completeness.

Lemma B.2 The estimate:
dist(0, 0f(x) + Nx(x)) = 1- 5 M holds for all x € Ty\X "-

Proof Fixanyx € Ty\X " and ved f(x)+ Nx(x), andlet x € projx-(x). We
successively compute

u - dist(x, X*) < f(x) - ipf f<v, x -x+ gdist(x, X*)?,
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where the first inequality follows from sharpness (A2), and the second from weak con-
vexity of fand convexity ofX . Rearranging and using the Cauchy-Schwarz inequality,
we deduce

u- gdist(x,X*) dist(x, X*) < dist(x, X*) v

Dividing both sides by dist(x, X*) yields the result.

Now, let y be any minimizer of the proximal problem (3.7) and suppose P <
22_—}/ N. Clearly, to establish Lemma 3.5, it suffices to argue the inclusion y € X *.

To this end, choose any y € projx - (y). Observe

py2u?
212

p - R - . P . P .
S YTy IS fO) - ()5 ymy T Sdist(y, X s :
where the first inequality follows from the definition ¢f the second uses the definition

of y, and the third follows from the assumption & Ty . Thus, we deduce y—y _#. <
Consequently, using sharpness we conclude

. — * — ~ p ~
Wdisi(y: X°) < f(7) = f()S 5 y=y s
where the last inequality follows from the assumption P < zz—_yy N. Consequently,

y lies in the tube Ty. Now, definev:=p(y-y)ed f(y)+ Nx (y). Appealing to
Lemma B.2, we deduce in the casey ¢ X, the contradiction(1 - Sps v /p=
y-y # Bherefore, y lies in X *, as we had to show.

B.3 Proof of Lemma 3.6

As in the proof of Lemma 3.3, we lef'; denote the O-algebra generated by the history
of the algorithm up to iteration k and define the shorthand for conditional expectation
Ex[']:= E [- | Fk]. Define the stopping time

T:= min{k | yx € Ty},
the sequence of events Ay := {T > k}, and the quantities

a~l+p

Dy = yk-— 3/0 and Ey = >

P
Dj + 5 YT Yo 2.
Note that by Lemma 3.5, the inclusion yo € projx-(yo) holds. We will use this
observation throughout.
We begin with the estimate

P Dy <e? =P D% se?|Ax P(Ax)
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1-P D% 2e%|Ax P(Ax)

E D%. | Ak

> 1 &2 P(AK)
_ B E D%(* ]‘AK P(A )
€2P(Ag) K
E D2. 1a
=P(AK) - ———

The result will now follow immediately from the following two propositions, which
establish an upper bound on E Df@ 14, and alower bound on P(Ak), respectively.
We note that the first proposition is a quick modification of [11, Lemma 4.2]. We
include a proof for completeness.

Proposition B.3  Define v := p — nj . Then the following bounds hold:

v, L2a
Ex Ex+1la, < Exla, - EDklAk e (B.2)
2
2 -1 s Y
E1D2 , 2< (K+ 1)Ll2a+ (@ 1+n)-o6 T . -
KA = V(K + 1) '

Proof Define the function g(y) := f(y) + % y = yo 2 and notice that g is strongly

convex with parameterV. Observe also that the loss function y~» fj, (y, z))+ zia y-
yi 2+ g y = yo 2 is strongly convex on X with constant @' + p and yy+ 1 is its

minimizer. Hence for any y € X, the inequality holds:

fr(yizi)+ 5 y=w 2+ 5 y—yo 2

2, P 2
2 f}’k(yk"'l’ zk) + zla Y+1 = Yk = F 5 Yk+1 7 Yo

+ Tl 2,

2 y__)’k+1

Rearranging and taking expectations we successively deduce that if y; € Ty, then

a1+ 1 1
Ex Tp Y= Ye1 2 S Ykr1T Yk 2= Sa YTk 2
1 2
P p
SEx fulyzi)+ 5 Y™ Yo 2= (fy O 1 z0) + 5 Ykr1= Yo 2)
1 2
p P
SEx fyly zi)+ PRARRL 2=y zi) + 5 Ve~ Yo 2)
+Ex Llyk zk) yke1= Yk (B.4)

! P ) P )
<SEyx f(y)+§y-yo -(f(yk)+§yk-yo )
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1 2
+E E - 2 _ 8 - 2
k Yk = Yo 2 Yk+1 7~ Yo

2
n
*Ek oy 2+ Ly zk) yre1 = Y

n
< gly) - gly) + AL 2+ sup EJLW. 2)2] - Ex[ yke1- xk 2
we T,
1 2

p p
+Ex EYk‘Y02_EYk+1_YO2 (B.5)

where (B.4) follows from Lemma A.1, while inequality (B.5) follows from Cauchy-
Schwarz and Asgpmption (A3).

Definec :=  Ex[ yx+1— yx 2] andnoticec 2 E k yx = yk+1 . Thus, letting
y = yo and rearranging (B.5), we immediately deduce that if yx € Ty, we have

a—1+,7 2
Ex > Dix1* 5 Yk+17 Yo
C(‘1+r) c? —
s — Df+—}’k‘y02-2—a+Lc-(g(Yk)‘g(YO))
a1+ La v
< D}+ — yx—yo 2+ — - D}
5 k Yk~ Yo 5 5k

where the second inequality follows from strong convexity of g and by maximizing
the right-hand-side in ¢ € R. Thus, multiplying through by 14,, we deduce that

v, L2a
Ex Ex+1la, < Exla, - EDklAk + -

which proves (B.2). Iterating (B.2), using the tower rule, and rearranging, we deduce

K1 2 2 2 -1 2
v L2a L2a a1+ u
— E Dlla, S(K+1)—+ Eg<(K+1)—+ n.sY
210 2 2 2 n

—_— H

where the last inequality follows from Lemma 3.5 and the assumptiony ¢ € TVJ 3
Dividing through by %( K + 1), we deduce

2
1 2 (K+Dla+@ '+n) -5 %

2, <
E Dx lag- WK+ 1)

Finally, note E D%.1a, <E D%.1a,. sinceAx S Ak-. This completes the
proof of the proposition.

Now we estimate the probability of the event Ag.
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Proposition B.4  The estimate holds:

n 2

KL2a2.
yu

P(Ak) = 1-6 -

Proof Definer := 20"t +n) 1 letYy = dist?(ykar» X*), andlet Y = r Exar
denote the stopped process. We now estimate

yu ? _E Yrlrsk
n B yu 2
T

Pr<s K)=P Yrlr<g > (B.6)

Next we upper bound the right-hand-side:
E Yrlr<sx <E Yilrex <E [Vl k]+E Yxlr<sx =E [Yk]. (B.7)
where the first inequality follows from the bound Y < Yj. Next, observe

Ex Yie1 =Ek Yie1lrsk +Ex Yie1le i
Yile<k + Ex 1 Ek+11a,

v, L2a
Yilr<k + rExla, - EDklAk + -
L2a L2a
+ +r—= + —
Yilesk + rExl> + r > Yi (a-1+ n)

IN

IN

where the first inequality follows from (B.2). We now use the law of total expectation
to iterate the above inequality:

2 2

yu
E[Yk]<E [Yo] + @) < D+ KLP0? <45 ot KL?0?,  (B.8)

where the second inequality follows from the equality r E¢ = D3 = dist?(yo: X*).
Combining (B.6), (B.7), and (B.8) completes the proof.

C Proofs from Sect. 4

C.1 Proof of Theorem 4.1

The equality X * = { x} and sharpness follows along similar lines as in [18, Propo-
sition 4] and [13, Lemma B.8]. We sketch a quick argument for completeness. Fix
x € R4 throughout the proof. Let f(x;z) =| a x 2= a, x 2| denote the “outlier-
free” loss function and set f(x) := E[ f(x, z)]. Setting v := = and w = Xrx
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we have

f(x;z)=] ax-x ax+x|= x-x x+x a Vv 4 w.
Therefore, we deduce

~ 1 ~ 2 J— f— - —

f(x):=E f(x2) 2y x-x x+x u x = dist(x,{*x}).
Now, using this bound, we find that

fO) = fxx)=(1- pra)(f(x) = f(X) + praiBag | @ x?= a,x2=&|-|&]
2(1_ Pfail) f(x) - pfailEa | a x 2= Cl,; 2|
=(1-2pai) F(x) 2 (1= 2pai)id x  distlx, {£x}).

In particular, we deduce the equalityX * = {#+ x} and the sharpness estimate (A2) with
U=(1- 2pai)d x .Now we estimate the parameters of the models.
We begin with an estimate off]. To that end, fix ye RY. Then, using the expansion
ay?= ax?+2ax ay-x+ ay-x? wefindthatforanyze ,we
have

fyz)=] ay?=(ax?+u-g)
| ax?+2ax ay-x+ ay-x>-(ax’+u-&)
2

\%

fly2) - ay-x

We use this inequality to estimate/] for each of the models. Let us analyze each of the
models in turn: 1 2
(prox-linear) We have, E fF'(y.z2) <E f(y.2)+ ay-x2 < f(y)+
fiy-x?
(subgradient) By inspection, we have G(x, z) € 3 f’ '(x. 2). Thus, we have

iy z) = fxpl(x,z)+ G(x,z) y-x< fxpl(yyz)s fyrz)+ ay-x2

and consequently,E f5(y,z) < f(y)+h y-x %
(clipped Subgradient) As before, we have

max{ f5(y, z), 0} = max{ fxpl(x, )+ G(x, 2z, y-x, 0}
< max{fxpl(yf 2,0y f(yz)+ ay-x2

and consequently, we haveE f¢l(y,z) < f(y)+h y- x 2

Therefore in all three cases, we haven = 21].

Now we analyze L(x, z). Any subgradient of any of the models evaluated at a point
x € R%is of the formv = 2 s a; x a for some s € [~ 1, 1]. Consequently, in all three
cases, we have minyej f,(x.2) 2va: x| as L(x, 7). as desired.
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C.2 Proof of Theorem 4.1

Throughout the proof, let (x, y), (X,3) € X . Let f((x,y)2) =|, x r y-
, x r,y| denote the outlier free objective and notice that with M = %,
we have

f((xy)z)=1,( xy" =xyDrl= xy' =%y p|, Mr|

Now taking into account [8, Proposition 4.2], we have
v D
xyf = xyl  ~=—=——dist((x, y), X*).
2 2(v+ 1)
Thus, it follows that

1 2
fxsy)=E fl(x:y)2) = xy' =xyT pE[| a» Ma]| ]
N

> 2D il y) XO).
2 2(v+ 1)

Finally, using this bound, we find that for anya = 0 that

flxy) = flax (/) y) = (1= pad( f(x: y) = f(ax (1/a) y))

+ prailE, &0, x my=, x r,y=&|-|E]]
2(1_pfail)f(X’Y)_pfailEyr[ly X ry- ,_X r,}l]
- p(1-2pa) D
=(1-2pa) f(x y) 2 == Zdist((x, y)s X*).
( DPai/ f(x: y) > 2(V+1) ist((x, y.

This proves sharpness. Now we estimate the parameters of the models.
(y=P)(x=)T

Let us begin with/]. To that end, we observe that with M= T We have
n o [ n o n a . .
|F((R, 3 2) = (6, )(%,3) DI<], ( xyT = xy' = x(y=y) = y(x=x)"r|
=1, (( y=-Y)x=-%"Dr|
=|, Mr| y=-7y x-%

|, Mr| .
S—

-y 2+ x=-%?% .
5 y

We use this inequality to establish the weak quadratic approximation property for each
of the models. Let us analyze each of the models in turn:

(Prox-linear) Taking expectations, we have

1 2
. N . .
E fl)((%3)2) s fRI)+ 5 y=y i+ x=%7,
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(Subgradient) By inspection, the inclusion holds G((x; y), z) € @ f(’;ly y) ((x) y), 2).
Therefore,

[ (2,90 2) = ff,)((x y). 2)
+ Gy 2), (2.9) = (x ) S [f,)(R 9 2)
1 2 1 I 2
and consequently E f(%y)(()?, )2 <E f(iyy)((ﬁ, Pz < f(X )+
5
7 Y=y le x=x?
(Clipped Subgradient) As before, we have

max{ f(sxyy)((ﬁ, $), 2), 0} = max{ f&{y)((x, y) 2)
+ G((x: y) 2), (%,9) = (x y), 0} < f&{y)((ﬁ, ). 2),
1 2 1 2
and consequently E f(%y)((i, $)2) <E f(ify)((f, Pz < f( )+
7y y i x-x?

Therefore in all three cases, we haven = 7).
Now we analyze L ((x, y), z). Any subgradient of any of the models evaluated at

the point(x, y) is of feformv=_ry,, x r)s for some s € [~ 1, 1]. Therefore,
minye f, (x.2) v x2r2+ r,y2 2< L((x, y) 2): as desired.
Finally, the bound on L follows since
1 2 1 2 B
’<s sup E L((xy) 2)? < sup V2ZDE L((v, W), 2)?> <v?DL?
(xy)eT, (v,w)eSd1~1xgd2~1
as desired.

D Sharpness and identifiability

In this section, we explain that local sharp growth of a function f relative to a set S
is equivalent to S being an “active manifold” for f locally around its minimizer. This
equivalence is in essence well-known, though we have been unable to find a formal
statement. To illustrate on a simple example, consider the function fx, y) = x?+ |y|
and the set S =R x { 0}. Notice that f satisfies two geometric properties. On one
hand, f grows sharply (at least linearly) as one moves away froM. On the other hand,
S is “active” or “identifiable” in the sense that the subgradients of f are uniformly
bounded away from zero outside ofS. We will see that these two geometric properties
are essentially equivalent. To formalize the notion of an “active set”, we follow the
work [17], which expands on the earlier papers of Lewis [38] and Wright [64].
Throughout, we use the standard definitions and notation of variational analysis, as
set out in the monographs [42, 50, 57]. Namely, consider a function f: RY > R and
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a point x , with f(x) finite. The Fréchet subdifferential, denoted f(x), consists of all
vectors v € RY satisfying

fly)= f(x)+v, y-x+ o y- x as - x

The limiting subdifferential, denoted 0y f(x), consists of all vectors ve R 9 for
which there exist sequences x ; € R4 and V; € 0 f(x;) satisfying (V;, f(x;): V;) -
(x, f(x), V). Following [51], we say that f is prox-reqular at x for v e d 1 f(x) if
there exist real , @ > 0 such that the estimate

fy)z f(x)+v, y-x- gy—x %

holds forany x» y € R4 and v e 9 | f(x) satisfying max{ y - x x — ¥
v f(x)t+ f(x)}< .Inparticular, weakly convex functions are prox-regular.
The following is the formal definition of an identifiable (or active) manifold.

Definition D.1  (Identifiable manifold) Consider a closed function f : RY - RuU
{+«} .We call aset S an identifiable manifold at x for v e 0 f(x) if the following

properties hold. S

1. (smoothness) The setS is a C?>-smooth manifold aroundx and the restriction f >
is C2-smooth near x .

2. (finite identification) For any sequence{x;, f(x;), Vi) » ( x, f(x), V) withV; €
0; f(x;), the points x; must all lie in S for all sufficiently large indices i .

Let us first observe that under a very mild condition on the function f, identifiability
at a critical points implies local sharp growth.

TheoremD.2  (Identification implies sharpness) Consider a closed function f: R? -
R and suppose that a closed setS is an identifiable manifold atx for 0 € 8 f(x). Then
there exist real, H > 0 satisfying

f(x) 2 f(projs(x)) + u - dist(x, S)  forallx € B (x)-

Proof First, we record an immediate consequence of [17, P£0position 10.12]. Namely,
there exists > 0 satisfying the following. Forallz € B (x) n S andve d f(z) n
B (0), the inclusion holds:

v+t ST'aNs(z2) <a ()

Next recall that since S is a C 2-smooth manifold, every point x near x admits a

unique nearest-point projection ontoS, characterized by the inclusion x— projs(x) €

Ns(projs(x)). For any point x near x,set X = projs(x). Using [17, Proposition

10.11], we deduce that f is prox-regular at x for v = 0. Consequently, there exist
» Y » P> 0 such that

f(x)2 f(X)+v, x=x- = x=% 2 (D.1)
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forany x e B (x)andv e By(0) n g, f(X). Notice that since the subdifferential of f
is inner-semicontinuous relative toS at x for v = 0[17, Proposition 10.2], decreasing

we may ensure that By (0) n d; f(X) is nonempty for all x € B (x). We therefore
deduce for every x € B (x) the estimate:

f(x)= f(X)+v+ X —X—-X—- — x-X
x =%

v

f(X)+ - dists(x) -  dists(x) - gdisté(x)

f(X)+ -y- pT dists(x)-

Decreasing ¥ and , if necessary, completes the proof.

We next prove the converse, namely that a function always grows sharply away
from its identifiable manifolds.

Theorem D.3  (Sharpness implies identification). Consider a closed function fRY >
R that is prox-regular at a pointx for 0 € 0, f(x). Suppose that there is a closed set
S containing x and real , H > 0 satisfying

f(x)= min ) f(z) + - dist(x, S)  forallx € B (x)-

zeprojs (x

Then for any sequences (x;» f(xi): Vi) - ( x» f(x), V) with V; € 01, f(x;), the points
x; must all lie in S for all sufficiently large indices i .

Proof Let, H> 0 be the constants in the assumptions of the theorem. From the
definition of prox-regularity, we deduce that there exist real , P > 0 such that the
estimate

fly)z f(x)+v, y-x- %)y—x 2.

holds forany x » y €e R4 and ve d 1 f(x) satisfying max{ x - x f(x) -
f(x)l} < .Shrinking ,we mayensure0 < < min{, %}. Consider now any
point x € B (x)\S with |f(x) — f(x)] < anddist(0, 0y f(x)) < . Wewill
show that the estimate dist(0, 9; f(x)) = g—' holds, thereby completing the proof. To

verify this estimate, let v € @ f(x) have minimal norm and let X € projs(x) achieve
minzeprojs (x) [ (z). We then deduce

u-dist(x, S) < f(x) = f(H)<v, x="x+ §d15t2(x, S).

IIIJsing the Cauchy-Schwarz inequality, we therefore conclude v %dist( x2§)=
7. The result follows.

123



D. Davis et al.

References

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J.,

Devin, M. et al.: Tensorflow: large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org 1(2) (2015)

. Ahmed, A., Recht, B., Romberg, J.: Blind deconvolution using convex programming. IEEE Trans. Inf.

Theory 60(3), 17111732 (2014)

. Asi, H., Duchi, J.C.: Stochastic (approximate) proximal point methods: Convergence, optimality, and

adaptivity. arXiv preprint arXiv:1810.05633 (2018)

. Asi, H., Duchi, J.C.: The importance of better models in stochastic optimization. arXiv preprint

arXiv:1903.08619 (2019)

. Aybat, N.S., Fallah, A., Gurbuzbalaban, M., Ozdaglar, A.: A universally optimal multistage accelerated

stochastic gradient method. arXiv preprint arXiv:1901.08022 (2019)

. Candés, E.J., Strohmer, T., Voroninski, V.: PhaseLift: exact and stable signal recovery from magnitude

measurements via convex programming. Comm. Pure Appl. Math. 66(8), 1241-1274 (2013)

. Charisopoulos, V., Chen, Y., Davis, D., Diaz, M., Ding, L., Drusvyatskiy, D.: Low-rank matrix

recovery with composite optimization: ~ good conditioning and rapid convergence.  arXiv preprint
arXiv:1904.10020 (2019)

. Charisopoulos, V., Davis, D., Diaz, M., Drusvyatskiy, D.: Composite optimization for robust blind

deconvolution. arXiv:1901.01624 (2019)

. COR-OPT. Geometric step decay: reference implementation. https:/github.com/COR-OPT/

GeomStepDecay (2019)

Davis, D.: SMART: The stochastic monotone aggregated root-finding algorithm.  arXiv preprint
arXiv:1601.00698 (2016)

Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM
J. Optim. 29(1), 207-239 (2019)

Davis, D., Drusvyatskiy, D., MacPhee, K.J., Paquette, C.: Subgradient methods for sharp weakly
convex functions. J. Optim. Theory Appl. 179(3), 962-982 (2018)

Davis, D., Drusvyatskiy, D., Paquette, C.: The nonsmooth landscape of phase retrieval. To appear in
IMA J. Numer. Anal., arXiv:1711.03247 (2017)

Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: a fast incremental gradient method with support for
non-strongly convex composite objectives. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 1646—
1654. Curran Associates Inc, New York (2014)

Defazio, A., Domke, J., Caetano, T.S.: Finito: a faster, permutable incremental gradient method for
big data problems. In: Xing, E.P., Jebara, T. (eds). Proceedings of the 31st International Conference on
Machine Learning, volume 32 of Proceedings of Machine Learning Research, pp. 1125-1133. Bejing,
China (2014). PMLR

Drusvyatskiy, D.: The proximal point method revisited. SIAG/OPT Views and News, 26(1) (2018)
Drusvyatskiy, D., Lewis, A.S.: Optimality, identifiablity, and sensitivity. arXiv preprint
arXiv:1207.6628 (2012)

Duchi, J.C., Ruan, F.: Solving (most) of a set of quadratic equalities: composite optimization for robust
phase retrieval. IMA J. Inf. Inference (2018). https://doi.org/10.1093/imaiai/iay015

Duchi, J.C., Ruan, F.: Stochastic methods for composite and weakly convex optimization problems.
SIAM J. Optim. 28(4), 3229-3259 (2018)

Eldar, Y.C., Mendelson, S.: Phase retrieval: stability and recovery guarantees. Appl. Comput. Harmon.
Anal. 36(3), 473-494 (2014)

Eremin, I.1.: The relaxation method of solving systems of inequalities with convex functions on the
left-hand side. Dokl. Akad. Nauk SSSR 160, 994-996 (1965)

Fercoq, O., Qu, Z.: Restarting accelerated gradient methods with a rough strong convexity estimate.
arXiv preprint arXiv:1609.07358 (2016)

Fercoq, O., Qu, Z.: Adaptive restart of accelerated gradient methods under local quadratic growth
condition. arXiv preprint arXiv:1709.02300 (2017)

Freund, R.M., Haihao, Lu.: New computational guarantees for solving convex optimization problems
with first order methods, via a function growth condition measure. Math. Program. 170(2), 445-477
(2018)

123



Stochastic algorithms with geometric step decay converge linearly...

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

Ge, R., Kakade, S.M., Kidambi, R., Netrapalli, P.: The step decay schedule: a near optimal, geometri-
cally decaying learning rate procedure. arXiv preprint arXiv:1904.12838 (2019)

Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic
composite optimization, ii: shrinking procedures and optimal algorithms. STAM J. Optim. 23(4), 2061—
2089 (2013)

Goffin, J.L.: On convergence rates of subgradient optimization methods. Math. Program. 13(3), 329—
347 (1977)

Goldstein, T., Studer, C.: Phasemax: convex phase retrieval via basis pursuit. IEEE Trans. Inf. Theory
64(4), 2675-2689 (2018)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778 (2016)

Hsu, D., Sabato, S.: Loss minimization and parameter estimation with heavy tails. J. Mach. Learn.
Res. 17(1), 543-582 (2016)

Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction. In:
Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS’13,
pp. 315-323, Curran Associates Inc, USA (2013)

Johnstone, P.R., Moulin, P.R.: Faster subgradient methods for functions with holderian growth. Math.
Program. 180, 417450 (2019)

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep convolutional neural
networks. In: Advances in Neural Information Processing Systems, pp. 1097-1105 (2012)
Kulunchakov, A., Mairal, J.: A generic acceleration framework for stochastic composite optimization.
arXiv preprint arXiv:1906.01164 (2019)

Kushner, H.J., Yin, G.G.: Stochastic Approximation and Recursive Algorithms and Applications,
volume 35 of Applications of Mathematics (New York). Stochastic Modelling and Applied Probability,
2nd edn. Springer-Verlag, New York (2003)

Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition.
Proc. IEEE 86(11), 2278-2324 Nov (1998)

Lee, S., Wright, S.J.: Manifold identification in dual averaging for regularized stochastic online learn-
ing. J. Mach. Learn. Res. 13(JUN), 1705-1744 (2012)

Lewis, A.S.: Active sets, nonsmoothness, and sensitivity. SIAM J. Optim. 13(3), 702-725 (2002)

Li, X., Ling, S., Strohmer, T., Wei, K.: Rapid, robust, and reliable blind deconvolution via nonconvex
optimization. Appl. Comput. Harmon. Anal. 47(3), 893-934 (2018)

Li, Y., Ma, C., Chen, Y., Chi, Y.: Nonconvex matrix factorization from rank-one measurements.
arXiv:1802.06286, 2018

Mairal, J.: Incremental majorization-minimization optimization with application to large-scale machine
learning. STAM J. Optim. 25(2), 829-855 (2015)

Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory.
Grundlehren der mathematischen Wissenschaften, vol. 330. Springer, Berlin (2006)

Nedic, A., Bertsekas, D.: Convergence rate of incremental subgradient algorithms. In: Stochastic
Optimization: Algorithms and Applications, pp. 223-264. Springer (2001)

Nemirovskii, A.S., Nesterov, Yu.E.: Optimal methods of smooth convex minimization. USSR Comput.
Math. Math. Phys. 25(2), 21-30 (1985)

Nemirovsky, A.S., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization. A Wiley-
Interscience Publication. John Wiley & Sons Inc, New York (1983). Translated from the Russian and
with a preface by E. R. Dawson, Wiley-Interscience Series in Discrete Mathematics

Nesterov, Y.: Primal-dual subgradient methods for convex problems. Math. Program. 120(1), 221-259
(2009)

Nesterov, Y.: A method for solving the convex programming problem with convergence rate 1/ K2).
Dokl. Akad. Nauk SSSR 269(3), 543-547 (1983)

O’Donoghue, B., Candés, E.: Adaptive restart for accelerated gradient schemes. Found. Comput. Math.
15(3), 715-732 (2015)

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga,
L., Lerer, A.: Automatic differentiation in pytorch. In: NIPS-W (2017)

Penot, J.-P.: Calculus Without Derivatives. Graduate Texts in Mathematics, vol. 266. Springer, New
York (2013)

Poliquin, R.A., Rockafellar, R.T.: Prox-regular functions in variational analysis. Trans. Am. Math. Soc.
348, 1805-1838 (1996)

123



D. Davis et al.

52.
53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Poljak, B.T.: Minimization of nonsmooth functionals. 7. Vytisl. Mat. i Mat. Fiz. 9, 509-521 (1969)
Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by averaging. SIAM J. Control
Optim. 30(4), 838-855 (1992)

Renegar, J., Grimmer, B.: A simple nearly-optimal restart scheme for speeding-up first order methods.
arXiv preprint arXiv:1803.00151 (2018)

Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400—407 (1951)
Rockafellar, R.T.: Favorable classes of Lipschitz-continuous functions in subgradient optimization. In:
Progress in Nondifferentiable Optimization, Volume 8 of IIASA Collaborative Proc. Ser. CP-82, pp.
125-143. Int. Inst. Appl. Sys. Anal., Laxenburg (1982)

Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Grundlehren der mathematischen Wis-
senschaften, vol. 317. Springer, Berlin (1998)

Roulet, V., d’Aspremont, A.: Sharpness, restart and acceleration. In: Guyon, I., Luxburg, U.V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information
Processing Systems, vol. 30, pp. 1119-1129. Curran Associates Inc, New York (2017)

Schmidt, M., Le Roux, N., Bach, F.: Minimizing finite sums with the stochastic average gradient. Math.
Program. 162(1-2), 83-112 (2017)

Shalev-Shwartz, S., Zhang, T.: Proximal stochastic dual coordinate ascent. arXiv:1211.2717 (2012)
Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H.N., Miao, J., Segev, M.: Phase retrieval with
application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32(3), 87-109
(2015)

Shor, N.Z.: Minimization Methods for Non-differentiable Functions, vol. 3. Springer Science & Busi-
ness Media, New York (2012)

Tan, Y.S., Vershynin, R.: Phase retrieval via randomized Kaczmarz: Theoretical guarantees. Inf. Infer-
ence J. IMA 8(1), 97-123 (2018)

Wright, S.J.: Identifiable surfaces in constrained optimization. SIAM J. Control Optim. 31(4), 1063—
1079 (1993)

Xiao, L.: Dual averaging methods for regularized stochastic learning and online optimization. J. Mach.
Learn. Res. 11(OCT), 2543-2596 (2010)

Xu, Y., Lin, Q., Yang, T.: Accelerated stochastic subgradient methods under local error bound condition.
arXiv preprint arXiv:1607.01027 (2016)

Yang, T., Lin, Q.: RSG: beating subgradient method without smoothness and strong convexity. J. Mach.
Learn. Res. 19(1), 236-268 (2018)

Yang, T., Yan, Y., Yuan, Z., Jin, R.: Why does stagewise training accelerate convergence of testing
error over SGD? arXiv preprint arXiv:1812.03934 (2018)

Publisher's Note ~ Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable

law.

123



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46

