

1 **TITLE:**

2 High-Speed Optical Diagnostics of a Supersonic Ping-Pong Cannon

3

4 **AUTHORS AND AFFILIATIONS:**

5 Travis J. Barth^{1*}, Keith R. Stein^{1*}

6

7 ¹Department of Physics and Engineering, Bethel University, St. Paul, Minnesota, U.S.A.

8

9 *These authors contributed equally.

10

11 Email address of the co-author:

12 Travis J. Barth (trb49573@bethel.edu)

13

14 Corresponding author:

15 Keith R. Stein (k-stein@bethel.edu)

16

17 **SUMMARY:**

18 We describe a method for the construction of a supersonic ping-pong cannon (SSPPC) along with
19 optical diagnostic techniques for the measurement of ball velocities and the characterization of
20 propagating shock waves during the firing of the cannon.

21

22 **ABSTRACT:**

23 The traditional ping-pong cannon (PPC) is an educational apparatus that launches a ping-pong
24 ball down an evacuated pipe to nearly sonic speeds using atmospheric pressure alone. The SSPPC,
25 an augmented version of the PPC, achieves supersonic speeds by accelerating the ball with
26 greater than atmospheric pressure. We provide instructions for the construction and utilization
27 of an optimized PPC and SSPPC.

28

29 Optical diagnostics are implemented for the purpose of investigating the cannon dynamics. A
30 HeNe laser that is sent through two acrylic windows near the exit of the pipe is terminated on a
31 photoreceiver sensor. A microprocessor measures the time that the beam is obstructed by the
32 ping-pong ball to automatically calculate the ball's velocity. The results are immediately
33 presented on an LCD display.

34

35 An optical knife-edge setup provides a highly sensitive means of detecting shock waves by cutting
36 off a fraction of the HeNe beam at the sensor. Shock waves cause refraction-induced deflections
37 of the beam, which are observed as small voltage spikes in the electrical signal from the
38 photoreceiver.

39

40 The methods presented are highly reproducible and offer the opportunity for further
41 investigation in a laboratory setting.

42

43 **INTRODUCTION:**

44 The PPC is a popular physics demonstration used to show the immense air pressure to which

45 people are continually exposed^{1–5}. The demonstration involves the placement of a ping-pong ball
46 in a section of pipe that has an inner diameter that is approximately equal to the diameter of the ball.
47 The pipe is sealed off on each end with tape and evacuated to an internal pressure of less
48 than 2 Torr. The tape on one end of the pipe is punctured, which allows air to enter the cannon
49 and causes the ball to experience peak accelerations of approximately 5,000 g's. The ball, which
50 is accelerated by atmospheric pressure alone, exits the cannon at a speed of approximately 300
51 m/s after traveling 2 m.

52
53 Although the PPC is commonly operated as a simple demonstration of atmospheric pressure, it
54 is also an apparatus that exhibits complex compressible flow physics, which has resulted in
55 numerous open-ended student projects. The dynamics of the ball are influenced by secondary
56 factors such as wall friction, the leakage of air around the ball, and the formation of shock waves
57 by the accelerating ball. The substantial acceleration of the ball introduces a large-amplitude
58 compression wave that travels down the tube in front of the ball. These compressions travel
59 faster than the local sound speed, resulting in a steepening of the compression wave and the
60 eventual formation of a shock wave⁶. Previous work has studied the rapid buildup of pressure at
61 the exit of the tube due to the reflections of the shock wave between the ball and the taped exit
62 of the tube and the resulting detachment of the tape prior to the exit of the ball². High-speed
63 video using a single-mirror schlieren imaging technique has revealed the response of the tape to
64 the reflecting shock waves and the eventual detachment of the tape at the exit of the PPC^{7,8}
65 (**Video 1**). Thus, the PPC serves as both a simple demonstration of air pressure that intrigues
66 audiences of all ages and as a device exhibiting complex fluid physics, which can be studied in
67 great detail in a laboratory setting.

68
69 With the standard PPC, the ping-pong ball speeds are limited by the speed of sound. This basic
70 version of the PPC is covered in the scope of this paper, along with a modified cannon used to
71 boost the ball to supersonic speeds. In previous work by French et al., supersonic ping-pong ball
72 speeds have been achieved by utilizing pressure-driven flow through a converging-diverging
73 nozzle^{9–11}. The SSPPC presented here utilizes a pressurized (driver) pipe to provide a larger
74 pressure differential on the ping-pong ball than is provided by atmospheric pressure alone. A thin
75 polyester diaphragm is utilized to separate the driver pipe from the evacuated (driven) pipe
76 containing the ball. This diaphragm ruptures under sufficient gage pressure (generally 5–70 psi,
77 depending on the diaphragm thickness), thus accelerating the ping-pong ball to speeds up to
78 Mach 1.4. The supersonic ping-pong ball produces a standing shock wave, as can be seen using
79 high-speed shadowgraph imaging techniques^{7,12} (**Video 2**).

80
81 A low-power (class II) HeNe laser is used to carry out optical diagnostic studies on the
82 performance of the cannon. The HeNe laser beam is split into two paths, with one path traversing
83 through a set of acrylic windows near the exit of the cannon and the second path traversing just
84 past the exit of the cannon. Each path terminates on a photoreceiver, and the signal is displayed
85 on a dual-channel oscilloscope. The oscilloscope trace recorded during the firing of the cannon
86 reveals information about both the speed of the accelerated ping-pong ball and the compressible
87 flow and shock waves that precede the exit of the ball from the cannon. The speed of the 40 mm
88 diameter ping-pong ball at each beam location is directly related to the time the ball blocks the

89 beam. A sensitive “knife-edge” shock detection setup is achieved by covering half of the detector
90 with a piece of black electrical tape and positioning the edge of the tape at the center of the
91 beam². With this setup, slight deflections of the He-Ne laser beam, produced by the compressible
92 flow-induced index of refraction gradients, are clearly visible as voltage spikes on the oscilloscope
93 trace. The shock waves traveling toward the cannon exit and the reflected shock waves deflect
94 the beam in opposite directions and are, therefore, identified by either a positive or negative
95 voltage spike.

96
97 Here, we provide instructions for the construction and utilization of an optimized PPC and SSPPC,
98 as well as optical diagnostic techniques (**Figure 1**, **Figure 2**, and **Figure 3**). The optical diagnostic
99 techniques and measurements have been developed through previous years of study¹⁻².

100
101 **PROTOCOL:**

102 **1. Building and assembly of the ping-pong cannon (PPC)**

103
104 1.1. Assemble all the components of the PPC according to **Figure 1**.

105
106 1.2. Insert two high-clarity acrylic windows in the sides of the cannon to allow for optical
107 probing across the interior of the cannon.

108
109 1.2.1. Drill two 1/2 in holes through opposite sides of the PVC near the cannon’s exit.

110
111 1.2.2. Prepare two 1/8 in thick acrylic windows using a laser engraver. Download the three
112 supplementary svg files.

113
114 NOTE: There are three files labeled “JoVE_AcrylicWindows_Step1_Engrave.svg” (**Supplementary**
115 **File 1**), “JoVE_AcrylicWindows_Step2_Engrave.svg” (**Supplementary File 2**), and
116 “JoVE_AcrylicWindows_Step3_Cut.svg” (**Supplementary File 3**). These three files should be used
117 in the order provided by using the process described in the title (engrave/cut). The laser speed
118 and power settings should be set according to the manufacturer’s recommended settings for
119 acrylic. Each engraving step should remove approximately 1/3 of the thickness of the material.

120
121 1.2.3. Add silicon sealant to the edge of the acrylic, being careful not to get any on the window.
122 Then, place windows in the holes, ensuring they are perpendicular to one another. Leave ample
123 time for the silicone to cure after this part of the process.

124
125 NOTE: If a laser cutter is not available, a piece of clear tape can be wrapped around the
126 circumference of the pipe to seal the 1/2 in holes and act as a window through into the interior
127 of the pipe. Further experimentation can be carried out by inserting additional windows in the
128 cannon to measure the velocity and acceleration of the ping-pong ball along the length of the
129 driven pipe.

130
131 1.3. Using a belt sander, sand off the face of the flange at the exit of the cannon. Finish sanding
132 with fine-grit sandpaper so that the tape can adhere well to the flange.

133
134 1.4. Using a laser cutter, cut an acrylic cap following "JoVE_AcrylicCap_Cut.svg"
135 (**Supplementary File 4**). Attach a full-faced rubber gasket to the acrylic cap. The acrylic cap is a
136 component of the pressure seal used when firing the PPC.

137
138 1.5. Firmly secure the cannon for firing, and position a sturdy container to safely catch the
139 ping-pong ball with ample padding to minimize the impact with the back wall of the container.

140
141 NOTE: There are many solutions for securing the ping-pong cannon and safely catching the ball.
142 For the presented experiment, a custom clamping system was created to firmly secure the
143 cannon with a horizontal orientation. These clamps can be constructed following
144 "JoVE_CannonMountTemplate.png" (**Supplementary File 5**).

145
146 1.5.1. Use **Supplementary File 5** as a template to cut out 2 in x 6 in wood planks. Connect the
147 upper and lower portions of the clamping system with a draw latch and hinge to secure the
148 cannon.

149
150 1.5.2. Line the insides of the clamps with rubber gasket material to prevent the slipping of the
151 cannon during the firing process. Attach the connected upper and lower portions of the
152 clamping system to the base using four corner brackets.

153
154 1.5.3. Mount the completed clamping system to a tabletop using four C-clamps. Construct a 13
155 in x 13 in x 24 in plywood container, and back it with four 1 in plywood sheets to catch the ping-
156 pong ball. Place a cushioning material in the container to prevent ball rebounds. Mount this
157 container with C-clamps to a tabletop.

158
159 **2. Building and assembly of the supersonic ping-pong cannon (SSPPC)**
160

161 2.1. Assemble all the components of the driver pipe following **Figure 2**.

162
163 NOTE: The primary difference between the PPC and the SSPPC is that the SSPPC is augmented
164 with a driving, pressurized section of schedule 80 PVC pipe that is connected to the entrance of
165 the PPC. Therefore, if the PPC has already been constructed, all that remains to be assembled to
166 construct the SSPPC is the driver pipe section.

167
168 2.2. Firmly secure the cannon for firing and position a sturdy container that can safely catch
169 the ping-pong ball with ample padding to minimize the impact on the back wall of the container.

170
171 NOTE: The mounting and catching systems described in step 1.5 are the same systems used to
172 secure the SSPPC.

173
174 **3. Optical diagnostics**
175

176 **3.1. Set up the laser, beam splitter, mirror, and photoreceivers by mounting the components**

177 on an optical breadboard, according to **Figure 3**. Orient the laser perpendicularly to the cannon,
178 with the first beam traversing the interior of the pipe through the acrylic windows and the second
179 passing just outside of the cannon exit.

180
181 3.2. Power the photoreceivers and laser module by connecting them to a 15 V current limited
182 power supply and laser power supply. Connect the photoreceivers to the two channels of the
183 oscilloscope using BNC cables.

184
185 3.3. Place black electrical tape over half of the photoreceiver sensor. The tape serves as a
186 “knife edge” to create a sensitive shock detection setup.

187
188 NOTE: The sensitivity of the knife-edge detection can be further enhanced using a converging
189 lens to focus the beam on the knife edge. The sensitivity can also be enhanced by increasing the
190 distance the beam travels to the photoreceiver, resulting in a greater refractive displacement of
191 the beam.

192
193 3.4. Prior to setting the trigger level on the oscilloscope, pay special attention to avoid
194 clipping, which can result from the sensitivity of the knife-edge setup. To avoid clipping, adjust
195 the position of the beam on the knife edge so that the baseline voltage is approximately 50% of
196 the maximum voltage. The maximum voltage is the voltage when the full beam is on the
197 unobstructed detector.

198
199 3.4.1. Adjust the settings on the oscilloscope to collect 20 million data points. Set the data
200 acquisition rate to 500 MHz by adjusting the horizontal scale knob. Turn the trigger knob to trip
201 at a voltage slightly below the baseline voltage acquired from the photoreceiver.

202
203 NOTE: The velocity of the ping-pong ball can be found through simple mathematics using the
204 photoreceiver modules. The velocity is the diameter of the ping-pong ball divided by the time the
205 beam is obstructed by the ball. A microprocessor is utilized to process the signal received from
206 the interior photoreceiver module to automatically measure the velocity of the ball at the end of
207 the cannon.

208
209 4. Automatic velocity measurements

210
211 4.1. To utilize a microprocessor for automatic velocity measurements, convert the signal from
212 the photoreceiver module to a 0–5 V pulse, as shown in **Figure 5**, using a comparator that triggers
213 at approximately 10% of the baseline voltage. Connect the converted signal to port 7 of the
214 microprocessor.

215
216 4.2. Download “JoVE_AutomaticVelocityDisplay.ino” (**Supplementary File 6**), and upload it to
217 the microprocessor.

218
219 4.3. Connect the RA8875 display and driver board to the designated ports on the
220 microprocessor.

221

222 **5. Setup and firing of the ping-pong cannon**

223

224 **5.1. Put on ear and eye protection before firing the cannon.**

225

226 **5.2. Insert a ping-pong ball into the exit of the cannon. Blow lightly into the end of the cannon**
227 **until the ball hits the vacuum fitting near the entrance of the pipe.**

228

229 **5.3. Secure a 3 in x 3 in square of tape onto the flange at the exiting end of the cannon and a**
230 **second square onto the acrylic cap. Seal the tape such that it adheres to the surface of the flange**
231 **and cap.**

232

233 **NOTE: If there are any wrinkles or large bubbles, the tape needs to be discarded. If the tape does**
234 **not sufficiently adhere to the surface, the vacuum can be lost, and the cannon can fire**
235 **prematurely. If at any point the vacuum is lost, the needle valve connected to the vacuum pump**
236 **can be opened to bring the system to equilibrium.**

237

238 **5.4. Ensure the laser beam is centered on the knife edge, the trigger is properly set, and the**
239 **catching container is secure.**

240

241 **5.5. Turn on the vacuum pump to evacuate the pipe to a reduced absolute pressure of less**
242 **than 2 Torr. Once a sufficient vacuum has been reached, puncture the tape at the entrance with**
243 **a sharp object such as a broadhead or razor tip.**

244

245 **5.6. After firing, turn off the vacuum pump. Remove the tape from the exit flange and the**
246 **acrylic cap.**

247

248 **6. Setup and firing of the supersonic ping-pong cannon**

249

250 **6.1. For safety, wear hearing and eye protection throughout the firing process.**

251

252 **6.2. Cut sheets of 0.0005 in, 0.001 in, and 0.002 in polyester film that match the dimensions**
253 **of the flange. These sheets can be cut by hand or, preferably, using a laser cutter. Use the**
254 **supplementary file “JoVE_MylarDiaphragm_Cut.svg” (**Supplementary File 7**) as an outline.**

255

256 **NOTE: For the purpose of this experiment, the cannon was fired with single sheets of 0.0005 in,**
257 **0.001 in, and 0.002 in polyester film, and the results are recorded in **Figure 7**. A template to laser-**
258 **cut the polyester film can be found as an SVG file (**Supplementary File 7**).**

259

260 **6.3. Ensure the valve from the air compressor to the driver pipe is closed. Prefill the air**
261 **compressor to allow for faster filling of the driver pipe when the cannon is ready to be fired.**

262

263 **6.4. Insert a ping-pong ball into the exit of the cannon. Blow lightly into the end of the cannon**
264 **until the ball is stopped by the vacuum fitting near the entrance of the driven pipe.**

265
266 6.5. Secure a 3 in x 3 in square of tape onto the exiting end of the cannon. Seal the tape such
267 that it adheres to the surface of the flange.

268
269 NOTE: If there are any wrinkles or large bubbles, the tape needs to be discarded. If the tape does
270 not sufficiently adhere to the surface, the vacuum can be lost, and the cannon can fire
271 prematurely. If the vacuum leaks or other complications arise, use the pressure release valve on
272 the driver pipe and the needle valve on the vacuum pump to bring the system to equilibrium.

273
274 6.6. Insert a precut thin polyester diaphragm between two rubber gaskets. Place the
275 diaphragm and rubber gaskets between the driver and driven sections of the cannon. Tightly
276 connect the two sections using 4 cam clamps.

277
278 6.7. Ensure the laser beam is centered on the knife edge, the trigger is properly set, and the
279 catching container is secure.

280
281 6.8. Turn on the vacuum pump to evacuate the pipe to a reduced absolute pressure of less
282 than 2 Torr. Release the pressure from the air compressor into the driver pipe. Allow the pressure
283 to rise until the diaphragm bursts and the compressed air within the driver pipe rapidly fills the
284 evacuated driven pipe.

285
286 6.9. After the cannon fires, turn off the air compressor and the vacuum pump. Remove the
287 burst polyester diaphragm and tape from the cannon.

288
289 **REPRESENTATIVE RESULTS:**

290 Here, we provide instructions for the construction and utilization of a PPC and an SSPPC, along
291 with the implementation of the optical diagnostics for shock characterization and velocity
292 measurements. Representative experimental results are also provided. The completed systems
293 of the PPC and SSPPC, along with necessary accessories, are shown in **Figure 1** and **Figure 2**. The
294 SSPPC is an augmented version of the PPC, where a driving, pressurized section of pipe is
295 connected to the driven pipe of the PPC. The optical diagnostics setup for the knife-edge
296 detection of shock waves and ping-pong ball velocity measurements is shown in **Figure 3**. A
297 sample oscilloscope trace demonstrating the effectiveness of the optical diagnostics for shock
298 characterization and velocity measurements is shown in **Figure 4**, along with conceptual sketches
299 showing the motion of the ball and the reflecting shock waves corresponding to the oscilloscope
300 trace. The raw and processed signals received by the microprocessor, along with a depiction of
301 the LCD-displayed velocity calculations, are presented in **Figure 5**. A representative dual-channel
302 oscilloscope trace from a successful firing of the SSPPC is shown in **Figure 6**. The oscilloscope
303 traces demonstrate the effectiveness of the knife-edge setup for the detection of shock waves
304 inside and just past the exit of the cannon. The traces also display a clear cutoff in the signal as
305 the ball passes, which is used for accurate ball velocity calculations. Tests were carried out for
306 the firing of the SSPPC under different diaphragm rupture conditions. The correlation between
307 the ping-pong ball velocities and SSPPC diaphragm rupture conditions is plotted in **Figure 7**.

309 **FIGURE AND TABLE LEGENDS:**

310 **Figure 1: Schematic of the standard ping-pong cannon.** This figure shows the setup and layout
311 of the standard ping-pong cannon.

312
313 **Figure 2: Schematic of the supersonic ping-pong cannon.** This figure shows the setup and layout
314 of the supersonic ping-pong cannon.

315
316 **Figure 3: Schematic of the optical diagnostic hardware setup.** This figure shows the setup and
317 layout of the components for optical diagnostic measurement.

318
319 **Figure 4: Representative oscilloscope trace with illustrated shock wave propagation.** This figure
320 depicts a propagating shock wave reflecting throughout the firing process of the cannon, which
321 is represented by a change in voltage with respect to time. The five snapshots of the cannon
322 portray the direction of the shock propagation in conjunction with the position of the ball in the
323 cannon. The direction of the shock wave is determined by a positive or negative spike in the
324 signal. The velocity can be measured through the width of the “square” pulse caused by the ball
325 cutting off the beam.

326
327 **Figure 5: Microprocessor signal conversion and display.** Here, we show the trace of the internally
328 sensing photoreceiver caused by a typical shot of the PPC. The pulse caused by the traveling ball
329 is inverted by a comparator, extra noise is removed, and railed to 0 V and 5 V so that it can be
330 easily read by the microprocessor. The width of the processed square pulse is read by the
331 microprocessor and used to calculate the velocity, which is then displayed on the LCD.

332
333 **Figure 6: Representative oscilloscope trace for the firing of the SSPPC.** The dual-channel
334 oscilloscope trace shows the knife-edge signal for the beams traversing the interior (red) and
335 exterior (blue) regions near the exit of the cannon.

336
337 **Figure 7: Dependence of the SSPPC ping-pong ball exit speeds on the diaphragm rupture
338 conditions.** The SSPPC was fired for a series of cases utilizing single sheets of 0.0005 in, 0.001 in,
339 and 0.002 in polyester film. The membrane pressure differential upon rupture was plotted versus
340 the Mach number for each case. The cannon was fired eight times for each diaphragm thickness,
341 and the vertical and horizontal error bars represent the standard error in the differential pressure
342 and Mach number, respectively.

343
344 **Video 1: Schlieren imaging technique.** The video reveals the response of the tape to the
345 reflecting shock waves and the eventual detachment of the tape at the exit of the PPC.

346
347 **Video 2: High-speed shadowgraph imaging technique.** The supersonic ping-pong ball produces
348 a standing shock wave.

349
350 **Supplementary File 1: JoVE_AcrylicWindows_Step1_Engrave.svg**

351
352 **Supplementary File 2: JoVE_AcrylicWindows_Step2_Engrave.svg**

353

354 **Supplementary File 3: JoVE_AcrylicWindows_Step3_Cut.svg**

355

356 **Supplementary File 4: JoVE_AcrylicCap_Cut.svg**

357

358 **Supplementary File 5: JoVE_CannonMountTemplate.png**

359

360 **Supplementary File 6: JoVE_AutomaticVelocityDisplay.ino**

361

362 **Supplementary File 7: JoVE_MylarDiaphragm_Cut.svg**

363

364 **DISCUSSION:**

365 We have presented a method for the construction of a PPC and an SSPPC along with optical
366 diagnostics for the measurement of ball velocities and for the characterization of shock
367 propagation near the exit of the cannon. The standard PPC is constructed with a 2 m section of
368 1.5 in schedule 80 PVC pipe. The pipe is fitted with flanges at each end, quick-connect vacuum
369 fittings, and acrylic windows near the exit for laser diagnostics. A detailed schematic of the PPC
370 is shown in **Figure 1**. Prior to firing, a ping-pong ball is inserted into the cannon, and the ends are
371 sealed. The exit end is sealed by securing tape directly onto the flange. At the other end of the
372 pipe, tape is secured over an acrylic cap with a 1.5 in cutout, and the pipe is sealed using the
373 acrylic cap with a rubber gasket. The PPC is firmly secured, and a sturdy container is positioned
374 to safely catch the ping-pong ball. The cannon is fired by evacuating the pipe to a reduced
375 absolute pressure of less than 2 Torr and puncturing the cannon with a sharp object. The SSPPC
376 is an augmented construction of the PPC that produces increased accelerations and supersonic
377 ping-pong ball velocities by securing a pressurized section of 4 in schedule 80 PVC pipe to the
378 standard PPC. A detailed schematic of the SSPPC is shown in **Figure 2**. One end of the pressurized
379 pipe is sealed with a cap, whereas the other end is connected to the PPC with a reducer coupling
380 and flange. The pressurized pipe is fitted with a 1–100 psi pressure gauge, quick-connect fittings
381 to an air compressor, and a safety pressure relief valve. Prior to firing, the ball is inserted into the
382 cannon and the exit end is sealed by securing tape onto the flange. Then, the driver and driven
383 sections are securely connected with a thin polyester diaphragm and rubber gasket in between
384 them. The SSPPC is secured, and a sturdy container is positioned to safely catch the ping-pong
385 ball. After reducing the pressure in the driven pipe to less than 2 Torr, the cannon is fired by
386 releasing pressure from the air compressor into the driver pipe until the diaphragm bursts.

387

388 The knife-edge optical diagnostics are set up on an optical breadboard with a laser, beam splitter,
389 mirror, and two photoreceivers, as shown in **Figure 3**. The laser is oriented perpendicular to the
390 cannon, with one beam traversing the interior of the pipe through the acrylic windows and
391 another beam (from the beam splitter) passing just beyond the exit of the cannon. The intensities
392 of the beams are collected by two photoreceiver modules, and the signal is displayed on a two-
393 channel digital oscilloscope. Black electrical tape is placed on the photoreceiver sensors to block
394 approximately half of each beam. The tape serves as a knife edge and increases the sensitivity to
395 detect small transverse deflections produced by shock waves or other density variations in the
396 flow. Data from the photoreceivers are automatically recorded when the cannon is fired by

397 triggering the oscilloscope when the ball traverses the first beam. Prior to setting the trigger level
398 on the oscilloscope, special care must be taken to avoid clipping, which can result from the
399 sensitivity of the knife edge system. Clipping can be avoided by adjusting the position of the beam
400 on the knife edge such that the baseline voltage is approximately 50% of the maximum voltage.
401 The ping-pong ball velocities are calculated using the traces from the photoreceiver modules. A
402 simple and accurate calculation for the velocity is made by dividing the diameter of the ping-pong
403 ball by the time the beam is obstructed by the ball. A microprocessor is utilized to process the
404 signal received from the beam traversing the interior of the pipe to automatically calculate and
405 display the velocity of the ball near the exit of the cannon.

406
407 The results of this method are highly reproducible and provide an immediate digital display of
408 the ping-pong ball velocities, enhancing the value of the cannon as a demonstration device. The
409 oscilloscope trace using the knife-edge setup contains a rich visual depiction of the compressible
410 flow and shock waves associated with the cannon. This method focuses on an experiment that is
411 influenced by many secondary factors that can be studied further in a laboratory setting, such as
412 wall friction, the leakage of air around the ball, the formation of shock waves by the accelerating
413 ball, the rapid buildup of pressure produced by the reflection of shock waves between the ball
414 and the taped exit, and the subsequent detachment of the tape prior to the exit of the ball. A
415 representative oscilloscope trace from the firing of the SSPPC is shown in **Figure 6**. The upper
416 trace in the figure corresponds to the beam that traverses the interior of the cannon near the
417 exit. The lower trace corresponds to the beam that traverses the ping-pong ball's path just after
418 exiting the cannon. A clear cutoff in the signal is evident as the ball passes by and obstructs each
419 beam. Voltage spikes prior to the ball passage, introduced by propagating shock waves, are
420 enhanced by the knife-edge detection setup and can be seen on each trace. The successive
421 voltage spikes in the upper trace invert due to the reflection of the shock waves inside the cannon
422 between the ball and the tape. In contrast, each voltage spike on the lower trace is in the same
423 direction because the shock waves outside the cannon do not reflect and pass through the
424 exterior beam a second time.

425
426 In addition to the experiments that have been presented, follow-on student projects could be
427 designed to provide additional control over the test conditions during the firing of the cannon.
428 For example, the current SSPPC fires upon natural rupture of the diaphragm after a sufficient
429 pressure differential builds up between the two sections of pipe. The development of a user-
430 controlled rupture mechanism that is initiated by the user or automatically triggered at a desired
431 driver pressure would allow for greater precision in controlling the test conditions. Other follow-
432 on projects could be aimed at measuring the velocity of the ping-pong ball at multiple positions
433 in a single firing of the cannon to provide a more complete description of the velocity and
434 acceleration of the ball as it travels down the pipe. Velocity measurements in the PPC as a
435 function of position have been previously studied, but with each velocity data point obtained
436 from separate firings of the PPC¹.

437
438 The ping-pong cannon will continue to be a demonstration that generates intrigue and curiosity
439 for audiences of all ages and types. The complex fluid physics exhibited by the cannon will
440 continue to provide a seemingly limitless supply of follow-on studies that can be investigated in

441 physics and engineering laboratory projects. In the classroom, it will continue to serve as a
442 popular demonstration that stimulates excitement and intrigue about the magnitude of
443 atmospheric pressure. We anticipate that the methods for the construction of the SSPPC and the
444 optical diagnostics that we have presented will enhance the value of the cannon both as a
445 demonstration device and as a useful apparatus for exciting laboratory experiments.

446

447 **ACKNOWLEDGMENTS:**

448 This work is supported by the NSF Division of Undergraduate Education (award # 2021157) as
449 part of the IUSE: EHR program

450

451 **DISCLOSURES:**

452 The authors have nothing to disclose.

453

454 **REFERENCES:**

- 455 1. Peterson, R. W., Pulford, B. N., Stein, K. R. The ping-pong cannon: A closer look. *The Physics*
456 *Teacher*. **43** (1), 22–25 (2005).
- 457 2. Olson, G. et al. The role of shock waves in expansion tube accelerators. *American Journal of*
458 *Physics*. **74** (12), 1071–1076 (2006).
- 459 3. Cockman, J. Improved vacuum bazooka. *The Physics Teacher*. **41** (4), 246–247 (2003).
- 460 4. Ayars, E., Buchholtz, L. Analysis of the vacuum cannon. *American Journal of Physics*. **72** (7),
461 961–963 (2004).
- 462 5. Thuecks, D. J., Demas, H. A. Modeling the effect of air-intake aperture size in the ping-pong
463 ball cannon. *American Journal of Physics*. **87** (2), 136–140 (2019).
- 464 6. Liepmann, H. W., Roshko, A. *Elements of gas dynamics*. Wiley. New York, NY (1957).
- 465 7. Settles, S., *Schlieren and shadowgraph techniques*. Springer Berlin Heidelberg. Berlin, Germany
466 (2001).
- 467 8. Geisert, T. A single mirror schlieren optical system. *American Journal of Physics*. **52** (5), 467
468 (1984).
- 469 9. French, R. M., Gorrepati, V., Alcorta, E., Jackson, M. The mechanics of a ping-pong ball gun.
470 *Experimental Techniques*. **32** (1), 24–30 (2008).
- 471 10. French, M., Zehrung, C., Stratton, J. A supersonic ping-pong gun. *arXiv*. doi:
472 10.48550/arXiv.1301.51881301.5188 (2013).
- 473 11. French, F., Choudhuri, R. Stratton, J., Zehrung, C. Huston, D. A modular supersonic ping-pong
474 gun. *arXiv*. doi: 10.48550/arXiv.1802.05334 (2018).
- 475 12. Fredrick, C. D. et al. Complementary studies on supersonic nozzle flow: heterodyne
476 interferometry, high-speed video shadowgraphy, and numerical simulation. *WIT Transactions on*
477 *Modelling and Simulation*. **59**, 223–234 (2015).