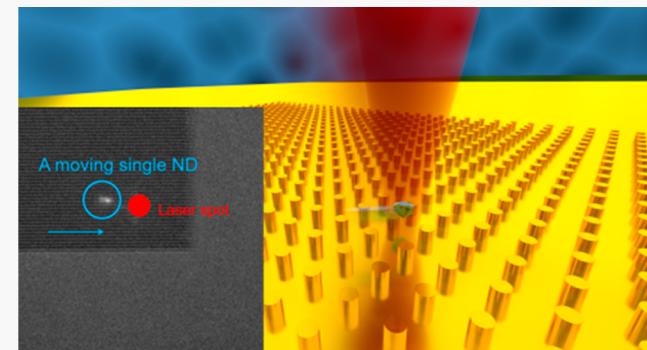


1 Electrothermoplasmonic Trapping and Dynamic Manipulation of 2 Single Colloidal Nanodiamond

3 Chuchuan Hong, Sen Yang, Ivan I. Kravchenko, and Justus C. Ndukaife*

Cite This: <https://doi.org/10.1021/acs.nanolett.1c00357>

Read Online


ACCESS |

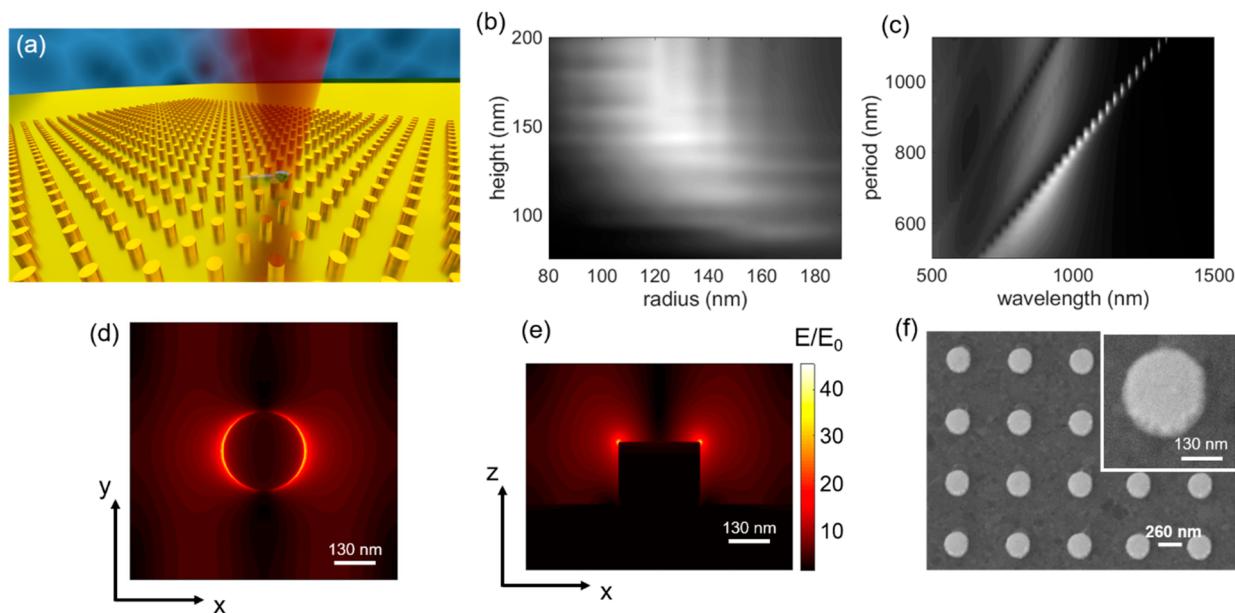
Metrics & More

Article Recommendations

Supporting Information

4 **ABSTRACT:** Low-power trapping of nanoscale objects can be
5 achieved by using the enhanced fields near plasmonic nano-
6 antennas. Unfortunately, in this approach the trap site is limited to
7 the position of the plasmonic hotspots and continuous dynamic
8 manipulation is not feasible. Here, we report a low-frequency
9 electrothermoplasmonic tweezer (LFET) that provides low-power,
10 high-stability and continuous dynamic manipulation of a single
11 nanodiamond. LFET harnesses the combined action of the laser
12 illumination of a plasmonic nanopillar antenna array and low-
13 frequency alternating current (ac) electric field to establish an
14 electrohydrodynamic potential capable of the stable trapping and
15 dynamic manipulation of single nanodiamonds. We experimentally
16 demonstrate the fast transport, trapping, and dynamic manipulation
17 of a single nanodiamond using a low-frequency ac field below 5 kHz and low-laser power of 1 mW. This nanotweezer platform for
18 nanodiamond manipulation holds promise for the scalable assembly of single photon sources for quantum information processing
19 and low noise quantum sensors.

20 **KEYWORDS:** nanotweezers, photothermal effect, electrohydrodynamics, nanodiamond


21 **P**lasmonic nanoantennas, which can confine and enhance
22 local electromagnetic fields, are a powerful platform for
23 the development of optical nanotweezers.^{1–5} Upon resonant
24 illumination, plasmonic nanoantennas create highly localized
25 and enhanced electromagnetic fields within volumes well-
26 beyond the diffraction-limit^{6,7} and thus produce narrower and
27 deeper trapping potential wells than the conventional optical
28 tweezers. This capability facilitates trapping nanoscale particles
29 using relatively low laser power with high stability.^{8–10} The use
30 of optical forces from plasmonic nanoantennas is particularly
31 suited for the trapping and positioning of colloidal nano-
32 diamonds (NDs) near plasmonic cavities to enhance the light–
33 matter interaction. In particular, for quantum photonics
34 applications NDs have been identified as stable quantum
35 emitters^{11–13} capable of providing single photon emission
36 under room-temperature conditions.¹⁴ To enhance their
37 emission properties, it is crucial to develop methods that can
38 rapidly trap and couple them to respective nanophotonic
39 cavities. Because of their small sizes, NDs are more accessible
40 for trapping using plasmonic nanotweezers in comparison to
41 the conventional optical tweezers. However, on-chip plasmonic
42 nanotweezers are only able to trap the nanoscale objects at the
43 specific position of the hotspot defined by the plasmonic
44 nanoantenna and do not possess dynamic manipulation
45 capability along the plasmonic substrate. Prior work by Lin
46 et al.¹⁵ reported the continuous dynamic manipulation of
47 single nanoscale charged gold nanoparticles using a thermo-

electric field induced by the photothermal heating of a porous⁴⁸ gold plasmonic substrate submerged in an ionic surfactant. In⁴⁹ this approach, ionic surfactants (cetyltrimethylammonium⁵⁰ chloride) are introduced in the colloidal solution, which in⁵¹ the presence of a thermal gradient establishes the attractive⁵² thermophoretic force to enable the trapping of the gold⁵³ colloids with single particle resolution. This approach has yet⁵⁴ to be translated to the continuous dynamic manipulation of⁵⁵ single nanoscale dielectric objects.^{15–18} Another recently⁵⁶ reported technique by Gosh et al. employs dielectric microrods⁵⁷ that are coated with plasmonic nanodisks.¹⁹ The dielectric⁵⁸ microrods are large enough to be optically trapped with⁵⁹ conventional optical traps, while the light coupled to the⁶⁰ plasmonic nanodisks serves as plasmonic tweezers that can trap⁶¹ the nanoscale objects in solution. Dynamic manipulation of the⁶² trapped nanoscale objects is achieved in an indirect fashion by⁶³ manipulating the optically trapped dielectric microrods.⁶⁴

Here, we capitalize on the latest advances in electro-⁶⁵ thermoplasmonic tweezers^{20–22} and present a method termed⁶⁶

Received: January 26, 2021

Revised: May 29, 2021

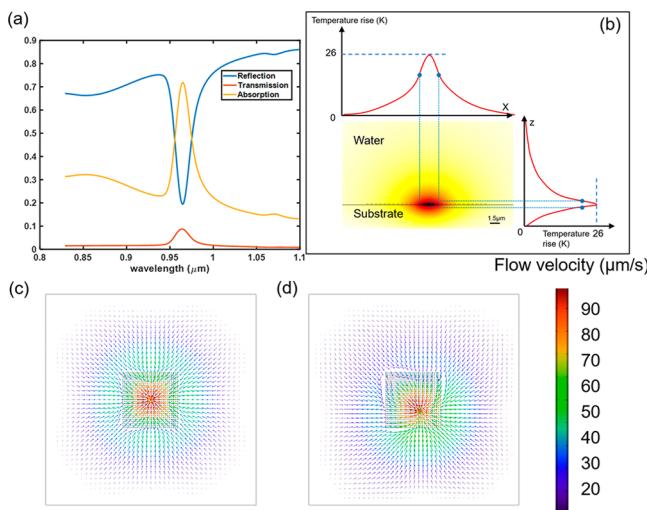


Figure 1. (a) Three-dimensional illustration of the ac-assisted nanotweezer enabled by an array of plasmonic nanoantenna capable of dynamic manipulation of single nanodiamonds. A single nanodiamond is trapped and repositioned by the laser motion relative to the nanoantenna array. (b) The absorption cross section efficiency map obtained from sweeping the radius and height of the gold nanopillars in an array. (c) The absorption cross section efficiency spectra when we parametrically sweep the lattice constant of an infinite array. The resonance wavelength is tuned to 973 nm. (d) The simulated electric field distribution in one unit-cell on the top of the nanopillar. (e) The simulated vertical electric field distribution in one unit-cell across the center of the nanopillar. In (d,e), the plane-wave excitation is along the z-direction with a 973 nm wavelength. The color bar is normalized by the incident light electric field amplitude. (f) The SEM image of the fabricated gold-nanopillar array.

67 low frequency electrothermoplasmonic tweezer (LFET) that
 68 uses low-frequency alternating current (ac) electric field
 69 combined with a laser illumination for the trapping and
 70 continuous dynamic manipulation of a single ND (70–100 nm
 71 in diameter) suspended in deionized water environment. Using
 72 LFET, we can trap a single ND on the top of an array of a
 73 plasmonic nanoantenna and dynamically manipulate the single
 74 ND by simply moving the laser spot or microscope stage, as
 75 shown in Figure 1a. Our nanotweezers platform is composed
 76 of an array of gold nanopillars illuminated with a near-IR laser
 77 (973 nm wavelength) and perpendicularly applied low-
 78 frequency ac electric field to optically induce thermal gradients
 79 and distort the ac electric field, respectively. To obtain a
 80 maximized photothermal conversion efficiency, while keeping
 81 the laser power low, we parametrically optimize the absorption
 82 cross section of one unit-cell by sweeping the radius, height,
 83 and lattice constant of the gold nanopillar array, as shown in
 84 Figure 1b,c. The coupling of the gold nanopillar array and the
 85 induced localized plasmon resonance of the single antennas
 86 results in an enhanced and spatially confined electric field
 87 distribution, as shown in Figure 1d,e, so that the photothermal
 88 conversion efficiency is enhanced. The optimized gold
 89 nanopillars are of 130 nm in radius and 150 nm in height
 90 and are placed on a 50 nm thick gold film on a glass substrate.
 91 The lattice constant of the array is 720 nm, which ensures that
 92 the highest absorption cross section is centered around 973 nm
 93 wavelength. We also notice that tuning the size and period of
 94 the gold nanopillar does not have a significant effect on the
 95 distribution of the applied ac electric field as shown in Figures
 96 S1 and S2. We attribute this to the fact that the wavelength of
 97 the ac field is much larger than the tuning range of the size and
 98 period of the gold nanopillar. As a result, the optically
 99 optimized design with a radius of 130 nm and period of 720
 100 nm was chosen for this work. The scanning electron

101 microscopy (SEM) image of the fabricated sample is depicted 102
 103 in Figure 1f. The fabrication was performed using the standard 104
 105 nanofabrication approach composed of electron-beam lithog- 106
 107 raphy and lift-off (see Methods). 108

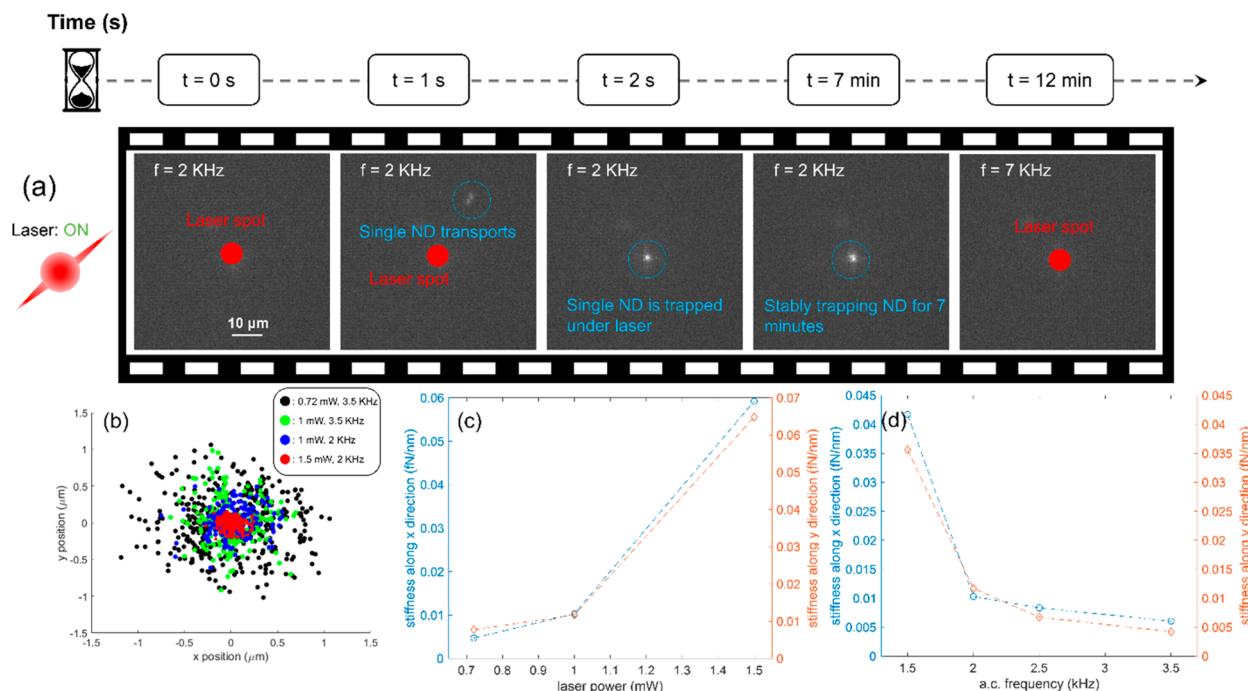
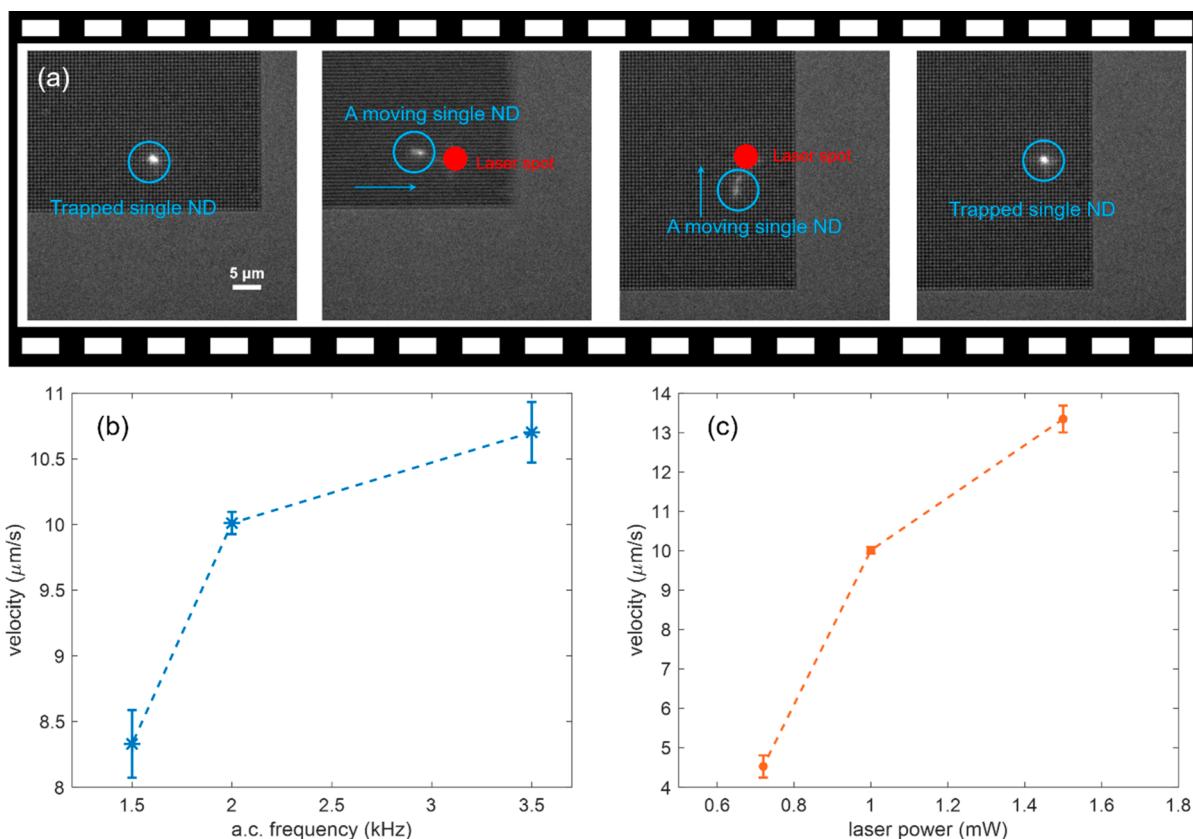

109 Using the optimized design, the absorption, reflection, and 110
 111 transmission spectra are numerically calculated and plotted in 112
 113 Figure 2a. The absorption cross-section is obtained by solving 114
 115 the Maxwell's equation using a finite-difference-time-domain 116
 117 commercial solver, Lumerical FDTD. The enhanced light 118
 119 absorption leads to temperature rise and thermal gradient in 120
 121 the fluid. The simulated temperature that rises for a 1 mW 122
 123 laser illumination and focused to a spot size of 1 μ m radius is 124
 125 depicted in Figure 2b. An ac electric field is applied across the 126
 127 microfluidic channel to establish the electrothermoplasmonic 128
 129 (ETP) flow because of the action of the laser-induced thermal 130
 131 gradient and applied ac field, which enables fast transport and 132
 133 the in-plane manipulation of trapped NDs. The gold nanopillar 134
 135 array distorts the local ac electric field to create both normal 136
 137 and tangential ac electric-field components. These tangential 138
 139 components exert lateral Coulombic force on the diffuse 140
 141 charges in the electrical double layer (EDL), which produces 142
 143 local ac electro-osmotic (ACEO) motion of the fluid. The total 144
 145 flow fields at a position of 50 nm above the array when the 146
 147 laser is focused at the center and off the center of the array are 148
 149 depicted in Figure 2c,d, respectively. They show the ability of 150
 151 our nanotweezers to reposition the trapping location site by 152
 153 relocating the laser spot on the gold nanopillar array. 154
 155 Additionally, the primary force responsible for the localization 156
 157 of the trapped nanodiamonds along the out-of-plane direction 158
 159 is due to the particle–surface interaction force, which results 160
 161 from the interaction between the surface charges of the particle 162
 163 and their image charges in the conducting plane.²³ This 164
 165 particle surface interaction force increases at lower ac 166
 167 frequencies below the charge relaxation frequency of the 168

Figure 2. (a) The simulated absorption, reflection, and transmission spectra of an infinite array of gold nanopillar array. The absorption spectrum is centered at a peak wavelength of 973 nm to maximize the photothermal conversion efficiency at this wavelength. (b) The simulated temperature rise in the vicinity of the nanopillar array using 1 mW laser of 973 nm and 1 μm laser spot radius. Line plots indicate the thermal confinement is better along the vertical direction than along the horizontal direction because of thermal spreading into the high thermal conductivity gold film. The total flows including ACEO and ETP flows simulated using the same laser settings as (b) with the laser spot at (c) the center of the array and (d) off from the center of the array. The induced temperature field from (b) in conjunction with an applied ac electric field generates a strong ETP flow centered around the laser spot position. By moving the laser position, the flow fields are spatially translated along the plasmonic substrate.

fluid. The interplay between the microfluidic flows, optical gradient force, and particle–surface interaction force enhanced at low ac electric-field frequencies enables the rapid particle loading process, localization of a single ND near the gold nanopillar array, and dynamic manipulation of a single ND. A detailed explanation of the respective contributions of the forces acting on a single nanodiamond in the system is presented in the Supporting Information along with the numerical analysis of the particle–surface interaction force, repulsive thermophoretic force, and optical gradient force. Furthermore, an illustration of the direction of the forces is depicted in Figure S3. The electrohydrodynamic physics to model the flows is simulated using the finite-element-solver in COMSOL Multiphysics software.

Experimental demonstration was performed using diluted solution of NDs (Sigma-Aldrich fluorescent nanodiamond) with an average particle size of 70–100 nm in deionized water. The NDs are diluted to a concentration of 5.65×10^5 particle/mL. A linearly polarized laser beam with 973 nm wavelength was focused to a spot size of 1 μm radius on the gold nanopillar array using a water immersion objective lens with a numerical aperture of 1.2. Figure 3a shows the process of fast transport, trapping, and releasing of a single ND particle under different ac frequencies, as shown in SI Video 1. The laser power was set to 1 mW and the ac frequency was initially set to a low frequency of 2 kHz to guarantee the trapping. First, we illuminated the nanopillar region with the laser but without the ac field applied and no trapping phenomenon was observed. Then an ac electric field at a frequency of 2 kHz was applied perpendicular to the gold film. The applied peak-to-peak voltage was 10 V and the microfluidic chamber height is 120 μm , corresponding to an ac electric field amplitude of 83 333

Figure 3. (a) The sequence of frames shows the fast process of a single ND transported into the hotspot and stably trapped on the gold nanopillar pattern for 7 min at 2 kHz. By tuning up the ac frequency to 7 kHz, the single ND is released rapidly. (b) The scattering plot of the trapped single ND under various ac field and laser power conditions. (c) The stiffness calculated at 2 kHz ac frequency with varying laser power applied. Higher laser power enables higher trapping stiffness. Blue circles represent the stiffness along the x-direction, and orange diamonds represent the stiffness along y-direction.


167 V/m. Immediately, an ETP flow was generated inside the
168 microchannel resulting in the rapid transport of a single ND to
169 the illuminated gold nanopillar array region. These results
170 contrast with our previous findings describing opto-thermo-
171 electrohydrodynamic tweezers (OTET)²⁰ using a finite array
172 of gold nanoholes. The difference in the particle trapping
173 behavior for the nanopillar array versus the nanohole array
174 arises because the distribution of the induced ac electro-
175 osmotic flow field vectors act in a manner to induce a strong
176 centripetal drag force (i.e., radially inward) on the nanoscale
177 objects toward the nanopillar array. Furthermore, the nano-
178 pillar array possesses a stronger radially inward ETP flow that
179 acts to transport target objects toward the illuminated laser
180 spot. Thus, unlike in OTET²⁰ the nanoscale objects are not
181 repelled from the nanopillar array to establish a stagnation
182 zone as depicted in Figure S5 (see Supporting Information).
183 Upon arrival of the ND to the laser spot, it is stably trapped at
184 the position of the laser illumination as long as the laser
185 illumination and the low-frequency ac field are simultaneously
186 present. After 7 min, the ac electric field frequency was
187 increased from 2 to 7 kHz and the ND was rapidly released
188 from the trap by the axial component of the ETP flow as
189 depicted in Figure 3a. This is because the particle–surface
190 interaction force reduces as the ac frequency is increased.
191 Thus, the drag force from the axial ETP flow and the repulsive
192 thermophoretic force overcomes the particle–surface inter-
193 action force to convect the particle away from the surface of
194 the nanopillar array.

195 The trapping stability under various laser power and ac
196 frequency conditions are described in the scatter plots in
197 Figure 3b. The trapping stability for the data presented in
198 Figure 3a is depicted in blue. The trap stiffness was determined
199 by using the equipartition theorem approach²⁴ as described in
200 Section 4 of Supporting Information. Figure 3c depicts the
201 trapping stiffness along the *x*- and *y*-direction under varying
202 laser power conditions for a constant ac field frequency of 2
203 kHz. The results show that the trapping stiffness is increasing
204 with increasing laser power. We attribute this enhancement in
205 the in-plane trapping stiffness to the fact that the in-plane
206 optical gradient force and the radial ETP flow drag force
207 increases with higher laser power. The variation of the trapping
208 stiffness with the applied ac frequency under a fixed laser
209 power of 1 mW is depicted in Figure 3d. The result shows an
210 inverse relation whereby the trapping stiffness is increasing
211 with decreasing ac field frequency. This is because for lower ac
212 frequency, the particle–surface interaction force along the
213 vertical direction and local ACEO flow are both strength-
214 ened.^{25,26} In general, as depicted in Figure 3b, the trapping
215 stability increases with increasing laser power and decreasing
216 ac field frequency. The laser power still needs to be kept within
217 the limits that prevents excessive temperature rise to prevent
218 laser-induced bubble formation. Thus, LFET provides the
219 means to harness the synergistic interaction of optical gradient
220 force and electrostatic particle–surface interaction force to
221 achieve the stable trapping and dynamic manipulation of a
222 single nanodiamond. It should be noted here that the gold
223 nanopillar array provides strong electric field enhancement,
224 which can enhance the optical gradient force and the
225 photothermal heating of the gold nanopillar array. The
226 photothermal heating of the gold nanopillar array gives rise
227 to a positive (i.e., repulsive) thermophoretic force. This
228 thermophoretic force is repulsive in the absence of ionic
229 surfactants in the fluid medium and thus repels the suspended

230 nanodiamond from the nanoantenna.^{17,27} A quantitative
231 analysis is presented in Section 7 of Supporting Information
232 to show the contribution from the thermophoretic force that
233 repels the nanodiamond from the surface of the gold
234 nanopillars. We also performed experiments whereby the
235 nanodiamond was initially trapped using the ac field and laser
236 illumination. Subsequently, the ac field was turned off with the
237 laser still on and the nanodiamond was observed to escape
238 from the trap as shown in SI Video 3. This result suggests that
239 the optical gradient force alone was not sufficient to stably trap
240 the nanodiamond in the presence of the repulsive thermo-
241 phoretic force.

242 To investigate this further, we have calculated the repulsive
243 thermophoretic force and optical gradient force along the *z*-
244 direction (axial) as depicted in Figure S8. The result shows a
245 peak thermophoretic force with a maximum of about 0.33 pN
246 at the illumination power of 1 mW. We have compared the
247 optical gradient force and repulsive thermophoretic force in
248 the axial direction under varying laser powers ranging from 0.5
249 to 1.5 mW. The result presented in Figure S8b shows that the
250 axial repulsive thermophoretic force is larger than the optical
251 gradient force for all the laser powers considered. Thus, in the
252 presence of laser illumination of the nanopillar array alone, the
253 repulsive thermophoretic force would prevent the trapping of
254 the nanodiamond with optical force alone. This repulsive
255 thermophoretic force has been reported to prevent stable
256 plasmonic optical trapping using plasmonic nanoantenna in
257 earlier works unless the temperature rise is minimized such as
258 by using very low optical illumination intensity,²⁸ off-resonant
259 excitation,²⁹ or integrating a heat sink.⁵ In LFET, with the low-
260 frequency ac electric field applied the induced electrostatic
261 particle–surface interaction force has been estimated to be
262 about 10.5 pN at a location of 20 nm from the gold nanopillar
263 as depicted in Figure S4, which is 32 times larger than the peak
264 repulsive thermophoretic force at the same location. The
265 particle surface interaction force increases as the nanodiamond
266 approaches the gold nanopillar surface, but it is eventually
267 balanced by the electrical double-layer repulsion force to
268 enable the nanodiamond to reach an equilibrium height from
269 the gold nanopillar surface and prevent the nanodiamond from
270 spontaneously sticking to the gold nanopillar surface. This
271 equilibrium height is estimated to be approximately 20 nm
272 from the surface of the gold nanopillar as depicted in Figure
273 S4a. Thus, in LFET the electrostatic particle–surface
274 interaction force induced by applying a low-frequency ac
275 electric field conveniently overcomes the repulsive thermo-
276 retic force to still enable the trapping and dynamic
277 manipulation of a single nanodiamond despite the repulsive
278 thermophoretic force. Furthermore, the LFET approach allows
279 us to achieve high stability trapping at low laser power (1
280 mW), which is smaller than the previously reported powers of
281 50–100 mW using a laser beam optical trap for the same size
282 of single nanodiamond (~100 nm).^{30,31}

283 The trapping stability remains approximately the same when
284 the nanodiamond is trapped at the center of the pattern or near
285 the edge of the nanopillar array as shown in Figure S6 of the
286 Supporting Information. To verify single nanodiamond
287 trapping, the trapped nanodiamond is patterned onto the
288 gold nanopillar array and observed under scanning electron
289 microscope (SEM). The diameter of the trapped nanodiamond
290 is about 100 nm, as shown in the SEM image depicted in
291 Figure S7 of the Supporting Information.

Figure 4. (a) The frame-by-frame sequence showing a single ND is stably trapped and manipulated along the gold nanopillar array using 1 mW laser power and a low-frequency ac field of 2 kHz. After both laser and ac field are turned on, a single ND is transported toward the illuminated spot within a few seconds. Subsequently, the laser spot is translated toward the right and the single ND moves rapidly toward the new laser spot and is stably trapped at the new location. (b,c) Transport velocity of the trapped nanodiamond under various ac frequency and laser power conditions. Blue asterisks represent the velocities under laser power from 0.72 to 1.5 mW with 2 kHz ac frequency. Orange dots represent the velocities under ac frequency for 1.5, 2, and 3.5 kHz with 1 mW laser power. For the same experimental condition, we repeated the experiment several times to calculate the average velocity. Error bars indicate the standard deviation of all the acquired velocities under the same experimental condition.

292 Besides trapping and releasing the NDs, the dynamic
 293 manipulation of the trapped NDs can be achieved using
 294 LFET, a capability not feasible in conventional chip-based
 295 plasmonic traps^{3,5} based on near-field optical force alone or
 296 geometry-induced electrostatic traps.³² The dynamic manipu-
 297 lation of the trapped NDs is achieved by translating the
 298 microscope stage or the laser beam focus along the in-plane
 299 direction. The translation of the laser focus from one position
 300 to another along the nanopillar array creates new thermal
 301 hotspots and hence new ETP flow that rapidly convects the
 302 trapped NDs to the newly illuminated spot along the surface of
 303 the nanopillar array as demonstrated in Figure 4a and SI Video
 304 2. The manipulation can be achieved over the whole patterned
 305 region as long as the laser spot is kept on the nanopillar array.
 306 The velocity of the transport of the nanodiamond depends on
 307 the laser power and ac frequency. To clarify, as shown in the
 308 second and third frames of Figure 4 the single nanodiamond is
 309 not necessarily always within the laser spot during the motion
 310 of the laser spot illumination across the nanopillar array. When
 311 the laser spot is suddenly translated to another position, due to
 312 the contribution from ETP flow the single nanodiamond is
 313 delivered to the new laser spot site rapidly. We have also
 314 presented data on the average velocity of the nanodiamond
 315 transport given by the displacement between the initial laser
 316 spot and final laser spot position divided by the time span that
 317 the single nanodiamond takes to arrive at the new location of

318 the laser spot. Higher laser power generates more photo-
 319 thermal-heating, so that the ETP flow is accelerated and the
 320 transport velocity is enhanced as depicted in Figure 4. For
 321 example, the transport velocity increases from 4.5 to 13.2 μm/s
 322 when the laser power was increased from 0.72 to 1.5 mW.
 323 With respect to variation of ac frequency, the nanodiamond
 324 transport velocity reduces with decreasing ac field frequency.
 325 We attribute this observation to the stronger electrostatic
 326 particle–surface force that increases with decreasing ac field
 327 frequency, resulting in more frictional drag on the nano-
 328 diamond as the ac frequency is reduced as depicted in Figure
 329 4b,c. For all of the experimental conditions, the achieved
 330 transport velocity ranges from 4 to 14 μm/s. This ability to
 331 quickly deliver the nanodiamond to the position of the laser
 332 spot enables facile dynamic manipulation across the surface of
 333 the fold nanopillar array. In SI Video 4, we show a typical video
 334 used for calculating the transport velocity.

335 In conclusion, we have demonstrated a low-frequency
 336 electrothermoplasmonic tweezer that harnesses low-frequency
 337 ac electric field below 5 kHz combined with low laser power
 338 for the dynamic manipulation of single NDs along a gold
 339 nanopillar array substrate. The ability of our nanotweezer to
 340 trap a single ND within a few seconds and rapidly relocate it
 341 on a plasmonic substrate holds promise for the implementation
 342 of on-chip single photon sources, plasmonic nanolasers, and
 343 low-noise quantum sensors.

344 ■ METHODS

345 **Gold Nanopillar Array Fabrication.** After a float glass
346 substrate was cleaned up, we deposited 50 nm of gold film with
347 5 nm of chromium as the adhesion layer. Then, photoresist
348 (PMMA A4) was spin-coated on for electron beam lithography
349 to define the pattern region. After development, another layer
350 of 150 nm gold was deposited. Finally, we finished the process
351 using acetone for lift-off, and a square gold nanopillar array
352 with 80 μm on the side was left on the chip.

353 **Sample Preparation.** After the nanopillar was fabricated,
354 we sandwiched the gold film by covering it with a glass
355 coverslip that has a thin coating of indium tin oxide spaced by
356 a 120 μm thick dielectric spacer to create a microfluidic
357 channel around the patterns. Two copper wires are connected
358 to the ITO side on the coverslip and on the gold film to apply
359 the ac electric field.

360 The fluorescent nanodiamond solution originally had a
361 concentration of 1 mg/mL in deionized water with nitrogen
362 vacancy of \sim 3 ppm and purchased at Sigma-Aldrich. The
363 nanodiamond was diluted by 100 000 times using deionized
364 water to generate a sparse enough solution suitable for single
365 nanodiamond manipulation. The final concentration used in
366 the experiment was 5.65×10^5 particle/mL.

367 **Fluorescence Imaging.** The trapping and imaging were
368 performed using a custom fluorescent imaging and optical
369 trapping microscope based on a Nikon Ti2-E inverted
370 microscope. The suspended particle solution was injected
371 into the microfluidic channel. A high quantum efficiency
372 sCMOS camera (Photometrics PRIME 95B) was used to
373 acquire images at a frame rate of 3.3333 frames per second.
374 The trapped nanodiamonds were excited under a green light
375 from a filtered broadband fluorescent illumination lamp
376 (Nikon INTENSILIGHT C-HGFI). The emitted red light
377 was collected through the same objective lens and imaged on
378 the camera. The nanopillar array was illuminated with a 973
379 nm semiconductor diode laser (Thorlabs CLD101S). The laser
380 beam was focused with a Nikon 60 \times water-immersion
381 objective lens (NA, 1.2). The ac electric field was supplied
382 by a dual-channel function generator (BK Precision 4047B).

383 ■ ASSOCIATED CONTENT

384 ■ Supporting Information

385 The Supporting Information is available free of charge at
386 <https://pubs.acs.org/doi/10.1021/acs.nanolett.1c00357>.

387 Video showing the ability of a low-frequency electro-
388 thermoplasmonic trap to rapidly trap a single nano-
389 diamond and to release the trapped single ND by
390 increasing the ac frequency (AVI)

391 Video showing that after the single ND is trapped a
392 dynamic manipulation is able to be achieved by
393 translating the laser spot across the nanopillar array
394 (AVI)

395 Video showing the recorded process of a trapped
396 nanodiamond escaping from the trap when the ac field
397 is turned off (AVI)

398 Video showing typical video frames used for measuring
399 the average manipulation velocity of the nanodiamond
400 (AVI)

401 Video showing a trapped nanodiamond near the edge of
402 the pattern, corresponding to the data in Figure S6
403 (AVI)

404 The ac field with various sizes, force illustration and
405 particle–surface interaction, ac osmosis simulation,
406 stiffness analysis, SEM of deposited nanodiamond,
407 thermal simulation from FEM software, balance between
408 thermophoretic force and optical gradient force, full
409 explanations of supporting videos (PDF)

410 ■ AUTHOR INFORMATION

411 Corresponding Author

412 **Justus C. Ndukaife** – *Vanderbilt Institute of Nanoscale Science*
413 and *Engineering, Vanderbilt University, Nashville, Tennessee*
414 37212, United States; *Department of Electrical Engineering*
415 and *Computer Science, Vanderbilt University, Nashville,*
416 *Tennessee 37212, United States;* orcid.org/0000-0002-8524-0657; Email: justus.ndukaife@vanderbilt.edu

417 Authors

418 **Chuchuan Hong** – *Vanderbilt Institute of Nanoscale Science*
419 and *Engineering, Vanderbilt University, Nashville, Tennessee*
420 37212, United States; *Department of Electrical Engineering*
421 and *Computer Science, Vanderbilt University, Nashville,*
422 *Tennessee 37212, United States;* orcid.org/0000-0002-1329-9385

423 **Sen Yang** – *Vanderbilt Institute of Nanoscale Science and*
424 *Engineering, Vanderbilt University, Nashville, Tennessee*
425 37212, United States; *Interdisciplinary Material Science,*
426 *Vanderbilt University, Nashville, Tennessee 37212, United*
427 *States;* orcid.org/0000-0002-0056-3052

428 **Ivan I. Kravchenko** – *Center for Nanophase Materials*
429 *Sciences, Oak Ridge National Laboratory, Oak Ridge,*
430 *Tennessee 37831, United States*

431 Complete contact information is available at:

432 <https://pubs.acs.org/10.1021/acs.nanolett.1c00357>

433 Notes

434 The authors declare no competing financial interest.

435 ■ ACKNOWLEDGMENTS

436 The authors acknowledge financial support from the National
437 Science Foundation (NSF ECCS-1933109) and Vanderbilt
438 University. A portion of this research was conducted at the
439 Center for Nanophase Materials Sciences, which is a DOE
440 Office of Science User Facility.

441 ■ REFERENCES

(1) Ndukaife, J. C.; Xuan, Y.; Nnanna, A. G. A.; Kildishev, A. V.; Shalaev, V. M.; Wereley, S. T.; Boltasseva, A. High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface. *ACS Nano* **2018**, *12* (6), 5376–5384.

(2) Hong, C.; Yang, S.; Ndukaife, J. C. Optofluidic Control Using Plasmonic TiN Bowtie Nanoantenna. *Opt. Mater. Express* **2019**, *9* (3), 953–964.

(3) Wang, K.; Crozier, K. B. Plasmonic Trapping with a Gold Nanopillar. *ChemPhysChem* **2012**, *13* (11), 2639–2648.

(4) Gao, D.; Ding, W.; Nieto-Vesperinas, M.; Ding, X.; Rahman, M.; Zhang, T.; Lim, C.; Qiu, C.-W. Optical Manipulation from the Microscale to the Nanoscale: Fundamentals, Advances and Prospects. *Light: Sci. Appl.* **2017**, *6* (9), e17039–e17039a.

(5) Wang, K.; Schonbrun, E.; Steinurzel, P.; Crozier, K. B. Trapping and Rotating Nanoparticles Using a Plasmonic Nano-Tweezer with an Integrated Heat Sink. *Nat. Commun.* **2011**, *2* (1), 459.

(6) Juan, M. L.; Righini, M.; Quidant, R. Plasmon Nano-Optical Tweezers. *Nat. Photonics* **2011**, *5* (6), 349–356.

463 (7) Crozier, K. B. Quo Vadis, Plasmonic Optical Tweezers? *Light: Sci. Appl.* **2019**, *8* (1), 35.

464 (8) Pang, Y.; Gordon, R. Optical Trapping of 12 Nm Dielectric

465 Spheres Using Double-Nanoholes in a Gold Film. *Nano Lett.* **2011**, *11*

466 (9) Juan, M. L.; Gordon, R.; Pang, Y.; Eftekhari, F.; Quidant, R. Self-

467 Induced Back-Action Optical Trapping of Dielectric Nanoparticles.

468 *Nat. Phys.* **2009**, *5* (12), 915–919.

469 (10) Mestres, P.; Berthelot, J.; Acimović, S. S.; Quidant, R.

470 Unraveling the Optomechanical Nature of Plasmonic Trapping.

471 *Light: Sci. Appl.* **2016**, *5* (7), e16092–e16092a.

472 (11) Rodiek, B.; Lopez, M.; Hofer, H.; Porrovecchio, G.; Smid, M.;

473 Chu, X.-L.; Gotzinger, S.; Sandoghdar, V.; Lindner, S.; Becher, C.;

474 Kuck, S. Experimental Realization of an Absolute Single-Photon

475 Source Based on a Single Nitrogen Vacancy Center in a Nano-

476 diamond. *Optica* **2017**, *4* (1), 71.

477 (12) Chi, Y.; Chen, G.; Jelezko, F.; Wu, E.; Zeng, H. Enhanced

478 Photoluminescence of Single-Photon Emitters in Nanodiamonds on a

479 Gold Film. *IEEE Photonics Technol. Lett.* **2011**, *23* (6), 374–376.

480 (13) Cuche, A.; Drezet, A.; Sonnefraud, Y.; Faklaris, O.; Treussart,

481 F.; Roch, J.-F.; Huant, S. Near-Field Optical Microscopy with a

482 Nanodiamond-Based Single-Photon Tip. *Opt. Express* **2009**, *17* (22),

483 19969.

484 (14) Bogdanov, S. I.; Boltasseva, A.; Shalaev, V. M. Overcoming

485 Quantum Decoherence with Plasmonics. *Science (Washington, DC, U.*

486 *S.)* **2019**, *364* (6440), 532–533.

487 (15) Lin, L.; Wang, M.; Peng, X.; Lissek, E. N.; Mao, Z.; Scarabelli,

488 L.; Adkins, E.; Coskun, S.; Unalan, H. E.; Korgel, B. A.; Liz-Marzán, L.

489 M.; Florin, E.-L.; Zheng, Y. Opto-Thermoelectric Nanotweezers. *Nat.*

490 *Photonics* **2018**, *12* (4), 195–201.

491 (16) Vigolo, D.; Buzzacaro, S.; Piazza, R. Thermophoresis and

492 Thermoelectricity in Surfactant Solutions. *Langmuir* **2010**, *26* (11),

493 7792–7801.

494 (17) Iacopini, S.; Piazza, R. Thermophoresis in Protein Solutions.

495 *Europhys. Lett.* **2003**, *63* (2), 247–253.

496 (18) Piazza, R.; Parola, A. Thermophoresis in Colloidal Suspensions.

497 *J. Phys.: Condens. Matter* **2008**, *20* (15), 153102.

498 (19) Ghosh, S.; Ghosh, A. All Optical Dynamic Nanomanipulation

499 with Active Colloidal Tweezers. *Nat. Commun.* **2019**, *10* (1), 4191.

500 (20) Hong, C.; Yang, S.; Ndukaife, J. C. Stand-off Trapping and

501 Manipulation of Sub-10 Nm Objects and Biomolecules Using Opto-

502 Thermo-Electrohydrodynamic Tweezers. *Nat. Nanotechnol.* **2020**, *15*

503 (11), 908–913.

504 (21) Ndukaife, J. C.; Kildishev, A. V.; Nnanna, A. G. A.; Shalaev, V.

505 M.; Wereley, S. T.; Boltasseva, A. Long-Range and Rapid Transport of

506 Individual Nano-Objects by a Hybrid Electrothermoplasmonic

507 Nanotweezer. *Nat. Nanotechnol.* **2016**, *11* (1), 53–59.

508 (22) Ndukaife, J. C.; Shalaev, V. M.; Boltasseva, A. Plasmonics-

509 Turning Loss into Gain. *Science (Washington, DC, U. S.)* **2016**, *351*

510 (6271), 334–335.

511 (23) Hatlo, M. M.; Lue, L. The Role of Image Charges in the

512 Interactions between Colloidal Particles. *Soft Matter* **2008**, *4* (8),

513 1582.

514 (24) Sarshar, M.; Wong, W. T.; Anvari, B. Comparative Study of

515 Methods to Calibrate the Stiffness of a Single-Beam Gradient-Force

516 Optical Tweezers over Various Laser Trapping Powers. *J. Biomed. Opt.*

517 **2014**, *19* (11), 115001.

518 (25) Morgan, H.; Green, N. G. AC Electrokinetics. In *Encyclopedia*

519 of *Microfluidics and Nanofluidics*; Springer US: Boston, MA, 2002; pp

520 8–8a.

521 (26) Ramos, A.; Morgan, H.; Green, N. G.; Castellanos, A. Ac

522 Electrokinetics: A Review of Forces in Microelectrode Structures. *J.*

523 *Phys. D: Appl. Phys.* **1998**, *31* (18), 2338–2353.

524 (27) Duhr, S.; Braun, D. Why Molecules Move along a Temperature

525 Gradient. *Proc. Natl. Acad. Sci. U. S. A.* **2006**, *103* (52), 19678–19682.

526 (28) Shoji, T.; Shibata, M.; Kitamura, N.; Nagasawa, F.; Takase, M.;

527 Murakoshi, K.; Nobuhiro, A.; Mizumoto, Y.; Ishihara, H.; Tsuboi, Y.

528 Reversible Photoinduced Formation and Manipulation of a Two-

529 Dimensional Closely Packed Assembly of Polystyrene Nanospheres

530

531

532 on a Metallic Nanostructure. *J. Phys. Chem. C* **2013**, *117* (6), 2500–532

533 2506.

534 (29) Roxworthy, B. J.; Ko, K. D.; Kumar, A.; Fung, K. H.; Chow, E. C.;

535 Liu, G. L.; Fang, N. X.; Toussaint, K. C. Application of 535

536 Plasmonic Bowtie Nanoantenna Arrays for Optical Trapping, 536

537 Stacking, and Sorting. *Nano Lett.* **2012**, *12* (2), 796–801.

538 (30) Horowitz, V. R.; Aleman, B. J.; Christle, D. J.; Cleland, A. N.; 538

539 Awschalom, D. D. Electron Spin Resonance of Nitrogen-Vacancy 539

540 Centers in Optically Trapped Nanodiamonds. *Proc. Natl. Acad. Sci. U.* 540

541 *S. A.* **2012**, *109* (34), 13493–13497.

542 (31) Neukirch, L. P.; Gieseler, J.; Quidant, R.; Novotny, L.; Nick 542

543 Vamivakas, A. Observation of Nitrogen Vacancy Photoluminescence 543

544 from an Optically Levitated Nanodiamond. *Opt. Lett.* **2013**, *38* (16), 544

545 2976.

546 (32) Krishnan, M.; Mojarrad, N.; Kukura, P.; Sandoghdar, V. 546

547 Geometry-Induced Electrostatic Trapping of Nanometric Objects in a 547

548 Fluid. *Nature* **2010**, *467* (7316), 692–695.

549