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Peeling from a liquid†

Deepak Kumar, *a Nuoya Zhou,b Fabian Brau, c Narayanan Menon b and
Benny Davidovitch b

We establish the existence of a cusp in the curvature of a solid sheet at its contact with a liquid

subphase. We study two configurations in floating sheets where the solid–vapor–liquid contact line is a

straight line and a circle, respectively. In the former case, a rectangular sheet is lifted at its one edge,

whereas in the latter a gas bubble is injected beneath a floating sheet. We show that in both geometries

the derivative of the sheet’s curvature is discontinuous. We demonstrate that the boundary condition at

the contact is identical in these two geometries, even though the shape of the contact line and the

stress distribution in the sheet are very different.

1 Introduction

The peel test is an extensively used method to measure the
strength of adhesion of a sheet to a substrate. The test, sche-
matically depicted in Fig. 1 panels A1–C1, is usually based on
measuring the force required to separate the sheet from the
substrate. A direct measurement of the shape of the sheet near
the separation front, performed in a classic 1930 study by
Obreimoff on freshly cleaved mica,1 has been arguably the
earliest attempt to determine the surface energy of solids. In this
test, the peeled-off part of the sheet has a parabolic shape while the
adhered portion of the sheet remains flat (Fig. 1B1). The disconti-
nuity in curvature, k(s), where s is the distance to the contact line
measured along the sheet profile, reflects a highly-localized torque
(on the scale of the sheet’s thickness) that is exerted by the rigid
substrate on the peeled-off sheet. A localized torque is enabled by
the rigidity of the substrate, which allows it to exert a highly-
localized force oriented at an arbitrary angle to its surface. The
presence of a singular torque underlies Obreimoff’s law (see ESI†):

Peeling off rigid substrate:

½½k�� ¼
ffiffiffi
2

p
=‘bc (1)

where:

‘bc �
ffiffiffiffiffiffiffiffiffiffi
B=T

p
: (2)

Here, [[k]] = k(s - 0+) � k(s - 0�) denotes the jump in
curvature as a function of the coordinate s at the peeling front
(s = 0) in the otherwise continuous curvature, B is the bending
modulus of the sheet, and T is an adhesion energy (per area) of
the solid,2 which was attributed by Obreimoff to the surface
energy of the solid with the ambient phase. In eqn (1), we follow

Fig. 1 (A1) and (B1) Thin sheet peeling from a solid substrate (Obreimoff
problem). s is the arc-length measured along the sheet from the contact
line, such that s is positive in the adhered part of the sheet. c is the angle
made by the tangent to the sheet with the vertical. (A2) and (B2) Thin sheet
peeling from a liquid substrate (the problem studied in the current manu-
script). Panels B1 and B2 are, respectively, zoomed-in versions of panels A1
and A2, at a bendo-capillary sale ‘bc. (C1) Curvature near the contact line
for thin sheet peeling from a solid substrate1 (corresponding to panels
A1–B1). (C2) Continuous curvature for a thin sheet peeled from a liquid
substrate characterized by a cusp at the contact line (corresponding to
panels A2–B2). (D) Liquid drop on a rigid solid substrate (Young–Laplace–
Dupree problem). (E) Liquid drop on a liquid substrate (Neumann problem).
(F) Liquid drop on a soft solid substrate shows a wetting ridge near the
contact line. We do not study this system here. (G) An air bubble under a
thin sheet floating on a liquid substrate.
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1050 Brussels, Belgium

† Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d3sm00487b

Received 12th April 2023,
Accepted 12th September 2023

DOI: 10.1039/d3sm00487b

rsc.li/soft-matter-journal

Soft Matter

PAPER

https://orcid.org/0000-0001-9528-3258
https://orcid.org/0000-0002-8715-5464
https://orcid.org/0000-0003-0901-8488
https://orcid.org/0000-0001-6049-6085
https://doi.org/10.1039/d3sm00487b
https://doi.org/10.1039/d3sm00487b
https://rsc.li/soft-matter-journal


7344 |  Soft Matter, 2023, 19, 7343–7348 This journal is © The Royal Society of Chemistry 2023

a terminology used in studies of elasto-capillary phenomena
that involve slender bodies at fluid interfaces, where eqn (2)
defines a ‘‘bendo-capillary’’ length, ‘bc, at which bending and
tensile forces are comparable.

In this paper, we study peeling of a thin solid sheet from a
liquid subphase, schematically depicted in Fig. 1 panels A2–C2.
Our principal result is to establish, in two different experi-
mental geometries, the boundary conditions that supplants the
Obreimoff condition in this situation. In contrast to a rigid,
solid subphase, the lack of shear rigidity of a liquid subphase
removes the capability to generate a finite torque in an arbi-
trarily small vicinity of the contact line. This leads to two
intimately-related differences from peeling off a rigid substrate.
First, the liquid surface is deformed in a zone around the
contact line, whose size is the capillary length (determined by
the forces that restore flatness of interfaces, i.e. surface tension
and gravity). Second, since it is not possible for a liquid
subphase to apply a localized torque the curvature of the
peeled-off sheet is continuous, and the only discontinuity at
the contact line that is possible at mechanical equilibrium is of
the derivative k0(s). The analogue of Obreimoff’s law for peeling
a solid sheet off a liquid subphase becomes:

peeling off liquid subphase:

[[k]] = 0; [[k0]] = sin yY/‘bc
2, (3)

where we again use the symbol [[A]] for variations of A(s)
between the wet (s 4 0) and dry (s o 0) parts of the solid
sheet. Here, ‘bc is defined through eqn (2) with T = g‘v, and

yY = cos�1[(gsv � gs‘)/g‘v] (4)

is the Young–Laplace–Dupré (YLD) angle, which is determined
by the mutual surface energies between the liquid (‘), solid (s),
and ambient vapor (v) phase. In ESI,† we use variational
analysis to clarify the difference between peeling off a rigid
substrate and a liquid sub-phase, eqn (1) and (3), respectively.
While eqn (3) has been noted already in a one-dimensional (1D)
model system of ‘‘bendable’’ partial wetting phenomena,3

whereby a finite liquid volume is deformed upon making
contact with a thin solid along a straight line,4 our study is
the first, to our knowledge, to confirm it experimentally.
Another novelty of the current study is the implementa-
tion of these boundary conditions beyond the ideal 1D geo-
metry assumed in ref. 3 and related works, to more-common
2D peeling geometries, where the stress distribution in
the sheet is non-uniform and the contact line is curved.
Determining a discontinuity in the derivative of the curvature
(which amounts to the third derivative of a profile extracted
from an image) is challenging, as noise-averaging smooths
over the crucial localized feature we seek to identify. Indeed,
we are not aware of any direct experimental study of a
discontinuity in second derivative of the sheet profile in the
solid-peeling case.

As illustrated in Fig. 1, the difference between the original
Obreimoff law for peeling off a rigid substrate (eqn (1)) and its
modified version for a liquid bath (eqn (3)), parallels the
difference between the laws for a solid–liquid–vapor (YLD)

and a liquid–liquid–vapor (Neumann) contact angle shown in
Fig. 1D and E, respectively. There are two very common cases
that deviate from the liquid (zero shear modulus) and rigid
solid (infinite modulus) subphases presented in these two
classic contact geometries. The first is to substitute the rigid
solid by a soft, compliant elastic material as sketched in Fig. 1F.
This has led to extensive studies of the so-called ‘‘wetting
ridge’’5–8 that is produced at the three-phase contact line. In
this paper, however, we study a less-explored, but quite com-
mon way (Fig. 1G) of introducing flexibility in the system by
interposing a thin, bendable elastic sheet at the interface.
Similarly to the difference between YLD contact (Fig. 1D) and
Neumann contact (Fig. 1E), the difference between Obreimoff
peeling problem (Fig. 1A1–C1) and peeling from a liquid sub-
phase (Fig. 1A2–C2) stems from the fact that a liquid bath
cannot support normal load without deforming its surface.
However, in contrast to the contact angle problem on either a
liquid or solid subphase (Fig. 1D and E), where the only length
scale is the size of the liquid drop, the geometry of a sheet
peeled-off from a liquid subphase involves multiple scales.
Zooming in close to the contact line at a size scale {‘bc
(Fig. 1B2) reveals a geometry that is almost indistinguishable
from the vicinity of a contact on a thick rigid body of the same
material (Fig. 1D), except for a discontinuity of the 3rd deriva-
tive of the surface, which is reflected (Fig. 1C2) by a cusp in the
curvature k(s). Zooming out (Fig. 1A2) to a size that is c‘bc yet

�o‘c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g‘v=rg

p
, the capillary length, one observes a liquid

meniscus dominated by a balance of surface tension and
gravity (Young–Laplace equation), which terminates at a kink,
as if the curvature was diverging. This multi-scale scenario is
valid only if the sheet is sufficiently thin, such that ‘bc { ‘c, or
more generally:

e { 1, where e � (‘bc/Lout)
2. (5)

Here, Lout is an ‘‘outer’’ scale, at which the curvature
approaches an asymptotic value, which is {‘bc

�1. For the
example depicted in Fig. 1C2, where Lout = ‘c, the ratio
e = rgB/g‘v

2 is akin to the ‘‘softness’’ parameter that was defined
in ref. 9.

2 1D translationally
symmetric geometry
2.1 Theory

We first address an effectively one-dimensional geometry,
where the deformed sheet is characterized by translational
symmetry along the contact line, as shown schematically in
Fig. 1A2 and 2A. Such a 1D set-up is realized in a floating,
rectangular thin sheet, which is peeled off by exerting a vertical
force Tpeel along one of its short edges. As we noted above, when
observed at intermediate scales, |s| c ‘bc, the sheet appears to
have a cusp at the contact line; furthermore, the mechanical
equilibrium shape is characterized by reflection symmetry of
the two sides of the surface (sheet-covered and liquid–vapor)
around the vertical line as shown in ref. 11. The reflection
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symmetry indicates that the tension in the wet part of the sheet
is identical to the liquid–vapor surface tension, g‘v, and force
balance at the contact line thus determines the force, Tpeel, the
opening angle, 2c0, of the apparent cusp, and the height, H0, of
the contact line over the liquid bath level:

Tpeel = g‘v(1 + cos yY) = 2g‘v cosc0 (6)

) c0 � cos�1 cos2
yY
2

� �
;H0 � f ðc0Þ‘c; (7)

where the function f (c0) is found by solving the (nonlinear)
Young–Laplace equation,10 such that f E (p/2 � c0) for c0 -

p/2 and f �
ffiffiffi
2

p
for c0 - 0. The shape of the whole sheet is

described by a planar vector, ~XðsÞ ¼ xðsÞî þ yðsÞĵ, where s is an
arclength parameter, and is conveniently described through

the angle, c(s), between the tangent vector,
-

X0, and the down-
ward vertical �ŷ:

x0(s) = sinc; y0(s) = cosc; and k(s) = c0. (8)

At mechanical equilibrium, the shape satisfies the capillary
elastica, which expresses normal force balance:3,12

B k00 þ k3

2

� �
� TðsÞk ¼ �PðsÞ þ g‘v sin yYddðsÞ

PðsÞ ¼
0 so 0

�rgyðsÞ s4 0

(
TðsÞ ¼

Tpeel so 0

g‘v s4 0

( (9)

where s = 0 is the position of the contact line, and dd(s) is the
Dirac delta function. Here, P(s) is the hydrostatic pressure
exerted by the liquid bath on the wet portion of the sheet,
s 4 0, T(s) is the tension in the sheet, and g‘v sin yY is the
normal force exerted by the liquid–vapor interface at the
contact line. In a 1D geometry at mechanical equilibrium
(and absence of external shear forces) the tension T(s) satisfies
qsT = 0, and is consequently constant in the dry part (s o 0),
where it is given by the force Tpeel exerted by the peeler, and in
the wet part (s 4 0), where it is given by the liquid–vapor
surface tension that pulls on the edge of the floating sheet.

Integrating both sides of eqn (9) over an infinitesimal
neighborhood of the contact line, s = 0, we obtain:

B[[k0]] = g‘v sin yY (10)

and since the discontinuity of k0(s) is finite, integration of k0(s)
across the contact line implies that [[k]] = 0, thereby establish-
ing eqn (3).‡

On each of the two portions of the sheet (dry, so 0, and wet,
s 4 0), the profile is determined by the capillary elastica (9)
which is a nonlinear 3rd order differential equation (ODE) for
c(s). Employing a common method for solving ODEs whose
source term is localized (dd(s)), we split the interval into two
portions, s 4 0 and s o 0, in each of which 3 boundary
conditions (BCs) are required. Thus, a total of 6 independent
BCs must be given, which characterize the behavior of the sheet
at the dry and wet sides of the contact line, s - 0+ and s - 0�,
respectively, as well as the dry and wet edges of the sheet.
Eqn (3) comprise 2 of these BCs, hence 4 other BCs must be
specified. To obtain them, we non-dimensionalize length by
defining %s = s/‘bc and �k = k‘bc, and consider the corresponding
non-dimensionalized version of eqn (9), in the singular limit
e - 0 (see ESI†). At O(e0), we obtain 2 ‘‘outer’’ BCs at each side
of the contact line. At %s - �N:c - 0, �k - 0, and at %s - +N:
c - c0, �k - 0, and the corresponding (exact) solution of
eqn (9) at O(e0) is given by:

%s 4 0: �k = �2 sech(%s + %sw), (11)

Fig. 2 1D geometry. (A) Schematic of experimental setup. The upper edge
of the sheet is held at a fixed, controllable height. (B) A typical image of the
sheet profile (polystyrene, thickness t = 2 mm corresponding to ‘bc =
0.2 mm). Superimposed on the image are solutions of the non-linear
Young–Laplace equation10 (solid green line), the capillary elastica eqn (11)
(solid blue curve), and the capillary elastica with gravity correction (dashed
cyan curve). The curvature k(s) of the sheet for (C) polystyrene sheet (t = 2
mm) with estimated statistical error bars and (D) PMMA sheet (t = 2 mm).
Filled black circles, blue and red lines represent data, theoretical prediction
from capillary elastica, and capillary elastica with gravity correction,
respectively. On the dry part (s o 0 in panels C and D, corresponding to
the vertical segment in panels A and B), k(s) vanishes over a length ‘bc,
whereas in the wet part (s 4 0 in panels C and D, corresponding to the
right part in panels A and B) k(s) reduces first to B‘c

�1 and vanishes only at
a distance ‘c = e�1/2‘bc c ‘bc, from the contact line, due to the effect of
liquid gravity.

‡ A higher-order effect, which cannot be accounted by eqn (9), is the small torque
exerted by the liquid–vapor interface on the sheet if they are not perpendicular at
the contact line (i.e. yY a p/2). This localized torque is explicitly proportional to
the thickness, yielding a discontinuity of the curvature [[k]] B cos(yY)�t/‘bc2,
whose effect on the shape is negligible, i.e. [[k0]] c [[k]]/‘bc for t { ‘bc.

Soft Matter Paper



7346 |  Soft Matter, 2023, 19, 7343–7348 This journal is © The Royal Society of Chemistry 2023

�so 0: �k ¼ �2
ffiffi
r

p
sech½ð�sþ �sdÞ

ffiffi
r

p
�; r � Tpeel

g‘v
¼ 2 cosc0;

where: �sw ¼ cosh �1ðaÞ; �sd ¼ � cosh �1ða
ffiffi
r

p
Þ=

ffiffi
r

p
;

a ¼ ð2= sin yYÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

pq
; b ¼ 1þ r: (12)

In the ESI,† we describe a next-order, O(e1) solution, which
incorporates the gravity effect on the sheet curvature and is
useful for comparison with experimental data.

2.2 Experiment

The setup employed to study the 1D problem experimentally is
illustrated schematically in Fig. 2A. Thin sheets of polystyrene
(polymer source P10453-S, Mw = 97.6 kDa, Young’s modulus =
3.5 GPa) and PMMA (Aldrich 182265, Mw B 996 kDa, Young’s
modulus = 3 GPa) of 1–2 mm thickness are prepared by spin-
coating on glass slides. The choice of sheet thickness is
restricted on one hand by the need to have an imaging resolu-
tion much smaller than ‘bc and on the other hand by the
requirement that ‘bc { ‘c for having a separation of scales as
assumed in the theoretical analysis. Rectangles of 20 mm width
and 60 mm length are cut from these films and floated on the
surface of a water bath (‘c = 2.7 mm). The sheets are floated
from glass slides onto the water surface extremely slowly and
carefully and we do not observe any air bubbles below the
sheet. The long end of the film (along the z direction) is then
lifted out of the water surface by using a triangular hanger
made up of graphite rods of diameter 0.7 mm (pencil leads).
A green laser sheet illumination (wavelength 532 nm) is used to
illuminate the interface near the contact line for imaging. A dye
(rhodamine-B) is dissolved in water in miniscule amount
rendering both sides of the interface fluorescent. The interface
is imaged using a DSLR camera (Nikon D5300) with a macro-
lens and a long pass filter to admit only the fluorescent light.
The laser sheet is positioned near the center of the film which
is many ‘c away from the ends of the contact line. In this
configuration end-effects, such as wrinkles seen near the edges
of the sheet, are negligible and the film profile can be assumed
to be 2D. A typical image obtained from the setup is shown in
Fig. 2B. The resolution of the imaging setup (1 pixel B 1 mm) is
typically much smaller than ‘bc, which is approximately 0.2 mm
for the sheets used. Superimposed on the image are the
solution of the Young–Laplace equation10 (green solid curve)
for the liquid–vapor interface (left to the contact line), the
solution to the capillary elastica without gravity as a blue solid
curve, and the solution of the capillary elastica with gravity as
the dashed cyan curve.

A gradient method is used to detect the interface and to
obtain its (x,y) coordinates along the film from the images, and
the curvature k(s) is computed from:

kðxÞ ¼ y00ðxÞ
ð1þ y0ðxÞ2Þ3=2; sðxÞ ¼

ðx
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0ðx0Þ2

q
dx0; (13)

where y(x) is the sheet profile measured from the image.
On computing derivatives from experimental data, the noise

in the data gets amplified, which usually necessitates some
form of smoothing. However, traditional smoothing methods
will suppress any cusp in k(s). We therefore developed the
algorithm described below to extract k(s) from the (x,y) data.

We divide the whole data set into intervals of length DB ‘bc.
Each of these intervals contains approximately 200 data points.
We construct a sample of this data by choosing one data point
from each interval randomly with a uniform probability dis-
tribution. We can estimate the position of the contact line from
the images with a much higher accuracy and precision of a few
pixels. We add to the data sample a contact-line location
selected randomly with a Gaussian probability distribution
centered at the estimated position of the contact line and
having a width equal to the estimated error. A spline function
of order 3 made up of Hermite polynomials is generated using
this sampling of data points and the curvature is computed on
this spline function at roughly every 10th point of the original
data set. The process is repeated a large number of times (about
twice the number of data points in each interval), selecting a
different sampling of data points, such that the whole data set
is adequately represented. The curvature profiles obtained from
individual data samples are averaged to obtain the final k(s)
curve. This procedure allows noise-averaging and use of the
full data set without spatial averaging that would smooth the
putative curvature cusp.

The black filled circles in Fig. 2C and D show k(s) as
determined by the method described above, for a polystyrene
(PS) and a PMMA film of thickness t = 2 mm, respectively.
Superimposed on the experimental data are the theoretical
predictions obtained by solving the capillary elastica equation
neglecting gravity and capillary elastica with gravity in blue and
red lines respectively. We notice that the theoretical predictions
match the experimental data quite well and show a clear cusp
at s = 0.

When gravity is neglected, the only input parameter
required to solve the capillary elastica is c0; however, this can
be directly measured from the water–air interface near the
contact line in the image and is found to be 48.81 and 40.01
for the PS and the PMMA films in Fig. 2C and D, respectively. In
order to generate the solution of the capillary elastica with
gravity, in addition to c0, we need the value of e = (‘bc/‘c)

2,
which is already known. Thus, there is no fitting parameter
involved in computing the theory curves. The theoretical pro-
files calculated till order O(e0) and O(e1) match well with the
experimentally measured sheet profile close to the contact line
but deviate from it further away. These deviations are due to
higher-order terms neglected in the calculation, which may
become important far enough from the contact line.

3 Axial geometry
3.1 Theory

While the 1D geometry of the setup described in Fig. 2 presents
a simple setting to discuss the boundary conditions at the
contact line, the curvature cusp predicted by eqn (3) appears in
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various other settings that are often encountered in elasto-
capillary phenomena. One example is the axially-symmetric
geometry of a thin sheet floating on water with an air-bubble
of volume V underneath it, as shown schematically in Fig. 3A.
In contrast to the 1D geometry, which is free of Gaussian
curvature and whose mechanical equilibrium is thus described
everywhere by a planar curve

-

X(s) that solves the elastica,
eqn (9), the axial geometry in Fig. 3 is characterized by Gaussian
curvature, and thus involves a nontrivial variation of both radial
and hoop components of the stress and curvature tensors with
radial distance r. Hence, the shape of the sheet must be
described by a surface

-

X(r,y), that is obtained by solving the
Föppl–von Kármán (FvK) equations,13,14 and is furthermore
susceptible to a radial wrinkling instability due to hoop com-
pression exhibited by an axisymmetric solution.15,16 Neverthe-
less, as long as the bendo-capillary length is sufficiently small,
(namely, e { 1, where Lout in eqn (5) is now given by the drop’s
radius and/or the capillary length ‘c), the dominant terms in
the curvature and stress tensors in the vicinity of the contact
line are the radial components, and consequently the normal
force balance is given by an equation similar to eqn (9):

B k00? þ k?3=2
� �

� s?k? ¼ g‘v sin yYddðsÞ; (14)

where k>(s),s>(s) are principal components of the curvature
and stress tensors, respectively, along the radial direction,
perpendicular to the contact line, and s is the distance from
the contact line. In the preceding analysis we neglected in

eqn (14) the sub-dominant hydrostatic pressure term; for similar
reasons we ignore spatial variation of s> on each side of the
contact line. Once again, considering an infinitesimal vicinity of
the contact line, we note that tangential force balance yields:

s(d)> = g‘v cos yY + s(w)> (15)

(where superscripts refer to the dry and wet sides), to which we
refer as YLD equation, and integration of eqn (14) yields the
jump condition, eqn (3).

The validity of eqn (14) hinges upon scale separation,
namely e { 1, where the ratio e is given by eqn (5), with

‘bc ! ‘�bc �
ffiffiffiffiffiffiffiffiffiffiffiffi
B=s?

p
; Lout ! minf‘C;V1=3g (16)

(see ESI† and ref. 14). Similarly to our analysis of eqn (9), the
O(e0) boundary conditions for eqn (14) consist of vanishing
curvature away from the contact line (i.e. �k; �k0 � Oðe;

ffiffi
e

p
Þ,

respectively). However, in contrast to the simpler 1D geometry,
finding the asymptotic tangent angle c1,2 at the two sides of the
contact line, as well as the stress s> in its vicinity, requires one
to solve the FvK equations – a nonlinear set of partial differ-
ential equations – in the singular limit of vanishing bending
rigidity (known as ‘‘membrane limit’’ or ‘‘tension field theory’’).
Rather than following such a theoretical track (see ref. 13 and
14), we note that force balance on an a box of intermediate size,
‘�bc 	 ‘ 	 Lout, around the contact line (see Fig. 3B) implies
that, at O(e0):

s(d)> = �s(w)> cosc2 � g‘v cos(c1 + c2)

s(w)> sinc2 = �g‘v sin(c1 + c2) (17)

(often called Neumann contact17), which implies that g‘v and
the two asymptotic angles, c1, c2, uniquely determine the in-
plane stress in the sheet, s(w)> , s(d)> , near the contact line, and
consequently the YLD angle yY by eqn (15). Note that for the 1D
peeling geometry considered earlier, s(w)> = g‘v, whereas c1 = 2c0

and c2 = p � c0, such that eqn (15) and (17) reduce to eqn (6).

3.2 Experiment

The axial geometry is realised in the experiments by inserting
an air bubble beneath a sheet floating on water using a syringe.
To image the contact line between the bubble, sheet and water
subphase, a vertical plane passing through the center of the
setup is imaged using a laser-sheet fluorescence method simi-
lar to the one illustrated in Fig. 2A. A typical image of the sheet
profile obtained from these experiments is shown in Fig. 3B. A
bright-field image is taken after the fluorescence image, and
used to obtain the profile of the air-bubble. The dashed white
curve in Fig. 3B represents a circle fitted to the air-bubble
shape. Fig. 3C and D show k(s) for bubble radii R = 4.1 mm and
R = 3.1 mm, respectively. The data demonstrate that in this
geometry too, the curvature has a cusp near s = 0, representing a
discontinuity in the derivative of the curvature. Note that the
curvature vanishes in the wet part (s 4 0,s c ‘bc), where the
sheet is flat, and approaches a positive value in the dry part
(s o 0, |s| c ‘bc), where the air bubble imposes a curved shape
on the sheet. Similarly to the effect of gravity in the 1D geometry,

Fig. 3 2D axially-symmetric geometry. (A) The setup consists of a thin
sheet floating on water with an air bubble underneath. (B) A typical image
of the sheet profile (Polystyrene, thickness t = 2 mm). The dashed white
curve is a circle fitted to the air bubble, and the white solid line is tangent to
the sheet profile at the contact line. The curvature k(s) for air bubble of
radius (C) 4.1 mm and (D) 3.1 mm.
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this asymmetry of the asymptotic values of curvature is a higher
order effect, which is not captured by a leading, O(e0) analysis.

4 Discussion

Problems such as the 1D and axial peeling geometries in highly-
bendable sheets typically come in two parts with a big separa-
tion in length scale – an ‘‘inner’’, bending-dominated region of
size ‘�bc that is governed by the elastica, and an ‘‘outer’’ region,
where the shape and stress are independent of bending rigidity.
At the innermost part of the bending-dominated zone is the
purely local effect that we have established in this article, with a
discontinuity in the gradient of the curvature in the vicinity of
the contact line, ½½k0?��, which is determined purely by material
parameters (B,g‘v,yY). This discontinuity affects the bending-
dominated region as a ‘‘near-field’’ boundary condition to the
elastica problem, but a complete solution of the elastica
requires also a ‘‘far-field’’ boundary condition, which is
obtained by matching with the outer, bending-independent
problem. In the cases we considered, this matching condition
is expressed through a single parameter, the asymptotic angle
c0 in Fig. 1 or equivalently c2 = p � c0 in Fig. 3. Neglecting the
bending-dominated region altogether (as was proposed in ref.
18 for sufficiently thin sheets) leads to an error in the region
close to the contact. Neglecting the curvature discontinuity at
the contact line (as in the elastica problem for 1D delamination
studied in ref. 19) can also lead to an error in the predicted
shape, and when tension is small, the error may span a large
portion of the sheet. We further note that the geometry-
independent nature of the discontinuity, ½½k0?��, provides the
basis for a robust method for determining contact angles both
at and away from thermodynamic equilibrium.

In this work, we considered the peeling from a liquid
substrate of an effectively inextensible, yet highly bendable
solid sheet. In this case, any deformation of the sheet is
described by the shape of its mid-surface, reflecting a balance
of bending and interfacial forces, where the shape itself does
not exhibit any irregularity up to a discontinuity of its 3rd

derivative as is described in eqn (3). For a solid sheet of Young’s
modulus E and thickness t, such an effectively inextensible
mechanics corresponds to the parameter regime t { ‘bc, or
equivalently t c ‘ec, where ‘ec = g/E is the ‘‘elasto-capillary’’
length (which inequality is additional to the inequality (5)).
If one zooms in on a vicinity of size ‘ec of the contact line
(assuming ‘ec is larger than the molecular scale of the solid phase),
one may observe an actual cusp in the solid’s surface, which is
described by Neumann’s law (see schematic Fig. 3a in ref. 20).
If the solid sheet is made of sufficiently compliant material such
that t c g/E, the deformation of the sheet can no longer be
described by the shape of its mid-surface, instead it must be
considered as a 3D elastic body (similarly to Fig. 3b of ref. 20).

In conclusion, our study on the boundary condition of a
liquid in contact with a bendable solid sheet brings closer to
completion a glossary of elementary types of triple-phase con-
tacts of solid and liquid bodies (Fig. 1D–G): starting from the

classical Young–Laplace contact (1805) and Neumann contact
(1894) to the Obreimoff contact (1930) and more recent studies
on the wetting ridge formed by a liquid drop on a stretchable
solid.5–8
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