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Abstract—Accelerated deployment of high-power electric 
vehicle (EV) supercharging stations is expected to alleviate EV 
drivers’ range anxiety, while imposing stress on the electric 
distribution networks (EDNs) and threatening their transient 
stability. As a powerful transient stability evaluation (TSE) tool, 
the estimation of region of attraction (ROA) plays a vital role in 
maintaining situational awareness and stable operation of the 
emerging EDNs. However, EDNs dominated by EV charging 
stations typically involve highly nonlinear and complex system 
dynamics, rendering the model-based approaches for ROA 
estimation computationally intensive. Thus, solution accuracy is 
usually compromised due to simplified system modeling. This 
paper proposes a data-driven approach to ROA estimation of 
emerging EDNs based on the Koopman operator theory. 
Numerically stable Koopman eigenfunctions can be learned from 
the system measured data and then employed to establish a set of 
linearly parameterized Lyapunov candidate functions. Various 
trajectory data are then employed to establish a tight feasible 
polytope. Through efficient sampling and linear optimization, the 
union of invariant sublevel sets of the determined Lyapunov 
functions can constitute a tight inner approximation to the actual 
ROA. The proposed method is evaluated to be computationally 
efficient and permits real-time ROA estimation. Numerical 
simulations of a DC EDN interfaced to an AC grid validate the 
superior performance of the proposed method.  

Index Terms—Data-driven, EV charging, Koopman operator, 
region of attraction, transient stability evaluation. 

I. INTRODUCTION 

lobally, transportation is one of the major contributors 

to greenhouse gas (GHG) emissions. In the United 

States, the transportation sector is responsible for 28% 

of the GHG emissions and has even overtaken the electric 

power sector as the nation’s largest source of GHG emissions 

in 2020 [1].  Electric vehicles (EVs), which can run on 

electricity from renewable energy sources such as solar 

photovoltaic (PV) and wind without direct tailpipe emissions, 

are regarded as a game changer for the transition to a carbon-

neutral transportation sector, as well as for the improvement of 

air quality and public health. Government initiatives, such as 

New Jersey's ambitious goal of registering 330,000 EVs by 

2025 [2], coupled with emerging high-power charging 

technologies [3], are accelerating the adoption of EVs. 

However, the rapid buildout of EV supercharging stations will 

place a substantial strain on existing electric distribution 

 
Jimiao Zhang and Jie Li are with the Electrical and Computer Engineering 

Department, Rowan University, Glassboro, NJ 08028, USA, (e-mails: zhangj@ 

rowan.edu, lijie@rowan.edu). 

networks (EDNs). The EVs, tightly regulated by power 

converters, behave as constant power loads (CPLs) of the EDNs 

with negative impedance characteristics [4], thereby reducing 

the system’s effective damping. Moreover, a rising penetration 

of power-converter-interfaced renewables, commonly paired 

with EV charging, could lower system inertia and increase 

system dynamics’ volatility. This could severely threaten the 

transient stability of emerging EDNs, undermining their ability 

to maintain the system frequency and voltage within the 

acceptable ranges following significant disturbances. Hence, it 

is crucial to develop efficient transient stability evaluation 

(TSE) approaches for ensuring system situational awareness 

and stable EDN operation.  

There has been a growing body of research on TSE of electric 

power systems (EPSs) [5,6]. These works mainly utilize 

Lyapunov’s stability theory to quantify how large disturbances 

a system can tolerate via the estimation of region of attraction 

(ROA) of a locally asymptotically stable equilibrium point [7]. 

Takagi-Sugeno (T-S) multi-modeling approach, originally 

developed for system identification [8], has been utilized for 

ROA estimation of various EPSs [9,10], including a multi-bus 

inverter-based dynamic microgrid that accounted for 

communication latencies [11]. As system complexity and 

nonlinearity increase, the T-S method struggles with high-

dimensional problems despite its effectiveness for small-scale 

EPSs. While model reduction techniques such as Kron 

reduction [12] can be used to reduce computational burdens, 

they run the risk of omitting important system dynamics. In 

addition, Brayton-Moser’s mixed potential theory has been 

applied to simplify EPSs as RLC networks for ROA estimation, 

where stability is guaranteed if the mixed potential function is 

at a local minimum [13]. This simplification, however, tends to 

generate conservative ROA estimates. To combat this issue, a 

revised mixed potential theory was introduced [14] that takes 

into account the operating limits of practical CPLs in DC 

microgrids and differentiates the state variables according to 

their strong and weak correlations to stability. 

Among the Lyapunov-based methods, mathematical 

optimization, especially sum-of-squares programming (SOSP), 

has been extensively leveraged to compute the maximum ROA 

from a proper Lyapunov function [15]. This type of method 

carries the potential to systematically construct Lyapunov 
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functions and is more accurate than other mainstream 

Lyapunov-based approaches. Nonetheless, SOSP is generally 

limited to polynomial systems. For non-polynomial system 

models, Taylor series expansions need to be employed at the 

expense of truncation errors. To counter the negative effects of 

truncation errors on the estimated ROA, [16] integrated 

bounded uncertain terms to the Taylor expansion of the 

trigonometric function in the original EPS models. The 

transient stability of grid-connected converters with phase-

locked loops (PLLs) was studied in [17] using an iterative 

SOSP method. However, the discussed system only consisted 

of a single converter. It is thus unclear if the proposed method 

would be computationally efficient for an EDN dominated by 

distributed assets such as EV charging stations and renewables. 

Realizing that, conventional SOSP-based methods may 

encounter computational complexity, particularly with higher-

order polynomial Lyapunov functions or in large-scale systems. 

To this end, reference [18] proposed a method to estimate high 

quality ROAs for a DC microgrid with CPLs, based on the 

variants of conventional SOSP with improved solution times 

and scalability. 

The crux of Lyapunov-based research is the lack of a method 

for finding a generalized Lyapunov function for different 

systems. As an alternative, geometric methods such as normal 

form analysis have also been applied to ROA estimation [19]. 

However, these geometry tools are constrained by their locality 

and low dimensionality [20]. Besides, authors of [21] applied 

the theory of occupation measures to approximate the ROA of 

EPSs comprising synchronous generators (SGs). Nevertheless, 

the method’s suitability relies heavily on polynomial 

reformulation of the original dynamical system models. 

All the model-based methods discussed above have only 
investigated homogenous bus dynamics, focusing on either 
power converters or SGs, both of which are essential 
components of emerging EDNs with distinct dynamics. Besides, 
these methods’ performances are often constrained by their 
system modeling accuracy, which is often compromised due to 
simplified mathematical models in exchange for acceptable 
solution times. However, practical EDNs exhibit high 
nonlinearity and complex dynamics, introduced by 
uncertainties due to varying operating conditions, as well as 
stochastic EV charging behavior and intermittent renewable 
generation. Moreover, proprietary and undisclosed control 
algorithms for distributed assets could exacerbate these 
uncertainties. Meanwhile, recent advancements in data-driven 
approaches, fostered by the integration of big data and 
advanced analytics, have led to the increased application of the 
Koopman operator-based methods in dynamical system 
analysis [22]. The Koopman operator theory allows for a 
scalable reconstruction of the underlying dynamical system 
using only measured data and provides a principled linear 
embedding of nonlinear dynamics, thereby reducing 
computational complexities. Indeed, the prominent features of 
the Koopman operator theory have lent itself to a wide range of 
data-driven applications in EPSs. such as dynamic state 
estimation [23], power flow calculations [24], system 
identification [25], model predictive control (MPC) of wind 

farms [26], etc. Most notably, this theory finds its application 
in TSE due to its ability to capture system stability properties 
via spectral properties and eigenfunctions [27]. However, 
existing research employing the Arnoldi-type method to 
approximate the Koopman operator failed to capture system 
nonlinearity adequately [28,29]. Furthermore, the spectral 
analysis results are generally posterior, thus reducing their 
comprehensibility and directness compared with ROA 
visualization. Reference [30] proposed an ROA estimation 
scheme using the extended dynamic mode decomposition 
(EDMD) method [31]. However, it lacks rigorous theoretical 
stability guarantees, and EDMD’s single-time-step 
approximation may result in instability and accumulated 
approximation errors in the learned Koopman operator [32].  

To address the challenges of uncertainties in emerging EDNs 

with enormous growth of EV supercharging stations, this work 

presents a novel data-driven approach using the Koopman 

operator theory for ROA estimation. Specifically, this method 

employs data regression to approximate Koopman 

eigenfunctions, which then facilitates the ROA estimation by 

constructing specially designed Lyapunov candidate functions. 

This proposal offers a distinct advantage over existing model-

based methods by greatly improving both solution accuracy and 

computational performance. The major contributions of this 

paper are summarized as follows: 

1. A tight inner approximation to the ROA of an EDN with 

heterogeneous bus dynamics is efficiently computed using 

measured data. Convex constraints are rigorously enforced on 

the measured trajectory data of the EDN to obtain a tight 

feasible polytope. Therefore, sublevel sets of the corresponding 

Lyapunov functions are found via sampling and linear 

programming (LP) to derive the estimation of ROA.  

2. A set of linearly parameterized Lyapunov candidate 

functions are designed using the approximated Koopman 

eigenfunctions. This novel design not only reduces the number 

of decision variables in ROA estimation with improved 

computational efficiency, compared with optimization-based 

methods (e.g., SOSP), but also is directly interpretable from the 

perspective of Koopman spectral analysis and stability 

properties. 

3. To overcome the instability issues inherent in the EDMD, a 

stable Koopman operator is learned by imposing stability 

constraints using the data-driven SOC algorithm [33,34]. The 

longer-term (multiple time steps) accuracy of the approximated 

Koopman eigenfunctions is improved as well. 

The remainder of this paper is organized as follows: Section 

Ⅱ describes the detailed dynamical modeling of a typical DC 

EDN for future EV supercharging stations, with individual 

distributed assets modeled separately. In Section Ⅲ, the 

preliminaries of the Koopman operator theory are firstly 

presented, the issue of divergent accumulated approximation 

errors due to the unstable Koopman operator learned by the 

EDMD is analyzed, and then the SOC algorithm is introduced 

to overcome this issue to learn a stable Koopman operator. In 

Section Ⅳ, the data-driven ROA estimation method based on 

the learned Koopman operator is proposed. The detailed case 
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studies are conducted in Section Ⅴ. Section Ⅵ concludes this 

paper and discusses future work. 

II. DC ELECTRIC DISTRIBUTION NETWORK MODELING 

The DC EDN is better suited to hosting EV supercharging 

stations than its AC counterparts due to its higher power 

conversion efficiency and simpler control architecture [35]. As 

a result of the accelerating buildout of charging stations, the 

EDNs are expected to experience a shrunken transient stability 

margin. With an accurate estimation of the ROAs, the 

distribution system operator (DSO) can maintain a good 

understanding of the system operation status and take proper 

control actions, thereby improving grid reliability and security. 

In this work, we propose a data-driven method for ROA 

estimation of EDNs hosting future supercharging stations, 

based on the Koopman operator theory. According to the ROAs 

estimated in real-time, the charging requests could be managed 

to ensure the stable EDN operation. Fig. 1 illustrates a DC EDN 

connected to an external AC grid. The modeled EDN comprises 

a battery energy storage system (BESS), a solar PV system, and 

a few high-power EV chargers, which represent key 

components of future supercharging stations. The external AC 

grid and the BESS are responsible for DC voltage regulation 

and power balancing. Different types of pulse-width modulated 

(PWM) power converters are employed to interface these 

distributed assets to the common DC bus. The local controls of 

distributed assets in this work are based on proportional-

integral (PI) control. In what follows, the detailed modeling of 

each distributed asset is provided. 

 

 Fig. 1. The modeled DC electric distribution network. 

A. Solar PV 
A solar PV array in the maximum power point tracking 

(MPPT) mode is interfaced to the common DC bus through a 

Boost converter, as shown in Fig. 2. The state equations of the 

Boost converter are obtained as (1)- (4): 

 

Fig. 2. Solar PV interfaced by a Boost converter. 
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where !!" and '!" represent the equivalent output voltage and 

current of the solar PV system, respectively. As !!"  and '!" 

satisfy a transcendental equation [36],  '!" is considered as an 

implicit function of !!", denoted as '!"(!!"). *!"#	is the input 

capacitor, ,!" is the internal resistance of the inductor -!", and 

!!"-1  is the voltage of the DC-link capacitor *!"7 . !-1  is the 

common DC bus voltage. The Perturb and Observe (P&O) 

technique is employed for MPPT. .!"(!!") denotes the duty 

cycle to the switch /!" generated by a local PI controller that 

regulates !!"  to the MPPT voltage !8!!  [37]. In practice, 

another BESS could be added in parallel with this solar PV to 

form a hybrid system such that the uncertainty in solar 

irradiance could be greatly mitigated. As such, this work 

assumes small variations in solar irradiance for the modeled PV 

array. 

B. BESS 
A bidirectional Buck-Boost converter connects a BESS to the 

common DC bus of the EDN, as shown in Fig. 3. This BESS 

can help reduce peak demand charges and provide ancillary 

services for improved grid stability. 

 

Fig. 3. BESS interfaced by a bidirectional DC-DC converter. 

The following equations represent the BESS dynamics: 
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where 09  is the BESS terminal voltage, '9'  is the inductor 

current, !9-1  is the voltage of the DC-link capacitor *9 , and 

'2#45,9  is the output current. ,2#45,9  and -2#45,9  are the line 

resistance and inductance. Since the BESS generally has a large 

energy capacity and small voltage variations, 09  can be 

considered as constant. A dual-loop PI control is implemented 

locally, where the outer loop regulates !9-1 to (04 − 19'2#45,9) 
(04 is the rated common DC bus voltage, and 19 is the DC droop 

coefficient) and the inner loop regulates '9' . .9(!9-1 , '9') 
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represents the duty cycle generated by the inner current loop. 

The upper and lower switches of the power converter are then 

driven in a complementary manner.  

C. EV Charging Load 

Various charging technologies [38] can be utilized to charge 

EVs, e.g., constant power (CP) mode, constant current (CC) 

mode, constant voltage (CV) mode, and their combinations. An 

EV is charged via a Buck converter, as depicted in Fig. 4.  

 

Fig. 4. EV charged via a Buck converter. 
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where *5"# is the input DC-link capacitor, !5"-1 is its voltage, 

'5"' is the inductor current, '5" is the charging current, and !5" 
is the EV battery terminal voltage. Depending on the charging 
mode, the local controller executes single-loop or dual-loop PI 

control to generate the duty cycle .5" for the switch /5". As !5" 

and '5" are solely related to each other in the generic battery 

model [39], '5" is considered as a function of !5", i.e., '5"(!5"). 

D. Grid-Interface Bidirectional AC-DC Converter 
The grid-interface converter is implemented using a voltage 

source converter (VSC) topology. In Fig. 5, !;< , !;9  and !;1 
are the three-phase AC grid voltages, which are assumed to be 

balanced. -; is the inductance of the filter on each phase, and 

,; is its internal resistance. In addition, !;-1 is the voltage of 

the DC-link capacitor *;. The external AC grid can absorb or 

release DC power to assist the DC EDN operation. 

 
Fig. 5. AC grid interfaced to EDN via an AC-DC converter. 

In the synchronously rotating d-q reference frame, the state 

equations related to the inductor filters are given: 
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where !;- and !;= are the grid voltages on the d-q axes. ''- and 

''=  are the d-q axes currents flowing through the inductor 

filters, while 3 is the measured angular frequency of the AC 

grid. Besides, a dual-loop PI control [40] is implemented. In the 

outer voltage control loop, !;-1 is regulated to its rated value 

04 , which provides the d-axis current reference. Since no 

reactive power is delivered, the q-axis current reference is set 

as zero. The inner current control loop tracks the current 

references and generates the d-q axes duty cycles 5-(!;-1 , ''-) 

and 5=(''=). The dynamics of the DC link can be expressed 

based on the power balance between the AC and DC sides. In 

addition, the line current at the output terminal is obtained. 
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The dynamics of the AC grid can be represented by the 

following equations mimicking an equivalent SG [41]: 
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where 3  is the angular frequency, ;  is the total moment of 

inertia of the AC grid, and 78  is the mechanical torque 

provided by the prime mover. Moreover, <!8  is the time 

constant of the prime mover, while 1I  is the speed droop 

coefficient. 3J is the rated angular frequency. =1 is the power 

change setting typically dispatched by the DSO, and in this 

paper, it is set by a PI controller acting on the error between 3J 
and 3. Because the SG stator terminal voltages are also the grid 

voltages, !;-  and !;=  in the above equations can be further 

expressed as 

!;- = −,< ⋅ ''- +3 ⋅ -<= ⋅ ''= + !J-            (18) 

!;= = −,< ⋅ ''= −3 ⋅ -<- ⋅ ''- + !J=            (19) 

where ,< ,  -<- , and -<=  are the resistance and d-q axes 

inductances of the SG stator, respectively. !J- and !J= are the 

voltages induced on the stator by the excitation system. Since 

voltage regulation can have fast response, !;-  and !;=  are 

regarded as constant during transients. 

Without loss of generality, it is assumed there are >!" solar 

PVs, >9 BESSs, >5" EV loads in the DC EDN connected to the 

external AC grid. The entire DC EDN represents a nonlinear 

dynamical system:  

?̇ = @5-4(?)                               (20) 

with state vector ?:= B?!", ?9 , ?5", ?;#1C
D
. Specifically, ?!": =

D!!",,, '!"',,, … , !!",4!" , '!"',4!" , !!"-1,4!" , '2#45,!",4!"F,  
?9: = B'9',,, !9-1,,, '2#45,9,,, … , '9',4, , !9-1,4, , '2#45,9,4,C,  

?5": =
B'2#45,5",,, !5"-1,,, … , '2#45,5",4)" , !5"-1,4)" , '5"',4)" , !5",4)"C,  
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and ?;#1: = B''- , ''= , !;-1 , '2#45,;, 3, 78C.	 

Remark 1: A priori knowledge of the nominal model 

parameters of (20) is not necessary for a data-driven method. 

Even if these parameters are available, the actual system is 

likely to experience deviations from them during operations. 

Besides, detailed knowledge of the control algorithms is not 

needed as long as they are related to the system states. However, 

information on the model structure can reveal the physics of the 

dynamical system and is thus conducive to data collection for 

Koopman operator approximation. Furthermore, knowledge of 

the normal operating ranges of the EDN dynamic states, which 

can be estimated empirically or from historical system 

operation data, is helpful in implementing the proposed data-

driven ROA estimation approach, as will be presented later. 

Ⅲ. A STABLE KOOPMAN OPERATOR 

Considering a general dynamical system in the form of 

?̇(H) = @(?(H))                                 (21) 

where x evolves in a state space I ⊂ K!.  Let L(?, H) be the 

flow of the continuous-time system (21) starting from an initial 

state ?K when H ≥ 0, and O ∶ I → R	be a measurable function 

referred to as the observable or a basis function. All observables 

constitute the space of observables S. The Koopman operator 
TL	: S → S  for (21) advances an observable based on the 

evolution of the trajectories in I such that  

(TLO	)(?) = O ∘ L(?, H)                            (22) 

where ∘ represents the pointwise function composition. Since 

the Koopman operator is linear over its observables, it can be 

characterized by eigen-decomposition. In general, an 

eigenfunction V and its eigenvalue ! ∈ # satisfy: 

			(TLV)(?) = V ∘ L(?, H) = WXY(ZH)V(?)         (23) 

In addition, the Koopman operator embeds the finite-

dimensional nonlinear dynamics (21) to an infinite-dimensional 

function space, so it is more practical to approximate this 

infinite-dimensional operator using data-driven methods such 

as dynamic mode decomposition (DMD), EDMD, generalized 

Laplace averages, deep neural networks (DNNs), etc. Among 

them, EDMD is most widely applied because it uses an 

extended basis to capture nonlinearities and only needs one-step 

iteration. More details on the Koopman operator theory and its 

data-driven methods can be found in [42]. 

Let SM ⊂ S  be an N-dimensional Koopman invariant 

subspace, i.e., TL	O ∈ SM  for any O ∈ SM . When EDMD is 

applied to (21), the basis functions are functions of the states, 

denoted as \#(?) ∈ SM, ' = 1, 2, … ,^. Assuming that the DC 

EDN (20) provides (_ + 1)  consecutive snapshots of the 

system states from a variety of collected trajectories over 

uniform time intervals ∆H , EDMD constructs a finite-

dimensional approximation Ta  of the Koopman operator by 

solving the following least-squares problem: 

5'>
NO∈Q3×3

‖c(d) − Ta ∙ c(e)‖R
? 	= 5'>

NO∈Q3×3
∑ ‖c(?SA,) − Ta ∙
T
SU,

c(?S)‖
?              (24) 

where ‖ ∙ ‖R refers to the Frobenius norm of a matrix and ‖ ∙ ‖ 

is the 2-norm of a vector. c(d):= [c(??)	, … ,c(?TA,)	] , 

c(e):= [c(?,)	, … ,c(?T)	] , and c(?S):=
[\,(?S)	, … , \M(?S)	]

D at time instant k. 

A closed-form solution can be readily obtained as 

Ta = g ∙ hV                                  (25) 

where †  denotes the Moore–Penrose pseudoinverse, g:=
c(d) ∙ c(e)D  and h:= c(e) ∙ c(e)D . The basis functions 

can be customized and have multiple choices. To fairly 

compare with the SOSP, which exhibits less conservativeness 

than other model-based approaches in ROA estimation, this 

study uses monomials as the basis functions. Once Ta  is 

obtained, the Koopman eigenfunction V#  corresponding to an 

eigenpair (j# , k#) of the transpose of Ta  is obtained: 

V#(?) = k#
D ∙ c(?)                           (26) 

Besides, the eigenvalue of TL  corresponding to V#  is Z# = 
27;W#
XL

. 

However, since Ta  is used to numerically approximate TL , 

there will obviously be errors accumulated over a given time 

span. The actual value of the basis function at certain time step 
k can be expressed as its approximated value plus the error ℇS: 

c(?S) = Ta ∙ c(?S(,) + ℇS             (27) 

Likewise, 

c(?S(,) = Ta ∙ c(?S(?) + ℇS(,         (28) 

Iteratively, we obtain a generalized expression at time step k: 

c(?S) = TaS ∙ c(?K) + ∑ Ta #S(,
#UK ∙ ℇS(#         (29) 

It follows that the accumulated error ∑ Ta #S(,
#UK ∙ ℇS(# can be 

bounded based on the norm properties: 

m∑ Ta #S(,
#UK ∙ ℇS(#m ≤ ∑ mTa # ∙ ℇS(#m

S(,
#UK ≤ ∑ mTa #m ∙ ‖ℇS(#‖ ≤

S(,
#UK

∑ mTam
#
∙ ‖ℇS(#‖			

S(,
#UK 		(30)                       

If ‖ℇ#‖ ≤ W8<Y for any i, then 

m∑ Ta #S(,
#UK ∙ ℇS(#m ≤ W8<Y ∙ ∑ mTam

#S(,
#UK            (31) 

Inequality (31) shows that the accumulated approximation error 

could be enlarged exponentially if the learned Koopman 

operator Ta  is unstable. Inspired by [33] and [34], we propose to 

apply the SOC algorithm to learn a stable Koopman operator in 

light of its superior numerical stability over long time horizons, 

memory efficiency, and scalability. Specifically, the matrix Ta  

is stable if and only if it can be expressed as Ta = o(, ⋅ p ⋅ q ⋅
o, where S is positive definite, O is orthogonal, and C is positive 

semidefinite contraction (i.e., the singular values of C are less 

than or equal to 1). Hence, instead of solving (24) in EDMD, 

the following optimization problem is solved using the fast 

projected gradient descent method presented in [33]: 

inf
NO
‖c(d) − Ta ∙ c(e)‖R

? = inf
Z,[,\

‖c(d) − o(, ⋅ p ⋅ q ⋅ o ∙

c(e)‖R
?      (32) 

The gradients with respect to the matrices o, p, and q are 

derived as: 
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∇Zv(o,p, q) = o(D(w ⋅ xD − xD ⋅ w)        (33) 

∇[v(o,p, q) = −o(D ⋅ w ⋅ oD ⋅ qD              (34) 

∇\v(o,p, q) = −pD ⋅ o(D ⋅ w ⋅ oD              (35) 

where x:= o(, ⋅ p ⋅ q ⋅ o  and w:= [c(d) − x ⋅ c(e)] ⋅
c(e)D . This algorithm enforces stability by projecting the 

solution onto the feasible set and iteratively updates the gradient 

directions. Thus, the stability constraint is naturally imposed on 

Ta . And (26) can still be utilized to derive the Koopman 

eigenfunctions.  

Remark 2: Under the Koopman operator framework, the 

Koopman eigenfunctions can be leveraged to construct 

Lyapunov candidate functions in a systematic way with strict 

stability guarantees. In the following, the derived Koopman 

eigenfunctions will be used to constitute a linear space of 

Lyapunov candidate functions, and the union of sublevel sets of 

the decided Lyapunov functions will provide an inner 

approximation to the actual ROA.  

Ⅳ. DATA-DRIVEN ROA ESTIMATION  

When an equilibrium state ?∗ of the dynamical system (21) 

is nonzero, any system state ?  can be translated to ?	 -?∗ . 

Therefore, ?∗  is assumed as the origin for simplicity. If the 

origin is asymptotically stable but not globally attractive, it is 

desirable to know which trajectories will converge to it as time 

approaches infinity. The ROA of the system equilibrium state 

?∗ = y for (21) is mathematically defined as a set ,z{^∗U_: =

|? ∈ K! :	 lim
L→a

L(?, H) = y	� . Furthermore, the Ä -sublevel set 

Å:,b	of a Lyapunov function 0(?) with a positive Ä is defined 

as Å:,b	 = {? ∈ K!:	0(?) ≤ Ä} , which can practically 

characterize the forward invariant subsets of the actual ROA 

[7]. If the following conditions are satisfied: 

1) Å:,b	is bounded 

2) 0(y) = 0 and 0(?) > 0 for all ? ∈ K! 

3) Å:,b	 ∖ {y} ⊂ |? ∈ K!:	0̇(?) =
c:(^)

c^
⋅ @(?) < 0� 

 

                (36) 

then the flow L(?, H) of (21) exists and L(?, H) ∈ Å:,b	holds for 

all ? ∈ Å:,b	 and H ≥ 0.  In addition, lim
L→a

L(?, H) = y	. 

Accordingly, Å:,b	is an invariant subset of ,z{^∗U_. 

The details of the proposed data-driven ROA estimation are 

elaborated in Fig. 6 below. Both historical system operation 

data recorded by measurement devices such as phasor 

measurement units (PMUs) and simulation data generated from 

high-fidelity numerical simulations can serve as the required 

measured data for this method. Firstly, the measured data are 

employed by the SOC algorithm to approximate the Koopman 

eigenfunctions as explained in Section III; secondly, the 

Lyapunov candidate functions are linearly parameterized using 

the learned Koopman eigenfunctions; thirdly, polytope 

constraints are formed; and finally, a tight inner estimation to 

the actual ROA is obtained. 

 

Fig. 6. Flowchart of proposed data-driven ROA estimation. 

Under the assumption that large amounts of measured data 

are available, our goal is to estimate the ROA of the DC EDN 

(20) in a data-driven fashion.  Fig. 7 illustrates how to apply the 

conditions in (36) to various trajectory data to find a Lyapunov 

function and its Ä-sublevel set. 

 

Fig. 7. Illustration diagram of ROA inner estimation. 

Suppose there exists a Lyapunov function 0(?) to certify 

that a set á lies inside the ROA. As is observed from Fig. 7, 

0(?) ≤ Ä  and 0̇(?) < 0  should hold for a convergent 

trajectory starting from á , while 0(?) > Ä  is satisfied for a 

divergent trajectory starting from á’s complement á1. Also, á 

will not be within the ROA if at least one trajectory eventually 

diverges with initial conditions in á. Thus, a smaller region of 

á should be chosen.  

Conventionally, it is computationally intensive if not 

intractable for those optimization-based methods such as the 

SOSP to calculate the maximum ROA, when dealing with many 

decision variables due to the high dimension of an EDN, not to 

mention the lifted space SM. To address this issue, we propose 

to reduce the number of decision variables for ROA estimation 

via linearly parameterizing an arbitrary Lyapunov candidate 

function using the Koopman eigenfunctions from Section III. 

Specifically, we select a set of Koopman eigenfunctions V# 				 
(' = 1, 2, … , d̂ ) with a sufficiently large negative real part 

Re[Z#]  to construct the basis ä#(?)  of the linear space for 

Lyapunov candidate functions, as such eigenfunctions can 

capture the stability properties of the underlying dynamical 

system [27]. Further, if the basis function is chosen as ä#(?) ≔
V#(?) ∙ Vå#(?) = |V#(?)|

? (the overbar denotes complex 

conjugation), then ä#(?) ≥ 0  and ä̇#(?) = 2 ⋅ Re[Z#] ⋅
|V#(?)|

? = 2 ⋅ Re[Z#] ⋅ ä#(?) ≤ 0  hold for ' = 1, 2, … , d̂ . It 

follows from the detailed proof in the Appendix that the family 
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of sets éb = |? ∈ K! :	∑ è#
M6
#U,

⋅ ä#(?) ≤ Ä�  with è# > 0 are 

forward invariant.  

Consider a Lyapunov candidate function 0(?) = ∑ è#
M6
#U,

⋅

ä#(?), where the coefficients è# are to be determined. When the 

conditions discussed in (36) and observed in Fig. 7 are strictly 

imposed on the trajectory data, they could be naturally 

translated into constraints on è# 	in a LP problem. It should also 

be noted that the above constructed Lyapunov candidate 

function will lead to stronger expressive power and thus a less 

conservative ROA approximation when higher-degree 

monomials are adopted for \#(?) , compared to the 

conventional quadratic Lyapunov functions used in the T-S 

multi-modeling. 

To seek a Lyapunov function whose Ä-sublevel set is forward 

invariant, numerous trajectory data need to be sampled initially 

from a prechosen set á. In practice, á for an EDN is related to 

the allowable operating ranges of each dynamic state variable. 

For instance, the typical frequency of islanded microgrids lies 

between 59.3 and 60.5 Hz, while the DC common bus voltage 

is ±5%  of the rated value. However, á  should be shrunk 

accordingly once divergent trajectories beginning from á are 

detected. Based on the condition éb ∖ {y} ⊂ ì? ∈ K!:	0̇(?) <

0î, there should be 0̇(?) ≤ ï ⋅ [Ä − 0(?)] for the convergent 

trajectory data with initial conditions in á, where ï is a positive 

constant and can be initially set as twice the minimum of 

|Re[Z#]|. Thus, on a convergent trajectory [?K, ?,, … , ?D] with 

(7 + 1) time steps, any data point ?S should satisfy 1) ∑ è#
M6
#U,

⋅

ä#(?S) ≤ Ä ; 2) ∑ è#
M6
#U,

⋅ ä̇#(?S) + ï ⋅ D∑ è#
M6
#U,

⋅ ä#(?S) −

ÄF ≤ 0. In compact matrix form, the constraints are 

ñ ⋅ ó ≤ y			                             (37.1) 

(ñ-7L + ï ⋅ ñ) ⋅ ó ≤ y                              (37.2) 

ó ≥ ò                              (37.3) 

ó[1: d̂] ≤ ô                                (37.4) 

[1 1… 1 0] ⋅ ó ≥ 1                              (37.5) 

where ñ ≔ ö
ä,(?K) ä?(?K) ⋯ äM6(?K) −1

⋮ ⋱ ⋮
ä,(?D) ä?(?D) ⋯ äM6(?D) −1

û ,  

ñ-7L ≔ ö
ä̇,(?K) ä̇?(?K) ⋯ ä̇M6(?K) 0

⋮ ⋱ ⋮

ä̇,(?D) ä̇?(?D) ⋯ ä̇M6(?D) 0
û , and ó ∶=

Dè,		è?…	èM6 		ÄF
D

. ò is a vector with all fixed small positive 

constants ü for tightness. 

However, a divergent trajectory starting from the 

complement of G should obey 

ñ ⋅ ó ≥ ò                                     (37.6) 

Each row of the above constraints defines a half-space in 

KM6A,  and the intersection of these half-spaces defines a 

feasible polytope [43]. As more trajectories are considered, the 

feasible polytope will be iteratively refined with a monotonic 

decrease in volumes. Theoretically, it will converge to a certain 

convex polytope †  as the number of iterations approaches 

infinity. The detailed ROA estimation algorithm is presented as: 

PROPOSED ROA ESTIMATION ALGORITHM  

Stage 1: Create a feasible polytope $ using measured data 

Initialize: !, %!, %", ", #, and & 

Obtain °8<Y data trajectories: 

1 $ = 0, '! = 0, and '" = 0 
2 while $ < '#$%: 

3          sample a random initial state )&' from ' 

4          if a trajectory from )&' converges: 

5                save this trajectory in %!, and '!+= 1 

6          else: 

7                save this trajectory in %", and '"+= 1 

8          ¢	+= 1 

Apply constraints (37.1~37.6) to the data trajectories:  

9 , = {. ∈ 0(!)*:	(37.3) − (37.5)} 
10 for ' = 1:°1: 
11     form polytope $+ based on (37.1), (37.2) using %!()) 
12     ,+ ⟵,∩,+ 
13     if  is_empty(,+): 
14          # ⟵ " ⋅ # 

15          go to Line 10 

16     ,⟵,+ 
17 for ' = 1:°-: 

18     use ?K# of %"()) as a new vertex and project as á# 
19 					á ⟵ á# 
20     form polytope $+ based on (37.6) using %"()) 
21     ,⟵,∩,+ 
 

Stage 2: Determine >, via sampling and linear optimization 

Initialize: +, = ∅ 
22 ? = 0 
23 while ? < @#$%: 

24           sample )- from ' 

25           solve:   max
.
∑ 2+
/"
+0* ⋅ 4+56-7 − 9 

26                                 s.t.  : ⊆ , 

27   +,,- = <6 ∈ =2 :	∑ 2+
/"
+0* ⋅ 4+(6) ≤ max	{9 + CDE#$% , 9	}H 

28            >, ⟵>, ∪ >,,- 
29             ?	 = ? + 1 

The proposed ROA estimation algorithm consists of two 

stages, given the already learned Koopman eigenfunctions from 

Section III. In Stage 1, measured data are utilized to construct a 

feasible polytope. If historical system operation data are not 

readily available, trajectory data can also be generated through 

high-fidelity numerical simulations. If runtime is of concern, a 

time limit can be set rather than °8<Y. Then the actual number 

of simulated trajectory data will be applied. During this process, 

the °1  convergent trajectories and °-  divergent trajectories 

will be stored in arrays g1 and g-, respectively. In Line 14, the 

preset ï  is amplified by a constant parameter §  once the 
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intersection of intermediate polytopes becomes empty. As is 

shown in Line 18, the disqualified initial state is used as a new 

vertex, whose projections on the coordinate axis of each state 

attain á#. A tight polytope † could be finally obtained in Line 

21. In Stage 2, a set of ?’s are sampled from the refined á and 

LP problems are solved on each ? to derive the invariant sub-

level sets éb (in Line 27) of each Lyapunov candidate function; 

•¶ß8<Y  represents the maximum of the objective function in 

Line 25. Theoretically, for a sufficiently large number of 

samples ^8<Y, éb will converge and cover the largest sub-level 

set of a single Lyapunov function that is based on the SOSP 

[17]. Furthermore, the proposed ROA estimation can be even 

closer to the actual one if •¶ß8<Y  is positive. It is also 

noteworthy that different sampling techniques can lead to 

different convergence rates. The efficient high-dimensional 

sampling method named the Dikin Walk [44] can be adopted to 

generate uniform random samples for Lines 3 and 24. Lastly, 

both stages in the proposed algorithm are highly parallelizable 

and parallel computing can be leveraged for speedup in 

simulation and optimization.    

Ⅴ. CASE STUDIES  

To verify the effectiveness of the proposed data-driven 

approach for ROA estimation, numerical simulations of a 2-kV 

DC EDN as shown in Fig. 1 are conducted in 

MATLAB/Simulink with a fixed step size of 50	µs. MATLAB 

Parallel Computing Toolbox and Parallel Server are leveraged 

to expedite simulations. The SG representing the external AC 

grid is rated at 5 MVA, and two (>5") aggregated EV charging 

loads are considered. Averaged modeling [45] for the PWM 

power converters is implemented. The detailed system 

parameters are given in Table Ⅰ. The EV battery models in the 

simulations have low initial state of charge (SoC) values and 

are only charged in the CP mode for simplicity. Also, an EV’s 

arrival and departure times are assumed to follow the truncated 

normal distributions suggested by [46]. In Fig. 1, each 

simulated EV charging load represents one charger with a 

variable number of charging ports. For instance, the Ultra-Fast 

Charging Load (2) represents three charging ports, with 

possible charging power levels of 0 kW (idle), 400 kW (for 1 

EV), 800 kW (for 2 EVs), or 1200 kW (for 3 EVs). The duration 

of each level of charging power can be determined by the 

overlapping of EVs’ arrival and departure times. In the preset 

á, 3 is 0.9953J~1.0053J, 78  is from 0 to 1.1 times the rated 

value, the DC-link voltages are 0.9504~1.0504 , the 

unidirectional inductor currents are from 0 to 1.2 times the rated 

values, and the range of bidirectional inductor currents is ±1.2 

times the rated values. Besides, an EV battery terminal voltage 

corresponds to the SoC range of 10%~60%. Communication 

latency is ignored during the simulations because the EDNs 

under consideration usually do not span a large geographic area. 

In addition, Python interacts with Simulink for data collection 

and computations. The experiment platform is a high-

performance server with an AMD EPYC 7B13 CPU (64 cores) 

and 512-GB RAM. 

Firstly, system operation data are simulated to learn the 

Koopman eigenfunctions via the SOC algorithm executed in 

Python. 100 different trajectories are collected with random 

initial states selected within á. Each trajectory lasts for 20 sec 

and is sampled with ∆H = 0.01 sec. The probability distribution 

parameters used during each trajectory collection are presented 

in Table Ⅱ. Although not a problem in this work, if historical 

system operation data acquired from field measurement devices 

are utilized, data corruption could be a concern. Thus, data 

preprocessing [47] such as data cleaning and statistical 

processing could be applied to reduce the negative effects of 

noise and outliers in the raw data. Additional techniques 

including regularization and data augmentation [48] could also 

be implemented to minimize the potential for data corruption. 

In this proposed method, the SOC algorithm could be 

practically executed offline on a regular basis using the most 

recent state measurements to maintain the high precision of the 

learned Koopman eigenfunctions.  

TABLE Ⅰ 

SYSTEM PARAMETERS OF THE DC EDN 

Solar PV BESS 
Parameter Value Parameter Value 
I#22 at STC 903 V J3 (rated) 960 V 
)#22 at STC 1105.68 A K3 0.4 mΩ 

K24 0.3 mΩ L3 0.8 mH 
L24 0.5 mH M3 3000 μF 
M24+ 600 μF J5 2000 V 
M246 2000 μF N3 0.085 V/A 

STC: standard test conditions 
Ultra-Fast Charging Load (1) Ultra-Fast Charging Load (2) 

Parameter Value Parameter Value 
I74 (rated) 800 V I74 (rated) 800 V 

K74 0.25 mΩ K74 0.25 mΩ 
L74 0.6 mH L74 0.5 mH 
M74+ 1500 μF M74+ 1500 μF 
M746 1000 μF M746 800 μF 
Grid-Interfaced VSC AC Grid Inductor Filter 

Parameter Value Parameter Value 
M8  5000 μF K8 1 mΩ 

  L8 0.5 mH 

Synchronous Generator 
Parameter Value Parameter Value 
J (kg⋅ O9) 3.7 × 10: V2# 0.2 sec 

N; 0.05 pu   
 Parameter Value Parameter Value 

Line 1 K<+57,8 112 mΩ L<+57,8 0.45 mH 

Line 2 K<+57,3 140 mΩ L<+57,3 0.57 mH 

Line 3 K<+57,24 71.8 mΩ L<+57,24 0.31 mH 

Line 4 K<+57,74,* 57.4 mΩ L<+57,74,* 0.24 mH 

Line 5 K<+57,74,9 86.2 mΩ L<+57,74,9 0.36 mH 
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TABLE Ⅱ 

STATISTICAL DISTRIBUTION OF EV CHARGING BEHAVIOR 

 Distribution Boundaries 

Arrival time (sec) W(3, 19) [0, 6] 
Departure time (sec) W(15, 19) [13, 18] 

There is always a trade-off between computational cost and 

expressivity in designing the Lyapunov candidate function 

when selecting the monomial basis for the SOC algorithm. This 

study chooses the monomials in ? of degree up to 4. As the 

number of states of the simulated DC EDN is 21, there are 

12649 (N) monomial functions in the basis when the special 

monomial “1” is removed. It takes on average 791.18 sec for 

the SOC algorithm to obtain the Koopman eigenfunctions based 

on the concatenated trajectory data. 5368 ( d̂) out of 12649 

Koopman eigenfunctions are retained after taking |Re[Z#]| >
,

@
⋅ max|Re[Z#]| to ensure large enough negative real parts. ï is 

determined as 0.0561, § is set as 1.07, and ü is 2 ∙ 10(,e. 

An extreme scenario is considered, where all EV chargers are 

in use. At some point, the only two idled EV charging ports at 

the Ultra-Fast Charging Load (1) request connection to the DC 

EDN, equivalent to increasing the power level from 800 kW to 

1600 kW. To ensure transient stability, the DSO wishes to 

manage this request by estimating the ROA. Suppose the 

equilibrium points before and after enabling these charging 

ports are XK = [889.8V, 556.2A, 1959.1V, 252.0A 667.5A, 

1965.5V, 344.6A, 411.5A, 1947.3V, 925.2A, 864.7V, 617.4A, 

1948.1V, 1373.7A, 873.6V, 884.6A, -0.31A, 2000.0V, 432.3A, 

377.0rad/s, 2620.2N·m]T and X5= =[891.5V, 555.6A, 1932.6V, 

255.8A, 1038.7, 1946.4V, 536.3A, 837.7A, 1915.9V, 1834.2A, 

872.3V, 626.1A, 1921.4V, 1371.0A, 875.2V, 1378.0A, -2.25A, 

1998.8V, 671.8A, 376.8rad/s, 3904.3N·m]T, respectively. In 

practice, however, an absolutely stable equilibrium may never 

exist due to the uncertainties and external disturbances, which 

makes the quasi-equilibrium determined by model-based 

methods less accurate. To this end, the in-line sliding-window 

scheme proposed in [49] could be applied to predict the quasi-

equilibrium after assuming a specific EV charger is connected 

to the DC EDN. However, when the existing measured datasets 

are insufficient to span a complete data trajectory, the MPC 

linear predictor in [26] could further be used to extrapolate the 

evolving state trajectory. Development of such a predictive 

approach with enhanced prediction accuracy is left for our 

future research.  

Once the Koopman eigenfunctions are learned, the data 

trajectories under the specific operating condition need to be 

obtained in Stage 1 of the proposed ROA estimation algorithm. 

For the EDN Simulink model, a run time of 10 sec is sufficient 

to determine the convergence of each simulated trajectory. 20 

of 10-sec simulation runs are then conducted, and 127 sec are 

taken to collect the trajectory data. No divergent trajectories 

commencing from the preset á  are found. Nonetheless, the 

initial ï is updated twice to generate a non-empty polytope. In 

Stage 2, the scipy.optimize and multiprocessing packages of 

Python are utilized to solve the LP problems in parallel. In 

addition, the fast and efficient HiGHS solver is chosen. Ideally, 

if more samples are collected to solve the LP problems, the 

union of the obtained invariant sets will be even closer to the 

actual ROA. Given the tradeoff between solution time and 

accuracy, 500 tasks are distributed across all the logical cores. 

It consumes 1274.87 sec to obtain 500 invariant sets. 

The SOSP approach in [18] is selected as a benchmark 

method due to its proven high performance on similar testing 

systems. The proposed data-driven method is compared with 

this approach in terms of computational performance and 

solution accuracy. To apply the SOSP, some simplifications are 

made to the system model (20). Firstly, the solar PV and the 

BESS are represented by a generic second-order model [50]. 

Secondly, the EV charging load is modeled as a CPL which can 

be further reduced as a controlled current source without 

internal dynamics [18]. Moreover, Taylor series expansion is 

utilized to recast the reduced-order model into a polynomial 

system because it contains rational equations. As in [18], the 

scaled-diagonally-dominant sums-of-squares programming 

(SDSOSP) [51] is also leveraged in lieu of the conventional 

SOSP for reduced solution time and improved scalability. The 

degree of the polynomial Lyapunov candidate function is 

selected as 4, while the degree of the truncated Taylor 

expansion is chosen as 3. In addition, the SPOT Toolbox and 

the MOSEK solver are used to solve the SDSOSP in MATLAB.  

For different research focuses, the state variables of interest 

can be selected from the 21 system states for analysis. In this 

study, the transient frequency and voltage stabilities where the 

Ultra-Fast Charging Load (1) is to be connected are of interest. 

The estimated ROAs are respectively presented in a 2-

dimensional plane with the other state variables set equal to 

zero, i.e., !5"-1,,  versus '2#45,5",,  and 3  versus !9-1 . The 

solution accuracy of the proposed method and the SDSOSP is 

compared in Figs. 8 and 9, wherein the red star represents the 

projection of ?K and the blue square stands for the ?5=. The blue 

dashed line delineates the boundary of the ROA estimated by 

the SDSOSP, while each green solid line encloses an invariant 

sublevel set of our linearly parameterized Lyapunov functions.  

Both figures show that ?K lies in the estimated ROAs of ?5=, 

indicating a large transient stability margin for the EDN. 

However, the proposed data-driven approach achieves a better 

ROA estimation than the SDSOSP. The reason is twofold. First, 

the linearly parameterized Lyapunov candidate functions have 

a degree of 8, while the polynomial Lyapunov candidate 

function only has a degree of 4. Second, a forward invariant 

subset of the actual ROA is enlarged when the maximum of the 

corresponding LP objective function is positive. Besides, it can 

be observed that some of the obtained forward invariant subsets 

are quite small and may also coincide. Nonetheless, through an 

increasing number of samplings, the proposed method 

significantly lessens the conservativeness of the ROA 

estimation. 

A numerical simulation is conducted to further validate the 

obtained estimation. The power level at the Ultra-Fast Charging 

Load (1) is increased to 1600 kW to mimic the connection of 
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another two EV charging ports at t = 11.6 sec. Fig. 10 presents 

the transient response of the state variables of interest. After the 

EV charging load is increased, the DC-link voltages stabilize to 

new equilibria very soon, as shown in Fig. 10 (a). In contrast, 

Fig. 10 (b) shows that the angular frequency of the AC grid 

settles down after a longer transient period. This results from 

the difference in time scales between electromechanical and 

electromagnetic dynamics. 

 
Fig. 8. Comparison of estimated ROAs (!5"-1,, vs. '2#45,5",,). 

 
Fig. 9. Comparison of estimated ROAs (3 vs. !9-1). 

 
(a) 

 
(b) 

Fig. 10. Transient response of states after EV load increases. 

Since the learning of Koopman eigenfunctions using the 

SOC algorithm can be implemented offline, the solution time 

of the proposed method is primarily determined by the ROA 

estimation based on sampling and LP. In the above case, it takes 

the SDSOSP as much as 5260.44 sec to obtain the estimates, in 

contrast to 1274.87 sec by the proposed method. To further 

explore the scalability, the DC EDN is expanded to include 

three and four EV charging loads, resulting in a system order 

increase of four and eight for the original EDN model (20), and 

two and four for the reduced EDN model, respectively. With all 

other settings unchanged, the computation times of the two 

methods for all these cases are reported in Table Ⅲ.    

TABLE Ⅲ 

COMPARISON OF COMPUTATION TIMES IN DIFFERENT CASES 

# of EV Loads SDSOSP Proposed Method 
  SOC ROA Estimation 

2 5260.44  791.18  1274.87  
3 38402.16  3821.67  4385.69  
4 ~ 14889.72  27297.45  

Time is in sec. 
The results show that the computation time of the SDSOSP 

method substantially increases as the system scale increases. In 

the case where the number of EV loads reaches four, this 

method even fails to produce a solution within two days. In 

contrast, the proposed data-driven method is more scalable and 

consumes considerably less computation time to estimate the 

ROA. Furthermore, the proposed method consistently produced 

less conservative ROA estimation than the SDSOSP in all cases. 

Thus, the proposed method has the potential to facilitate real-

time TSE.  

Ⅵ. CONCLUSION AND FUTURE WORK 

This paper proposed a Koopman-operator-based data-driven 

approach to estimate the ROA of a future DC EDN dominated 

by EV supercharging stations. Simulation results demonstrated 

that a less conservative ROA estimation could be obtained in a 

more computationally efficient manner, compared with the 

SOSP-based method (SDSOSP). With that, the proposed ROA 

estimation provides a possibility of real-time applications in 

future EDN TSE. In addition, the method is generic and could 

be readily applied to other dynamical systems if measured data 

are readily available. Further improving computational 

efficiency for larger-scale systems would be one of our future 

research directions. Multiple EV chargers can be integrated 

using aggregators, and modular DNNs can also be used to 

increase scalability. Apart from predicting the system’s new 

equilibria in a purely data-driven fashion, we also plan on 

leveraging the control-Lyapunov functions to adaptively 

enlarge the estimated ROAs along with optimized dynamic EV 

charging. 



11 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

APPENDIX 

Prove that the family of sets éb = |? ∈ K! :	∑ è#
M6
#U,

⋅

ä#(?) ≤ Ä�  with è# > 0 are forward invariant.  

Proof: 
According to the spectral property of the Koopman operator 

in [42], an eigenfunction V(?)  and its corresponding 

eigenvalue Z ∈ R  of the Koopman operator TL  satisfies 	
	

TLV(?) = WfL ⋅ V(?) 

.V(?)

.H
= " ⋅ V(?) 

For each ä#(?) ≔ V#(?) ∙ Vå#(?) = |V#(?)|
?  ( ' =

1, 2, … , d̂),   

ä̇#(?) =
.ä#(?)

.H
=
.V#(?)

.H
⋅ Vå#(?) + V#(?) ⋅

.Vå#(?)

.H
 

Note  
-gh #(^)
-L

=
-g7(^)
-L

ååååååå
= Z3 ⋅ V3(?)åååååååååååå = Z3Æ ⋅ V3(?)ååååååå, thus 

ä̇#(?) = Ø"! + "!Æ∞ ⋅ |V#(?)|? = 2 ⋅ Re["!] ⋅ ä#(?) 

Since the Koopman eigenfunctions are approximated using 

the SoC algorithm, there are approximation errors ±#(?)’s. With 

a mild assumption that the errors are bounded such that 

|±#(?)| ≤ ≤# ⋅ ä#
?(?) + ≥# for some positive constants ≤# and ≥#,  

ä̇#(?) = 2 ⋅ Re["!] ⋅ ä#(?) +	±#(?)
≤ 2 ⋅ Re["!] ⋅ ä#(?) +	|±#(?)| 

= ≤# ⋅ ä#
?(?) + 2 ⋅ Re["!] ⋅ ä#(?) +	≥# 

If  ä̇#(?) ≤ 0  always holds for certain interval (Ä# , Ä#) ⊂

KiK, the minimum of the above quadratic function of ä#(?) 
should be negative, which leads to the condition (Re["!])? >
≤# ⋅ ≥# . It also implies that the Ä# -sublevel set of ä#(?)  is 

forward invariant.  

Furthermore, define Ä ≔ min
#
(è# ⋅ Ä#)  for è# > 0  ( ' =

1, 2, … , d̂).  From ∑ è#
M6
#U,

⋅ ä#(?) ≤ Ä, we have 

è# ⋅ ä#(?) ≤ Ä = min
#
(è# ⋅ Ä#) 

Thus, ä#(?) ≤ Ä# holds for ' = 1, 2, … , d̂. 

Now, define ï ≔ 2 ⋅ min
#
|Re[Z#]|. Then, 

¥ è#
M6

#U,
⋅ ä̇#(?) ≤¥ è# ⋅ (2 ⋅ Re["!])

M6

#U,
⋅ ä#(?)

+¥ è# ⋅ [≤# ⋅ ä#
?(?)

M6

#U,
+ ≥#] 

≤¥ è#
M6

#U,
⋅ (−ï) ⋅ ä#(?) +¥ è#

M6

#U,
⋅ (≤# ⋅ Ä#

?
+ ≥#) 

Therefore, if Ä ⋅ ï ≥ ∑ è#
M6
#U,

⋅ (≤# ⋅ Ä#
?
+ ≥#), 

¥ è#
M6

#U,
⋅ ä̇#(?) ≤¥ è#

M6

#U,
⋅ (−ï) ⋅ ä#(?) + Ä ⋅ ï

= ï ⋅ [Ä −¥ è#
M6

#U,
⋅ ä#(?)] 

This suggests that the Ä -sublevel set of  ∑ è#
M6
#U,

⋅ ä#(?)  is 

forward invariant. It should also be noted that the condition Ä ⋅

ï ≥ ∑ è#
M6
#U,

⋅ (≤# ⋅ Ä#
?
+ ≥#)  can be easily met if ï  is large 

enough, which translates to that all ""’s (' = 1, 2, … , d̂) have 

a sufficiently large negative real part.  

Q.E.D. 
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