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Data-Driven Transient Stability Evaluation of
Electric Distribution Networks Dominated by EV
Supercharging Stations

Jimiao Zhang, Member, and Jie Li, Member, IEEE

Abstract—Accelerated deployment of high-power electric
vehicle (EV) supercharging stations is expected to alleviate EV
drivers’ range anxiety, while imposing stress on the electric
distribution networks (EDNs) and threatening their transient
stability. As a powerful transient stability evaluation (TSE) tool,
the estimation of region of attraction (ROA) plays a vital role in
maintaining situational awareness and stable operation of the
emerging EDNs. However, EDNs dominated by EV charging
stations typically involve highly nonlinear and complex system
dynamics, rendering the model-based approaches for ROA
estimation computationally intensive. Thus, solution accuracy is
usually compromised due to simplified system modeling. This
paper proposes a data-driven approach to ROA estimation of
emerging EDNs based on the Koopman operator theory.
Numerically stable Koopman eigenfunctions can be learned from
the system measured data and then employed to establish a set of
linearly parameterized Lyapunov candidate functions. Various
trajectory data are then employed to establish a tight feasible
polytope. Through efficient sampling and linear optimization, the
union of invariant sublevel sets of the determined Lyapunov
functions can constitute a tight inner approximation to the actual
ROA. The proposed method is evaluated to be computationally
efficient and permits real-time ROA estimation. Numerical
simulations of a DC EDN interfaced to an AC grid validate the
superior performance of the proposed method.

Index Terms—Data-driven, EV charging, Koopman operator,
region of attraction, transient stability evaluation.

I. INTRODUCTION

lobally, transportation is one of the major contributors

to greenhouse gas (GHG) emissions. In the United

States, the transportation sector is responsible for 28%
of the GHG emissions and has even overtaken the electric
power sector as the nation’s largest source of GHG emissions
in 2020 [1]. Electric vehicles (EVs), which can run on
electricity from renewable energy sources such as solar
photovoltaic (PV) and wind without direct tailpipe emissions,
are regarded as a game changer for the transition to a carbon-
neutral transportation sector, as well as for the improvement of
air quality and public health. Government initiatives, such as
New Jersey's ambitious goal of registering 330,000 EVs by
2025 [2], coupled with emerging high-power charging
technologies [3], are accelerating the adoption of EVs.
However, the rapid buildout of EV supercharging stations will
place a substantial strain on existing electric distribution
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networks (EDNs). The EVs, tightly regulated by power
converters, behave as constant power loads (CPLs) of the EDNs
with negative impedance characteristics [4], thereby reducing
the system’s effective damping. Moreover, a rising penetration
of power-converter-interfaced renewables, commonly paired
with EV charging, could lower system inertia and increase
system dynamics’ volatility. This could severely threaten the
transient stability of emerging EDNs, undermining their ability
to maintain the system frequency and voltage within the
acceptable ranges following significant disturbances. Hence, it
is crucial to develop efficient transient stability evaluation
(TSE) approaches for ensuring system situational awareness
and stable EDN operation.

There has been a growing body of research on TSE of electric
power systems (EPSs) [5,6]. These works mainly utilize
Lyapunov’s stability theory to quantify how large disturbances
a system can tolerate via the estimation of region of attraction
(ROA) of a locally asymptotically stable equilibrium point [7].
Takagi-Sugeno (T-S) multi-modeling approach, originally
developed for system identification [8], has been utilized for
ROA estimation of various EPSs [9,10], including a multi-bus
inverter-based dynamic microgrid that accounted for
communication latencies [11]. As system complexity and
nonlinearity increase, the T-S method struggles with high-
dimensional problems despite its effectiveness for small-scale
EPSs. While model reduction techniques such as Kron
reduction [12] can be used to reduce computational burdens,
they run the risk of omitting important system dynamics. In
addition, Brayton-Moser’s mixed potential theory has been
applied to simplify EPSs as RLC networks for ROA estimation,
where stability is guaranteed if the mixed potential function is
at a local minimum [13]. This simplification, however, tends to
generate conservative ROA estimates. To combat this issue, a
revised mixed potential theory was introduced [14] that takes
into account the operating limits of practical CPLs in DC
microgrids and differentiates the state variables according to
their strong and weak correlations to stability.

Among the Lyapunov-based methods, mathematical
optimization, especially sum-of-squares programming (SOSP),
has been extensively leveraged to compute the maximum ROA
from a proper Lyapunov function [15]. This type of method
carries the potential to systematically construct Lyapunov
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functions and is more accurate than other mainstream
Lyapunov-based approaches. Nonetheless, SOSP is generally
limited to polynomial systems. For non-polynomial system
models, Taylor series expansions need to be employed at the
expense of truncation errors. To counter the negative effects of
truncation errors on the estimated ROA, [16] integrated
bounded uncertain terms to the Taylor expansion of the
trigonometric function in the original EPS models. The
transient stability of grid-connected converters with phase-
locked loops (PLLs) was studied in [17] using an iterative
SOSP method. However, the discussed system only consisted
of a single converter. It is thus unclear if the proposed method
would be computationally efficient for an EDN dominated by
distributed assets such as EV charging stations and renewables.
Realizing that, conventional SOSP-based methods may
encounter computational complexity, particularly with higher-
order polynomial Lyapunov functions or in large-scale systems.
To this end, reference [18] proposed a method to estimate high
quality ROAs for a DC microgrid with CPLs, based on the
variants of conventional SOSP with improved solution times
and scalability.

The crux of Lyapunov-based research is the lack of a method
for finding a generalized Lyapunov function for different
systems. As an alternative, geometric methods such as normal
form analysis have also been applied to ROA estimation [19].
However, these geometry tools are constrained by their locality
and low dimensionality [20]. Besides, authors of [21] applied
the theory of occupation measures to approximate the ROA of
EPSs comprising synchronous generators (SGs). Nevertheless,
the method’s suitability relies heavily on polynomial
reformulation of the original dynamical system models.

All the model-based methods discussed above have only
investigated homogenous bus dynamics, focusing on either
power converters or SGs, both of which are essential
components of emerging EDNs with distinct dynamics. Besides,
these methods’ performances are often constrained by their
system modeling accuracy, which is often compromised due to
simplified mathematical models in exchange for acceptable
solution times. However, practical EDNs exhibit high
nonlinearity and complex dynamics, introduced by
uncertainties due to varying operating conditions, as well as
stochastic EV charging behavior and intermittent renewable
generation. Moreover, proprietary and undisclosed control
algorithms for distributed assets could exacerbate these
uncertainties. Meanwhile, recent advancements in data-driven
approaches, fostered by the integration of big data and
advanced analytics, have led to the increased application of the
Koopman operator-based methods in dynamical system
analysis [22]. The Koopman operator theory allows for a
scalable reconstruction of the underlying dynamical system
using only measured data and provides a principled linear
embedding of nonlinear dynamics, thereby reducing
computational complexities. Indeed, the prominent features of
the Koopman operator theory have lent itself to a wide range of
data-driven applications in EPSs. such as dynamic state
estimation [23], power flow calculations [24], system
identification [25], model predictive control (MPC) of wind

farms [26], etc. Most notably, this theory finds its application
in TSE due to its ability to capture system stability properties
via spectral properties and eigenfunctions [27]. However,
existing research employing the Arnoldi-type method to
approximate the Koopman operator failed to capture system
nonlinearity adequately [28,29]. Furthermore, the spectral
analysis results are generally posterior, thus reducing their
comprehensibility and directness compared with ROA
visualization. Reference [30] proposed an ROA estimation
scheme using the extended dynamic mode decomposition
(EDMD) method [31]. However, it lacks rigorous theoretical
stability = guarantees, and EDMD’s single-time-step
approximation may result in instability and accumulated
approximation errors in the learned Koopman operator [32].

To address the challenges of uncertainties in emerging EDNs
with enormous growth of EV supercharging stations, this work
presents a novel data-driven approach using the Koopman
operator theory for ROA estimation. Specifically, this method
employs data regression to approximate Koopman
eigenfunctions, which then facilitates the ROA estimation by
constructing specially designed Lyapunov candidate functions.
This proposal offers a distinct advantage over existing model-
based methods by greatly improving both solution accuracy and
computational performance. The major contributions of this
paper are summarized as follows:

1. A tight inner approximation to the ROA of an EDN with
heterogeneous bus dynamics is efficiently computed using
measured data. Convex constraints are rigorously enforced on
the measured trajectory data of the EDN to obtain a tight
feasible polytope. Therefore, sublevel sets of the corresponding
Lyapunov functions are found via sampling and linear
programming (LP) to derive the estimation of ROA.

2. A set of linearly parameterized Lyapunov candidate
functions are designed using the approximated Koopman
eigenfunctions. This novel design not only reduces the number
of decision variables in ROA estimation with improved
computational efficiency, compared with optimization-based
methods (e.g., SOSP), but also is directly interpretable from the
perspective of Koopman spectral analysis and stability
properties.

3. To overcome the instability issues inherent in the EDMD, a
stable Koopman operator is learned by imposing stability
constraints using the data-driven SOC algorithm [33,34]. The
longer-term (multiple time steps) accuracy of the approximated
Koopman eigenfunctions is improved as well.

The remainder of this paper is organized as follows: Section
I describes the detailed dynamical modeling of a typical DC
EDN for future EV supercharging stations, with individual
distributed assets modeled separately. In Section III, the
preliminaries of the Koopman operator theory are firstly
presented, the issue of divergent accumulated approximation
errors due to the unstable Koopman operator learned by the
EDMD is analyzed, and then the SOC algorithm is introduced
to overcome this issue to learn a stable Koopman operator. In
Section IV, the data-driven ROA estimation method based on
the learned Koopman operator is proposed. The detailed case
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studies are conducted in Section V. Section VI concludes this
paper and discusses future work.

II. DC ELECTRIC DISTRIBUTION NETWORK MODELING

The DC EDN is better suited to hosting EV supercharging
stations than its AC counterparts due to its higher power
conversion efficiency and simpler control architecture [35]. As
a result of the accelerating buildout of charging stations, the
EDNSs are expected to experience a shrunken transient stability
margin. With an accurate estimation of the ROAs, the
distribution system operator (DSO) can maintain a good
understanding of the system operation status and take proper
control actions, thereby improving grid reliability and security.
In this work, we propose a data-driven method for ROA
estimation of EDNs hosting future supercharging stations,
based on the Koopman operator theory. According to the ROAs
estimated in real-time, the charging requests could be managed
to ensure the stable EDN operation. Fig. 1 illustrates a DC EDN
connected to an external AC grid. The modeled EDN comprises
a battery energy storage system (BESS), a solar PV system, and
a few high-power EV chargers, which represent key
components of future supercharging stations. The external AC
grid and the BESS are responsible for DC voltage regulation
and power balancing. Different types of pulse-width modulated
(PWM) power converters are employed to interface these
distributed assets to the common DC bus. The local controls of
distributed assets in this work are based on proportional-
integral (PI) control. In what follows, the detailed modeling of
each distributed asset is provided.
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Fig. 1. The modeled DC electric distribution network.
A. Solar PV

A solar PV array in the maximum power point tracking
(MPPT) mode is interfaced to the common DC bus through a
Boost converter, as shown in Fig. 2. The state equations of the
Boost converter are obtained as (1)- (4):

l[me.pv

pv VL

Lline, o4
Va

L
pv +
A%
pvde c
XIS,W C| _ “

Fig. 2. Solar PV interfaced by a Boost converter.

line, pv

6

— ipy(Wpv) _ ipvL (1)
pv Corri Coi
pvi pvi
. _ ~RpyipyL | vpv _ [1_dpv(vpv)]'vpvdc 2
lva - + ( )
Lpy Lpy Lpy
5 _ _iline,pv [1_dpv(va)]'iva
vpvdc - (3)
Cpvo Cpvo
.o —Riinepv'tiine,pv Vpvdc vd,
linepv = L 4L - < 4)
, Liine,pv Liinepv Liine,pv

where v, and i, represent the equivalent output voltage and
current of the solar PV system, respectively. As v, and iy,
satisfy a transcendental equation [36], iy, is considered as an
implicit function of v,,,, denoted as iy, (V). Cpy; is the input

capacitor, R,,, is the internal resistance of the inductor L,,,, and

v
Vpyac 18 the voltage of the DC-link capacitor Cyy,,. vdcp is the
common DC bus voltage. The Perturb and Observe (P&O)
technique is employed for MPPT. d,,(v,,) denotes the duty
cycle to the switch S, generated by a local PI controller that
regulates v, to the MPPT voltage vy, [37]. In practice,
another BESS could be added in parallel with this solar PV to
form a hybrid system such that the uncertainty in solar
irradiance could be greatly mitigated. As such, this work
assumes small variations in solar irradiance for the modeled PV
array.

B. BESS

A bidirectional Buck-Boost converter connects a BESS to the
common DC bus of the EDN, as shown in Fig. 3. This BESS
can help reduce peak demand charges and provide ancillary
services for improved grid stability.
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Fig. 3. BESS interfaced by a bidirectional DC-DC converter.
The following equations represent the BESS dynamics:
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where V,, is the BESS terminal voltage, i,; is the inductor
current, vy, is the voltage of the DC-link capacitor C;,, and
ljinep 1S the output current. Ry, and Ly, are the line
resistance and inductance. Since the BESS generally has a large
energy capacity and small voltage variations, V,, can be
considered as constant. A dual-loop PI control is implemented
locally, where the outer loop regulates vy,4. to (V;; — Thijine )
(W, is the rated common DC bus voltage, and 1, is the DC droop
coefficient) and the inner loop regulates iy; . dp (Vpace ipr)
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represents the duty cycle generated by the inner current loop.
The upper and lower switches of the power converter are then
driven in a complementary manner.

C. EV Charging Load

Various charging technologies [38] can be utilized to charge
EVs, e.g., constant power (CP) mode, constant current (CC)
mode, constant voltage (CV) mode, and their combinations. An
EV is charged via a Buck converter, as depicted in Fig. 4.

Uiine,ev g, i,

line,ev line,ev

Ve Vevde | C.,

Fig. 4. EV charged via a Buck converter.

The dynamical model is described as
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where C,,; is the input DC-link capacitor, v,,4. is its voltage,
ieyr, 1s the inductor current, i,,, is the charging current, and v,
is the EV battery terminal voltage. Depending on the charging
mode, the local controller executes single-loop or dual-loop PI
control to generate the duty cycle d,,, for the switch S,,,. As v,,,
and i,,, are solely related to each other in the generic battery
model [39], i,,, is considered as a function of v,,, i.e., i, (Vey)-
D. Grid-Interface Bidirectional AC-DC Converter

The grid-interface converter is implemented using a voltage
source converter (VSC) topology. In Fig. 5, v4, v, and vy,
are the three-phase AC grid voltages, which are assumed to be
balanced. L, is the inductance of the filter on each phase, and
Ry is its internal resistance. In addition, v is the voltage of
the DC-link capacitor C,. The external AC grid can absorb or
release DC power to assist the DC EDN operation.
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Fig. 5. AC grid interfaced to EDN via an AC-DC converter.

In the synchronously rotating d-q reference frame, the state
equations related to the inductor filters are given:

. , RgiiLd |, Vga  Md(WgdciLd) Vgdc
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where vy, and v, are the grid voltages on the d-g axes. i;; and

i1q are the d-g axes currents flowing through the inductor
filters, while w is the measured angular frequency of the AC
grid. Besides, a dual-loop PI control [40] is implemented. In the
outer voltage control loop, vy, is regulated to its rated value
V,,, which provides the d-axis current reference. Since no
reactive power is delivered, the g-axis current reference is set
as zero. The inner current control loop tracks the current
references and generates the d-g axes duty cycles mg (Vgac, ipa)
and m, (i,4). The dynamics of the DC link can be expressed
based on the power balance between the AC and DC sides. In
addition, the line current at the output terminal is obtained.

b _ 3Wga'iLdtvgqiLg)  lineg (14)
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The dynamics of the AC grid can be represented by the
following equations mimicking an equivalent SG [41]:

(16)

. 1 3 . .
w = 7[Tm - Z(vgd g t Vgq " qu)]
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r———— a7
where w is the angular frequency, J is the total moment of
inertia of the AC grid, and T, is the mechanical torque
provided by the prime mover. Moreover, 7,y is the time
constant of the prime mover, while 1, is the speed droop
coefficient. wy is the rated angular frequency. P, is the power
change setting typically dispatched by the DSO, and in this
paper, it is set by a PI controller acting on the error between wy
and w. Because the SG stator terminal voltages are also the grid
voltages, Vg4 and vy, in the above equations can be further

expressed as

Ugd = _Ra N iLd +w- Laq . iLq + Vsa (18)
Vgq = —Rq ipq =@ Lag g + Vgq (19)

where R, Lgq, and Ly, are the resistance and d-g axes
inductances of the SG stator, respectively. vgq and vy, are the
voltages induced on the stator by the excitation system. Since
voltage regulation can have fast response, vy and vy, are
regarded as constant during transients.

Without loss of generality, it is assumed there are n,,, solar

PVs, n, BESSs, n,,, EV loads in the DC EDN connected to the
external AC grid. The entire DC EDN represents a nonlinear
dynamical system:

x= fedn (X) (20)
. T .
with state vector x: = [xp,,, Xp) Xey, xgic] - Specifically, x,,: =
[vpv,li lva,l' L] vpv,npy' lva,npy' vpvdc,npv' lline,pv,np,, )

Xp: = [lbL,l' Ubdc,1r tiine,b,17 -1 WbLny» Vbdeny» lline,b,nb]s
Xopt =

[lline,ev,ll vevdc,ll L Lline,ev,nevﬂ vevdc,ney' levL,nev' vev,ney]a
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and xgic: = [lLd' qu' vgdct lline,g' w, Tm]'

Remark 1: A priori knowledge of the nominal model
parameters of (20) is not necessary for a data-driven method.
Even if these parameters are available, the actual system is
likely to experience deviations from them during operations.
Besides, detailed knowledge of the control algorithms is not
needed as long as they are related to the system states. However,
information on the model structure can reveal the physics of the
dynamical system and is thus conducive to data collection for
Koopman operator approximation. Furthermore, knowledge of
the normal operating ranges of the EDN dynamic states, which
can be estimated empirically or from historical system
operation data, is helpful in implementing the proposed data-
driven ROA estimation approach, as will be presented later.

III. A STABLE KOOPMAN OPERATOR

Considering a general dynamical system in the form of

x(t) = f(x(1) @n
where x evolves in a state space X € RP. Let F(x,t) be the
flow of the continuous-time system (21) starting from an initial
state x, when t > 0, and g : X — € be a measurable function
referred to as the observable or a basis function. All observables
constitute the space of observables F. The Koopman operator
K':F > F for (21) advances an observable based on the
evolution of the trajectories in X such that

(K'g)(x) = ge°F(x1) (22)
where o represents the pointwise function composition. Since
the Koopman operator is linear over its observables, it can be
characterized by eigen-decomposition. In general, an
eigenfunction ¢ and its eigenvalue 1 € € satisfy:

(K'p)(x) = p o F(x,t) = exp(A)p(x)  (23)
In addition, the Koopman operator embeds the finite-
dimensional nonlinear dynamics (21) to an infinite-dimensional
function space, so it is more practical to approximate this
infinite-dimensional operator using data-driven methods such
as dynamic mode decomposition (DMD), EDMD, generalized
Laplace averages, deep neural networks (DNNs), etc. Among
them, EDMD is most widely applied because it uses an
extended basis to capture nonlinearities and only needs one-step
iteration. More details on the Koopman operator theory and its
data-driven methods can be found in [42].

Let Fy € F be an N-dimensional Koopman invariant
subspace, i.e., K' g € Fy for any g € Fy. When EDMD is
applied to (21), the basis functions are functions of the states,
denoted as Y;(x) € Fy,i = 1,2, ...,N. Assuming that the DC
EDN (20) provides (M + 1) consecutive snapshots of the
system states from a variety of collected trajectories over
uniform time intervals At , EDMD constructs a finite-
dimensional approximation K of the Koopman operator by
solving the following least-squares problem:

Rg}%mN Y= P (xXperq) — K-
(24)

YEI?

in P —K-pOI; =

_m
KeRNXN

where || - || refers to the Frobenius norm of a matrix and || - ||
is the 2-norm of a vector. Y(¥): = [P(x,), ..., ¥p(xp1) 1,
Y(X): = [P(x1) , ..., P () ] ; and Y(x): =
[P, (x1) , o, Yy (x,) 1T at time instant £.
A closed-form solution can be readily obtained as
K=A-Ut (25)
where 1 denotes the Moore—Penrose pseudoinverse, A:=
YY) - PX)T and U:=P(X) - P(X)T. The basis functions
can be customized and have multiple choices. To fairly
compare with the SOSP, which exhibits less conservativeness
than other model-based approaches in ROA estimation, this
study uses monomials as the basis functions. Once K is
obtained, the Koopman eigenfunction ¢; corresponding to an
eigenpair (1;, v;) of the transpose of K is obtained:

P:(x) = v - Pp(x) (26)

Besides, the eigenvalue of K' corresponding to ¢; is A; =
logu;
at

However, since K is used to numerically approximate K¢,

there will obviously be errors accumulated over a given time

span. The actual value of the basis function at certain time step

k can be expressed as its approximated value plus the error € :

Y(x) =K P(x,_,) + & (27)
Likewise,

Y(xi-1) = K- P(xi_;) + €y (28)
Iteratively, we obtain a generalized expression at time step k:
Y(x,) = K* - P(xo) + XS0 K- € (29)
It follows that the accumulated error Y<-& K* - €,_; can be
bounded based on the norm properties:

”Z{F:_ol K- Sk—i” < Z{;;01||Ri : Ek—i” < Zi':oll“?i” NEe—ill <
SR el (30)
If |||l < epay for any i, then

T B €]l < emax ISR D)
Inequality (31) shows that the accumulated approximation error
could be enlarged exponentially if the learned Koopman
operator K is unstable. Inspired by [33] and [34], we propose to
apply the SOC algorithm to learn a stable Koopman operator in
light of its superior numerical stability over long time horizons,
memory efficiency, and scalability. Specifically, the matrix K
is stable if and only if it can be expressedas K =8§"1-0-C -
S, where S is positive definite, O is orthogonal, and C'is positive
semidefinite contraction (i.e., the singular values of C are less
than or equal to 1). Hence, instead of solving (24) in EDMD,
the following optimization problem is solved using the fast
projected gradient descent method presented in [33]:

inf [ (¥) — K- pXOIF = inf [[p(¥) —$7-0-C-5-
VIR (2)

The gradients with respect to the matrices S, O, and C are
derived as:
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Vsf(5,0,C) =ST(W-ET —ET-W)  (33)
Vof(5,0,C)=—-ST-W-ST-C" (34)
V.f(5,0,€)=—-0T-ST-W-ST (35)

where E:=S1-0-C-S and W:=[yp(Y)—-E-ypX)]-
P(X)T. This algorithm enforces stability by projecting the
solution onto the feasible set and iteratively updates the gradient
directions. Thus, the stability constraint is naturally imposed on
K. And (26) can still be utilized to derive the Koopman
eigenfunctions.

Remark 2: Under the Koopman operator framework, the
Koopman eigenfunctions can be leveraged to construct
Lyapunov candidate functions in a systematic way with strict
stability guarantees. In the following, the derived Koopman
eigenfunctions will be used to constitute a linear space of
Lyapunov candidate functions, and the union of sublevel sets of
the decided Lyapunov functions will provide an inner
approximation to the actual ROA.

IV. DATA-DRIVEN ROA ESTIMATION

When an equilibrium state x* of the dynamical system (21)
is nonzero, any system state x can be translated to x -x*.
Therefore, x* is assumed as the origin for simplicity. If the
origin is asymptotically stable but not globally attractive, it is
desirable to know which trajectories will converge to it as time
approaches infinity. The ROA of the system equilibrium state
x* = 0 for (21) is mathematically defined as a set ROA,+—_g: =

{x E RP: tlim F(x,t)=0 } Furthermore, the y-sublevel set

Qy,, of a Lyapunov function V (x) with a positive y is defined
as Qp, ={x €RP:V(x) <y} , which can practically
characterize the forward invariant subsets of the actual ROA
[7]. If the following conditions are satisfied:

1) Qp, is bounded

2) V(0) =0andV(x) > 0 for all x € RP

3 0, \{0}c {x eRP:V(x) =22 f(x) < o}

(36)
then the flow F(x,t) of (21) exists and F(x, t) € Qy,, holds for
all xeQy, and t=0. In addition, tlim F(x,t)=0.
Accordingly, Qy ,, is an invariant subset of ROA,+—.

The details of the proposed data-driven ROA estimation are
elaborated in Fig. 6 below. Both historical system operation
data recorded by measurement devices such as phasor
measurement units (PMUs) and simulation data generated from
high-fidelity numerical simulations can serve as the required
measured data for this method. Firstly, the measured data are
employed by the SOC algorithm to approximate the Koopman
eigenfunctions as explained in Section III; secondly, the
Lyapunov candidate functions are linearly parameterized using
the learned Koopman eigenfunctions; thirdly, polytope
constraints are formed; and finally, a tight inner estimation to
the actual ROA is obtained.

Measured data

SOC algorithm

Conditions for invariant
subsets of ROA

/

> Polytope constraints

/

Fig. 6. Flowchart of proposed data-driven ROA estimation.

Measured data

! N\

Linearly parameterized
Lyapunov candidate functions

\ Sampling and LP

Union of invariant sublevel sets of
determined Lyapunov functions

Koopman eigenfunctions

Under the assumption that large amounts of measured data
are available, our goal is to estimate the ROA of the DC EDN
(20) in a data-driven fashion. Fig. 7 illustrates how to apply the
conditions in (36) to various trajectory data to find a Lyapunov
function and its y-sublevel set.

V(x)<y

Cony,

Fig. 7. Illustration diagram of ROA inner estimation.

Suppose there exists a Lyapunov function V(x) to certify
that a set G lies inside the ROA. As is observed from Fig. 7,
V(x) <y and V(x) <0 should hold for a convergent
trajectory starting from G, while V(x) > y is satisfied for a
divergent trajectory starting from G’s complement G¢. Also, G
will not be within the ROA if at least one trajectory eventually
diverges with initial conditions in G. Thus, a smaller region of
G should be chosen.

Conventionally, it is computationally intensive if not
intractable for those optimization-based methods such as the
SOSP to calculate the maximum ROA, when dealing with many
decision variables due to the high dimension of an EDN, not to
mention the lifted space F . To address this issue, we propose
to reduce the number of decision variables for ROA estimation
via linearly parameterizing an arbitrary Lyapunov candidate
function using the Koopman eigenfunctions from Section III.
Specifically, we select a set of Koopman eigenfunctions ¢;
(i=1,2,..,Ng) with a sufficiently large negative real part
Re[4;] to construct the basis ¢;(x) of the linear space for
Lyapunov candidate functions, as such eigenfunctions can
capture the stability properties of the underlying dynamical
system [27]. Further, if the basis function is chosen as ¢;(x) =
@; (%) - §;(x) = |@;(x)|®> (the overbar denotes complex
conjugation), then ¢;(x) >0 and ¢;(x) =2-Re[l;]"
lo;(x)|* = 2-Re[4;] - ¢;(x) < 0 hold for i =1,2,..,Ny. It
follows from the detailed proof in the Appendix that the family
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of sets V,, = {x € RP: Z;Vfl a; - ¢;(x) < y} with a; > 0 are
forward invariant.

Consider a Lyapunov candidate function V(x) = Z?I:"’l
¢;(x), where the coefficients «; are to be determined. When the
conditions discussed in (36) and observed in Fig. 7 are strictly
imposed on the trajectory data, they could be naturally
translated into constraints on «; in a LP problem. It should also
be noted that the above constructed Lyapunov candidate
function will lead to stronger expressive power and thus a less
conservative ROA approximation when higher-degree
monomials are adopted for ¥;(x) , compared to the
conventional quadratic Lyapunov functions used in the T-S
multi-modeling.

ai'

To seek a Lyapunov function whose y-sublevel set is forward
invariant, numerous trajectory data need to be sampled initially
from a prechosen set G. In practice, G for an EDN is related to
the allowable operating ranges of each dynamic state variable.
For instance, the typical frequency of islanded microgrids lies
between 59.3 and 60.5 Hz, while the DC common bus voltage
is £5% of the rated value. However, G should be shrunk
accordingly once divergent trajectories beginning from G are
detected. Based on the condition V, \ {0}  {x € RP: V(x) <
O}, there should be V(x) < B - [y — V(x)] for the convergent
trajectory data with initial conditions in &G, where f§ is a positive
constant and can be initially set as twice the minimum of
[Re[4;]]. Thus, on a convergent trajectory [xg, X4, ..., X7 ]| with

(T + 1) time steps, any data point x;, should satisfy 1) Zi\]:(i)l a; -
N ; N
G Sy 5 D) Nt i) + B [T o i) —

y] < 0. In compact matrix form, the constraints are

- a<0 (37.1)
(Pyor +B-P)-a<0 (37.2)
a=0 (37.3)
afl: Ny <1 (37.4)
1 1. 1 0l-a=1 (37.5)
h1(x0)  P2(x0) ¢N¢(x0) -1
where ¢ = : : ,
¢$1(xr)  P2(x7) by (xr) 1
$1(x9)  P2(x0) (i’N¢ (%) O
Dy = : _ : , and a:=
b1(xr)  ba(r) ¢n,(xr) 0

T
[al Az .. Ay y] . 6 is a vector with all fixed small positive

constants § for tightness.
However, a divergent
complement of G should obey
P =48 (37.6)
Each row of the above constraints defines a half-space in
RN4*1 and the intersection of these half-spaces defines a
feasible polytope [43]. As more trajectories are considered, the
feasible polytope will be iteratively refined with a monotonic

trajectory starting from the

decrease in volumes. Theoretically, it will converge to a certain
convex polytope P as the number of iterations approaches
infinity. The detailed ROA estimation algorithm is presented as:

PROPOSED ROA ESTIMATION ALGORITHM

Stage 1: Create a feasible polytope P using measured data
Initialize: G, A., A;, p, B, and §
Obtain K,,,,, data trajectories:

1 [k=0,K.=0,andK; =0

2 | while k < Kppgy:

3 sample a random initial state x,;, from G
4 if a trajectory from x, converges:

5 save this trajectory in 4., and K,+=1
6 else:

7 save this trajectory in A4, and K;+=1
8 k+=1

Apply constraints (37.1~37.6) to the data trajectories:

9 | P={aeR%":(37.3) - (37.5)}

10 | fori = 1:K,:

11 form polytope P; based on (37.1), (37.2) using A.(i)
2| P,—PnP

13 if is empty(P;):

14 B—p-B

15 go to Line 10

16 P—P;

17 | fori = 1: K,:

18 use x,; of A;(i) as a new vertex and project as G;
19 G—G;

20 form polytope P; based on (37.6) using A, (i)
21| P—Pnp,

Stage 2: Determine V, via sampling and linear optimization
Initialize: V, = ¢

22 1j=0

23 | while j < Nyt

24 sample x; from G

25 solve: mgleivjl a; - ¢i(x) —v

26 s.t. aSP

27 v, = {x € RP: Zli\]:"’l a; - ¢;(x) < max{y + objmar, ¥ }}
28 vV, —V, UV,

29 j=j+1

The proposed ROA estimation algorithm consists of two
stages, given the already learned Koopman eigenfunctions from
Section III. In Stage 1, measured data are utilized to construct a
feasible polytope. If historical system operation data are not
readily available, trajectory data can also be generated through
high-fidelity numerical simulations. If runtime is of concern, a
time limit can be set rather than K,,,,,. Then the actual number
of simulated trajectory data will be applied. During this process,
the K. convergent trajectories and K, divergent trajectories
will be stored in arrays A, and A4, respectively. In Line 14, the
preset [ is amplified by a constant parameter p once the
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intersection of intermediate polytopes becomes empty. As is
shown in Line 18, the disqualified initial state is used as a new
vertex, whose projections on the coordinate axis of each state
attain G;. A tight polytope P could be finally obtained in Line
21. In Stage 2, a set of x’s are sampled from the refined G and
LP problems are solved on each x to derive the invariant sub-
level sets V,, (in Line 27) of each Lyapunov candidate function;
0bj 4, represents the maximum of the objective function in
Line 25. Theoretically, for a sufficiently large number of
samples Ny, 4., V, will converge and cover the largest sub-level
set of a single Lyapunov function that is based on the SOSP
[17]. Furthermore, the proposed ROA estimation can be even
closer to the actual one if 0bj,, is positive. It is also
noteworthy that different sampling techniques can lead to
different convergence rates. The efficient high-dimensional
sampling method named the Dikin Walk [44] can be adopted to
generate uniform random samples for Lines 3 and 24. Lastly,
both stages in the proposed algorithm are highly parallelizable
and parallel computing can be leveraged for speedup in
simulation and optimization.

V. CASE STUDIES

To verify the effectiveness of the proposed data-driven
approach for ROA estimation, numerical simulations of a 2-kV
DC EDN as shown in Fig. 1 are conducted in
MATLAB/Simulink with a fixed step size of 50 us. MATLAB
Parallel Computing Toolbox and Parallel Server are leveraged
to expedite simulations. The SG representing the external AC
grid is rated at 5 MVA, and two (n,,,) aggregated EV charging
loads are considered. Averaged modeling [45] for the PWM
power converters is implemented. The detailed system
parameters are given in Table I. The EV battery models in the
simulations have low initial state of charge (SoC) values and
are only charged in the CP mode for simplicity. Also, an EV’s
arrival and departure times are assumed to follow the truncated
normal distributions suggested by [46]. In Fig. 1, each
simulated EV charging load represents one charger with a
variable number of charging ports. For instance, the Ultra-Fast
Charging Load (2) represents three charging ports, with
possible charging power levels of 0 kW (idle), 400 kW (for 1
EV), 800 kW (for 2 EVs), or 1200 kW (for 3 EVs). The duration
of each level of charging power can be determined by the
overlapping of EVs’ arrival and departure times. In the preset
G, wis 0.995w;~1.005ws, T,,, is from O to 1.1 times the rated
value, the DC-link voltages are 0.95V,~1.05V, , the
unidirectional inductor currents are from 0 to 1.2 times the rated
values, and the range of bidirectional inductor currents is £1.2
times the rated values. Besides, an EV battery terminal voltage
corresponds to the SoC range of 10%~60%. Communication
latency is ignored during the simulations because the EDNs
under consideration usually do not span a large geographic area.
In addition, Python interacts with Simulink for data collection
and computations. The experiment platform is a high-
performance server with an AMD EPYC 7B13 CPU (64 cores)
and 512-GB RAM.

Firstly, system operation data are simulated to learn the
Koopman eigenfunctions via the SOC algorithm executed in
Python. 100 different trajectories are collected with random
initial states selected within G. Each trajectory lasts for 20 sec
and is sampled with At = 0.01 sec. The probability distribution
parameters used during each trajectory collection are presented
in Table II. Although not a problem in this work, if historical
system operation data acquired from field measurement devices
are utilized, data corruption could be a concern. Thus, data
preprocessing [47] such as data cleaning and statistical
processing could be applied to reduce the negative effects of
noise and outliers in the raw data. Additional techniques
including regularization and data augmentation [48] could also
be implemented to minimize the potential for data corruption.
In this proposed method, the SOC algorithm could be
practically executed offline on a regular basis using the most
recent state measurements to maintain the high precision of the
learned Koopman eigenfunctions.

TABLE 1
SYSTEM PARAMETERS OF THE DC EDN
Solar PV BESS
Parameter Value Parameter Value
Vmpp at STC 903 V Vp (rated) 960 V
Impp at STC 1105.68 A R, 0.4 mQ
R,y 0.3 mQ Ly 0.8 mH
Loy 0.5mH Cp 3000 pF
Covi 600 pF V, 2000 V
Covo 2000 pF Ty 0.085 V/A
STC: standard test conditions
Ultra-Fast Charging Load (1) | Ultra-Fast Charging Load (2)
Parameter Value Parameter Value
Ve (rated) 800 V Uy (rated) 800 V
R,, 0.25 mQ R,, 0.25 mQ
Ly 0.6 mH L, 0.5 mH
Coypi 1500 pF Copi 1500 pF
Cevo 1000 pF Ceovo 800 pF
Grid-Interfaced VSC AC Grid Inductor Filter
Parameter Value Parameter Value
Cy 5000 pF Ry 1 mQ
Lg 0.5 mH
Synchronous Generator
Parameter Value Parameter Value
J (kg- m?) 3.7 x 10° Tpm 0.2 sec
Tp 0.05 pu
Parameter Value Parameter Value
Line 1 Riineg 112 mQ Liineg 0.45 mH
Line 2 Riine s 140 mQ Liinep 0.57 mH
Line 3 Riinepv 71.8 mQ Liinepv 0.31 mH
Line 4 Riineeva 57.4 mQ Liineev1 0.24 mH
Line 5 Riineevz 86.2mQ | Lyneen2 0.36 mH
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TABLE II
STATISTICAL DISTRIBUTION OF EV CHARGING BEHAVIOR
Distribution Boundaries
Arrival time (sec) N(3,12) [0,6]
Departure time (sec) N(15,12) [13,18]

There is always a trade-off between computational cost and
expressivity in designing the Lyapunov candidate function
when selecting the monomial basis for the SOC algorithm. This
study chooses the monomials in x of degree up to 4. As the
number of states of the simulated DC EDN is 21, there are
12649 (N) monomial functions in the basis when the special
monomial “1” is removed. It takes on average 791.18 sec for
the SOC algorithm to obtain the Koopman eigenfunctions based
on the concatenated trajectory data. 5368 (N ) out of 12649

Koopman eigenfunctions are retained after taking |Re[4;]| >
é - max|Re[4;]| to ensure large enough negative real parts. S is

determined as 0.0561, p is set as 1.07, and § is 2 - 10716,

An extreme scenario is considered, where all EV chargers are
in use. At some point, the only two idled EV charging ports at
the Ultra-Fast Charging Load (1) request connection to the DC
EDN, equivalent to increasing the power level from 800 kW to
1600 kW. To ensure transient stability, the DSO wishes to
manage this request by estimating the ROA. Suppose the
equilibrium points before and after enabling these charging
ports are x, =[889.8V, 556.2A, 1959.1V, 252.0A 667.5A,
1965.5V, 344.6A, 411.5A, 1947.3V, 925.2A, 864.7V, 617.4A,
1948.1V, 1373.7A, 873.6V, 884.6A, -0.31A,2000.0V, 432.3A,
377.0rad/s, 2620.2N-m]" and x,, =[891.5V, 555.6A, 1932.6V,
255.8A,1038.7, 1946.4V, 536.3A, 837.7A, 1915.9V, 1834.2A,
872.3V, 626.1A, 1921.4V, 1371.0A, 875.2V, 1378.0A, -2.25A,
1998.8V, 671.8A, 376.8rad/s, 3904.3N-m]”, respectively. In
practice, however, an absolutely stable equilibrium may never
exist due to the uncertainties and external disturbances, which
makes the quasi-equilibrium determined by model-based
methods less accurate. To this end, the in-line sliding-window
scheme proposed in [49] could be applied to predict the quasi-
equilibrium after assuming a specific EV charger is connected
to the DC EDN. However, when the existing measured datasets
are insufficient to span a complete data trajectory, the MPC
linear predictor in [26] could further be used to extrapolate the
evolving state trajectory. Development of such a predictive
approach with enhanced prediction accuracy is left for our
future research.

Once the Koopman eigenfunctions are learned, the data
trajectories under the specific operating condition need to be
obtained in Stage 1 of the proposed ROA estimation algorithm.
For the EDN Simulink model, a run time of 10 sec is sufficient
to determine the convergence of each simulated trajectory. 20
of 10-sec simulation runs are then conducted, and 127 sec are
taken to collect the trajectory data. No divergent trajectories
commencing from the preset G are found. Nonetheless, the
initial § is updated twice to generate a non-empty polytope. In
Stage 2, the scipy.optimize and multiprocessing packages of
Python are utilized to solve the LP problems in parallel. In

addition, the fast and efficient HIGHS solver is chosen. Ideally,
if more samples are collected to solve the LP problems, the
union of the obtained invariant sets will be even closer to the
actual ROA. Given the tradeoff between solution time and
accuracy, 500 tasks are distributed across all the logical cores.
It consumes 1274.87 sec to obtain 500 invariant sets.

The SOSP approach in [18] is selected as a benchmark
method due to its proven high performance on similar testing
systems. The proposed data-driven method is compared with
this approach in terms of computational performance and
solution accuracy. To apply the SOSP, some simplifications are
made to the system model (20). Firstly, the solar PV and the
BESS are represented by a generic second-order model [50].
Secondly, the EV charging load is modeled as a CPL which can
be further reduced as a controlled current source without
internal dynamics [18]. Moreover, Taylor series expansion is
utilized to recast the reduced-order model into a polynomial
system because it contains rational equations. As in [18], the
scaled-diagonally-dominant sums-of-squares programming
(SDSOSP) [51] is also leveraged in lieu of the conventional
SOSP for reduced solution time and improved scalability. The
degree of the polynomial Lyapunov candidate function is
selected as 4, while the degree of the truncated Taylor
expansion is chosen as 3. In addition, the SPOT Toolbox and
the MOSEK solver are used to solve the SDSOSP in MATLAB.

For different research focuses, the state variables of interest
can be selected from the 21 system states for analysis. In this
study, the transient frequency and voltage stabilities where the
Ultra-Fast Charging Load (1) is to be connected are of interest.
The estimated ROAs are respectively presented in a 2-
dimensional plane with the other state variables set equal to
Z€ro, 1i.€., Voygeq VEISUS ijjpeep1 and w versus vyg. . The
solution accuracy of the proposed method and the SDSOSP is
compared in Figs. 8 and 9, wherein the red star represents the
projection of x,, and the blue square stands for the x,,,. The blue
dashed line delineates the boundary of the ROA estimated by
the SDSOSP, while each green solid line encloses an invariant
sublevel set of our linearly parameterized Lyapunov functions.

Both figures show that x,, lies in the estimated ROAs of x,,,
indicating a large transient stability margin for the EDN.
However, the proposed data-driven approach achieves a better
ROA estimation than the SDSOSP. The reason is twofold. First,
the linearly parameterized Lyapunov candidate functions have
a degree of 8, while the polynomial Lyapunov candidate
function only has a degree of 4. Second, a forward invariant
subset of the actual ROA is enlarged when the maximum of the
corresponding LP objective function is positive. Besides, it can
be observed that some of the obtained forward invariant subsets
are quite small and may also coincide. Nonetheless, through an
increasing number of samplings, the proposed method
significantly lessens the conservativeness of the ROA
estimation.

A numerical simulation is conducted to further validate the
obtained estimation. The power level at the Ultra-Fast Charging
Load (1) is increased to 1600 kW to mimic the connection of
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another two EV charging ports at # = 11.6 sec. Fig. 10 presents
the transient response of the state variables of interest. After the
EV charging load is increased, the DC-link voltages stabilize to
new equilibria very soon, as shown in Fig. 10 (a). In contrast,
Fig. 10 (b) shows that the angular frequency of the AC grid
settles down after a longer transient period. This results from
the difference in time scales between electromechanical and

electromagnetic dynamics.
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Fig. 10. Transient response of states after EV load increases.

Since the learning of Koopman eigenfunctions using the
SOC algorithm can be implemented offline, the solution time
of the proposed method is primarily determined by the ROA
estimation based on sampling and LP. In the above case, it takes
the SDSOSP as much as 5260.44 sec to obtain the estimates, in
contrast to 1274.87 sec by the proposed method. To further
explore the scalability, the DC EDN is expanded to include
three and four EV charging loads, resulting in a system order
increase of four and eight for the original EDN model (20), and
two and four for the reduced EDN model, respectively. With all
other settings unchanged, the computation times of the two
methods for all these cases are reported in Table III.

TABLE III
COMPARISON OF COMPUTATION TIMES IN DIFFERENT CASES

#0of EV Loads | SDSOSP Proposed Method
SOC ROA Estimation
2 5260.44 791.18 1274.87
3 38402.16 3821.67 4385.69
4 ~ 14889.72 27297.45

Time is in sec.

The results show that the computation time of the SDSOSP
method substantially increases as the system scale increases. In
the case where the number of EV loads reaches four, this
method even fails to produce a solution within two days. In
contrast, the proposed data-driven method is more scalable and
consumes considerably less computation time to estimate the
ROA. Furthermore, the proposed method consistently produced
less conservative ROA estimation than the SDSOSP in all cases.
Thus, the proposed method has the potential to facilitate real-
time TSE.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a Koopman-operator-based data-driven
approach to estimate the ROA of a future DC EDN dominated
by EV supercharging stations. Simulation results demonstrated
that a less conservative ROA estimation could be obtained in a
more computationally efficient manner, compared with the
SOSP-based method (SDSOSP). With that, the proposed ROA
estimation provides a possibility of real-time applications in
future EDN TSE. In addition, the method is generic and could
be readily applied to other dynamical systems if measured data
are readily available. Further improving computational
efficiency for larger-scale systems would be one of our future
research directions. Multiple EV chargers can be integrated
using aggregators, and modular DNNs can also be used to
increase scalability. Apart from predicting the system’s new
equilibria in a purely data-driven fashion, we also plan on
leveraging the control-Lyapunov functions to adaptively
enlarge the estimated ROAs along with optimized dynamic EV
charging.



11

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

APPENDIX
Prove that the family of sets V, = {x € RP: Zi\]:(i)l a; -

o (x) < y} with a; > 0 are forward invariant.

Proof:

According to the spectral property of the Koopman operator
in [42], an eigenfunction ¢@(x) and its corresponding
eigenvalue A € € of the Koopman operator K' satisfies

Kfp(x) = e - p(x)

do(x)
dt

=1-9(x)

For each ¢;(x) =¢;(x) ¢;(x) =lp;®)|> ( i=
1,2,..,Ny),

; _dgi(x)  dei(x) _ dp;(x)
di(x) = b dt @i (x) + ¢;(x) T
dpi(x) _do(x) _ 7N _ 7T TN
Note T = T = Al . (pl(X) = Al . (pl(X), thus

$:i(x) = (A4 + 4;) - lo;(x) |2 = 2 - Re[4;] - ¢; ()

Since the Koopman eigenfunctions are approximated using
the SoC algorithm, there are approximation errors e; (x)’s. With
a mild assumption that the errors are bounded such that
le;(x)] < ¢; - pZ(x) + n; for some positive constants {; and 7;,

$:i(x) = 2-Re[A;] - ¢;(x) + ¢;(x)
< 2-Re[A;] - ¢;(x) + e;(x)]
=P (x) +2-Re[A;] - ¢;(x) + 1;

If ¢;(x) <0 always holds for certain interval (y;,7;) ©

Ry, the minimum of the above quadratic function of ¢;(x)
should be negative, which leads to the condition (Re[4;])? >
¢; -m;. It also implies that the y; -sublevel set of ¢;(x) is
forward invariant.

Furthermore, define y := min(a; -y;) for a; >0 ( i =
L

1,2,..,Ng). From Zlivz‘pl a; - ¢;(x) <y, we have
a; - pi(x) <y = miin(al- Yo

Thus, ¢;(x) < ¥; holds for i = 1,2, ..., Ny,

Now, define 8 = 2 - min|Re[A;]|. Then,

L

No ; Ne
D whi@s) o @ RelAD) i)

i= lEq)

MR RHOREN
i=

MRS I RICE R CE AR

i=

Therefore, if y - B = X0 a; - (- Vi + 0

Db @Sy a4y p
=p-lr-) @ hi@)

This suggests that the y -sublevel set of Zlivfl a; - ¢;(x) is
forward invariant. It should also be noted that the condition y -
g = Zivjl a; - (§;-7;> +m;) can be ecasily met if B is large
enough, which translates to that all A;’s (i = 1,2, ..., N¢) have
a sufficiently large negative real part.

Q.E.D.

REFERENCES

[1] U.S. EPA. (2022, Apr. 14). Sources of Greenhouse Gas Emissions.
[Online]. Available: https://www.epa.gov/ghgemissions

[2] NJBPU. (2020, Jan. 27). 2019 New Jersey Energy Master Plan. [Online].
Auvailable: https://nj.gov/emp/docs/pdf/2020_NJBPU_EMP.pdf

[3] M. Safayatullah, M. T. Elrais, S. Ghosh, R. Rezaii, and 1. Batarseh, “A
comprehensive review of power converter topologies and control methods
for electric vehicle fast charging applications,” IEEE Access, vol. 10, pp.
40753-40793, 2022.

[4] A. Emadi, A. Khaligh, C. H. Rivetta, and G. A. Williamson, “Constant
power loads and negative impedance instability in automotive systems:
Definition, modeling, stability, and control of power electronic converters
and motor drives,” IEEE Trans. Veh. Technol., vol. 55, no. 4, pp. 1112-
1125, Jul. 2006.

[5] T.L. VuandK. Turitsyn, “Lyapunov functions family approach to transient
stability assessment,” IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1269-
1277, Mar. 2016.

[6] T. Huang, S. Gao, and L. Xie, “A neural Lyapunov approach to transient
stability —assessment of power electronics-interfaced networked
microgrids,” IEEE Trans. Smart Grid, vol. 13, no. 1, pp. 106-118, Jan.
2022.

[7] H. K. Khalil, Nonlinear Systems, 3™ ed. Upper Saddle River, NJ, USA:
Prentice Hall, 2002, pp. 312-322.

[8] M. Takagi and M. Sugeno, “Fuzzy identification of systems and its
application to modeling and control,” IEEE Trans. Syst., Man, Cybern., vol.
SMC-15, no. 1, pp. 116-132, Feb. 1985.

[9] P. Magne, D. Marx, B. Nahid-Mobarakeh, and S. Pierfederici, “Large
signal stabilization of a dc-link supplying a constant power load using a
virtual capacitor: Impact on the domain of attraction,” IEEE Trans. Ind.
Appl., vol. 48, no. 3, pp. 878-887, May/Jun. 2012.

[10] M. Kabalan, P. Singh, and D. Niebur, “Nonlinear Lyapunov stability
analysis of seven models of a DC/AC droop controlled inverter connected
to an infinite bus,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 772-781,
Jan. 2019.

[11]Y. Du, Y. Men, L. Ding, and X. Lu, “Large-signal stability analysis for
inverter-based dynamic microgrids reconfiguration,” /EEE Trans. Smart
Grid, vol. 14, no. 2, pp. 836-852, March 2023.

[12] J. Grainger and W. Stevenson, Jr., Power System Analysis. New York, NY,
USA: McGraw-Hill, 1994, pp. 271-274.

[13] Z. Li, W. Pei, H. Ye, and L. Kong, “Large signal stability analysis for DC
microgrid under droop control based on mixed potential theory,” The J.
Eng., vol. 2019, no. 16, pp. 1189-1193, Mar. 2019.

[14] F. Chang, X. Cui, M. Wang, and W. Su, ‘‘Region of attraction estimation
for DC microgrids with constant power loads using potential theory,”” JEEE
Trans. Smart Grid, vol. 12, no. 5, pp. 3793-3808, Sep. 2021.

[15] S. Izumi, H. Somekawa, X. Xin, and T. Yamasaki, “Estimation of regions
of attraction of power systems by using sum of squares programming,”
Electr Eng, 100, pp. 2205-2216, 2018.



12

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

[16] L. Kalemba, K. Uhlen, and M. Hovd, “Stability assessment of power
systems based on a robust sum-of-squares optimization approach,” 2018
Power Systems Computation Conference (PSCC), Dublin, Ireland, 2018,
pp. 1-8.

[17] Z. Zhang, R. Schuerhuber, L. Fickert, F. Katrin, G. Chen, and Y. Zhang,
“Domain of attraction’s estimation for grid connected converters with
phase-locked loop,” IEEE Trans. Power Syst., vol. 37, no. 2, pp. 1351-
1362, Mar. 2022.

[18] B. Severino and K. Strunz, “Enhancing transient stability of DC microgrid
by enlarging the region of attraction through nonlinear polynomial droop
control,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 11, pp.
4388-4401, Nov. 2019.

[19] Y. Xia, W. Wei, T. Long, F. Blaabjerg, and P. Wang, “New analysis
framework for transient stability evaluation of DC microgrids,” IEEE
Trans. Smart Grid, vol. 11, no. 4, pp. 2794-2804, Jul. 2020.

[20]I. Mezi¢, “Koopman operator, geometry, and
https://doi.org/10.1090/n0ti2306.

[21] C. Josz, D. K. Molzahn, M. Tacchi, and S. Sojoudi, “Transient stability
analysis of power systems via occupation measures,” in Proc. IEEE Conf.
Innov. Smart Grid Technol., Washington, DC, USA, Feb. 2019, pp. 1-5.

[22] S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering:
Machine Learning, Dynamical Systems, and Control. Cambridge, UK:
Cambridge University Press, 2019, pp. 229-235.

[23] M. Netto and L. Mili, “A robust data-driven Koopman Kalman filter for
power systems dynamic state estimation,” /[EEE Trans. Power Syst., vol.
33, no. 6, pp. 7228-7237, 2018.

[24] L. Guo, Y. Zhang, X. Li, et al., “Data-driven power flow calculation
method: a lifting dimension linear regression approach,” IEEE Trans.
Power Syst., vol. 37, no. 3, pp. 1798-1808, May 2022.

[25] P. Sharma, V. Ajjarapu, and U. Vaidya, “Data-driven identification of
nonlinear power system dynamics using output-only measurements,” /[EEE
Trans. Power Syst., vol. 37, no. S, pp. 3458-3468, Sept. 2022.

[26] A. Husham, 1. Kamwa, M. A. Abido, and H. Supréme, “Decentralized
stability enhancement of DFIG-based wind farms in large power systems:
Koopman theoretic approach,” IEEE Access, vol. 10, pp. 27684-27697,
2022.

[27] A. Mauroy and I. Mezi¢, “Global stability analysis using the
eigenfunctions of the Koopman operator,” IEEE Trans. Autom. Control,
vol. 61, no. 11, pp. 3356-3369, Nov. 2016.

[28] Y. Susuki and I. Mezi¢, “Nonlinear Koopman modes and power system
stability assessment without models,” IEEE Trans. Power Syst., vol. 29, no.
2, pp- 899-907, Mar. 2014.

[29] Y. Hirase, Y. Ohara, N. Matsuura, and T. Yamazaki. “Dynamics analysis
using Koopman mode decomposition of a microgrid including virtual
synchronous generator-based inverters,” Energies, vol. 14, no. 15, p. 4581,
2021.

[30] H. Choi and S. Bose, “Transient stability analysis of power systems using
Koopman  operators,”  preprint, 2018.  [Online].  Available:
https://boses.ece.illinois.edu/files/TSKoopman.pdf

[31] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. “A data—driven
approximation of the Koopman operator: extending dynamic mode
decomposition,” J Nonlinear Sci 25, pp. 1307-1346, 2015.

[32] M. Han, J. Euler-Rolle, and R. K. Katzschmann, “DeSKO: stability-
assured robust control with a deep stochastic Koopman operator,” in Proc.
ICLR 2022, Virtual, Apr. 25, 2022.

[33] G. Mamakoukas, O. Xherija, and T. D. Murphey, “Memory-efficient
learning of stable linear dynamical systems for prediction and control,” in
Proc. NeurIPS 2020, Virtual, Dec. 6-12, 2020.

[34] N. Gillis, M. Karow, and P. Sharma, “Approximating the nearest stable
discrete-time system,” Linear Algebra Appl, vol. 573, no. 15, pp. 37-53,
Jul. 2019.

[35]7J. J. Justo, F. Mwasilu, J. Lee, J. W. Jung, “AC-microgrids versus DC-
microgrids with distributed energy resources: A review,” Renew. Sust.
Energ. Rev., vol. 24, pp. 387-405, Aug. 2013.

[36] T. Ma, H. Yang, and L. Lu, “Solar photovoltaic system modeling and
performance prediction,” Renew. Sust. Energ. Rev., vol. 36, pp. 304-315,
Aug. 2014.

[37] A. Sangwongwanich, Y. Yang, F. Blaabjerg, and H. Wang,
“Benchmarking of constant power generation strategies for single-phase
grid-connected photovoltaic systems,” IEEE Trans. Ind. Appl., vol. 54, no.
1, pp. 447-457, Jan. 2018.

[38] M. Akil, E. Dokur, and R. Bayindir, “The SOC based dynamic charging
coordination of EVs in the PV-penetrated distribution network using real-
world data,” Energies, vol. 14, no. 24, p. 8508, 2021.

learning,” doi:

[39] O. Tremblay, L.A. Dessaint, and A.L. Dekkiche, “A generic battery model
for the dynamic simulation of hybrid electric vehicles,” in Proc. IEEE
Vehicle Power Propuls. Conf. (VPPC), Sep. 2007, pp. 284-289.

[40] R. Teodorescu, M. Liserre, and P. Rodriguez, Grid Converters for
Photovoltaic and Wind Power Systems. West Sussex, UK: IEEE Wiley,
2011, pp. 317-320.

[41]J. H. Chow, M. A. Pai, and P. W. Sauer, Power system dynamics and
stability, 2" ed. Hoboken, NJ, USA: IEEE Wiley, 2018.

[42] A. Mauroy, 1. Mezi¢, and Y. Susuki, The Koopman Operator in Systems
and Control. Switzerland: Springer Nature, 2020.

[43] D. M. Mount, (Fall 2016). Computational Geometry. [Online]. Available:
https://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-
lects.pdf

[44] B. Cousins, “Efficient high-dimensional sampling and integration,” Ph.D.
dissertation, Coll. Comp., Tech. GT, Atlanta, GA, USA, 2017.

[45] S. Bacha, I. Munteanu, and A. 1. Bratcu, Power Electronic Converters
Modeling and Control with Case Studies. London, UK: Springer-Verlag,
2014, pp. 55-71.

[46] L. Yao, W. H. Lim, and T. S. Tsai, “A real-time charging scheme for
demand response in electric vehicle parking station,” IEEE Trans. Smart
Grid, vol. 8, no. 1, pp. 52-62, Jan. 2017.

[47] P. Sarajcev, A. Kunac, G. Petrovic, and M. Despalatovic, “Artificial
intelligence techniques for power system transient stability assessment,”
Energies, vol. 15, no. 2, p. 507, 2022.

[48] A. Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.
Sebastopol, CA, USA: O’Reilly Media, 2022.

[49] I. Nayak, M. Kumar, and F. L. Teixeira, “Detection and prediction of
equilibrium states in kinetic plasma simulations via mode tracking using
reduced-order dynamic mode decomposition,” J. Comput. Phys., vol. 447,
Dec. 2021.

[50] M. A. Mahmud, T. K. Roy, S. Saha, M. E. Haque, and H. R. Pota, “Robust
nonlinear adaptive feedback linearizing decentralized controller design for
islanded DC microgrids,” IEEE Trans. Ind. Appl., vol. 55, no. S, pp. 5343-
5352, Sep. 2019.

[51] A. A. Ahmadi and A. Majumdar, “DSOS and SDSOS optimization: More
tractable alternatives to sum of squares and semidefinite optimization,”
SIAM J. Appl. Algebra Geometry, vol. 3, no. 2, pp. 193-230, Apr. 2019.

Jimiao Zhang (GSM’18, M’23) received his B.Eng.
degree in Computer Engineering and M.Eng. degree
in Electric Engineering from Guangdong University
of Foreign Studies and Chongqing University,
China, in 2012 and 2015, respectively. He earned his
Ph.D. in Electrical and Computer Engineering from
Rowan University, New Jersey, USA, in 2023. He is
currently a research associate in the Electrical and
Computer  Engineering  Department, Rowan
University. From 2015 to 2017, he worked as a Transmission Line Engineer for
the State Grid Chongqing Electric Power Company. His research interests
include operation and control of electrical distribution systems, renewable
energy generation and integration.

Jie Li (M’14) received the B.S. degree in
information engineering from Xi’an Jiaotong
University in 2003 and the M.S. degree in system
engineering from Xi’an Jiaotong University, China
in 2006, and the Ph.D. degree from the Illinois
Institute of Technology (IIT), Chicago, in 2012.
From 2006 to 2008, she was a Research Engineer
with IBM China Research Lab. From 2012 to 2013,
she was a Power System Application Engineer with
GE Energy Consulting. She was an Assistant
Professor with the Electrical and Computer
Engineering Department, Clarkson University,
Potsdam, NY, USA, during 2014 to 2019. She is currently an Associate
Professor with the Electrical and Computer Engineering Department, Rowan
University, Glassboro, NJ, USA. Her research interests include power systems
planning, operation, and control.




