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Abstract—We have been witnessing an unprecedented increase
in the aging population in human history. It is nontrivial to ensure
the health and safety of seniors living alone. The prohibitive
human labor cost necessitates more sustainable, technology-
oriented approaches instead of labor-intensive solutions. The
raising digital healthcare services (DHS) leveraging the Internet
of Medical Things (IoMT), Digital Twins (DT), and advanced
fifth-generation and beyond (B5G) wireless communication tech-
nology, are widely recognized as promising solutions. By enabling
a seamless interwoven of the physical world and cyberspace,
Metaverse makes an ideal home for the next generation of
DHS. Thanks to characteristics of decentralization, traceability,
and unalterability, Blockchain is envisioned to enhance security
properties in Metaverse. This paper proposes MetaSafe, a DHS
architecture for seniors’ safety monitoring in Metaverse. Based
on monitoring data collected by sensors, the activities and status
of seniors, who are considered as the physical objects (PO),
are mirrored to corresponding logical objects (LO) in a virtual
community in the Metaverse, where activity recognition, potential
risk prediction, and alert generation are realized. By leveraging
Non-Fungible Token (NFT) technology to tokenize identities (POs
and LOs) and data streams of the DHS on the blockchain, an
NFT-based authentication fabric allows for verifiable ownership
and traceable transferability during the data-sharing process.
Specifically, an instant alerting system is introduced in this
work that leverages a hybrid algorithm combining the singular
spectrum analysis (SSA) approach with the long-short-term
memory (LSTM) networks. Through an extensive experimental
study, MetaSafe is validated as a feasible and promising approach
to protect seniors living alone.

Index Terms—Digital Healthcare Services (DHS), Digital Twins
(DT), Senior Safety Monitoring, Internet of Medical Things
(IoMT), NFT, Blockchain.

I. INTRODUCTION

We have been witnessing an unprecedented increase in the
aging population in human history [19]. Figure 1 presents the
statistics from U.S. Census Bureau by 2020. The number of
seniors aged 65 and above in the U.S. has reached 54 million
by 2019 and would approximately reach 80 million by 2040.
Along with the fast-growing aging population body, a trend
is observed that more elders are living alone. Consequently,
seniors’ safety becomes a compelling need in health service
systems, which necessitates 24/7 real-time monitoring and
timely dangerous action recognition. Owing to factors like
geographical location or low visiting rate to medical institu-
tions, there are increasing risks and a need for medical support.
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Fig. 1. Number of persons age 65 and older in the U.S.

Specifically, seniors require both regular medical consultation
and timely emergency assistance.

It is nontrivial to ensure the health and safety of seniors
living alone [36]. The prohibitive human labor cost necessi-
tates more sustainable, technology-oriented approaches instead
of labor-intensive solutions. The raising digital healthcare
services (DHS) [26] leveraging the Internet of Medical Things
(IoMT) [40], Digital Twins (DT) [12], and advanced fifth-
generation and beyond (B5G) wireless communication tech-
nology [10], are widely recognized as promising solutions.
Utilizing digitized information, such as real-time IoMT data
and electronic medical records (EMR), continuous monitoring
and simulation are able to promote seniors’ safety, especially
for abnormal behavior recognition, unusual activity prediction,
and medical resource allocation. As an emerging concept of
the interconnects between physical and virtual entities, DT vir-
tually represents both the structural elements and dynamics of
any physical entity (e.g., a patent) throughout its lifetime [34].
Therefore, integrating DT with IoMT and data-driven methods
(e.g., machine learning) will provide efficient and accurate
personalized healthcare services for seniors’ safety. At present,
research in DT-based elderly healthcare mainly focuses on
monitoring long-term diseases and medicine precision [25],
[34]. However, there are rarely platforms or systems for senior
safety that focus on the detection and prediction of potential
threats to senior citizens, like stroke, fall down, and other
emergency events. Moreover, existing solutions don’t consider
data authentication in the healthcare data-sharing process.

By enabling a seamless interwoven of the physical world
and cyberspace, the Metaverse makes an ideal home for the
next generation of DHS. Thanks to attractive features such as



decentralization, immutability, transparency, and availability,
Blockchain has demonstrated great potential to revolutionize
centralized framework and guarantee security in the Meta-
verse. This paper proposes MetaSafe, a DHS architecture for
senior safety monitoring in Metaverse. Based on monitoring
data collected by sensors, the activities and status of seniors,
which are considered as the physical objects (PO), are mirrored
to corresponding logical objects (LO) in a virtual community
in the Metaverse, where activity recognition, potential risk
prediction, and alert generation are realized. By leveraging
Non-Fungible Token (NFT) technology to tokenize identi-
ties (POs and LOs) and data streams of the DHS on the
blockchain, an NFT-based authentication fabric allows for
verifiable ownership and traceable transferability during the
data-sharing process. Specifically, an instant alerting system
is introduced that leverages a hybrid algorithm combining
the singular spectrum analysis (SSA) approach with the long-
short-term memory (LSTM) networks.

The key contributions of this paper are as follows:
(1) From the architecture aspect, we present a comprehensive
MetaSafe system consisting of a hierarchical DT-based
DHS and an NFT-based authentication scheme along with
details of workflows in a senior safety scenario.
We implemented an instant alerting system that adopts a
hybrid change point detection and SSA-LSTM prediction
scheme to predicate behaviors of objects and notifies
medically anomalous events in DHS; and
A proof-of-concept prototype is implemented and tested
under a physical network that simulates the case of
seniors’ safety. The experimental results validated that
the proposed MetaSafe achieved the design goal.
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The rest of this paper is structured as follows. In Section
II, the background knowledge of IoMT, Metaverse, Digital
Twins, and NFT is described and related work is introduced.
Section III presents our MetaSafe system architecture along
with workflows. Section IV discusses the hybrid SSA-LSTM
senior safety detection, prediction, and alarming scheme. The
experimental results are presented in Section V. Finally, Sec-
tion VI provides conclusions.

II. BACKGROUND AND RELATED WORK
A. Metaverse, Digital Twin, and Digital Healthcare System

As the successor to the mobile Internet, Metaverse com-
prises a seamless integration of interoperable, immersive, and
shared virtual ecosystems through the convergence between
the Extended Reality (XR), communication technologies and
Digital Twin (DT) to enhance the immersive experience of
users [43]. Through modeling and data fusion, DT provides
the digital representation of a physical entity within Metaverse
such that the virtual world and physical world are able to
interact with each other in real-time. The concept of DT
was introduced in 2002 for the formation of a Product Life-
cycle Management (PLM) [16]. Essentially, a DT is a digital
representation of components or dynamics of a physical sys-
tem [13]. A typical DT system consists of physical objects
(PO), logical objects (LO), and the data connecting them.
DT systems can be roughly categorized into monitoring DTs,
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simulational DTs, and operational DTs according to their func-
tionalities [38]. The monitoring twins enable system operators
to learn the status of a physical system, while simulation
twins are used to predict the future status of the physical
system with help of different simulation tools and Machine
Learning (ML) algorithms. Similar to human-machine teaming
[9], the operational twins aim to construct a complex sensing
and control system that allows human operators to interact
with cyber-physical systems and perform different actions in
addition to monitoring, analysis, and prediction [21].

Earlier studies of DT mainly focused on the area of in-
dustrial processes that covers different key factors to achieve
intelligent manufacturing and control systems. Recently, re-
defined DT is adopted by healthcare scenarios that contain
living objects and physical medical devices to enable reliable
and smart healthcare systems [12]. DT technique allows create
a digital representation of the patients and contributes to estab-
lishing and updating medical records reporting historical and
current statements about them. With the development of loMT-
based wearable devices and sensor technology, researchers and
industry have shown more interest in the integration of DT and
Al to develop Metaverse applications for digital healthcare,
such as telemedicine, medical education, healthcare supply
chain, and fitness and wellness [29].

B. Blockchain and NFT

As a public distributed ledger technology underlying preva-
lent digital crypto-currencies [6], [30], blockchain has emerged
as a critical facilitator for the advancement of decentral-
ized security infrastructures [32], [44]. Using a peer-to-peer
(P2P) network architecture for message propagation and data
transmission, all miners cooperatively execute a cryptographic
consensus protocol to store blocks on a completely-ordered
distributed ledger. Blockchain provides a decentralized and
trust platform such that all participants maintain a transparent,
immutable, and auditable distributed ledger, as opposed to
establishing trust through a centralized third-party authority. A
smart contract (SC) combines protocols with user interfaces to
formalize and secure the relationships over computer networks
[37]. Smart contracts can tokenize digital information or assets
in the form of cryptographic tokens saved on the blockchain to
facilitate transactions [41]. Fungibility defines whether digital
assets are identical and interchangeable during a transacting
process, and tokens are roughly categorized into fungible
tokens (FT) or non-fungible tokens (NFT) [20]. While FT
are interchangeable and identical in all respects and they are
divisible, such as crypto-currencies and stakes, NFT cannot
be substituted for other tokens of the same kind and they are
indivisible [20]. By using NFTs on blockchains, a creator can
easily prove the existence and ownership of digital assets in
the form of images, videos, and games [42]. Recently, NFTs
are widely used for protecting digital assets, like patents and
intellectual property [8], event ticketing applications [33], and
scarcity of art [22]. Thanks to key characteristics in terms of
verifiable originality (authenticity), auditable ownership, and
traceable transferability, NFT and blockchain are promising
to tokenize digital objects and enhance decentralization and
security properties in a DHS.



C. Related Work

As a healthcare-related Mataverse domain, several digital
personal healthcare has been proposed to provide more ac-
curate and fast service for personal healthcare. To provide
small healthcare services for senior citizens, a framework
of the cloud DT based healthcare system (CloudDTH) is
proposed [25]. CloudDTH relies on the cloud environment to
manage wearable medical devices, and monitor and diagnose
the health of individuals. in addition, CloudDTH implemented
a digital twin healthcare (DTH) model to achieve interac-
tion and convergence between medical physical and virtual
spaces. The experimental results verify the feasibility of real-
time supervision, scheduling, and optimization service for
the elderly on the CloudDTH. By using DT for continuous
monitoring and forecasting, a DT-Driven reference model
is proposed for the design, development, and operation of
treatment management systems in precision healthcare [34].
The novel DT-Driven reference model designs three feedback
loops to ensure adaptive management, contextual monitoring,
and adaptive behavior models. By monitoring personalized risk
factors such as behavior and vital signs, a layer model of DT
is proposed for the assessment and maintenance of personal
health [35]. However, neither [34] nor [35] provides numerical
results to evaluate system performance.

In the past decade, blockchain and NFT have been adopted
in healthcare systems to enhance security and decentralization.
MedRec [7], a blockchain-enabled EMR authentication and
management framework, was proposed to provide patients
with user-friendly access to their own information. MedRec
ensures the sharing process of the EMR is maintained in a
decentralized form and off-chain storage brings great conve-
nience and the participating entities involved help to avoid
a single point of failure. Similar to MedRec, off-chain data
storage is adopted in multiple blockchain-based medical in-
formation management systems and used along with other
technologies. For instance, BlocHIE [18] combines on-chain
and off-chain storage techniques to secure privacy and authen-
tication of medical data sharing and storing. Inter Planetary
File System (IPES) is introduced to store sensitive data of
the patients [23]. Thanks to the properties of NFT such as
unique ownership, verifiability, and traceability, an NFT-based
reference architecture is designed to represent and transfer
the consent of patients regarding the use of their medical
data [11]. A health record marketplace based on NFT was
proposed to provide dual ownership along with finer access
control and efficiency in data sharing [24]. Similarly, a user-
friendly mobile application was created to store patient health
records in a single platform [39]. The corresponding patient
would be able to track the usage of their personal medical
information with the help of NFT.

In sum, unlike aforementioned DHS solutions [25], [34],
[35] that adopt a centralized architecture, our MetaSafe lever-
ages Blockchain and NFT to ensure decentralization and
data authentication under a trust-less distributed network en-
vironment, which is promising to mitigate risks of single
point failures and performance bottleneck by centralized cloud
servers. Moreover, MetaSafe implements an instant alerting
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Fig. 2. Illustration of MetaSafe system architecture consisting of DT-based
DHS and NFT-enabled authentication fabric.

system based on a novel SSA-LSTM method to enable real-
time threat detection and prediction for elderly healthcare
rather than analysis of chronic diseases.

III. METASAFE SYSTEM ARCHITECTURE

To meet the compelling demands for seniors’ safety mon-
itoring, we propose MetaSafe, which leverages IoMT, DT,
and NFT technologies to provide reliable and trustful safety
monitoring and healthcare consulting services. As a poten-
tial technology to integrate Metaverse with digital healthcare
systems, the rationale of DT is utilized to design a conceptual
function framework of MetaSafe for senior safety. Because this
paper focuses on NFT-based authentication, and SSA-LSTM
detection and prediction mechanism given a senior monitoring
scenario, we briefly describe key components and workflow of
MetaSafe while leaving detailed DT designs in future work.
Figure 2 demonstrates an overview of MetaSafe system archi-
tecture that consists of two function units: (1) a hierarchical
DT-based virtual healthcare application for seniors, and (2) an
NFT-enabled authentication fabric based on Blockchain and
distributed data storage (DDS).

A. Hierarchical DT-based DHS

The hierarchy of a three-layered DT-based DHS system is
shown in Figure 2. The functions of each layer will be briefly
introduced below.

1) Resource Layer: As an infrastructure framework across
multiple personal healthcare networks, the resource Layer
consists of various IoMT devices and sensors for measuring
human body data and collecting environmental information.
We assume a permissioned smart home environment for each
domain network, and it relies on a trust support unit (TSU)
deployed on a personal computer (PC) or an edge server
to manage registered devices within a domain. From a data
transmission aspect, a support unit works as a gateway that
aggregates data streams from IoMT devices and enforces
access control strategies for data and service access requests
from users outside a domain. The physical objects (POs) in
a smart home network are wearable devices, smart cameras,
and sensors. By continuously monitoring the elderly, physical
objects transmit real-time data and important messages to a
TSU. A TSU leverages a set of DT modeling procedures to



synchronously process various data streams and then construct
a corresponding virtual space consisting of virtual objects
(LOs) that keep a real-time mapping of POs. A TSU can send
DT healthcare data of a smart home to the upper service layer
for evaluating, analyzing, and predicting seniors’ healthcare
conditions and risks. Moreover, A TSU also receives decision-
making results and orders from the service layer to perform
on-site emergency alarms for senior safety or early warning
for potential healthcare risks of the seniors.

2) Network Layer: As a fundamental network infrastructure
atop the Blockchain and DDS, the network layer provide
decentralized security services to handle huge amount of DT
data in MetaSafe under a distributed network environment.
We assume that the majority (51%) of the miners are honest,
the Blockchain network uses a PoW consensus protocol to
ensure the immutability and integrity of NFT tokens stored
on the distributed ledger. The Blockchain network provides a
decentralized and trust-free platform to enable an NFT-based
authentication fabric. Also, the network layer uses DDS rather
than a centralized cloud server to improve availability and
efficiency for data storage and access. The real-time DT data
and historical data are encrypted and then stored in DDS,
and raw data stored on the DDS can be addressed by their
unique references, which can be encapsulated into NFT tokens
as proofs for data authentication during the data storing and
sharing process.

3) Service Layer: The service layer is the “system brain”,
which provides intelligent healthcare applications. The DT-
based elderly health service data sent by a TSU contains
information including personal body status, environment data,
and location coordinates. By combining real-time DT data
with historical records, analytical services deployed on a cloud
server uses statistical algorithms and ML methods to achieve
anomaly detection and future prediction. If decision-making
rules satisfy certain emergency conditions, abnormal alerts
and warning messages will be sent to patients and health-
care professionals. At the same time, medical resources like
ambulances and hospital beds can be assigned automatically
if no response from patients. Moreover, the service layer is
considered as a trust data marketplace such that DT data
owned by patients and history EMR managed by medical
service providers can be shared with third-party professionals.
With proper privacy preservation, big data analytics based on
large samples of shared data can help healthcare institutions
and governments to optimize medical resources.

B. NFT enabled Authentication Fabric

To guarantee the security of continuous data synchronization
between POs and LOs and the verifiability of data-sharing
among healthcare professionals, MetaSafe implements a de-
centralized authentication fabric that uses two NFT tokens de-
ployed on Blockchain: NFT-DT and NFT-EMR. The integrity
and authenticity of data streams in the real-time data exchange
between POs and LOs are important to ensure high QoS and
reliability for DT models. Therefore, an NFT-DT token is
introduced to ensure tamper-proofing data synchronization in
the twinning process, as shown at the bottom of Fig. 2 in the
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resource layer. In a real-time twinning process, TSUs periodi-
cally store encrypted DT data steams into DDS which returns
references (hash value) as audit proofs. Following that, TSU
mints NFT-DT tokens that contain the basic information of DT
data steams along with their references on the Blockchain. As
a result, each data stream can be uniquely addressed from
DDS, and any user with granted permissions can easily verify
retrieved data streams by using NFT-DT tokens.

Regarding personal healthcare data sharing operations, an
NFT-EMR token is proposed here to ensure integrity, trace-
ability, and impenetrability of the data sharing process, as
shown at the top of Fig. 2 in the service layer. First of all,
data owners like patients or healthcare institutions that store
EMR mint NFT-EMR tokens. Following that, data owners
update NFT-EMR tokens with properties of shared data like
data address, tamper-proofing proofs, access control policies,
recipient information, etc. Therefore, data owners can fully
control their data in sharing process by updating access
policies given the status of data usage and even stop sharing
data if any violations are detected. Moreover, an NFT-EMR
records all parties participating in the whole lifetime of the
data-sharing process such that anyone can track and verify
ownership of shared data.

IV. HYBIRD SSA-LSTM DETECTION AND PREDICTION

Thanks to continuous healthcare data monitoring in DT-
based DHS, MetaSafe designs an instant alerting system that
utilizes an SSA-based algorithm for anomaly detection like
fall and faint or prevent risks in advance and a SSA-LSTM
prediction scheme to predict certain future risk in certain
vital signs like SaO2 level or body temperature. Compared to
supervised machine learning methods like Support Vector Ma-
chine (SVM) and Recurrent Neural Networks (RNN), the SSA
algorithm is widely adopted in sequential time series process-
ing and demonstrates efficiency in change-point detection and
prediction [31]. In addition, SSA is a non-parametric method
that does not require any prior knowledge of the parametric
model for the series such that it demands a relatively small
size of time series for training. Furthermore, by calculating the
main contributing components of time series, SSA can extract
features like seasonal patterns and historical trends without
containing noises. Therefore, using SSA for processing data
is promising to improve the quality of detection and prediction
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methods. As a particular version of Recurrent Neural Networks
(RNN), LSTM [17] uses four neural network layers rather than
a simple repeating module structure to construct memory cells.
Thus, the combination of SSA and LSTM is a promising way
to provide detection and predication for seniors living alone.
Figure 3 illustrates a hybrid detection and prediction scheme
that consists of three stages: data collection, SSA-enabled
processing, and anomaly detection along with LSTM-based
prediction. The details of workflows are explained as follows.

A. Sensing Data Collection

In MetaSafe, we use DT data sources generated from differ-
ent types of sensors for detection and prediction, such as ECG
sensors, PPG sensors, acceleration sensors, etc. These sensors
are operated in various hardware and software environments
and sometimes under different sample rates. Following that,
the simultaneously collected data will be unified into time
series with the same sample rate. Then, each pre-processed
DT data source is fed to a SSA processor.

B. SSA enabled Data Processing

In data processing stage, time series of a DT data source
is handled by an SSA processor that aims to extract features
and remove noise from raw data. We use the body temperature
parameter as an example to explain the workflow of an SSA
processor below as four steps:

1. Embedding: The input of an SSA is a one-dimensional
time series, for example, the body temperature collected
from a certain sensor. We denote a time series of body
temperature as X = [xq,...,xy], where N is the series
length. By choosing the proper window length L, we can
transfer the times series into multi-dimensional series of
vectors X;. Combine these vectors results in the trajectory
matrix X = [X1, X, ..., Xg|, where K = N — L + 1.

2. Singular Value Decomposition (SVD): To get the
eigenvalues and eigenvectors, we process SVD to the
mentioned trajectory matrix X. The eigenvalues are
denoted as Aq,...,Ar in decreasing order of magni-
tude and the eigenvectors Uy, ...,Ur, where the matrix

U = [U1,Us...,UL] and ||U;]] = 1 is orthogonal.
Then, the eigentriples are (v/A;,U;, Vi), by denoting
Vi=X'Ui/VXi.

3. Grouping: Then we group the matrices according to a
subset index I = iy, 19, ...,%; where [ < L. And the sum
of the groups is X; = X;, + ... + X;,. By observing
their essential characteristic, these different components
can be categorized into noise, trend, and season.

4. Reconstruction: Using diagonal averaging, we can trans-
fer X into time series X;. By selecting certain subset
indices I = 41,19,...,4;, We can reconstruct(denote as
Recon in Figure 3) the time series by only keeping certain
features, like trends and season, while discarding noise.
In this work, we choose I = i; to reconstruct the target
sequence, which is used as an extracted feature of a
parameter.

Finally, all features of parameters are extracted from differ-

ent sensors by SSA processors and sent to the decision-making
stage for detection and prediction.
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C. SSA-LSTM Hybrid Detection and Prediction

1) Anomaly Detection: Monitoring DT data like acceler-
ation and heart rate is extremely important for seniors living
alone, and any anomaly signals that appear in the time series of
these parameters or vital signs may indicate abnormal events
like fall down or injury. Therefore, an SSA-based change
point detection scheme is introduced to detect anomalies in
time series data. Focusing on the timely detection of falls,
accelerometer data is selected as an example to explain our
detection scheme. After the four steps of the SSA algorithm,
the time series A = [ap41,...,an4+n] is embedded into
the trajectory matrix (base matrix) A [.4_‘1714_‘2,...,14_}(],
where N is the series length, L is the window length and
K = N — L + 1. Then the columns of the trajectory matrix
would be the vectors:

—

)
A = (@ngis ooy Ongnyiot), i

1. K. 1)

After SVD we can get L eigenvectors which can be grouped
into certain subsets [ = iy, s, ...,4;, 1 < L. Similarly, we select
integers p,q and Q where @) = ¢ — p > 0. Then we construct
the test matrix of size L x Q:

Atcst = [Ap_‘-‘rla Ap_‘+2a LX) Ap ; Q]a (2)
and the columns of the matrix are the vectors:
frj :(an+j7-~-7an+L+j—1)/7j:p+17~-~7p+Q7 (3)

Generally, there are three detection statistics: the sum of
the squared Euclidean distances between the [-dimensional
subspace from the base matrix and the vectors ff] from the
test matrix, the normalized sum, and the Cumulative Sum
(CUSUM) of the normalized sum. We denote them as D, 1 5, 4
Sn, and W,,. For anomaly detection, we can monitor the
value of these three detection statistics(D, 1,p q, Sn and W,).
Compared to the two other statistics, the CUSUM W,, shows
better sensitivity and we adopt it to test anomaly detection
in our scheme. Any large value of W, exceeding a certain
threshold h can be identified as an anomaly. The detailed
calculation of mentioned parameters can be found in [28].

2) Near-Future Prediction: In general, vital signs such as
body temperature and SaO2 level are stable and do not change
instantaneously, thus, they can help evaluate the long-term
healthcare conditions of senior patients. Given multiple types
of DT data sources, a hybrid SSA-LSTM-based prediction
framework is developed to provide future predictions on
elderly healthcare status. As shown in Figure 3, the outputs
of multiple SSA processors contain several time series as
different features including one feature(e.g. Body temperature
or Sa02) which is the target of near-future prediction. And
they are used as a simulating dataset which is further divided
into a training set and a testing set. Then the training data are
fed to a LSTM network including two 50-node LSTM layers,
a dropout layer, and a dense layer. And to have a intuitive
observation of the results, we use the testing set which is
essentially the final part of the recent data to generate predicted
value to compare with the real value.



TABLE I
CONFIGURATION OF EXPERIMENTAL NODES.

Device HPC Dell  Optiplex | Raspberry Pi 4
760 Model B
CPU Intel Core TM | Intel Core TM | Broadcom ARM
15-3470 (4 | E8400 (2 cores), | Cortex A72
cores), 3.2GHz 3GHz (ARMVS) s
1.5GHz
Memory | 16GB DDR4 4GB DDR3 4GB SDRAM
Storage 500GB HHD 250GB HHD 64GB
(microSD)
(o} Ubuntu 20.04 Ubuntu 16.04 Raspbian
(Jessie)

V. EXPERIMENTAL RESULTS
A. Experimental Setup

A proof-of-concept prototype for MetaSafe is implemented
in Python language. We use a micro-framework called Flask
[1] to develop RESTful web services. All security primitives
like symmetric cryptography and hash functions are developed
by using standard python library cryptography [3]. We use
Solidity [4] and openzeppelin-contracts [2] to develop NFTs,
which are deployed on a private Ethereum test network. The
experimental infrastructure worked under a physical local area
network (LAN) environment and included multiple desktops
and IoT devices. Table I describes the devices used for the
experimental setup. Dell Optiplex 760 (desktop) simulates
edge servers that run local support units, while Raspberry Pi 4
(RPi) simulates IoT gateways that collect data from [oMT. The
HPC works as a cloud server that supports data sharing among
healthcare professionals. A private Ethereum network consists
of six miners that are deployed on the HPC as six containers
separately. While RPis only work in a light-node mode without
mining blocks. To simulate a DDS, we built a private Swarm
network [5] consisting of five desktops as service sites. The
Analytical Service of MetaSafe including anomaly detection
and future detection is realized using Python. All SSA al-
gorithm and ML methods are implemented and tested on a
Desktop with an i7-7700K CPU, 16GB DRR4 memory, 1TB
SSD, and Windows 10 OS.

B. Performance of NFT-based Data Authentication

This section discusses the performance of executing NFT-
based authentication at the edge network. In a data authen-
tication process, the user queries information from NFTs on
the Blockchain and then performs verification on data streams.
Thus, scaling up read requests has impacts on the performance
of query operations. We evaluate processing time per query
operation given different transaction sending rates Thg as
transaction per second (TPS). Data Encryption is not per-
formed in NFT transactions. Finally, we analyze computation
overheads incurred by accessing data to and from DDB and
performing symmetric encryption on data. We conducted 50
Monte Carlo test runs for each test scenario and used the
averages to measure the results.

1) Network Latency and Throughput by Query Operations:
Figure 4a shows average delays that evaluate how long a
data authentication request can be successfully handled by
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the host machine as increasing T'hg from two tps to 100 tps.
Regarding the fixed bandwidth of the test network, the capacity
of host machines that provide NFT token services dominates
the performance of query transactions. Because the desktop
is more powerful than the RPi device, the delays of reading
token data and then returning to the requester are higher than
the desktop regarding the same Thg. Thus, the higher Thg
also means a longer latency to handle a query token transaction
given multiple service requests.

To evaluate the end-to-end network delay and transaction
throughput of query token operations, we let a client send
multiple query requests to a data service provider (can be
hosted by a desktop or an RPi) and wait until all responses
are received. Figure 4b presents the transaction throughput
of data authentication when Thg changes from two tps to
100 tps. As RPis have fewer computation resources than
desktops, data service provides on the RPi device demonstrates
a lower transaction throughput than those on desktops even if
Thg is the same. Moreover, transaction throughput is subject
to system capacity. Therefore, it is almost saturated when
Ths > 20 on both platforms.

2) Processing Time of Accessing Data at DDB with Encryp-
tion: We assume that data streams of twinning a pair of PO
and LO are encrypted and then recorded into DDS for each
30-sec duration by a support unit. As a result, each data file is
about 128 KB, and we use these sample data to evaluate com-
putation overheads incurred by DDS and encryption. Figure 5
shows the processing time of accessing data on swarm and data
encryption given different host platforms. Regarding swarm
operations, delays in uploading data to the swarm network and
downloading from a service site are almost the same on both
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Fig. 6. SSA-based anomaly detection.

platforms. However, RPi takes longer process time to encrypt
and decrypt data than a desktop does.

C. Anomaly Detection and Prediction Analysis

The target data of the detection are extracted from an open
dataset [14], [27]. The acceleration is obtained by calculating
the norm of the vector of the three-dimensional accelerations
(g, 500Hz) in (x,y, z) directions. We re-sample the signal to
50Hz and turn it into a time series. Regarding SSA-based
change point detection, we follow the recommendations from
earlier researchers [15] and set N = 40 considering the size
of the time series, L. = 20 to the half size of N, p = 20,
and ¢ = 30. We choose I = i; as the first component of the
decomposition that can represent a trend of the time series.

1) SSA-based Anomaly Detection Results: Figure 6
presents the results of the proposed detection scheme. The
blue line is the acceleration value of the patient, while red
line is the w, value calculated using the SSA algorithm as
the score. The green line is a threshold h = 0.524 which is
computed with ¢, = 1.2815. The fluctuation of the blue line
starting around ¢ = 65(300x0.02) implies a significant change
in acceleration compared to the sitting state where the accel-
eration is almost static around 9.8g. The preliminary results
show that our method is promising to detect anomaly events
of the elderly by using acceleration monitoring. However, the
actual model of a person falling down is more complicated
and it may consider numerous scenarios and various behavior
modes given different individuals. We leave a comprehensive
evaluation based on behavior models in future efforts.

2) Hybrid SSA-LSTM Future Prediction Results: As the
target parameter of temperature would not change so fast, we
unify the sample rate as 1 Hz for all parameters including 3-
lead ECG, acceleration in the xz-direction, and temperatures
from three different locations of the body. In the training
process, we adopt mean square error (MSE) as the loss
function and use the Adam optimizer to improve convergence
speed and learning effect given an epoch size is eight. The
first 383 data points are used for the training model and a
prediction value is generated to compare with the actual value
of 66s from body sensors.

Figure 7(a) shows results of predicting body temperature
by using a conventional LSTM model. The large variants of
raw data have greatly influenced prediction value although
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Fig. 7. a) LSTM prediction, b) hybrid SSA-LSTM prediction.
TABLE II
PREDICTION RESULTS
Model RMSE MAE MAPE
SVM 0.4954 0.4690 1.4278
RNN 0.1042 0.0869 0.2600
LSTM 0.0978 0.0814 0.2438
SSA-LSTM | 0.0087 0.0082 0.0247

they demonstrate the similar trend. In contrast, applying
SSA processor on raw data can extract features and remove
noise. Therefore, the body temperature point predicted by
SSA+LSTM method closely match SSA processed data points,
as Fig. 7(b) shows. Our hybrid SSA-LSTM-based prediction is
promising to accurately predict elderly healthcare status in the
future such that early warnings and suggestions are provided
to mitigate potential risks and even prevent abnormal events.

Table II presents the comparison of prediction results be-
tween our solution with existing approaches like VM, RNN,
and LSTM. Three major metrics are considered to evaluate
the accuracy of the models: Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Mean Absolute Percentage
Error (MAPE). The smaller values indicate more accuracy in
future prediction given different benchmarks. Our hybrid SSA-
LSTM model outperforms the listed conventional models with
the highest accuracy.

VI. CONCLUSIONS AND FUTURE WORK

To meet the compelling need for seniors’ safety, leveraging
Blockchain, NFT, and DT technology, we propose MetaSafe,
a digital health service framework in Metaverse to ensure
verifiable ownership and traceable transferability during the
data storage and sharing. In addition, a hybrid SSA-LSTM
prediction scheme is introduced to eliminate noise from the
collected data in form of a time sequence. Compared to a
traditional single LSTM neural network, the prepossessing
of data highly improves the results of future prediction. We
implemented proof-of-concept prototype NFTs and performed
the case study of MetaSafe system for seniors’ safety. The
experimental results are encouraging, and they demonstrate
the efficiency and effectiveness of the proposal.

Our preliminary experiment system tested the feasibility
of the framework. To evaluate the availability of NFT-based
algorithms, we need further study in a large-scale network
including the investigation of accuracy and efficiency. The
emergency alarm highly relies on emerging artificial intelli-
gence techniques including ML and information fusion. Apart



from the skeleton recognition algorithm [36], we will inves-
tigate more onsite diagnosis mechanisms and integrate them
into MetaSafe to improve the accuracy of identifying emergent
events. The application of blockchain and NFT in health
care should not violate local governmental policies. Further
investigation and studies are required and certain standards
need to be established.
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