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Abstract—We have been witnessing an unprecedented increase
in the aging population in human history. It is nontrivial to ensure
the health and safety of seniors living alone. The prohibitive
human labor cost necessitates more sustainable, technology-
oriented approaches instead of labor-intensive solutions. The
raising digital healthcare services (DHS) leveraging the Internet
of Medical Things (IoMT), Digital Twins (DT), and advanced
fifth-generation and beyond (B5G) wireless communication tech-
nology, are widely recognized as promising solutions. By enabling
a seamless interwoven of the physical world and cyberspace,
Metaverse makes an ideal home for the next generation of
DHS. Thanks to characteristics of decentralization, traceability,
and unalterability, Blockchain is envisioned to enhance security
properties in Metaverse. This paper proposes MetaSafe, a DHS
architecture for seniors’ safety monitoring in Metaverse. Based
on monitoring data collected by sensors, the activities and status
of seniors, who are considered as the physical objects (PO),
are mirrored to corresponding logical objects (LO) in a virtual
community in the Metaverse, where activity recognition, potential
risk prediction, and alert generation are realized. By leveraging
Non-Fungible Token (NFT) technology to tokenize identities (POs
and LOs) and data streams of the DHS on the blockchain, an
NFT-based authentication fabric allows for verifiable ownership
and traceable transferability during the data-sharing process.
Specifically, an instant alerting system is introduced in this
work that leverages a hybrid algorithm combining the singular
spectrum analysis (SSA) approach with the long-short-term
memory (LSTM) networks. Through an extensive experimental
study, MetaSafe is validated as a feasible and promising approach
to protect seniors living alone.

Index Terms—Digital Healthcare Services (DHS), Digital Twins
(DT), Senior Safety Monitoring, Internet of Medical Things
(IoMT), NFT, Blockchain.

I. INTRODUCTION

We have been witnessing an unprecedented increase in the

aging population in human history [19]. Figure 1 presents the

statistics from U.S. Census Bureau by 2020. The number of

seniors aged 65 and above in the U.S. has reached 54 million

by 2019 and would approximately reach 80 million by 2040.

Along with the fast-growing aging population body, a trend

is observed that more elders are living alone. Consequently,

seniors’ safety becomes a compelling need in health service

systems, which necessitates 24/7 real-time monitoring and

timely dangerous action recognition. Owing to factors like

geographical location or low visiting rate to medical institu-

tions, there are increasing risks and a need for medical support.

Fig. 1. Number of persons age 65 and older in the U.S.

Specifically, seniors require both regular medical consultation

and timely emergency assistance.

It is nontrivial to ensure the health and safety of seniors

living alone [36]. The prohibitive human labor cost necessi-

tates more sustainable, technology-oriented approaches instead

of labor-intensive solutions. The raising digital healthcare

services (DHS) [26] leveraging the Internet of Medical Things

(IoMT) [40], Digital Twins (DT) [12], and advanced fifth-

generation and beyond (B5G) wireless communication tech-

nology [10], are widely recognized as promising solutions.

Utilizing digitized information, such as real-time IoMT data

and electronic medical records (EMR), continuous monitoring

and simulation are able to promote seniors’ safety, especially

for abnormal behavior recognition, unusual activity prediction,

and medical resource allocation. As an emerging concept of

the interconnects between physical and virtual entities, DT vir-

tually represents both the structural elements and dynamics of

any physical entity (e.g., a patent) throughout its lifetime [34].

Therefore, integrating DT with IoMT and data-driven methods

(e.g., machine learning) will provide efficient and accurate

personalized healthcare services for seniors’ safety. At present,

research in DT-based elderly healthcare mainly focuses on

monitoring long-term diseases and medicine precision [25],

[34]. However, there are rarely platforms or systems for senior

safety that focus on the detection and prediction of potential

threats to senior citizens, like stroke, fall down, and other

emergency events. Moreover, existing solutions don’t consider

data authentication in the healthcare data-sharing process.

By enabling a seamless interwoven of the physical world

and cyberspace, the Metaverse makes an ideal home for the

next generation of DHS. Thanks to attractive features such as
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decentralization, immutability, transparency, and availability,

Blockchain has demonstrated great potential to revolutionize

centralized framework and guarantee security in the Meta-

verse. This paper proposes MetaSafe, a DHS architecture for

senior safety monitoring in Metaverse. Based on monitoring

data collected by sensors, the activities and status of seniors,

which are considered as the physical objects (PO), are mirrored

to corresponding logical objects (LO) in a virtual community

in the Metaverse, where activity recognition, potential risk

prediction, and alert generation are realized. By leveraging

Non-Fungible Token (NFT) technology to tokenize identi-

ties (POs and LOs) and data streams of the DHS on the

blockchain, an NFT-based authentication fabric allows for

verifiable ownership and traceable transferability during the

data-sharing process. Specifically, an instant alerting system

is introduced that leverages a hybrid algorithm combining

the singular spectrum analysis (SSA) approach with the long-

short-term memory (LSTM) networks.

The key contributions of this paper are as follows:

(1) From the architecture aspect, we present a comprehensive

MetaSafe system consisting of a hierarchical DT-based

DHS and an NFT-based authentication scheme along with

details of workflows in a senior safety scenario.

(2) We implemented an instant alerting system that adopts a

hybrid change point detection and SSA-LSTM prediction

scheme to predicate behaviors of objects and notifies

medically anomalous events in DHS; and

(3) A proof-of-concept prototype is implemented and tested

under a physical network that simulates the case of

seniors’ safety. The experimental results validated that

the proposed MetaSafe achieved the design goal.

The rest of this paper is structured as follows. In Section

II, the background knowledge of IoMT, Metaverse, Digital

Twins, and NFT is described and related work is introduced.

Section III presents our MetaSafe system architecture along

with workflows. Section IV discusses the hybrid SSA-LSTM

senior safety detection, prediction, and alarming scheme. The

experimental results are presented in Section V. Finally, Sec-

tion VI provides conclusions.

II. BACKGROUND AND RELATED WORK

A. Metaverse, Digital Twin, and Digital Healthcare System

As the successor to the mobile Internet, Metaverse com-

prises a seamless integration of interoperable, immersive, and

shared virtual ecosystems through the convergence between

the Extended Reality (XR), communication technologies and

Digital Twin (DT) to enhance the immersive experience of

users [43]. Through modeling and data fusion, DT provides

the digital representation of a physical entity within Metaverse

such that the virtual world and physical world are able to

interact with each other in real-time. The concept of DT

was introduced in 2002 for the formation of a Product Life-

cycle Management (PLM) [16]. Essentially, a DT is a digital

representation of components or dynamics of a physical sys-

tem [13]. A typical DT system consists of physical objects

(PO), logical objects (LO), and the data connecting them.

DT systems can be roughly categorized into monitoring DTs,

simulational DTs, and operational DTs according to their func-

tionalities [38]. The monitoring twins enable system operators

to learn the status of a physical system, while simulation

twins are used to predict the future status of the physical

system with help of different simulation tools and Machine

Learning (ML) algorithms. Similar to human-machine teaming

[9], the operational twins aim to construct a complex sensing
and control system that allows human operators to interact

with cyber-physical systems and perform different actions in

addition to monitoring, analysis, and prediction [21].
Earlier studies of DT mainly focused on the area of in-

dustrial processes that covers different key factors to achieve

intelligent manufacturing and control systems. Recently, re-

defined DT is adopted by healthcare scenarios that contain

living objects and physical medical devices to enable reliable

and smart healthcare systems [12]. DT technique allows create

a digital representation of the patients and contributes to estab-

lishing and updating medical records reporting historical and

current statements about them. With the development of IoMT-

based wearable devices and sensor technology, researchers and

industry have shown more interest in the integration of DT and

AI to develop Metaverse applications for digital healthcare,

such as telemedicine, medical education, healthcare supply

chain, and fitness and wellness [29].

B. Blockchain and NFT
As a public distributed ledger technology underlying preva-

lent digital crypto-currencies [6], [30], blockchain has emerged

as a critical facilitator for the advancement of decentral-

ized security infrastructures [32], [44]. Using a peer-to-peer

(P2P) network architecture for message propagation and data

transmission, all miners cooperatively execute a cryptographic

consensus protocol to store blocks on a completely-ordered

distributed ledger. Blockchain provides a decentralized and

trust platform such that all participants maintain a transparent,

immutable, and auditable distributed ledger, as opposed to

establishing trust through a centralized third-party authority. A

smart contract (SC) combines protocols with user interfaces to

formalize and secure the relationships over computer networks

[37]. Smart contracts can tokenize digital information or assets

in the form of cryptographic tokens saved on the blockchain to

facilitate transactions [41]. Fungibility defines whether digital

assets are identical and interchangeable during a transacting

process, and tokens are roughly categorized into fungible

tokens (FT) or non-fungible tokens (NFT) [20]. While FT

are interchangeable and identical in all respects and they are

divisible, such as crypto-currencies and stakes, NFT cannot

be substituted for other tokens of the same kind and they are

indivisible [20]. By using NFTs on blockchains, a creator can

easily prove the existence and ownership of digital assets in

the form of images, videos, and games [42]. Recently, NFTs

are widely used for protecting digital assets, like patents and

intellectual property [8], event ticketing applications [33], and

scarcity of art [22]. Thanks to key characteristics in terms of

verifiable originality (authenticity), auditable ownership, and

traceable transferability, NFT and blockchain are promising

to tokenize digital objects and enhance decentralization and

security properties in a DHS.
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C. Related Work

As a healthcare-related Mataverse domain, several digital

personal healthcare has been proposed to provide more ac-

curate and fast service for personal healthcare. To provide

small healthcare services for senior citizens, a framework

of the cloud DT based healthcare system (CloudDTH) is

proposed [25]. CloudDTH relies on the cloud environment to

manage wearable medical devices, and monitor and diagnose

the health of individuals. in addition, CloudDTH implemented

a digital twin healthcare (DTH) model to achieve interac-

tion and convergence between medical physical and virtual

spaces. The experimental results verify the feasibility of real-

time supervision, scheduling, and optimization service for

the elderly on the CloudDTH. By using DT for continuous

monitoring and forecasting, a DT-Driven reference model

is proposed for the design, development, and operation of

treatment management systems in precision healthcare [34].

The novel DT-Driven reference model designs three feedback

loops to ensure adaptive management, contextual monitoring,

and adaptive behavior models. By monitoring personalized risk

factors such as behavior and vital signs, a layer model of DT

is proposed for the assessment and maintenance of personal

health [35]. However, neither [34] nor [35] provides numerical

results to evaluate system performance.

In the past decade, blockchain and NFT have been adopted

in healthcare systems to enhance security and decentralization.

MedRec [7], a blockchain-enabled EMR authentication and

management framework, was proposed to provide patients

with user-friendly access to their own information. MedRec

ensures the sharing process of the EMR is maintained in a

decentralized form and off-chain storage brings great conve-

nience and the participating entities involved help to avoid

a single point of failure. Similar to MedRec, off-chain data

storage is adopted in multiple blockchain-based medical in-

formation management systems and used along with other

technologies. For instance, BlocHIE [18] combines on-chain

and off-chain storage techniques to secure privacy and authen-

tication of medical data sharing and storing. Inter Planetary

File System (IPFS) is introduced to store sensitive data of

the patients [23]. Thanks to the properties of NFT such as

unique ownership, verifiability, and traceability, an NFT-based

reference architecture is designed to represent and transfer

the consent of patients regarding the use of their medical

data [11]. A health record marketplace based on NFT was

proposed to provide dual ownership along with finer access

control and efficiency in data sharing [24]. Similarly, a user-

friendly mobile application was created to store patient health

records in a single platform [39]. The corresponding patient

would be able to track the usage of their personal medical

information with the help of NFT.

In sum, unlike aforementioned DHS solutions [25], [34],

[35] that adopt a centralized architecture, our MetaSafe lever-

ages Blockchain and NFT to ensure decentralization and

data authentication under a trust-less distributed network en-

vironment, which is promising to mitigate risks of single

point failures and performance bottleneck by centralized cloud

servers. Moreover, MetaSafe implements an instant alerting

Fig. 2. Illustration of MetaSafe system architecture consisting of DT-based
DHS and NFT-enabled authentication fabric.

system based on a novel SSA-LSTM method to enable real-

time threat detection and prediction for elderly healthcare

rather than analysis of chronic diseases.

III. METASAFE SYSTEM ARCHITECTURE

To meet the compelling demands for seniors’ safety mon-

itoring, we propose MetaSafe, which leverages IoMT, DT,

and NFT technologies to provide reliable and trustful safety

monitoring and healthcare consulting services. As a poten-

tial technology to integrate Metaverse with digital healthcare

systems, the rationale of DT is utilized to design a conceptual

function framework of MetaSafe for senior safety. Because this

paper focuses on NFT-based authentication, and SSA-LSTM

detection and prediction mechanism given a senior monitoring

scenario, we briefly describe key components and workflow of

MetaSafe while leaving detailed DT designs in future work.

Figure 2 demonstrates an overview of MetaSafe system archi-

tecture that consists of two function units: (1) a hierarchical

DT-based virtual healthcare application for seniors, and (2) an

NFT-enabled authentication fabric based on Blockchain and

distributed data storage (DDS).

A. Hierarchical DT-based DHS

The hierarchy of a three-layered DT-based DHS system is

shown in Figure 2. The functions of each layer will be briefly

introduced below.

1) Resource Layer: As an infrastructure framework across

multiple personal healthcare networks, the resource Layer

consists of various IoMT devices and sensors for measuring

human body data and collecting environmental information.

We assume a permissioned smart home environment for each

domain network, and it relies on a trust support unit (TSU)

deployed on a personal computer (PC) or an edge server

to manage registered devices within a domain. From a data

transmission aspect, a support unit works as a gateway that

aggregates data streams from IoMT devices and enforces

access control strategies for data and service access requests

from users outside a domain. The physical objects (POs) in

a smart home network are wearable devices, smart cameras,

and sensors. By continuously monitoring the elderly, physical

objects transmit real-time data and important messages to a

TSU. A TSU leverages a set of DT modeling procedures to
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synchronously process various data streams and then construct

a corresponding virtual space consisting of virtual objects

(LOs) that keep a real-time mapping of POs. A TSU can send

DT healthcare data of a smart home to the upper service layer

for evaluating, analyzing, and predicting seniors’ healthcare

conditions and risks. Moreover, A TSU also receives decision-

making results and orders from the service layer to perform

on-site emergency alarms for senior safety or early warning

for potential healthcare risks of the seniors.

2) Network Layer: As a fundamental network infrastructure

atop the Blockchain and DDS, the network layer provide

decentralized security services to handle huge amount of DT

data in MetaSafe under a distributed network environment.

We assume that the majority (51%) of the miners are honest,

the Blockchain network uses a PoW consensus protocol to

ensure the immutability and integrity of NFT tokens stored

on the distributed ledger. The Blockchain network provides a

decentralized and trust-free platform to enable an NFT-based

authentication fabric. Also, the network layer uses DDS rather

than a centralized cloud server to improve availability and

efficiency for data storage and access. The real-time DT data

and historical data are encrypted and then stored in DDS,

and raw data stored on the DDS can be addressed by their

unique references, which can be encapsulated into NFT tokens

as proofs for data authentication during the data storing and

sharing process.

3) Service Layer: The service layer is the “system brain”,

which provides intelligent healthcare applications. The DT-

based elderly health service data sent by a TSU contains

information including personal body status, environment data,

and location coordinates. By combining real-time DT data

with historical records, analytical services deployed on a cloud

server uses statistical algorithms and ML methods to achieve

anomaly detection and future prediction. If decision-making

rules satisfy certain emergency conditions, abnormal alerts

and warning messages will be sent to patients and health-

care professionals. At the same time, medical resources like

ambulances and hospital beds can be assigned automatically

if no response from patients. Moreover, the service layer is

considered as a trust data marketplace such that DT data

owned by patients and history EMR managed by medical

service providers can be shared with third-party professionals.

With proper privacy preservation, big data analytics based on

large samples of shared data can help healthcare institutions

and governments to optimize medical resources.

B. NFT enabled Authentication Fabric

To guarantee the security of continuous data synchronization

between POs and LOs and the verifiability of data-sharing

among healthcare professionals, MetaSafe implements a de-

centralized authentication fabric that uses two NFT tokens de-

ployed on Blockchain: NFT-DT and NFT-EMR. The integrity

and authenticity of data streams in the real-time data exchange

between POs and LOs are important to ensure high QoS and

reliability for DT models. Therefore, an NFT-DT token is

introduced to ensure tamper-proofing data synchronization in

the twinning process, as shown at the bottom of Fig. 2 in the

resource layer. In a real-time twinning process, TSUs periodi-

cally store encrypted DT data steams into DDS which returns

references (hash value) as audit proofs. Following that, TSU

mints NFT-DT tokens that contain the basic information of DT

data steams along with their references on the Blockchain. As

a result, each data stream can be uniquely addressed from

DDS, and any user with granted permissions can easily verify

retrieved data streams by using NFT-DT tokens.

Regarding personal healthcare data sharing operations, an

NFT-EMR token is proposed here to ensure integrity, trace-

ability, and impenetrability of the data sharing process, as

shown at the top of Fig. 2 in the service layer. First of all,

data owners like patients or healthcare institutions that store

EMR mint NFT-EMR tokens. Following that, data owners

update NFT-EMR tokens with properties of shared data like

data address, tamper-proofing proofs, access control policies,

recipient information, etc. Therefore, data owners can fully

control their data in sharing process by updating access

policies given the status of data usage and even stop sharing

data if any violations are detected. Moreover, an NFT-EMR

records all parties participating in the whole lifetime of the

data-sharing process such that anyone can track and verify

ownership of shared data.

IV. HYBIRD SSA-LSTM DETECTION AND PREDICTION

Thanks to continuous healthcare data monitoring in DT-

based DHS, MetaSafe designs an instant alerting system that

utilizes an SSA-based algorithm for anomaly detection like

fall and faint or prevent risks in advance and a SSA-LSTM

prediction scheme to predict certain future risk in certain

vital signs like SaO2 level or body temperature. Compared to

supervised machine learning methods like Support Vector Ma-

chine (SVM) and Recurrent Neural Networks (RNN), the SSA

algorithm is widely adopted in sequential time series process-

ing and demonstrates efficiency in change-point detection and

prediction [31]. In addition, SSA is a non-parametric method

that does not require any prior knowledge of the parametric

model for the series such that it demands a relatively small

size of time series for training. Furthermore, by calculating the

main contributing components of time series, SSA can extract

features like seasonal patterns and historical trends without

containing noises. Therefore, using SSA for processing data

is promising to improve the quality of detection and prediction

Fig. 3. Hybrid SSA-LSTM prediction scheme for an instant alerting system.

81



methods. As a particular version of Recurrent Neural Networks

(RNN), LSTM [17] uses four neural network layers rather than

a simple repeating module structure to construct memory cells.

Thus, the combination of SSA and LSTM is a promising way

to provide detection and predication for seniors living alone.

Figure 3 illustrates a hybrid detection and prediction scheme

that consists of three stages: data collection, SSA-enabled

processing, and anomaly detection along with LSTM-based

prediction. The details of workflows are explained as follows.

A. Sensing Data Collection
In MetaSafe, we use DT data sources generated from differ-

ent types of sensors for detection and prediction, such as ECG

sensors, PPG sensors, acceleration sensors, etc. These sensors

are operated in various hardware and software environments

and sometimes under different sample rates. Following that,

the simultaneously collected data will be unified into time

series with the same sample rate. Then, each pre-processed

DT data source is fed to a SSA processor.

B. SSA enabled Data Processing
In data processing stage, time series of a DT data source

is handled by an SSA processor that aims to extract features

and remove noise from raw data. We use the body temperature

parameter as an example to explain the workflow of an SSA

processor below as four steps:

1. Embedding: The input of an SSA is a one-dimensional

time series, for example, the body temperature collected

from a certain sensor. We denote a time series of body

temperature as X = [x1, ..., xN ], where N is the series

length. By choosing the proper window length L, we can

transfer the times series into multi-dimensional series of

vectors �Xi. Combine these vectors results in the trajectory

matrix X = [ �X1, �X2, ..., �XK ], where K = N − L+ 1.

2. Singular Value Decomposition (SVD): To get the

eigenvalues and eigenvectors, we process SVD to the

mentioned trajectory matrix X . The eigenvalues are

denoted as λ1, ..., λL in decreasing order of magni-

tude and the eigenvectors U1, ..., UL where the matrix

U = [U1, U2..., UL] and ‖Ui‖ = 1 is orthogonal.

Then, the eigentriples are (
√
λi, Ui, Vi), by denoting

Vi = X ′Ui/
√
λi.

3. Grouping: Then we group the matrices according to a

subset index I = i1, i2, ..., il where l < L. And the sum

of the groups is XI = Xi1 + ... + Xil . By observing

their essential characteristic, these different components

can be categorized into noise, trend, and season.

4. Reconstruction: Using diagonal averaging, we can trans-

fer XI into time series XI . By selecting certain subset

indices I = i1, i2, ..., il, we can reconstruct(denote as

Recon in Figure 3) the time series by only keeping certain

features, like trends and season, while discarding noise.

In this work, we choose I = i1 to reconstruct the target

sequence, which is used as an extracted feature of a

parameter.

Finally, all features of parameters are extracted from differ-

ent sensors by SSA processors and sent to the decision-making

stage for detection and prediction.

C. SSA-LSTM Hybrid Detection and Prediction

1) Anomaly Detection: Monitoring DT data like acceler-

ation and heart rate is extremely important for seniors living

alone, and any anomaly signals that appear in the time series of

these parameters or vital signs may indicate abnormal events

like fall down or injury. Therefore, an SSA-based change

point detection scheme is introduced to detect anomalies in

time series data. Focusing on the timely detection of falls,

accelerometer data is selected as an example to explain our

detection scheme. After the four steps of the SSA algorithm,

the time series A = [an+1, ..., an+N ] is embedded into

the trajectory matrix (base matrix) A = [ �A1, �A2, ..., �AK ],
where N is the series length, L is the window length and

K = N − L + 1. Then the columns of the trajectory matrix

would be the vectors:

�Ai = (an+i, ..., an+L+i−1)
′, i = 1, ...,K. (1)

After SVD we can get L eigenvectors which can be grouped

into certain subsets I = i1, i2, ..., il, l < L. Similarly, we select

integers p,q and Q where Q = q − p > 0. Then we construct

the test matrix of size L×Q:

Atest = [ �Ap+1, �Ap+2, ..., �Ap +Q], (2)

and the columns of the matrix are the vectors:

�Aj = (an+j , ..., an+L+j−1)
′, j = p+ 1, ..., p+Q, (3)

Generally, there are three detection statistics: the sum of

the squared Euclidean distances between the l-dimensional

subspace from the base matrix and the vectors �Aj from the

test matrix, the normalized sum, and the Cumulative Sum

(CUSUM) of the normalized sum. We denote them as Dn,I,p,q ,

Sn, and Wn. For anomaly detection, we can monitor the

value of these three detection statistics(Dn,I,p,q , Sn and Wn).

Compared to the two other statistics, the CUSUM Wn shows

better sensitivity and we adopt it to test anomaly detection

in our scheme. Any large value of Wn exceeding a certain

threshold h can be identified as an anomaly. The detailed

calculation of mentioned parameters can be found in [28].

2) Near-Future Prediction: In general, vital signs such as

body temperature and SaO2 level are stable and do not change

instantaneously, thus, they can help evaluate the long-term

healthcare conditions of senior patients. Given multiple types

of DT data sources, a hybrid SSA-LSTM-based prediction

framework is developed to provide future predictions on

elderly healthcare status. As shown in Figure 3, the outputs

of multiple SSA processors contain several time series as

different features including one feature(e.g. Body temperature

or SaO2) which is the target of near-future prediction. And

they are used as a simulating dataset which is further divided

into a training set and a testing set. Then the training data are

fed to a LSTM network including two 50-node LSTM layers,

a dropout layer, and a dense layer. And to have a intuitive

observation of the results, we use the testing set which is

essentially the final part of the recent data to generate predicted

value to compare with the real value.
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TABLE I
CONFIGURATION OF EXPERIMENTAL NODES.

Device HPC Dell Optiplex
760

Raspberry Pi 4
Model B

CPU Intel Core TM
i5-3470 (4
cores), 3.2GHz

Intel Core TM
E8400 (2 cores),
3GHz

Broadcom ARM
Cortex A72
(ARMv8) ,
1.5GHz

Memory 16GB DDR4 4GB DDR3 4GB SDRAM

Storage 500GB HHD 250GB HHD 64GB
(microSD)

OS Ubuntu 20.04 Ubuntu 16.04 Raspbian
(Jessie)

V. EXPERIMENTAL RESULTS

A. Experimental Setup

A proof-of-concept prototype for MetaSafe is implemented

in Python language. We use a micro-framework called Flask

[1] to develop RESTful web services. All security primitives

like symmetric cryptography and hash functions are developed

by using standard python library cryptography [3]. We use

Solidity [4] and openzeppelin-contracts [2] to develop NFTs,

which are deployed on a private Ethereum test network. The

experimental infrastructure worked under a physical local area

network (LAN) environment and included multiple desktops

and IoT devices. Table I describes the devices used for the

experimental setup. Dell Optiplex 760 (desktop) simulates

edge servers that run local support units, while Raspberry Pi 4

(RPi) simulates IoT gateways that collect data from IoMT. The

HPC works as a cloud server that supports data sharing among

healthcare professionals. A private Ethereum network consists

of six miners that are deployed on the HPC as six containers

separately. While RPis only work in a light-node mode without

mining blocks. To simulate a DDS, we built a private Swarm

network [5] consisting of five desktops as service sites. The

Analytical Service of MetaSafe including anomaly detection

and future detection is realized using Python. All SSA al-

gorithm and ML methods are implemented and tested on a

Desktop with an i7-7700K CPU, 16GB DRR4 memory, 1TB

SSD, and Windows 10 OS.

B. Performance of NFT-based Data Authentication

This section discusses the performance of executing NFT-

based authentication at the edge network. In a data authen-

tication process, the user queries information from NFTs on

the Blockchain and then performs verification on data streams.

Thus, scaling up read requests has impacts on the performance

of query operations. We evaluate processing time per query

operation given different transaction sending rates ThS as

transaction per second (TPS). Data Encryption is not per-

formed in NFT transactions. Finally, we analyze computation

overheads incurred by accessing data to and from DDB and

performing symmetric encryption on data. We conducted 50

Monte Carlo test runs for each test scenario and used the

averages to measure the results.

1) Network Latency and Throughput by Query Operations:
Figure 4a shows average delays that evaluate how long a

data authentication request can be successfully handled by

Fig. 4. a) processing time of query transactions, b) transaction throughput.

Fig. 5. Processing time of accessing Swarm and symmetric encryption.

the host machine as increasing ThS from two tps to 100 tps.

Regarding the fixed bandwidth of the test network, the capacity

of host machines that provide NFT token services dominates

the performance of query transactions. Because the desktop

is more powerful than the RPi device, the delays of reading

token data and then returning to the requester are higher than

the desktop regarding the same ThS . Thus, the higher ThS

also means a longer latency to handle a query token transaction

given multiple service requests.

To evaluate the end-to-end network delay and transaction

throughput of query token operations, we let a client send

multiple query requests to a data service provider (can be

hosted by a desktop or an RPi) and wait until all responses

are received. Figure 4b presents the transaction throughput

of data authentication when ThS changes from two tps to

100 tps. As RPis have fewer computation resources than

desktops, data service provides on the RPi device demonstrates

a lower transaction throughput than those on desktops even if

ThS is the same. Moreover, transaction throughput is subject

to system capacity. Therefore, it is almost saturated when

ThS ≥ 20 on both platforms.

2) Processing Time of Accessing Data at DDB with Encryp-
tion: We assume that data streams of twinning a pair of PO

and LO are encrypted and then recorded into DDS for each

30-sec duration by a support unit. As a result, each data file is

about 128 KB, and we use these sample data to evaluate com-

putation overheads incurred by DDS and encryption. Figure 5

shows the processing time of accessing data on swarm and data

encryption given different host platforms. Regarding swarm

operations, delays in uploading data to the swarm network and

downloading from a service site are almost the same on both
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Fig. 6. SSA-based anomaly detection.

platforms. However, RPi takes longer process time to encrypt

and decrypt data than a desktop does.

C. Anomaly Detection and Prediction Analysis

The target data of the detection are extracted from an open

dataset [14], [27]. The acceleration is obtained by calculating

the norm of the vector of the three-dimensional accelerations

(g, 500Hz) in (x, y, z) directions. We re-sample the signal to

50Hz and turn it into a time series. Regarding SSA-based

change point detection, we follow the recommendations from

earlier researchers [15] and set N = 40 considering the size

of the time series, L = 20 to the half size of N , p = 20,

and q = 30. We choose I = i1 as the first component of the

decomposition that can represent a trend of the time series.

1) SSA-based Anomaly Detection Results: Figure 6

presents the results of the proposed detection scheme. The

blue line is the acceleration value of the patient, while red

line is the wn value calculated using the SSA algorithm as

the score. The green line is a threshold h = 0.524 which is

computed with tα = 1.2815. The fluctuation of the blue line

starting around t = 6s(300×0.02) implies a significant change

in acceleration compared to the sitting state where the accel-

eration is almost static around 9.8g. The preliminary results

show that our method is promising to detect anomaly events

of the elderly by using acceleration monitoring. However, the

actual model of a person falling down is more complicated

and it may consider numerous scenarios and various behavior

modes given different individuals. We leave a comprehensive

evaluation based on behavior models in future efforts.

2) Hybrid SSA-LSTM Future Prediction Results: As the

target parameter of temperature would not change so fast, we

unify the sample rate as 1 Hz for all parameters including 3-

lead ECG, acceleration in the x-direction, and temperatures

from three different locations of the body. In the training

process, we adopt mean square error (MSE) as the loss

function and use the Adam optimizer to improve convergence

speed and learning effect given an epoch size is eight. The

first 383 data points are used for the training model and a

prediction value is generated to compare with the actual value

of 66s from body sensors.

Figure 7(a) shows results of predicting body temperature

by using a conventional LSTM model. The large variants of

raw data have greatly influenced prediction value although

Fig. 7. a) LSTM prediction, b) hybrid SSA-LSTM prediction.

TABLE II
PREDICTION RESULTS

Model RMSE MAE MAPE

SVM 0.4954 0.4690 1.4278

RNN 0.1042 0.0869 0.2600

LSTM 0.0978 0.0814 0.2438

SSA-LSTM 0.0087 0.0082 0.0247

they demonstrate the similar trend. In contrast, applying

SSA processor on raw data can extract features and remove

noise. Therefore, the body temperature point predicted by

SSA+LSTM method closely match SSA processed data points,

as Fig. 7(b) shows. Our hybrid SSA-LSTM-based prediction is

promising to accurately predict elderly healthcare status in the

future such that early warnings and suggestions are provided

to mitigate potential risks and even prevent abnormal events.

Table II presents the comparison of prediction results be-

tween our solution with existing approaches like VM, RNN,

and LSTM. Three major metrics are considered to evaluate

the accuracy of the models: Root Mean Square Error (RMSE),

Mean Absolute Error (MAE), and Mean Absolute Percentage

Error (MAPE). The smaller values indicate more accuracy in

future prediction given different benchmarks. Our hybrid SSA-

LSTM model outperforms the listed conventional models with

the highest accuracy.

VI. CONCLUSIONS AND FUTURE WORK

To meet the compelling need for seniors’ safety, leveraging

Blockchain, NFT, and DT technology, we propose MetaSafe,

a digital health service framework in Metaverse to ensure

verifiable ownership and traceable transferability during the

data storage and sharing. In addition, a hybrid SSA-LSTM

prediction scheme is introduced to eliminate noise from the

collected data in form of a time sequence. Compared to a

traditional single LSTM neural network, the prepossessing

of data highly improves the results of future prediction. We

implemented proof-of-concept prototype NFTs and performed

the case study of MetaSafe system for seniors’ safety. The

experimental results are encouraging, and they demonstrate

the efficiency and effectiveness of the proposal.

Our preliminary experiment system tested the feasibility

of the framework. To evaluate the availability of NFT-based

algorithms, we need further study in a large-scale network

including the investigation of accuracy and efficiency. The

emergency alarm highly relies on emerging artificial intelli-

gence techniques including ML and information fusion. Apart
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from the skeleton recognition algorithm [36], we will inves-

tigate more onsite diagnosis mechanisms and integrate them

into MetaSafe to improve the accuracy of identifying emergent

events. The application of blockchain and NFT in health

care should not violate local governmental policies. Further

investigation and studies are required and certain standards

need to be established.
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