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Over the last two decades, with the fast development of micro/nanomaterials, includ-
ing micro/nanoscale and micro/nanostructured materials, significant attention has been
attracted to study the energy transport in them [1-3]. This energy transport can be sus-
tained by electrons and phonons, whose transport is strongly affected by micro/nanoscale
structure scattering. Numerous computer models based on first-principle, molecular dy-
namics, and lattice Boltzmann transport have been reported [4-6]. Also tremendous efforts
have been reported on development of new technologies to characterize the thermophys-
ical properties at the micro/nanoscale [7,8]. Examples of such properties include thermal
conductivity, thermal diffusivity, and specific heat [9-11].

Thermophysical characterization at the micro/nanoscale is extremely challenging
due to the very small size of the sample under study. It is a non-trivial job to apply a very
well defined heat flux along the sample and characterize the temperature drop over it. To
overcome this challenge, new transient techniques have been developed by applying tran-
sient Joule or photon heating, and track the material’s thermal response using electrical or
optical methods. Examples include the transient electro-thermal (TET), transient photo-
electro-thermal (TPET), pulsed laser-assisted thermal relaxation (PLTR), time domain dif-
ferential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy
transport state-resolved Raman (ET-Raman) techniques [7,8,12-16]. These techniques pro-
vide quick and high-level measurement of thermal diffusivity/conductivity of 1D and 2D
materials down to atomic-level thickness [17].

This special issue includes some recent work on micro/nanoscale energy transport,
including research progress reports and reviews. These reviews are in great technical de-
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polyethylene (UHMW-PE) micro-fibers [23]. This indeed significantly extends the capa-
bility of the TET technique and provides unprecedented knowledge about thermal diffu-
sivity evolution during fast heating. The work by Liu et al. presents pioneering efforts in
studying the thermal conductivity variation of giant-scale graphene depending on tem-
perature [24]. This work is very challenging since the thermal expansion mismatch be-
tween graphene and the poly(methyl methacrylate) (PMMA) substrate could easily break
the graphene layer when temperature goes down. The experimental work by Wang et al.
on the bolometric response of MoS: nanoflowers and multi-walled carbon nanotube com-
posite [25], and work on the effect of current annealing on thermal conductivity of carbon
nanotubes by Lin et al. [26] present welcome efforts on studying the structural and tem-
perature effects on energy transport. Nanoscale energy transport has tremendous appli-
cations in materials synthesis. The work by Deng et al. [27] reports the microstructure and
superior corrosion resistance of NiTi-based intermetallic coatings. Such coating synthesis
uses laser melting deposition, which is a strong energy transport-controlled process. The
work by Nunes et al. reported detailed study of electrochemical behavior related to charge
transport in double-layer capacitors and pseudocapacitors [28]. An understanding of the
physics of such transport phenomenon is critical to the design and optimization of capac-
itor performance.

Energy transport at the micro/nanoscale is still a very active research area, and cur-
rent research is very diverse, including study of detailed phonon dynamics, structure, and
behaviors, material design to either enhance or suppress energy transport, and new tech-
nology development to overcome challenges in characterizing special materials [29,30].
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