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 Abstract—The emerging distribution system with a proliferation 
of distributed energy resources (DER) and flexible demand assets 
is expected to experience the restructuring process, just as what 
has been happening in the transmission system. This paper 
introduces the distribution locational marginal price (DLMP) as 
an effectively economic signal to quantify marginal cost for 
supplying next incremental loads at different phases of individual 
nodes. DLMP is calculated by solving the unbalanced AC optimal 
power flow (ACOPF) problem of distribution systems, with the 
objective of minimizing system operation cost. Indeed, in order to 
derive effective DLMPs, global optimal solution to the non-
convex unbalanced ACOPF problem with a zero duality gap 
needs to be obtained. This paper solves the unbalanced ACOPF 
problem via the moment relaxation based semidefinite 
programming (SDP) model. System sparsity is explored to 
accelerate the computational performance. In addition, a 
hierarchical approach is proposed to recover a good enough 
feasible solution to the original ACOPF, when the sparse moment 
relaxation based SDP model is inexact. Numerical case studies on 
a modified IEEE 34-bus system evaluate the effectiveness and 
validity of the proposed approach. DLMP based revenue 
adequacy of the distribution system is also analyzed.  

Index Terms—Distribution LMP, distribution system 
restructuring, revenue adequacy. 

NOMENCLATURE 

Sets and Indices: 
ℂ,ℕ,ℝ Set of complex/natural/real numbers 

%!
"

 Standard basis vector of ℝ#$ with the (3n+&)th 

element being “1”, where & =1, 2, and 3 

represent phases a, b, and c, respectively 

k Index of voltage variable subsets 

m, n Indices of buses, ranging from 0 to (N-1) 
N Total number of buses 

' Set of buses 

'% Set of buses where flexible loads (FL) are 

connected to 

'& Set of DER buses and the distribution 

substation bus 

'! Set of buses adjacent to bus n 

( Set of phases, i.e., ( = {+, ,, -} 
&, / Indices of phases 

Variables: 

0'!
" , 1'!

"
 Real/reactive power injection from the DER at 

phase & of bus n 

0(!
" , 1(!

"
 Real/reactive power load at phase & of bus n 
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 is complex voltage at phase & of bus n 

2C Augmented vector of [1				2)]) 

Constants: 

0'!
"	43!, 0'!

"	4+6
 Real power lower/upper bound of the DER at 

phase & of bus n 

1'!
"	43!, 1'!

"	4+6
 Reactive power lower/upper bound of the 

DER at phase & of bus n 

0(!
"	43!, 0(!

"	4+6
 Real power lower/upper bound of the FL at 

phase & of bus n 

1(!
"	43!, 1(!

"	4+6
 Reactive power lower/upper bound of the FL 

at phase & of bus n 

E=!
"E
43!

 Voltage lower bound at phase & of bus n 

E=!
"E
4+6

 Voltage upper bound at phase & of bus n 
2F* Given voltage values at the distribution 

substation bus, i.e. 2F* = [=*
01,+		=*

01,,		=*
01,-

 

=*
34,+		=*

34,,		=*
34,-;

)
 

G Prespecified convergence threshold 

Symbols: 
-+HI(∙) Number of elements in a vector or a set 

9:(∙),4%(∙) Imaginary/real part 

LMN%(∙) Dimension of a matrix 

OH(∙),	(∙)), |	∙	| Trace/ transpose/ magnitude 

0 Matrix with all zeros 

		∙		Q  Given solution to a variable 

		∙		R  An augmented variable vector or a parameter 

matrix 

I. INTRODUCTION 

he electricity distribution sector is envisioned to include a 

deeper penetration of distributed energy resources (DERs), 

plug-in electrical vehicles, plug-and-play energy storage 

devices, and demand response assets. In order to effectively 

integrate these new technologies, modern distribution systems 

are expected to experience a restructuring process, just as what 

has been happening in transmission systems [1]. 

Distribution locational marginal price (DLMP), which 

reflects marginal cost of supplying next incremental loads in 

different locations, has been studied to provide electricity 

consumers and DER owners/investors effective economic 

signals for optimizing the size and location of their assets [2]-

[4]. DLMP is introduced to the distribution system for the first 

time by [5] with the purpose of properly allocating system 

losses. Since in a low voltage distribution network resistances 
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of distribution lines are relatively large comparing to 

transmission lines, system losses constitute a significant 

portion of energy to be delivered. DLMPs are able to reflect 

the increase in system operation cost due to increased losses 

when supplying the next incremental load at a certain bus. 

Therefore, system loss is one of the main factors that influence 

values of DLMPs. 

In a distribution network, bus voltage regulation is a critical 

issue commonly faced by distribution system operators. 

Specifically, with a proliferation of DERs and flexible loads 

(FLs), voltage violations, either constraining the lower bound 

(due to large demands of FLs) or the upper bound (due to 

large power injections of DERs), become more noticeable. 

Thus, in order to satisfy bus voltage limitations, DERs and 

FLs are always not dispatched economically. That is, 

expensive DERs may be dispatched and highly beneficial FLs 

may be curtailed to alleviate violations on voltage lower 

bounds. Similarly, cheap DERs may be shut down and low 

beneficial FLs may be awarded to mitigate violations on 

voltage upper bounds. Remarkably, as an economic signal, 

DLMPs could also properly reflect the impact of voltage 

limitations on economical operation of the distribution system. 

Distribution systems present unique characteristics 

comparing to transmission systems. Essentially, distribution 

systems are unbalanced because of unbalanced loads, 

unbalanced DERs, and unbalanced/untransposed line 

segments. In addition, phase missing configuration is also 

common in practice. In turn, the three phases are generally 

operated in different conditions. Thus, unique DLMPs for all 

three phases, which are exclusively utilized in balanced 

systems, are unable to accurately reflect operation conditions 

of unbalanced systems and provide effective economic signals 

for all three phases. In this paper, DLMPs are assigned to 

different phases of different buses in the distribution system. 

That is, at a same bus, DLMPs of different phases may be 

different. The phase based economic signals provided by 

DLMPs can effectively incentivize consumers and DER 

owners/investors to optimally adjust their connection 

topologies (i.e., which bus and which phase), which would 

ultimately drive the distribution system to be operated in a 

more balanced manner. 

This paper focuses on the unbalanced three-phase radial 

distribution system, which includes four-conductor multi-

grounded or three-conductor single-grounded lines, wye-wye 

grounded transformers, and wye grounded loads. DLMPs are 

defined and constructed via Lagrangian multipliers of 

corresponding constraints in AC optimal power flow (ACOPF) 

problem with the objective of minimizing total operation cost 

of the distribution system. In order to derive exact price 

signals via the ACOPF problem, the following two conditions 

should be met: (i) the global optimal primal and dual solutions 

of ACOPF can be obtained; and (ii) the strong duality between 

the primal and its dual problem can be guaranteed. Zero 

duality gap at the global optimal solution will ensure that 

optimal Lagrangian multipliers can accurately reflect 

deviations of the objective value with respect to changes in 

bounds of corresponding constraints. 

Indeed, ACOPF problem is nonconvex because of the 

nonlinear relationship between voltages and net complex 

power injections at individual buses [6]. In turn, the above two 

conditions may not be satisfied in general. Recently, convex 

relaxation techniques have been applied to obtain global 

optimal solution and eliminate the dual gap. A rank relaxation 

based semidefinite programming (SDP) model for ACOPF of 

single-phase systems was discussed in [7], which is convex 

and holds the strong duality condition. However, as rank 

relaxation based SDP model enlarges feasible region of the 

origin ACOPF, optimal solution to the rank relaxation based 

SDP model may be infeasible to the origin ACOPF [8]-[10], 

i.e., the rank relaxation could be inexact. Some works 

explored conditions under which the rank relaxation based 

SDP model is exact [11]-[13]. Remarkably, [14] introduced 

graph transformed from the structure of the ACOPF problem 

for analyzing exactness of the rank relaxation. [15]-[16] 

provided a comprehensive overview on sufficient conditions 

for various relaxation models and approaches. However, all of 

them are restricted to single-phase radial or weakly meshed 

systems, in which graphs of corresponding ACOPF problems 

are also radial or weakly meshed.  

Indeed, although unbalanced three-phase distribution 

systems are usually radial, graphs transformed from the 

structure of ACOPF problems are strongly meshed. For 

ACOPF problems with meshed graphs, sufficient conditions 

on exactness of the rank relaxation based SDP approach 

cannot be satisfied in practice [14]. In turn, alternative tighter 

convex relaxation techniques have been explored. Inspired by 

the seminal work of Lasserre [17], ACOPF was formulated as 

a polynomial optimization problem and solved by a hierarchy 

of moment relaxation based SDP models [18]. High order 

moment relaxation is tighter than rank relaxation [19], and 

exactness may be achieved for more general systems. As 

computation burden could easily become intractable when a 

high order moment relaxation is adopted, [19] further 

exploited sparsity of networks and proposed a sparse moment 

relaxation technique [20] for improving the computational 

performance.  

In this paper, the ACOPF problem for unbalanced three-

phase distribution system is formulated as a sparse moment 

relaxation based SDP model [21] to enhance the 

computational efficiency. In addition, to deal with possible 

inexactness of the sparse moment relaxation based SDP model, 

a two-stage hierarchical approach is proposed to obtain the 

global optimal solution or recover a good enough feasible 

solution to the original ACOPF. Lagrangian multipliers of 

certain constraints in the ACOPF problem are utilized to 

construct DLMPs. Sensitivity of DLMPs at DER buses and 

the revenue adequacy are analyzed.  

The main contributions of the paper include: 

1) DLMPs for unbalanced three-phase radial distribution 

systems are defined and constructed via corresponding 

Lagrangian multipliers of the ACOPF problem, which is 

formulated as a moment relaxation based SDP model. 

2) The running intersection property of the ACOPF problem 
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for unbalanced three-phase distribution systems is analyzed to 

derive the sparse moment relaxation based SDP model, which 

would significantly improve the computational efficiency. 

3) A two-stage hierarchical approach is proposed to obtain the 

global optimal solution or recover a good enough feasible 

solution to the original ACOPF problem. 

The rest of the paper is organized as follows. Moment 

relaxation and sparse moment relaxation based SDP models 

for ACOPF of unbalanced three-phase distribution systems are 

formulated in Section II. In section III, DLMPs are defined 

and discussed. Numerical case studies are presented in Section 

IV. The conclusions are drawn in Section V. 

II. MOMENT RELAXATION BASED UNBALANCED ACOPF 

A. ACOPF for Unbalanced Three-Phase Distribution Systems 

For four-conductor multi-grounded neutral and three-

conductor single-grounded neutral distribution systems, the 

line impedance matrix can be written as a 3×3 phase frame 

matrix. Similarly, the impedance matrix of three-phase wye-

wye solidly grounded transformers is also a 3×3 phase frame 

matrix. Thus, for an N-node distribution system (including the 

distribution substation bus indexed as 0), the three-phase nodal 

admittance matrix S ∈ ℂ#$×#$  can be constructed by 

combining the distribution network topology and 3×3 phase 

frame matrices of individual assets.  

Net real and reactive power injections in phase & of bus n 

from all connected distribution lines are calculated via 2C ∙

UC8,!
" ∙ 2C) and 2C ∙ UC9,!

" ∙ 2C), where UC8,!
"

 and UC9,!
"

 are given in 

(1)-(4). 

S!
" ≜ W!

" ∙ 5W!
"7

)
∙ S (1) 

U8,!
" ≜

/

:
X
4% YS!

" + 5S!
"7

)
Z 9: Y5S!

"7
)
−S!

"
Z

9: YS!
" − 5S!

"7
)
Z 4% YS!

" + 5S!
"7

)
Z
\ (2) 

U9,!
" ≜

/

:
X
9: YS!

" + 5S!
"7

)
Z 4% YS!

"−5S!
"7

)
Z

4% Y5S!
"7

)
−S!

"
Z 9: YS!

" + 5S!
"7

)
Z
\ (3) 

UC8,!
" ≜ ]

0 		_

_ U8,!
" `			UC9,!

" ≜ a
0 		_
_ U9,!

" b (4) 

Operation costs of DERs and benefit functions of FLs in 

phase & of bus n are represented by (5) and (6), respectively. 

c!
"50'!

" 7 = -!,:
" ∙ 50'!

" 7
:
+ -!,/

" ∙ 0'!
" + -!,*

" ,				∀d ∈ '& (5) 

e!
"50(!

" 7 = ,!,:
" ∙ 50(!

" 7
:
+ ,!,/

" ∙ 0(!
" + ,!,*

" ,			∀d ∈ '% (6) 

Given electricity price -*  of all three phases at the 

distribution substation bus, the unbalanced three-phase 

distribution ACOPF problem is formulated as a polynomial 

programming model (7). The objective (7a) minimizes the 

distribution system operation cost. (7b)-(7e) are real and 

reactive power balance in each phase of each bus. (7f)-(7i) are 

real and reactive power capacity limits of DERs and FLs. (7j) 

is bus voltage magnitude limit, where UC;,!
"

 is defined in (7k). 

(7l) sets reference voltages for the distribution substation bus.  

:Md
<=,8!"

#
,9!"
#
,8$"
#
,9$"
# f
∑ -* ∙ 0'*

"
"∈? + ∑ ∑ c!

"50'!
" 7"∈?!∈@%

−∑ ∑ e!
"50(!

" 7"∈?!∈@&
h

 (7a) 

2C) ∙ UC8,!
" ∙ 2C = 0'!

" − 0!
"	%36 ,								∀d ∉ '& (7b) 

2C) ∙ UC9,!
" ∙ 2C = 1'!

" − 1!
"	%36 ,							∀d ∉ '& (7c) 

2C) ∙ UC8,!
" ∙ 2C = −0(!

" ,																					∀d ∈ '%	 (7d) 

2C) ∙ UC9,!
" ∙ 2C = −1(!

" ,																				∀d ∈ '% (7e) 

0'!
"	43! ≤ 0'!

" ≤ 0'!
"	4+6 ,																∀d ∈ '& (7f) 

1'!
"	43! ≤ 1'!

" ≤ 1'!
"	4+6 ,														∀d ∈ '& (7g) 

0(!
"	43! ≤ 0(!

" ≤ 0(!
"	4+6 ,															∀d ∈ '% (7h) 

1(!
"	43! ≤ 1(!

" ≤ 1(!
"	4+6 ,														∀d ∈ '% (7i) 

YE=!
"E
43!

Z
:

≤ 2C) ∙ UC;,!
" ∙ 2C ≤ YE=!

"E
4+6

Z
:
 (7j) 

UC;,!
" ≜ ]

0 		_

_ U;,!
" `, where U;,!

" ≜ X
W!
"5W!

"7
)
						_

_ W!
"5W!

"7
)\ (7k) 

3=*
01,+			=*

01,,			=*
01,-			=*

34,+			=*
34,,			=*

34,-;
)
= 2F* (7l) 

B. Moment Relaxation Approach 

The following definitions are presented first. A monomial 

lA  consisting of elements in 2C  is defined as lA
B52C7 =

∏ a5=!
01,"7

C"
'(,#

∙ 5=!
34,"7

C"
*+,#

b
C"
'(,#

,C"
*+,#

∈B
, where n!

01,"
 and 

n!
34," ∈ ℕ. A polynomial 0A including elements in 2C is defined 

as 0A52C7 = ∑ o-D ∙ lA

B,52C7pB,∈E , where 	q = rs/, s:, … , sFEt ∈

ℕu. The Riesz linear function is defined as in (8), and can be 

extended to the polynomial matrix form as in (9). 2C  is 

augmented to 2CG as shown in (10). Specifically, when v takes 

0 and 1, 2C* ≜ [1] and 2C/=2C, respectively. 

wH Y0A52C7Z ≜ ∑ -D ∙ xDB,∈E , yℎ%H%	xD ∈ ℝ;		wH(1) = 1 (8) 

wH |X
0A
/,/⋯~A

/,F

⋮ ⋱ ⋮
~A
F,/⋯~A

F,F
\Å ≜ X

wH50A
/,/7⋯wH50A

/,F7
⋮ ⋱ ⋮

wH50A
F,/7⋯wH50A

F,F7
\ ,				t ∈ ℕ (9) 

2CG ≜ o1 =*
01,+ … =$./

34,- (=$./
01,+): 5=*

01,+ ∙ =*
01,,7 … 5=$./

34,-7
:
 

(=*
01,+)# 5(=*

01,+): ∙ =*
01,,7 … (=$./

01,-)G;,			∀v ∈ ℕ (10) 

Based on definitions of Riesz linear function and 2CG in (8)-

(10), the moment and localizing matrices are defined in (11)-

(12a). ς takes the value by dividing the maximum monomial 

order of 0A52C7 by 2 and rounding up as shown in (12b). 

ÉG ≜ wH Y2CG ∙ 2CG
)
Z (11) 

ÉG.I Y0A52C7Z ≜ wH Y0A52C7 ∙ 2CG.I ∙ 2CG.I
)
Z (12a) 

Ñ ≜ Ö
/

:
:+ÜB,∈E á∑ n!

01,"

C"
'(,#

∈B,
+∑ n!

34,"

C"
*+,#

∈B,
àâ (12b) 

The vth-order moment relaxation based SDP of the original 

ACOPF (7) is written as (13). The objective (13a) is presented 

in an epigraph form, where ä!
"

 and ã!
"

 are defined in (13b)-

(13c) as Schur’s components. (13d)-(13g) correspond to (7b)-

(7i), which are real and reactive power balance in each phase  
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:Md
J-,K"

#
,L"
# ∑ ∑ ä!

"
"∈?!∈@% −∑ ∑ ã!

"
"∈?!∈@&  (13a) 

⎣
⎢
⎢
⎡ä!

" − -!,/
" ∙ wH5OH5UC8,!

" ∙ 2C ∙ 2C)7 + 0!
"	%367 − -!,*

" −è-!,:
" ∙ wH5OH5UC8,!

" ∙ 2C ∙ 2C)7 + 0!
"	%367

−è-!,:
" ∙ wH5OH5UC8,!

" ∙ 2C ∙ 2C)7 + 0!
"	%367 1

⎦
⎥
⎥
⎤
≽ 0,							∀d ∈ '& (13b) 

⎣
⎢
⎢
⎡,!,/

" ∙ wH Y−OH5UC8,!
" ∙ 2C ∙ 2C)7Z + ,!,*

" − ã!
" è−,!,:

" ∙ wH Y−OH5UC8,!
" ∙ 2C ∙ 2C)7Z			

è−,!,:
" ∙ wH Y−OH5UC8,!

" ∙ 2C ∙ 2C)7Z 1
⎦
⎥
⎥
⎤
≽ 0,																												∀d ∈ '% (13c) 

ÉG./5OH5UC8,!
" ∙ 2C ∙ 2C)7 − 0'!

"	43! + 0!
"	%367 ≽ 0;			ÉG./5−OH5UC8,!

" ∙ 2C ∙ 2C)7 + 0'!
"	4+6 − 0!

"	%367 ≽ 0,						∀d ∉ '% (13d) 

ÉG./5OH5UC9,!
" ∙ 2C ∙ 2C)7 − 1'!

"	43! + 1!
"	%367 ≽ 0;		ÉG./5−OH5UC9,!

" ∙ 2C ∙ 2C)7 + 1'!
"	4+6 − 1!

"	%367 ≽ 0,						∀d ∉ '% (13e) 

ÉG./5−OH5UC8,!
" ∙ 2C ∙ 2C)7 − 0(!

"	43!7 ≽ 0;																ÉG./5OH5UC8,!
" ∙ 2C ∙ 2C)7 + 0(!

"	4+67 ≽ 0	,																										∀d ∈ '% (13f) 

ÉG./5−OH5UC9,!
" ∙ 2C ∙ 2C)7 − 1(!

"	43!7 ≽ 0;															ÉG./5OH5UC9,!
" ∙ 2C ∙ 2C)7 + 1(!

"	4+67 ≽ 0,																											∀d ∈ '% (13g) 

ÉG./ îOH5UC;,!
" ∙ 2C ∙ 2C)7 − YE=!

"E
43!

Z
:

ï ≽ 0;								

			

ÉG./ á−OH5UC;,!
" ∙ 2C ∙ 2C)7 + YE=!

"E
4+6

Z
:
à ≽ 0,														∀d ∈ {' − 0} (13h) 

ÉG ≽ 0 (13i) 

	wH Y3=*
01,+	=*

01,,	=*
01,-	=*

34,+	=*
34,,	=*

34,-;
G

)
∙ 3=*

01,+	=*
01,,	=*

01,-	=*
34,+	=*

34,,	=*
34,-;

G
Z = wH52F*G ∙ 2F*G

) 7 (13j) 

of each bus. (13h) corresponds to (7j), which represents 

voltage limit in each phase of each bus. Since orders of (7b)-

(7e) and (7j) are all 2 when written in polynomial forms, ς in 

(13d)-(13h) are all equal to 1. (13j) corresponds to (7h), which 

represents that substation bus voltages and their monomials 

defined in (10) are all fixed as pre-specified values 

C. Exploiting Sparsity of the Distribution System Network 

Computational burden of the moment relaxation based SDP 

model is highly dependent on the dimension of ÉG 

Y
v

-+HI(2) + vZ, which could be easily intractable when γ is 

larger than two [19]. This section explores the sparsity of 

distribution systems, in order to reduce dimensions of ÉG and 

ÉG.I and accelerate computational performance for practical 

distribution systems. 

Since 0'!
"

, 1'!
"

, 0(!
"

, and 1(!
"

 can be represented by 2C , 2C 

can be regarded as the only decision variables. (7) is said to 

have the running intersection property, if 2 (sub-vector of 2C) 

can be partitioned into 0  overlapped sub-vectors ñM  for 

k=0,…,P-1, which satisfy: 

1) ‖2‖N has an upper bound; 

2) All variables in each constraint belong to one and only one 

sub-vector ñM; 

3) The objective function is polynomial, and for every 

monomial in the objective function, all involved variables 

belong to one and only one sub-vector ñM; 

4) ∀ò ∈ {1,⋯ , 0 − 1}, ∃s < ò such that 5ñM ∩ (⋃ ñ33OM )7 ⊆
ñP.  

Indeed, if a problem presents the running intersection 

property, its moment and localizing matrices can be divided 

into multiple submatrices as in (14a)-(14b). This derives an 

equivalent sparse moment relaxation, which has the same 

property of solution exactness as the corresponding moment 

relaxed model [21]. In the vth order moment relaxation model, 

one variable matrix ÉG is defined and required to be positive 

semidefinite. On the other hand, a set of ÉG
M is defined in the 

sparse moment relaxation model and required to be positive 

semidefinite. Indeed, all ÉG
M  are submatrices of ÉG . Thus, 

when ÉG is positive semidefinite, all ÉG
M are guaranteed to be 

positive semidefinite, whereas the converse is not true. In turn, 

moment relaxation is generally tighter than sparse moment 

relaxation. However, when Conditions 1)-4) are hold, the 

sparse moment relaxation is as tight as the moment relaxation, 

and the two models are equivalent [21]. 

ÉG
M ≜ wH Y5ñCM7G ∙ 5ñ

C
M7G

)
Z (14a) 

ÉG.I
M Y0A5ñCM7Z ≜ wH Y0A5ñCM7 ∙ 5ñCM7G.I ∙ 5ñ

C
M7G.I

)
Z (14b) 

where ñCM = [1			ñM
)]).  

Multiple partitions may exist which satisfy all above four 

conditions. The partition with the smallest value of 

:+ÜrLMN%5ÉG
*7,⋯ , LMN%5ÉG

8./7u  is sought in this paper, in 

order to reduce computational burden to the maximum extent. 

Indeed, for a radial distribution system, the best way is to 

build one subset for each bus (which is called a hub bus). That 

is, all three-phase variables of the hub bus and its adjacent 

buses constitute a subset, and the number of subsets is equal to 

the number of buses (i.e., N). In turn, P=N and each ñM for 

k=0,…,N-1 includes a set of voltage variables (i.e. elements in 

V) associated with hub bus k and its adjacent buses. The value 

of :+ÜrLMN%5ÉG
*7,⋯ , LMN%5ÉG

$./7u  is determined by the 

relaxation order and the connection degree of hub buses. 

III. THE INEXACTNESS CONUNDRUM 

A hierarchical moment relaxation approach for polynomial 

programming problems was discussed in [17], which 

converges to the global optimal solution of the origin problem 

when the relaxation order goes to infinite. The same 

conclusion can be made for the sparse moment relaxation 
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model. Indeed, in certain cases, the global convergence may 

be achieved with a finite relaxation order [21]. Both first-order 

and second-order moment relaxation models have been used 

to exactly solve ACOPF problems [19]-[20].  

However, it has to be acknowledged that inexactness may 

exist especially for low order moment relaxations, which 

means that optimal solution to the moment relaxation problem 

may not be feasible to the original ACOPF. The moment 

relaxation is exact if (15) is met, where Ñ4+6 is the maximum 

value among all Ñ  [21]. In addition, if (15) is met but 

H+dò5ÉG7  is larger than one, a decomposition algorism is 

needed to retrieve the optimal solution of 2 from ÉG	 [21]. For 

the sparse moment relaxation model, all ÉG
M  need to satisfy 

(15) in order to guarantee exactness. Specifically, for the first-

order relaxation v = 1, É*(1) is degraded into a scaler and its 

rank is one, and in turn (15) can be equivalently represented as 

(16).  

H+dò5ÉG7 = H+dò YÉG.I+./(1)Z (15) 

H+dò(É/) = H+dò5É*(1)7 = 1 (16) 

To deal with possible inexactness, a hierarchical approach is 

proposed to obtain the global optimal solution or recover a 

good enough feasible solution based on the inexact solution. 

The hierarchical approach includes two major steps. 

Step 1 First-Order Solving: Solve the first-order sparse 

moment relaxation model of ACOPF. If (16) is met, the global 

optimal solution is obtained, otherwise go to Step 2.1. 
Step 2 Iterative Recovering: 

2.1 The solution to the first-order sparse moment relaxation 

model obtained in Step 1 is denoted as üFM  for k=0,…,N-1, 

which are solutions to variable matrices É/
M

 for k=0,…,N-1. 

Solve (17) to derive solution to the approximated voltage 

vector ñCM . The solution is denoted as ñFM . It is worth 

mentioning that (17) represents a set of optimization problems 

corresponding to each ò , which can be solved sequentially. 

That is, as sub-vectors ñCM overlap with each other, overlapped 

variables UCQ
R

 in the kth optimization problem are set via 

solutions from previous optimization problems 0,…,k-1 (17b). 

Specifically, voltages of the distribution substation bus in the 

first subset (i.e., k=0) are set as 2F* . ñFM  can be effectively 

derived from (17) via optimality conditions [22], where ‖∙‖S is 

the Frobenius norm. ñCM
P 	 / ñFM

P
 represents the sub-vector 

constructed by variables in ñCM/ñFM that overlap with the subset 

ñCP/ñFP.  

:MdT=0 °ü
F
M −ñCM ∙ ñCM

)
°
S
	 (17a) 

ñCM
P = ñFP

M	, 0 < ò ≤ ¢ − 1, ∀" < $ (17b) 

3=*
01,+	=*

01,,	=*
01,-	=*

34,+	=*
34,,	=*

34,-;
)
= 2F* (17c) 

2.2 Initialize 2 via ñFM obtained from Step 2.1. The initialized 

2 is denoted as 2F(0). Set iteration index H = 0. 

2.3 Decouple the three-phase problem into three single-phase 

problems, by introducing pseudo fixed current injections in 

each single-phase problem to approximate the impact of the 

other two phases. Power injection to phase & of bus d from all 

connected distribution lines can be represented in the complex 

form as shown on the left-hand-side of (18a), and further 

rewritten into two parts as shown on the right-hand-side of 

(18a). It can be seen that the first term on the right-hand-side 

of (18a) is only related to voltage variables in phase &, and the 

second term is coupled with voltage variables of the other two 

phases. Pseudo injection current 9UV,W
X

 is calculated as in (18b), 

which can be derived with known voltage values of the other 

two phases obtained from the previous iteration. 

2C) ∙ 5UC8,!
" + A ∙ UC9,!

" 7 ∙ 2C = =!
" ∙ 5£!,!

"," ∙ =!
" +∑ £!,4

"," ∙4∈@"

=4
"7

Y
+ =!

" ∙ 5∑ £!,!
",Z ∙ =!

Z
Z∈?." +∑ ∑ £!,4

",Z ∙Z∈?."4∈@"

=4
Z7

Y
  (18a) 

9-[,!
" = 5∑ £!,!

",Z ∙ =!
Z

Z∈?." +∑ ∑ £!,4
",Z ∙ =4

Z
Z∈?."4∈@" 7

Y
§
<\(0)

 (18b) 

2.4 Solve three single-phase ACOPF problems with the first-

order sparse moment relaxation based model. If solution for a 

certain single-phase problem does not satisfy (16), i.e., is 

inexact, the second-order sparse moment relaxation based 

model for this phase is further solved. If (15) is still not 

satisfied, go to Step 2.5; Otherwise, the voltage vector solution 

2F(H + 1) is checked to see if (19) is satisfied: (i) If yes, a good 

enough feasible solution is obtained and the algorithm 

terminates; (ii) If not, update the voltage vector 2F(H) =
2F(H + 1) and H = H + 1, and go to Step 2.3.  

•2F(H + 1) − 2F(H)•
:
≤ G (19) 

2.5 For single-phase ACOPF problems whose second-order 

sparse moment relaxation is inexact, allow load over-

satisfaction and resolve the first-order sparse moment 

relaxation. The solution is always exact [11]-[12]. The voltage 

vector solution 2F(H + 1) is checked to see if (19) is satisfied. 

If yes, the algorithm terminates; Otherwise, update the voltage 

vector 2F(H) = 2F(H + 1) and H = H + 1, and go to step 2.3. 

Proposition 1: In the proposed hierarchical recovering 

procedure, objective value of the original three-phase ACOPF 

problem with respect to optimal solutions of the three single-

phase problems will converge. 

Proposition 1 justifies the convergence property of the 

proposed hierarchical recovering method. The proof of 

Proposition 1 is included in the Appendix. 

It is noted that the global optimal solution is obtained if the 

hierarchical approach terminates at Step 1. Otherwise, a good 

enough feasible solution to the original ACOPF can be 

recovered if the hierarchical approach terminates at Step 2.4. 

Quality of feasible solutions recovered from the iterative 

process can be justified via two facts: (i) the gap between the 

recovered feasible solution and the lower bound obtained in 

the first-order sparse moment relaxation model is very small; 

and (ii) ü_  usually has only one large eigenvalue and all 

others are relatively small. This indicates that a rank-one 

feasible solution to the original ACOPF problem would be 

very close to current inexact solution ü_  [22], and can be 

recovered via the iterative recovering process while using the 

current inexact solution as an initial point. Furthermore, if the 

hierarchical approach terminates at Step 2.5, the recovered 
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solution may not be feasible to the origin ACOPF since load 

over-satisfaction is triggered. However, as over-satisfaction 

requires more power supply and in turn derives higher 

objective values, it is rarely observed that the iterative 

procedure terminates at Step 2.5. Indeed, as a distribution 

system could remain unchanged over a long time period, 

system operators can thoroughly examine parameter settings 

offline to further avoid such an inexact solution situation in 

real time operations. In addition, load over-satisfaction has 

also been discussed in the optimal Volt/VAR control problem 

[23] and the optimal power flow problem [24].  

IV. THREE-PHASE DISTRIBUTION LMPS 

If the hierarchical approach terminates with the global 

optimal solution, duality gap between (13) and its Lagrangian 

dual is zero [25]. Sparse moment relaxation model holds the 

same property. Thus, at the global optimal solution, 

Lagrangian multipliers can accurately represent sensitivity of 

the objective function with respect to constraint bounds, which 

can be utilized to construct DLMPs of each phase in each bus 

of the distribution system. On the other hand, although a good 

enough feasible solution recovered from the hierarchical 

approach may not be global optimal to the origin unbalanced 

three-phase ACOPF problem, it is global optimal with zero 

duality gap for individual single-phase ACOPF problems. 

Thus, Lagrangian multipliers can still be useful for 

approximating DLMPs of each phase in each bus. However, it 

is emphasized that calculating approximate DLMPs for single-

phase problems is a compromised approach, which is adopted 

only when the first-order sparse moment relaxation model of 

the three-phase problem cannot be solved exactly. 

DLMP is derived based on (13). For the sake of discussion, 

OH5UC8,!
" ∙ 2C ∙ 2C)7 is denoted as ¶. Considering an incremental 

change of fixed load ß0(!
"

 at phase &  of bus d , the 

corresponding Lagrangian function of (13) is expressed in (20), 

where ®R(d) is defined in (21), and ®©  denotes terms that are 

not related to ß0(!
" . In (20), ™!,"

8,'
 and ™!,"

8,'
, ™!,"

9,'
 and ™!,"

9,'
, 

™!,"
8,(

 and ™!,"
8,(

, ™!,"
9,(

 and ™!,"
9,(

, as well as ™!,"
;

 and ™!,"
;

 are 

Lagrangian multiplier matrices corresponding to (13d)-(13h), 

respectively. Furthermore, Lagrangian multiplier matrices 

corresponding to (13b)-(13c) are defined in (22). 

´
1 ¨!,/

"

¨!,/
" ¨!,:

" ≠ ≽ 0, ∀d ∈ '&; ´
−1 Æ!,/

"

Æ!,/
" Æ!,:

" ≠ ≽ 0, ∀d ∈ '% (22) 

DLMP in phase &  of bus n can be calculated via (23). 

Solution to (13) is denoted as ÉF G , and ÉF G./  represents 

submatrix in ÉF G  that corresponds to ÉG./(1)  in ÉG . It is 

worth mentioning that when v = 1 , ÉF G./  is 1 and all 

Lagrangian multiplier matrices are degraded to scalars. Ø!
"

 is 

defined as in (24), which can be regarded as locational 

marginal price of reactive power. 

Revenue is defined as the total money collected from loads 

minus the total money paid to DERs and the main grid. Money 

collected from a load is equal to the load value multiplying 

corresponding DLMP, and money paid to a DER is equal to its 

power generation multiplying corresponding DLMP. Total 

revenue of the distribution system can be calculated via (25), 

which includes revenues collected from fixed and flexible 

loads minus costs of electricity purchased from the 

distribution substation bus and DERs. In (25), üF = 31, 2F);
)
∙

31, 2F);, where 2F is solution to 2.  

Ø!
" =

⎩
⎪
⎨

⎪
⎧ OH îY™!,"

9,' − ™!,"
9,'
Z ∙%¥ !−1ï,				∀d ∉ '%

OH îY−™!,"
9,( + ™!,"

9,(
Z ∙%¥ !−1ï,			∀d ∈ '%

 (24) 

V. CASE STUDY 

The modified IEEE 34-bus distribution system shown in Fig. 

1 is used to analyze DLMPs and illustrate validation of the 

proposed hierarchical procedure. Three DERs GA, GB, and 

GC are connected at buses 11, 16, and 28, respectively. Three 

FLs are connected at buses 15, 21, and 31, respectively. GA is 

a single phase DER connected at phase a, while GB, GC, and 

the three FLs are three-phase assets. Detailed data for DERs 

and FLs are shown in Tables I-II. Voltages at the distribution 

substation bus are set as 1.05∠0˚p.u., 1.05∠-120˚p.u., and 

1.05∠120˚p.u. for phases a, b, and c, respectively. For all 

other buses, lower and upper phase voltage bounds are set as 

0.95p.u. and 1.05p.u., respectively. As the rank of a matrix is 

equal to the number of its nonzero eigenvalues, the threshold 

of 5×10-4 is used to determine whether a numerical solution of 

an eigenvalue is nonzero. The moment relaxation based SDP 

model is solved by Mosek [26]. 

 
Fig. 1 The modified IEEE 34-bus distribution system 

TABLE I DATA OF DERS 

DER Phase !!,#  
(×10-5¢/kWh2) 

!!,$ 
(¢/kWh) 

!!,% 
(¢/h) 

"!&'( 
(kW) 

"!&)* 
(kW) 

#!&'( 
(kVar) 

#!&)* 
(kVar) 

GA a 225 7 100 450 0 850 0 

GB 
a 189 6.1 1000 1680 200 720 100 
b 203 6.3 1000 1680 200 780 100 
c 195 6.0 1000 1680 200 700 100 

GC 
a 110 5.1 400 1250 0 800 200 
b 133 5.2 400 1250 0 800 200 
c 133 5.6 400 1250 0 800 200 

TABLE III DATA OF FLS 

FL Phase $+,#  
(×10-5¢/kWh2) 

$+,$ 
(¢/kWh) 

$+,% 
(¢/h) 

"+&'( 
(kW) 

"+&)* 
(kW) 

#+&'( 
(kVar) 

#+&)* 
(kVar) 

FA 
a -288 10.4 -200 230 0 120 100 
b -578 12.2 -200 230 0 120 100 
c -592 11.6 -200 230 0 120 100 

FB 
a -255 16.0 -200 1500 0 750 350 
b -298 16.7 -200 1500 0 750 350 
c -243 15.7 -200 1500 0 750 350 

FC 
a -452 12.9 -200 390 0 200 100 
b -442 12.4 -200 460 0 220 100 
c -436 12.3 -200 490 0 250 100 
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®5Δ0(!
" 7 = ®© +	®P(d) + 

⎩
⎪⎪
⎨

⎪⎪
⎧OH Y™!,"

8,' ∙ ÉG./5¶ − 0'!
"	43! + 0!

"	%36 + ∆0(!
" 7Z + OH î™!,"

8,'
∙ ÉG./5−¶ + 0'!

"	4+6 − 0!
"	%36 − ∆0(!

" 7ï ,					d ∈ '&

OH Y™!,"
8,' ∙ ÉG./5−¶ − 0(!

"	43! − ∆0(!
" 7Z + OH î™!,"

8,'
∙ ÉG./5¶ + 0(!

"	4+6 + ∆0(!
" 7ï ,																																						d ∈ '%	

OH Y™!,"
8,' ∙ ÉG./5¶ + 0!

"	%36 + ∆0(!
" 7Z + OH î™!,"

8,'
∙ ÉG./5−¶ − 0!

"	%36 − ∆0(!
" 7ï ,																																									d ∉ '& +'%

 (20) 

®P(d) =

⎩
⎪
⎨

⎪
⎧-!,/

" 5wH(¶) + 0!
"	%36 + ∆0(!

" 7 + -!,*
" + 2¨!,/

" è-!,:
" 5wH(¶) + 0!

"	%36 + ∆0(!
" 7 − ¨!,:

" 	,																						d ∈ '&

−,!,/
" 5wH(−¶) − ∆0(!

" 7 − ,!,*
" + 2Æ!,/

" è−,!,:
" 5wH(−¶) − ∆0(!

" 7 + Æ!,:
" ,																																											d ∈ '%

0,																																																																																																																																																																												d ∉ '& +'%

 (21) 

∏wl0!
" =

`abc8!"
#
d

`c8!"
# =

⎩
⎪⎪
⎨

⎪⎪
⎧OH îY™!,"

8,' − ™!,"
8,'
Z ∙ ÉF G./ï + -!,/

" + 2¨!,/
" è-!,:

" ,																																																														d ∈ '&

OH áY−™!,"
8,( + ™!,"

8,(
Z ∙ ÉF G./à + ,!,/

" − 2Æ!,/
" è−,!,:

" ,																																																							d ∈ '%

OH îY™!,"
8,' − ™!,"

8,'
Z ∙ ÉF G./ï ,																																																																																																			d ∉ '& +'%

 (23) 

4%π = ∑ ∑ ∏wl0!
" ∙ 0!

"	%36
"∈?!∈@.@%.@& +∑ ∑ ∏wl0!

" ∙ Y−OH5UC8,!
" ∙ üF 7Z − ∑ -*

" ∙ OH5UC8,*
" ∙ üF 7"∈?"∈?!∈@&   

            −∑ ∑ ∏wl0!
" ∙ 5OH5UC8,!

" ∙ üF 7 + 0!
"	%367"∈?!∈@%.*  (25) 

A. DLMP 

Electricity price of the distribution substation bus is set as 

10¢/kWh. The unbalanced ACOPF is solved by the rank 

relaxed model, the first-order moment relaxation model, and 

the first-order sparse moment relaxation model, with 

computing times of 1064.5s, 1128.5s, and 1.59s, respectively. 

Solutions of both moment relaxation models are identical and 

both satisfy (16), which means that global optimal solution to 

the origin unbalanced ACOPF problem is obtained. The 

optimal operation cost is 1105.65$.  
Three-phase DLMPs of all buses are shown in Fig. 2. Note 

that DLMPs of missing phases at certain buses are not 

presented. Fig. 2 shows that DLMPs of the three phases at the 

distribution substation bus 0 are all equal to 10¢/kWh, because 

the distribution substation bus acts as marginal units in all 

three phases. In addition, three-phase DLMPs at all other 

buses are relatively close, with the maximum difference of 

1.07¢/kWh. The reason is that but voltage limits are not 

binding, and in turn differences in DLMPs are mainly caused 

by the increased system losses for supplying the load 

increment. The largest DLMP difference of two adjacent buses 

in the same phase is 0.19¢/kWh, which occurs at phase c of 

buses 22 and 24. The largest DLMP difference among three 

phases at the same bus is 0.30¢/kWh, which occurs between 

phases a and c at bus 31. Fig. 2 also shows that the ascending 

order of phase DLMPs is c, b, and a for most buses. The main 

reason is that phase c has the highest line impedance, and in 

turn introduces more losses than the other two phases. 

It is also observed that ∏wl0!
"

 is much larger than Ø!
"

. The 

largest absolute value of Ø!
"

 is 0.62¢/kVarh at phase c of bus 

32, while ∏wl0!
"

 ranges from 10¢/kWh to 11.07¢/kWh. The 

reason is that the cost of reactive power is not explicitly 

included in the objective function (7a), and reactive power 

only indirectly impacts the objective function via its coupling 

with real power through bus voltages.  

Fig. 2 shows that DLMPs are also impacted by the location 

of DERs. For instance, for buses 25-28 on a same feeder, if no 

DER is connected at bus 28, DLMPs of upstream buses (i.e., 

bus 25) should be smaller than those of downstream buses (i.e., 

bus 28). However, power injection from GC at bus 28 reverses 

power flow directions of lines 27-28 and 26-27 as compared to 

the case without GC. Indeed, loads at bus 26 are 

simultaneously supplied by electricity from GC and the 

upstream bus 25. Considering power flow directions of lines 

27-28 and 26-27, from the DG point of view, more losses will 

be incurred by supplying the next load increment at bus 26 

than buses 27 and 28. In turn, DLMPs at bus 26 are higher 

than those of its downstream and upstream buses in the same 

phase. However, this phenomenon is not observed on branches 

where GA and GB are connected to. Power output of GA is 

consumed by the large local fixed loads, and real power 

injection from GB does not reverse power flow directions on 

connected lines. In turn, the next load increment at 

downstream buses still causes more losses than upstream 

buses, and higher DLMPs are observed at downstream buses.  

Bus voltage magnitude profiles of the three phases are 

shown in Fig. 3, which are all strictly within the lower and 

upper limits. That is, voltage constraints are not binding. It is 

observed that at most buses, voltage magnitude of phase a is 

the highest and the lowest occurs in phase c. This is mainly 

because line impedance of phase c is higher than those of the 

other two phases. It is also observed that a noticeable voltage 

magnitude drop occurs in phase a at buses 9-11. The reason is 

that lines connecting bus 8 to bus 11 are single-phase lines 
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with phase a only, and a heavy load is connected at phase a of 

bus 11 which induces a significant voltage drop at bus 11. 

 
Fig. 2 Three-phase DLMPs of the modified IEEE 34-bus system 

 
Fig. 3 Three-phase voltage magnitude profiles of the modified IEEE 34-bus 
system 

Table II illustrates real power dispatches of FLs and DERs. 

It shows that the cheap unit GC is fully dispatched at its 

maximum capacity. On the other hand, since ,e,/  of FA in 

phase b is larger than those in phases a and c, 157.7kW is 

awarded in phase b comparing to 2.9kW and 97.3kW in 

phases a and c.  

Reactive power dispatches of FLs and DERs are shown in 

Table III. Since reactive power production costs of DERs are 

not included in the objective function (7a), reactive power 

demands of FLs are binding at their lower limits and reactive 

power outputs of DERs are scheduled at their upper bounds. 

This would help enhance voltage magnitudes, reduce real 

power losses, and in turn decrease system costs. 

TABLE II REAL POWER DISPATCHES OF FLS AND DERS (kW) 
Phase  Distribution substation bus FA FB FC GA GB GC 

a 3227.2 2.9 1047.1 242.9 450 897.5 1250 
b 3395.4 157.7 1010.7 182.8 - 1055.9 1250 
c 3325.4 97.3 1005.2 140.4 - 1067.6 1250 

TABLE III REACTIVE POWER DISPATCHES OF FLS AND DERS (kVar) 
Phase Distribution substation bus FA FB FC GA GB GC 

a 988.7 100 350 100 850 720 800 
b 1653.9 100 350 100 - 780 800 
c 1833.6 100 350 100 - 700 800 

To further study the impact of DERs’ location on DLMPs, 

GB is switched to buses 8 and 30. Fig. 4 presents DLMPs of 

phase c when GB is connected at buses 16, 8, and 30, 

respectively. It shows that DLMPs of all buses are decreased 

when GB is connected at bus 30, comparing with those when 

GB is at buses 16 and 8. As bus 30 is much closer to terminal 

of the feeder that suffers from low voltage magnitudes and to 

the load at bus 29, placing GB at bus 30 would help boost 

voltage at bus 30 and reduce power injection from upstream 

system. In turn, it would help reduce system losses and 

achieve lower DLMPs. Voltage magnitudes of bus 30 are 

0.9833p.u., 0.9788p.u., and 0.9978p.u., when GB is connected 

at buses 16, 8, and 30, respectively. This shows the DER’s 

effect on boosting voltages at connecting buses. In addition, 

the subgraph in Fig. 4 clearly shows that when GB is 

connected at bus 30, DLMP at bus 29 is higher than that of 

bus 30, which is caused by the reversed power flow on branch 

29-30. The results indicate that locations of DERs are critical 

to system economical operation and also have significant 

impact on DLMPs. 

 
Fig. 4 DLMPs of phase c when GB is connected at three different buses 

Revenue of the modified IEEE 34-bus distribution system is 

2964¢, which is calculated via (25) with respect to DLMPs in 

Fig. 2 and real power dispatches in Table II. Table IV further 

shows revenues when all fixed loads are adjusted from 90% 

up to 120% of the original values. As shown in Table IV, with 

the increase in load, the total money collected from loads as 

well as the total payment to DERs and the main grid will also 

increase. However, the revenue may not be monotonically 

increasing. This is a main feature of LMPs for distribution 

power systems as discussed in [27]. Nevertheless, although the 

revenue is not strictly monotonous with the increase in loads, 

the revenue adequacy is achieved in all the cases. 

TABLE IV THE SYSTEM REVENUE UNDER DIFFERENT LOAD LEVELS ($) 
Load Level 90% 100% 110% 115% 120% 

Payment from Loads  1647.57 1788.81 1925.20 2006.19 2078.93 
Payment to Substation 

Bus and DERs 1624.01 1759.17 1896.22 1965.45 2034.97 

Revenue 23.56 29.64 28.98 40.74 43.96 

B. The Hierarchical Approach 
The modified IEEE 34-bus system is revised to further 

illustrate the validation of the proposed hierarchical solution 

procedure. That is, all FLs are excluded, real power upper 

bounds of DERs are increased to 300% of original values, and 

reactive power upper bounds of DERs are decreased to 75%. 

In addition, -&,/ of all DERs are set as zeros. 

The ACOPF problem is solved by the first-order sparse 

moment relaxation model in 1.31s. The optimal system 

operation cost is 678.91$. Solutions to 27 out of 34 sub-

matrices are not rank one. In all sub-matrices, üF#/, namely 

the sub-matrix corresponding to the hub bus 31, has the most 

significant second largest nonzero eigenvalue of 0.0021.  

It clearly shows that the first-order sparse moment 

relaxation model is inexact in this case. Based on the proposed 

hierarchy approach, ñFM  is obtained by solving (17). The 

Iterative Recovering procedure is used to recover a feasible 

solution to the original ACOPF. Voltage 2F0 converges after 9 

iterations in 11.10s with respect to the threshold ε of 5×10-4. In 

the iterative procedure, all single-phase sub-problems are 

exactly solved and the hierarchical approach terminates at Step 
2.4 of Iterative Recovering described in Section III. Thus, the 
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recovered solution is a feasible solution of the original 

problem. Indeed, it is a good enough feasible solution since 

the objective value of the recovered solution is 681.89$, which 

is very close to the lower bound of 678.91$ from the first-

order sparse moment relaxation model. 

C. Discussion on the Inexactly Solved System 
Based on our experience in numerical case studies, the first-

order sparse moment relaxation can solve a broad set of radial 

distribution systems to derive exact solutions. Radial 

distribution systems which cannot be exactly solved by the 

first-order moment relaxation are usually constructed 

intentionally by manipulating certain system parameters for 

algorithm testing purposes. Indeed, finding a system that 

cannot be exactly solved via the first-order sparse moment 

relaxation may not be easy. [28] discussed several approaches 

which may contribute to constructing a system that cannot be 

solved exactly. However, the general approach to construct 

such a system remains unknown, and characters which could 

intuitively indicate that a system cannot be exactly solved 

have not been sufficiently studied.  

Nevertheless, a small 4-bus system shown in Fig. 5 is 

provided to illustrate some interesting observations. A three-

phase DER is connected at bus 2. Three-phase voltages of the 

substation bus are set as 1.05p.u. with 120 degree difference 

among phases. Voltage upper and lower bounds are set as 

1.05p.u. and 0.95p.u., respectively. Electricity price at the 

substation bus is 10¢/kWh. Detailed line and load data are 

given in Tables V-VII. Load power factors are fixed, and load 

levels are adjusted for 80% to 110% of nominal values in 

Table VI with the step of 1%. Results with different real 

power load levels are shown in Table VIII. It can be seen that 

solution inexactness occurs in several discontinuous load 

levels. In addition, for load levels larger than 110% (up to the 

value that the system can physically supply) or less than 80%, 

inexactness never occurs again. That is, inexactness may not 

follow certain load patterns. In addition, for all inexactness 

cases, feasible solutions can be recovered by the proposed 

iterative hierarchical approach. 

 
Fig. 5 A 4-bus example  

TABLE V LINE PARAMETERS 
 Line Length (feet) Line admittance matrix in (ohms/ mile) 
0-1 10000 

f
0.527 − 0.676n −0.142 + 0.143n −0.202 + 0.160n
−0.142 + 0.143n 0.465 − 0.669n −0.130 + 0.131n
−0.202 + 0.160n −0.130 + 0.131 0.491 − 0.671n

t  1-2 5000 
1-3 5000 

TABLE VI LOAD PARAMETERS 

Bus 0 1 2 3 
a b c a b c a b c a b c 

Real power (kW) 0 0 0 310 310 310 0 0 0 15 60 100 
Reactive power (kVar) 0 0 0 175 175 175 0 0 0 90 30 60 

TABLE VII DER PARAMETERS 

Phase !*,#,  
(¢/kWh2) 

!*,$,  
(¢/kWh) 

!*,%,  
(¢/h) 

"-*,
&'(

 
(kW) 

"-*,
&)*

 
(kW) 

#-*,
&'(

 
(kVar) 

#-*,
&)*

 
(kVar) 

a 0.00214 0 0 350 0 150 0 
b 0.00310 0 0 350 0 150 0 
c 0.00233 0 0 350 0 150 0 

TABLE VIII RESULTS OF THE 4-BUS SYSTEM 
Load level 80% 81% 82% 83% 84% 85% 86% 87% 

Is exact Yes Yes Yes Yes Yes No No Yes 
Load level 88% 89% 90% 91% 92% 93% 94% 95% 

Is exact Yes Yes Yes Yes Yes Yes Yes No 
Load level 96% 97% 98% 99% 100% 101% 102% 103% 

Is exact No No No No No No No No 
Load level 104% 105% 106% 107% 108% 109% 110%  

Is exact Yes Yes Yes Yes Yes Yes Yes  

VI. CONCLUSION 

This paper discusses an effective DLMP calculation 

approach which can be used in restructuring process of the 

distribution sector. DLMPs of individual phases at each bus 

are derived by solving the unbalanced three-phase distribution 

ACOPF problem, with the objective of minimizing system 

operation cost. The ACOPF problem is formulated as a 

moment relaxation based SDP model, and the sparse moment 

relaxation technique is further adopted for improving 

computational performance. In addition, a hierarchical 

approach is proposed to deal with possible inexactness of the 

moment relaxation. Numerical results show that the proposed 

approach can effectively solve ACOPF problems of 

unbalanced three-phase distribution systems and provide 

effective DLMP signals. In addition, the impact of locations of 

DERs on DLMPs is analyzed. System revenue is also 

discussed to illustrate the performance of DLMPs as an 

effective price signal for restructuring the distribution sector. 

APPENDIX 

Proof of Proposition 1: 
The three-phase ACOPF problem is represented as 

:Md		ª{<.,<1,<2}∈w(2+, 2, , 2-) for the sake of discussion, where 

2+, 2,, and 2- are respectively voltage variables of phases a, b, 

and c, and º  represents feasible region of the three-phase 

ACOPF problem. Taking phase a for instance, the single-

phase problem is written as :Md		ªx<.,<\1,<\2y∈w52+, 2
F
, , 2F-7 , 

where superscript “ 				¥  ” means a given solution from a 

previous iteration. With the assumption that the single-phase 

problem can be solved to global optimal by first- or second- 

order sparse moment relaxation, the voltage vector of current 

iteration 2F+ can be recovered, which lies in the feasible region 

º. ª52F+, 2F, , 2F-7 denotes the objective value of the original 

three-phase ACOPF problem with respect to given voltage 

solutions 2F+, 2F,, and 2F-. 
Without loss of generality, in iteration H, phase a problem 

with given voltage values of the other two phases from the last 

iteration is solved as in (26a). 

2F+
0 = +HΩmin

<.'
ª52+

0 , 2F,
0./, 2F-

0./7	 (26a) 

Similarly, phase b and phase c problems are solved via (26b) 

and (26c) successively. 

1

DER

Load

~
2 3

Substation bus 0
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2F,
0 = +HΩmin

<1'
	ª52F+

0 , 2,
0 , 2F-

0./7 (26b) 

2F-
0 = +HΩmin

<2'
	ª52F+

0 , 2F,
0 , 2-

07 (26c) 

From (26), (27) can be obtained. 

ª52+
0 , 2F,

0./, 2F-
0./7 ≥ 	ª52F+

0 , 2F,
0./, 2F-

0./7 (27a) 

ª52F+
0 , 2,

0 , 2F-
0./7 ≥ 	ª52F+

0 , 2F,
0 , 2F-

0./7  (27b) 

ª52F+
0 , 2F,

0 , 2-
07 ≥ 	ª52F+

0 , 2F,
0 , 2F-

07 (27c) 

Considering the objective value ª52F+
0./, 2F,

0./, 2F-
0./7  of 

iteration (r − 1), (28) can be derived. 

ª52F+
0./, 2F,

0./, 2F-
0./7 ≥ :Md	ª52+

0 , 2F,
0./, 2F-

0./7 =

ª52F+
0 , 2F,

0./, 2F-
0./7 (28a) 

ª52F+
0 , 2F,

0./, 2F-
0./7 ≥ :Md	ª52F+

0 , 2,
0 , 2F-

0./7 = ª52F+
0 , 2F,

0 , 2F-
0./7 

 (28b) 

ª52F+
0 , 2F,

0 , 2F-
0./7 ≥ :Md	ª52F+

0 , 2F,
0 , 2-

07 = ª52F+
0 , 2F,

0 , 2F-
07  (28c) 

From (28), (29) can be finally obtained. 

ª52F+
0./, 2F,

0./, 2F-
0./7 ≥ ª52F+

0 , 2F,
0 , 2F-

07 (29) 

(29) shows that along the proposed iterative procedure, 

objective value of the original three-phase ACOPF problem is 

monotonously decreasing. Since a lower bound to the original 

three-phase ACOPF problem can be calculated via the first-

order sparse moment relaxation solution, the monotonously 

decreasing sequence ª52F+
0 , 2F,

0 , 2F-
07 from the proposed iterative 

procedure will finally converge to a certain value limited by 

this lower bound. ■ 
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