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Abstract—The emerging distribution system with a proliferation
of distributed energy resources (DER) and flexible demand assets
is expected to experience the restructuring process, just as what
has been happening in the transmission system. This paper
introduces the distribution locational marginal price (DLMP) as
an effectively economic signal to quantify marginal cost for
supplying next incremental loads at different phases of individual
nodes. DLMP is calculated by solving the unbalanced AC optimal
power flow (ACOPF) problem of distribution systems, with the
objective of minimizing system operation cost. Indeed, in order to
derive effective DLMPs, global optimal solution to the non-
convex unbalanced ACOPF problem with a zero duality gap
needs to be obtained. This paper solves the unbalanced ACOPF
problem via the moment relaxation based semidefinite
programming (SDP) model. System sparsity is explored to
accelerate the computational performance. In addition, a
hierarchical approach is proposed to recover a good enough
feasible solution to the original ACOPF, when the sparse moment
relaxation based SDP model is inexact. Numerical case studies on
a modified IEEE 34-bus system evaluate the effectiveness and
validity of the proposed approach. DLMP based revenue
adequacy of the distribution system is also analyzed.

Index  Terms—Distribution = LMP, distribution system
restructuring, revenue adequacy.
NOMENCLATURE

Sets and Indices:

C N, R Set of complex/natural/real numbers

e? Standard basis vector of R®M with the (3n+¢)™®
element being “1”, where ¢ =1, 2, and 3
represent phases a, b, and ¢, respectively

k Index of voltage variable subsets

m, n Indices of buses, ranging from 0 to (N-1)

N Total number of buses

Q Set of buses

Q Set of buses where flexible loads (FL) are

connected to

Q, Set of DER buses and the distribution
substation bus

Q, Set of buses adjacent to bus n

b Y Set of phases, i.e., ¥ = {a, b, c}

b, p Indices of phases

Variables:

Pcd;l, Q?n Real/reactive power injection from the DER at
phase ¢ of bus n

PD¢n, Q‘gn Real/reactive power load at phase ¢ of bus
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A% V= [Re(V)T Im(V)T]T, where V = [V V§
Vs o Via Vi VDT V=00 4
V™® is complex voltage at phase ¢ of bus n

vV Augmented vector of [1  VT]T

Constants:

Pg:lmin, Pc(elmax Real power lower/upper bound of the DER at
phase ¢ of bus n
pmin @M Reactive power lower/upper bound of the

DER at phase ¢ of bus n

PD¢nmin, PD(I;max Real power lower/upper bound of the FL at

phase ¢ of bus n
gnmln, ffnmax Reactive power lower/upper bound of the FL
at phase ¢ of bus n
|Vn¢ " Voltage lower bound at phase ¢ of bus n
Vn¢ |max Voltage upper bound at phase ¢ of bus n
v, Given voltage values at the distribution
substation bus, ie. V,=[Vy* vyeP vec
Vim,a Vim,b Vim,c]T
0 0 0
€ Prespecified convergence threshold
Symbols:
card(*) Number of elements in a vector or a set
Im(-),Re(-)  Imaginary/real part
size(*) Dimension of a matrix
tr(), ()7, | - | Trace/ transpose/ magnitude
0 Matrix with all zeros

Given solution to a variable
An augmented variable vector or a parameter
matrix

—

I. INTRODUCTION

he electricity distribution sector is envisioned to include a

deeper penetration of distributed energy resources (DERs),
plug-in electrical vehicles, plug-and-play energy storage
devices, and demand response assets. In order to effectively
integrate these new technologies, modern distribution systems
are expected to experience a restructuring process, just as what
has been happening in transmission systems [1].

Distribution locational marginal price (DLMP), which
reflects marginal cost of supplying next incremental loads in
different locations, has been studied to provide electricity
consumers and DER owners/investors effective economic
signals for optimizing the size and location of their assets [2]-
[4]. DLMP is introduced to the distribution system for the first
time by [5] with the purpose of properly allocating system
losses. Since in a low voltage distribution network resistances



of distribution lines are relatively large comparing to
transmission lines, system losses constitute a significant
portion of energy to be delivered. DLMPs are able to reflect
the increase in system operation cost due to increased losses
when supplying the next incremental load at a certain bus.
Therefore, system loss is one of the main factors that influence
values of DLMPs.

In a distribution network, bus voltage regulation is a critical
issue commonly faced by distribution system operators.
Specifically, with a proliferation of DERs and flexible loads
(FLs), voltage violations, either constraining the lower bound
(due to large demands of FLs) or the upper bound (due to
large power injections of DERs), become more noticeable.
Thus, in order to satisfy bus voltage limitations, DERs and
FLs are always not dispatched economically. That is,
expensive DERs may be dispatched and highly beneficial FLs
may be curtailed to alleviate violations on voltage lower
bounds. Similarly, cheap DERs may be shut down and low
beneficial FLs may be awarded to mitigate violations on
voltage upper bounds. Remarkably, as an economic signal,
DLMPs could also properly reflect the impact of voltage
limitations on economical operation of the distribution system.

Distribution systems present unique characteristics
comparing to transmission systems. Essentially, distribution
systems are unbalanced because of unbalanced loads,
unbalanced DERs, and wunbalanced/untransposed line
segments. In addition, phase missing configuration is also
common in practice. In turn, the three phases are generally
operated in different conditions. Thus, unique DLMPs for all
three phases, which are exclusively utilized in balanced
systems, are unable to accurately reflect operation conditions
of unbalanced systems and provide effective economic signals
for all three phases. In this paper, DLMPs are assigned to
different phases of different buses in the distribution system.
That is, at a same bus, DLMPs of different phases may be
different. The phase based economic signals provided by
DLMPs can effectively incentivize consumers and DER
owners/investors to optimally adjust their connection
topologies (i.e., which bus and which phase), which would
ultimately drive the distribution system to be operated in a
more balanced manner.

This paper focuses on the unbalanced three-phase radial
distribution system, which includes four-conductor multi-
grounded or three-conductor single-grounded lines, wye-wye
grounded transformers, and wye grounded loads. DLMPs are
defined and constructed via Lagrangian multipliers of
corresponding constraints in AC optimal power flow (ACOPF)
problem with the objective of minimizing total operation cost
of the distribution system. In order to derive exact price
signals via the ACOPF problem, the following two conditions
should be met: (i) the global optimal primal and dual solutions
of ACOPF can be obtained; and (ii) the strong duality between
the primal and its dual problem can be guaranteed. Zero
duality gap at the global optimal solution will ensure that
optimal Lagrangian multipliers can accurately reflect
deviations of the objective value with respect to changes in
bounds of corresponding constraints.

Indeed, ACOPF problem is nonconvex because of the
nonlinear relationship between voltages and net complex
power injections at individual buses [6]. In turn, the above two
conditions may not be satisfied in general. Recently, convex
relaxation techniques have been applied to obtain global
optimal solution and eliminate the dual gap. A rank relaxation
based semidefinite programming (SDP) model for ACOPF of
single-phase systems was discussed in [7], which is convex
and holds the strong duality condition. However, as rank
relaxation based SDP model enlarges feasible region of the
origin ACOPF, optimal solution to the rank relaxation based
SDP model may be infeasible to the origin ACOPF [8]-[10],
i.e.,, the rank relaxation could be inexact. Some works
explored conditions under which the rank relaxation based
SDP model is exact [11]-[13]. Remarkably, [14] introduced
graph transformed from the structure of the ACOPF problem
for analyzing exactness of the rank relaxation. [15]-[16]
provided a comprehensive overview on sufficient conditions
for various relaxation models and approaches. However, all of
them are restricted to single-phase radial or weakly meshed
systems, in which graphs of corresponding ACOPF problems
are also radial or weakly meshed.

Indeed, although unbalanced three-phase distribution
systems are usually radial, graphs transformed from the
structure of ACOPF problems are strongly meshed. For
ACOPF problems with meshed graphs, sufficient conditions
on exactness of the rank relaxation based SDP approach
cannot be satisfied in practice [14]. In turn, alternative tighter
convex relaxation techniques have been explored. Inspired by
the seminal work of Lasserre [17], ACOPF was formulated as
a polynomial optimization problem and solved by a hierarchy
of moment relaxation based SDP models [18]. High order
moment relaxation is tighter than rank relaxation [19], and
exactness may be achieved for more general systems. As
computation burden could easily become intractable when a
high order moment relaxation is adopted, [19] further
exploited sparsity of networks and proposed a sparse moment
relaxation technique [20] for improving the computational
performance.

In this paper, the ACOPF problem for unbalanced three-
phase distribution system is formulated as a sparse moment
relaxation based SDP model [21] to enhance the
computational efficiency. In addition, to deal with possible
inexactness of the sparse moment relaxation based SDP model,
a two-stage hierarchical approach is proposed to obtain the
global optimal solution or recover a good enough feasible
solution to the original ACOPF. Lagrangian multipliers of
certain constraints in the ACOPF problem are utilized to
construct DLMPs. Sensitivity of DLMPs at DER buses and
the revenue adequacy are analyzed.

The main contributions of the paper include:

1) DLMPs for unbalanced three-phase radial distribution
systems are defined and constructed via corresponding
Lagrangian multipliers of the ACOPF problem, which is
formulated as a moment relaxation based SDP model.

2) The running intersection property of the ACOPF problem



for unbalanced three-phase distribution systems is analyzed to
derive the sparse moment relaxation based SDP model, which
would significantly improve the computational efficiency.

3) A two-stage hierarchical approach is proposed to obtain the
global optimal solution or recover a good enough feasible
solution to the original ACOPF problem.

The rest of the paper is organized as follows. Moment
relaxation and sparse moment relaxation based SDP models
for ACOPF of unbalanced three-phase distribution systems are
formulated in Section II. In section III, DLMPs are defined
and discussed. Numerical case studies are presented in Section
IV. The conclusions are drawn in Section V.

II. MOMENT RELAXATION BASED UNBALANCED ACOPF

A. ACOPF for Unbalanced Three-Phase Distribution Systems

For four-conductor multi-grounded neutral and three-
conductor single-grounded neutral distribution systems, the
line impedance matrix can be written as a 3x3 phase frame
matrix. Similarly, the impedance matrix of three-phase wye-
wye solidly grounded transformers is also a 3%3 phase frame
matrix. Thus, for an N-node distribution system (including the
distribution substation bus indexed as 0), the three-phase nodal
admittance matrix Y € C3¥*3¥ can be constructed by
combining the distribution network topology and 3x3 phase
frame matrices of individual assets.

Net real and reactive power injections in phase ¢ of bus n
from all connected distribution lines are calculated via V -

(’I\)zﬁ’n -V and V- C’ﬁg_n - VT, where (’131?11 and fﬁgn are given in

(D-(4).

Y’ £ e?. (ed’) Y (1)

of 21 [Re (Y2 + (Y,;”)T) m () —Y,‘{’T) o
T m (v - (v)) Re(¥!+(¥))
b 1 [1m (v? + (Y,‘{’)T) Re (Y- (¥ )T)

@), 21 r T ®)

Re(()~xt)  m (3t + (v0))
H¢ = 0 0 g [0 O
@, = [0 d>1?n] Pon = [0 ‘Dg_n] @)

Operation costs of DERs and benefit functions of FLs in
phase ¢ of bus n are represented by (5) and (6), respectively.

Cff( n)—cn2 ( ) +c¢ P¢+c$0, vn € Q, )
B,?( n)‘bd) (Dn) +b¢ P¢+br?o' vn € Q¢ (6)

Given electricity price ¢, of all three phases at the
distribution substation bus, the wunbalanced three-phase
distribution ACOPF problem is formulated as a polynomial
programming model (7). The objective (7a) minimizes the
distribution system operation cost. (7b)-(7e) are real and
reactive power balance in each phase of each bus. (7f)-(71) are
real and reactive power capacity limits of DERs and FLs. (7))

is defined in (7k).
(71) sets reference voltages for the distribution substation bus.

is bus voltage magnitude limit, where (’I\)ff, "

min. . LpewCo Pé + Ynea, Lpew cr (Pc?z)
VPDn QDn PGn QGn ¢ ¢
- Zneﬂf Zqﬁe‘}' Bn (PDn)
(7)

7 .% .U = p? P fi
Vr-®p -V="p) - P ”_‘, vn & Q, (7b)
Vr-@d V=02 -0, wneq, (7Tc)
V- V= —Pg;, vn € Q; (7d)
vr. <_T>ff,n V=-07, vn € Qf (7e)
PE < BS < PO, vn € Q, (79)

S <l <o, wnen, 79
P qunml.n <h Dd;z 'y D(I;'I.max' vn € Qf (7h)

gbnmm = Qg)n = gnmax’ vn € Qf (71)

miny 2 o~ — max\ 2 .
(™) <vr-ag, - v< (™) (7j)
T
_ 0 el (e? 0
(I)“fni[o o? ,where¢$né n(en) o T (7k)
vn 0 el(e;

[Vrea Vreb yrec Vz)ima Vlmb pim C]T — "70 (71)

B. Moment Relaxation Approach

The following definitions are presented first. A monomial
M, consisting of elements in V is defined as M} (V) =

re.d mo? im,¢ n? re,d
H red imber (Vn ) -(Vn ) , where n,”* and

nn ™ eN. A polynomial P, including elements in V is defined
as Py(V) = r,ep | M (V)] where P={I,T,,..T)| €
N}. The Riesz linear function is defined as in (8), and can be
extended to the polynomial matrix form as in (9). V is
augmented to Vy as shown in (10). Specifically, when y takes
0and 1, V, 2 [1] and V,=V, respectively.

P (V) Zr epCi "y, wherey, €R; L, () =1 (8)
y(Po“)'"Ly(Po”)
g = P , JEN )
T R CDENCD
v A 1 Vrea me (Vre a)z (Vrea. Ore,b) (Vlmc
(Vorea ((Vre a)z re b) (V;flc)}’]‘ vy €N (10)

Based on deﬁnltlons of Riesz linear function and Vy in (8)-
(10), the moment and localizing matrices are defined in (11)-
(12a). g takes the value by dividing the maximum monomial
order of P, (\7) by 2 and rounding up as shown in (12b).

M, 2L, (Y,-V,) (11)
M, (R(V) 2 L, (R(V) Vg V) (12a)
= [ maxy,ep (Z reder, ety pimder, n;mqb)] (12b)

The y"-order moment relaxation based SDP of the original
ACOPF (7) is written as (13). The objective (13a) is presented
in an epigraph form, where [)’ff and 19,? are defined in (13b)-
(13c) as Schur’s components. (13d)-(13g) correspond to (7b)-
(71), which are real and reactive power balance in each phase



minM B2 .09 Zneﬂg que‘l' ﬁf - Zneﬂf Z¢€‘l’ ‘91? (13a)
52— 0L (tr(@2, V- VT) + B2V = c? = 8L (er(@F, - VT + BT
>0, Vneq, (13b)

— [, L, (er(®E, - V-UT) + BT 1
bY Ly (—tr(®L,-V-VT)) + b2y —0F  [-b2, L, (—tr(®F, V-VT))

>0, vn e Q, (13c)

I-b%, -1, (~tr(®2,-V-V7)) 1
M, (tr(®, - V-V") = PE™" + P T™) = 0; My ((=tr(®E, V-V + PET —pPT) 20, wvneq, (13d)
M, (tr(®5, - V-VT) — Q2™ + Q2 7™) = 0; M,_,(—tr(®F,,- V- V) + Q2" -2 /™) >0, vneq, (13¢)
M, (—tr(®,-V-VT) = B"™) = 0; My_l(tr(fﬁg’_n V-V +PE™) 20, vn € Q, (13f)
M, (—tr(®g, - V-V7) - QF™™) > 0; M, (tr(®5, - V-VT) + 05" >0, vn € Q, (13g)
2

M, (tr(ﬁé‘in V-7) - (™) ) 20 My (<o (@, 09+ (") ) =0 wne@-0) (3h)
M, >0 (131)
Ly ([Vbre,a Vore,b Vore,c ]/E)im,a Voim,b Voim,c]i . [V;)re,a Vore,b Vore,c V;)im,a %im,b Vbim,C]y) — Ly (VO]/ . vgy) (13j)

of each bus. (13h) corresponds to (7j), which represents
voltage limit in each phase of each bus. Since orders of (7b)-
(7e) and (7j) are all 2 when written in polynomial forms, ¢ in
(13d)-(13h) are all equal to 1. (13j) corresponds to (7h), which
represents that substation bus voltages and their monomials
defined in (10) are all fixed as pre-specified values

C. Exploiting Sparsity of the Distribution System Network
Computational burden of the moment relaxation based SDP

model is highly dependent on the dimension of M,

( card (}(/) n y)’ which could be easily intractable when vy is

larger than two [19]. This section explores the sparsity of
distribution systems, in order to reduce dimensions of M,, and

M, _. and accelerate computational performance for practical

r=¢
distribution systems.
Since PG(’;, g’n, Py, and QDn can be represented by V, V

can be regarded as the only decision variables. (7) is said to
have the running intersection property, if V (sub-vector of V)
can be partitioned into P overlapped sub-vectors U, for
k=0,...,P-1, which satisfy:

1) ||Vl has an upper bound,;

2) All variables in each constraint belong to one and only one
sub-vector Uy;

3) The objective function is polynomial, and for every
monomial in the objective function, all involved variables
belong to one and only one sub-vector Uy;

4) Vk € {1,-,P — 1}, 3s < k such that (U, N (U;, U)) €
U,.

Indeed, if a problem presents the running intersection
property, its moment and localizing matrices can be divided
into multiple submatrices as in (14a)-(14b). This derives an
equivalent sparse moment relaxation, which has the same
property of solution exactness as the corresponding moment
relaxed model [21]. In the yth order moment relaxation model,

one variable matrix M,, is defined and required to be positive
semidefinite. On the other hand, a set of M{,‘ is defined in the
sparse moment relaxation model and required to be positive
semidefinite. Indeed, all M{,‘ are submatrices of M, . Thus,
when M, is positive semidefinite, all M’; are guaranteed to be
positive semidefinite, whereas the converse is not true. In turn,
moment relaxation is generally tighter than sparse moment
relaxation. However, when Conditions 1)-4) are hold, the
sparse moment relaxation is as tight as the moment relaxation,
and the two models are equivalent [21].

w21, (@,) (0,))
My (Po(ﬁk)) =Ly (Po(ﬁk) ' (ﬁk)y_

where U, =[1 U,"]".

Multiple partitions may exist which satisfy all above four
conditions. The partition with the smallest value of
max{size(M]‘}),m,size(Ml‘,"l)} is sought in this paper, in
order to reduce computational burden to the maximum extent.
Indeed, for a radial distribution system, the best way is to
build one subset for each bus (which is called a hub bus). That
is, all three-phase variables of the hub bus and its adjacent
buses constitute a subset, and the number of subsets is equal to
the number of buses (i.e., N). In turn, P=N and each U, for
k=0,...,N-1 includes a set of voltage variables (i.e. elements in
V) associated with hub bus & and its adjacent buses. The value
of max{size(Mg), m,size(M{,"‘l)} is determined by the
relaxation order and the connection degree of hub buses.

(14a)
¢ (ﬁ")y—cT) (14b)

III. THE INEXACTNESS CONUNDRUM

A hierarchical moment relaxation approach for polynomial
programming problems was discussed in [17], which
converges to the global optimal solution of the origin problem
when the relaxation order goes to infinite. The same
conclusion can be made for the sparse moment relaxation



model. Indeed, in certain cases, the global convergence may
be achieved with a finite relaxation order [21]. Both first-order
and second-order moment relaxation models have been used
to exactly solve ACOPF problems [19]-[20].

However, it has to be acknowledged that inexactness may
exist especially for low order moment relaxations, which
means that optimal solution to the moment relaxation problem
may not be feasible to the original ACOPF. The moment
relaxation is exact if (15) is met, where ¢"** is the maximum
value among all ¢ [21]. In addition, if (15) is met but
rank(My) is larger than one, a decomposition algorism is
[21]. For
the sparse moment relaxation model, all M’}f need to satisfy
(15) in order to guarantee exactness. Specifically, for the first-
order relaxation y = 1, My (1) is degraded into a scaler and its
rank is one, and in turn (15) can be equivalently represented as
(16).
rank(My) = rank (M _gmax (1)) (15)

rank(M,) = rank(Mo(l)) =1 (16)
To deal with possible inexactness, a hierarchical approach is

proposed to obtain the global optimal solution or recover a

good enough feasible solution based on the inexact solution.

The hierarchical approach includes two major steps.

Step 1 First-Order Solving: Solve the first-order sparse

moment relaxation model of ACOPF. If (16) is met, the global

optimal solution is obtained, otherwise go to Step 2.1.

Step 2 Iterative Recovering:

needed to retrieve the optimal solution of V from M,

2.1 The solution to the first-order sparse moment relaxation
model obtained in Step I is denoted as W, for k=0,...,N-1
which are solutions to variable matrices M¥ for 4=0,...,N-1.
Solve (17) to derive solution to the approximated voltage
vector U, . The solution is denoted as U, . It is worth
mentioning that (17) represents a set of optimization problems
corresponding to each k, which can be solved sequentially.
That is, as sub-vectors U, overlap with each other, overlapped
variables U} in the kth optimization problem are set via
solutions from previous optimization problems 0,...,k-1 (17b).
Specifically, voltages of the distribution substation bus in the
first subset (i.e., k=0) are set as V,. U, can be effectively
derived from (17) via optimality conditions [22], where ||-||f is
the Frobenius norm. U§ / U§ represents the sub-vector
constructed by variables in U, /U, that overlap with the subset
U,/U;.

. — ~ T

ming, || W, — 0, - 0,"|| (17a)
U;=U0f,0<k<N-1vs<k (17b)
[V;)re,a Vore,b Vore,c V;)im,a %im,b ]/E)im'C]T — VO (170)

2.2 Initialize V via U, obtained from Step 2.1. The initialized
V is denoted as V(0). Set iteration index r = 0.

2.3 Decouple the three-phase problem into three single-phase
problems, by introducing pseudo fixed current injections in
each single-phase problem to approximate the impact of the
other two phases. Power injection to phase ¢ of bus n from all
connected distribution lines can be represented in the complex

form as shown on the left-hand-side of (18a), and further
rewritten into two parts as shown on the right-hand-side of
(18a). It can be seen that the first term on the right-hand-side
of (18a) is only related to voltage variables in phase ¢, and the
second term is coupled with voltage variables of the other two
phases. Pseudo injection current I‘fp’n is calculated as in (18b),
which can be derived with known voltage values of the other
two phases obtained from the previous iteration.

vr- ((’ﬁﬁb +j ) c’l\)d)n) V= V¢ ) (Yn¢1'1¢ ) Vn¢ + Zmeﬂn ¢'¢ '

V¢) +7 (Zpe‘l’ ® Y¢p VP + Ymea, Locw—¢ Y¢p
V") (182)
H
cpn (Zpell' ¢Y¢p Vp + Zmeﬂn ZpE‘P ¢Y¢p /J) |V(r)
(18b)

2.4 Solve three single-phase ACOPF problems with the first-
order sparse moment relaxation based model. If solution for a
certain single-phase problem does not satisfy (16), i.e., is
inexact, the second-order sparse moment relaxation based
model for this phase is further solved. If (15) is still not
satisfied, go to Step 2.5; Otherwise, the voltage vector solution
V(r + 1) is checked to see if (19) is satisfied: (i) If yes, a good
enough feasible solution is obtained and the algorithm
terminates; (ii) If not, update the voltage vector V(r) =
V(r+1)andr =7 + 1, and go to Step 2.3.

Vo +1D -V, <e (19)

2.5 For single-phase ACOPF problems whose second-order
sparse moment relaxation is inexact, allow load over-
satisfaction and resolve the first-order sparse moment
relaxation. The solution is always exact [11]-[12]. The voltage
vector solution V(r + 1) is checked to see if (19) is satisfied.
If yes, the algorithm terminates; Otherwise, update the voltage
vector V(r) = V(r + 1) and r = r + 1, and go to step 2.3.

Proposition 1: In the proposed hierarchical recovering
procedure, objective value of the original three-phase ACOPF
problem with respect to optimal solutions of the three single-
phase problems will converge.

Proposition 1 justifies the convergence property of the
proposed hierarchical recovering method. The proof of
Proposition 1 is included in the Appendix.

It is noted that the global optimal solution is obtained if the
hierarchical approach terminates at Step /. Otherwise, a good
enough feasible solution to the original ACOPF can be
recovered if the hierarchical approach terminates at Step 2.4.
Quality of feasible solutions recovered from the iterative
process can be justified via two facts: (i) the gap between the
recovered feasible solution and the lower bound obtained in
the first-order sparse moment relaxation model is very small;
and (ii)) W, usually has only one large eigenvalue and all
others are relatively small. This indicates that a rank-one
feasible solution to the original ACOPF problem would be
very close to current inexact solution W, [22], and can be
recovered via the iterative recovering process while using the
current inexact solution as an initial point. Furthermore, if the
hierarchical approach terminates at Step 2.5, the recovered



solution may not be feasible to the origin ACOPF since load
over-satisfaction is triggered. However, as over-satisfaction
requires more power supply and in turn derives higher
objective values, it is rarely observed that the iterative
procedure terminates at Step 2.5. Indeed, as a distribution
system could remain unchanged over a long time period,
system operators can thoroughly examine parameter settings
offline to further avoid such an inexact solution situation in
real time operations. In addition, load over-satisfaction has
also been discussed in the optimal Volt/VAR control problem
[23] and the optimal power flow problem [24].

IV. THREE-PHASE DISTRIBUTION LMPs

If the hierarchical approach terminates with the global
optimal solution, duality gap between (13) and its Lagrangian
dual is zero [25]. Sparse moment relaxation model holds the
same property. Thus, at the global optimal solution,
Lagrangian multipliers can accurately represent sensitivity of
the objective function with respect to constraint bounds, which
can be utilized to construct DLMPs of each phase in each bus
of the distribution system. On the other hand, although a good
enough feasible solution recovered from the hierarchical
approach may not be global optimal to the origin unbalanced
three-phase ACOPF problem, it is global optimal with zero
duality gap for individual single-phase ACOPF problems.
Thus, Lagrangian multipliers can still be wuseful for
approximating DLMPs of each phase in each bus. However, it
is emphasized that calculating approximate DLMPs for single-
phase problems is a compromised approach, which is adopted
only when the first-order sparse moment relaxation model of
the three-phase problem cannot be solved exactly.

DLMP is derived based on (13). For the sake of discussion,

tr((’l\)g_n V- VT) is denoted as A. Considering an incremental

change of fixed load APan at phase ¢ of bus n, the

corresponding Lagrangian function of (13) is expressed in (20),

where Lg(n) is defined in (21), and L denotes terms that are
¢ P,G PG 706 =

not related to 4F,,. In (20) Z,yand Z, o, 27y and Zn¢,

Zpg and Zn¢, ZQD and Zn¢, as well as Zn¢ and Zn¢ are

Lagrangian multiplier matrices corresponding to (13d)-(13h),
respectively. Furthermore, Lagrangian multiplier matrices
corresponding to (13b)-(13c) are defined in (22).

X¢ _ ¢ l

n,1

=0 vneQ,; 0, vn € Q; (22)
¢ ¢ 9’| o® ¢ f

Xn,l Xn,z n,1 6

DLMP in phase ¢ of bus n can be calculated via (23).
Solution to (13) is denoted as l\7[y, and 1\711,_1 represents
submatrix in ﬁlV that corresponds to M,_;(1) in M,,. It is

worth mentioning that when y =1, l\“/d[],_1 is 1 and all

Lagrangian multiplier matrices are degraded to scalars. (pg) is
defined as in (24), which can be regarded as locational
marginal price of reactive power.

Revenue is defined as the total money collected from loads
minus the total money paid to DERs and the main grid. Money
collected from a load is equal to the load value multiplying
corresponding DLMP, and money paid to a DER is equal to its

power generation multiplying corresponding DLMP. Total
revenue of the distribution system can be calculated via (25),
which includes revenues collected from fixed and flexible

loads minus costs of electricity purchased from the
distribution substation bus and DERs. In (25), W= [1, VT]T
[1, V7], where V is solution to V.
=06 M
tr ((Zg:c — Zn(P) _1>, vn e Qf
on = (24)

(( 225 + Zng) - B, 1), vn € Q;

V.CASE STUDY

The modified IEEE 34-bus distribution system shown in Fig.
1 is used to analyze DLMPs and illustrate validation of the
proposed hierarchical procedure. Three DERs GA, GB, and
GC are connected at buses 11, 16, and 28, respectively. Three
FLs are connected at buses 15, 21, and 31, respectively. GA is
a single phase DER connected at phase a, while GB, GC, and
the three FLs are three-phase assets. Detailed data for DERs
and FLs are shown in Tables I-II. Voltages at the distribution
substation bus are set as 1.05.20°p.u., 1.05.2-120°p.u., and
1.05 £120°p.u. for phases a, b, and c¢, respectively. For all
other buses, lower and upper phase voltage bounds are set as
0.95p.u. and 1.05p.u., respectively. As the rank of a matrix is
equal to the number of its nonzero eigenvalues, the threshold
of 5x10* is used to determine whether a numerical solution of
an eigenvalue is nonzero. The moment relaxation based SDP
model is solved by Mosek [26].

@—0—1»10

11

GA 9
1 2 3 5 6 7

0

Substation 4 8

bus
FA--—
[
14 15 16 GB
Fig. 1 The modified IEEE 34-bus distribution system
TABLE I DATA OF DERS
DER Phase C i Cg 1 Cg 0 Pgmax Pgml"l Q;nax le'l’l
(x10° ¢/kWh ) (¢/kWh) (¢/h) (kW) (kW) (kVar) (kVar)

GA a 225 7 100 450 0 850 0
a 189 6.1 1000 1680 200 720 100

GB b 203 6.3 1000 1680 200 780 100
c 195 6.0 1000 1680 200 700 100

a 110 5.1 400 1250 0O 800 200

GC b 133 52 400 1250 0O 800 200
c 133 5.6 400 1250 0O 800 200

TABLE III DATA OF FLS

FL Phase ?a,z bay,  bao P& PP Q7 Qg™
(x10°¢/kWh?) (¢/kWh) (¢/h) (kW) (kW) (kVar) (kVar)

a -288 104 -200 230 0 120 100

FA b -578 122 -200 230 0 120 100

c -592 11.6 -200 230 0 120 100

a -255 16.0 -200 1500 0 750 350

FB b -298 16.7 -200 1500 0 750 350

c -243 15.7 -200 1500 0 750 350

a -452 129 -200 390 0 200 100

FC b -442 124 -200 460 0 220 100

c -436 12.3  -200 490 0 250 100




L(ARS,) =1+ Ly(n) +

n

. . —P,G .
tr (275 M,y (A= PE™™ + BT 4+ AR ) ) + tr (zm,, M,_; (A + P2 — pP ST AP&)), neQ,

; —P,G
tr (Zig ' My—l(_A - PD¢nmm - APDﬁ)) +ir (Zn,dJ ' My—l(A + Pgﬁnmax + APinl >' neQ (20)
. —P,G .
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0, neQ,+9
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tr((lﬁ:g - Zn’¢) : My_1> + c,‘f_l + 2)(25_1 cfz, neQ,
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¢ _ aL(APDn) _ —P,D ~
DLMP! = =gt =\ tr ((—gﬁ;g +Zny)- My_l) +b?, - 262, |-b2,, n e Q (23)
G —P,G ~
(7o),
Rev = Y,ca-a,-a; Zpew DLMBY - BS 7™ 1+ 300 % 4ep DLMBY - (—tr(aﬁn : \Tv)) ~Ygewcy tr(®L, W)
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A. DLMP

Electricity price of the distribution substation bus is set as
10¢/kWh. The unbalanced ACOPF is solved by the rank
relaxed model, the first-order moment relaxation model, and
the first-order sparse moment relaxation model, with
computing times of 1064.5s, 1128.5s, and 1.59s, respectively.
Solutions of both moment relaxation models are identical and
both satisfy (16), which means that global optimal solution to
the origin unbalanced ACOPF problem is obtained. The
optimal operation cost is 1105.65$.

Three-phase DLMPs of all buses are shown in Fig. 2. Note
that DLMPs of missing phases at certain buses are not
presented. Fig. 2 shows that DLMPs of the three phases at the
distribution substation bus 0 are all equal to 10¢/kWh, because
the distribution substation bus acts as marginal units in all
three phases. In addition, three-phase DLMPs at all other
buses are relatively close, with the maximum difference of
1.07¢/kWh. The reason is that but voltage limits are not
binding, and in turn differences in DLMPs are mainly caused
by the increased system losses for supplying the load
increment. The largest DLMP difference of two adjacent buses
in the same phase is 0.19¢/kWh, which occurs at phase ¢ of
buses 22 and 24. The largest DLMP difference among three
phases at the same bus is 0.30¢/kWh, which occurs between
phases a and ¢ at bus 31. Fig. 2 also shows that the ascending
order of phase DLMPs is ¢, b, and a for most buses. The main
reason is that phase ¢ has the highest line impedance, and in
turn introduces more losses than the other two phases.

It is also observed that DLM Pn¢ is much larger than (pff . The
largest absolute value of (pz) is 0.62¢/kVarh at phase ¢ of bus

32, while DLMP,? ranges from 10¢/kWh to 11.07¢/kWh. The
reason is that the cost of reactive power is not explicitly

included in the objective function (7a), and reactive power
only indirectly impacts the objective function via its coupling
with real power through bus voltages.

Fig. 2 shows that DLMPs are also impacted by the location
of DERSs. For instance, for buses 25-28 on a same feeder, if no
DER is connected at bus 28, DLMPs of upstream buses (i.c.,
bus 25) should be smaller than those of downstream buses (i.e.,
bus 28). However, power injection from GC at bus 28 reverses
power flow directions of lines 27-28 and 26-27 as compared to
the case without GC. Indeed, loads at bus 26 are
simultaneously supplied by electricity from GC and the
upstream bus 25. Considering power flow directions of lines
27-28 and 26-27, from the DG point of view, more losses will
be incurred by supplying the next load increment at bus 26
than buses 27 and 28. In turn, DLMPs at bus 26 are higher
than those of its downstream and upstream buses in the same
phase. However, this phenomenon is not observed on branches
where GA and GB are connected to. Power output of GA is
consumed by the large local fixed loads, and real power
injection from GB does not reverse power flow directions on
connected lines. In turn, the next load increment at
downstream buses still causes more losses than upstream
buses, and higher DLMPs are observed at downstream buses.

Bus voltage magnitude profiles of the three phases are
shown in Fig. 3, which are all strictly within the lower and
upper limits. That is, voltage constraints are not binding. It is
observed that at most buses, voltage magnitude of phase a is
the highest and the lowest occurs in phase c. This is mainly
because line impedance of phase c¢ is higher than those of the
other two phases. It is also observed that a noticeable voltage
magnitude drop occurs in phase a at buses 9-11. The reason is
that lines connecting bus 8 to bus 11 are single-phase lines



with phase a only, and a heavy load is connected at phase a of
bus 11 which induces a significant voltage drop at bus 11.

11.2 1116 DLMP (¢/kWh)
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Fig. 2 Three-phase DLMPs of the modified IEEE 34-bus system
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Fig. 3 Three-phase voltage magnitude profiles of the modified IEEE 34-bus
system

Table II illustrates real power dispatches of FLs and DERs.
It shows that the cheap unit GC is fully dispatched at its
maximum capacity. On the other hand, since b, of FA in
phase b is larger than those in phases a and ¢, 157.7kW is
awarded in phase » comparing to 2.9kW and 97.3kW in
phases a and c.

Reactive power dispatches of FLs and DERs are shown in
Table III. Since reactive power production costs of DERs are
not included in the objective function (7a), reactive power
demands of FLs are binding at their lower limits and reactive
power outputs of DERs are scheduled at their upper bounds.
This would help enhance voltage magnitudes, reduce real
power losses, and in turn decrease system costs.

TABLE II REAL POWER DISPATCHES OF FLS AND DERS (kW)
Phase Distribution substation bus FA FB FC GA GB GC

a 3227.2 2.9 1047.1 2429 450 897.5 1250
b 3395.4 157.7 1010.7 182.8 - 1055.9 1250
c 33254 97.3 1005.2 1404 - 1067.6 1250

TABLE III REACTIVE POWER DISPATCHES OF FLS AND DERS (kVar)
Phase Distribution substationbus FA  FB FC GA GB GC

a 988.7 100 350 100 850 720 800
b 1653.9 100 350 100 - 780 800
c 1833.6 100 350 100 - 700 800

To further study the impact of DERs’ location on DLMPs,
GB is switched to buses 8 and 30. Fig. 4 presents DLMPs of
phase ¢ when GB is connected at buses 16, 8, and 30,
respectively. It shows that DLMPs of all buses are decreased
when GB is connected at bus 30, comparing with those when
GB is at buses 16 and 8. As bus 30 is much closer to terminal
of the feeder that suffers from low voltage magnitudes and to
the load at bus 29, placing GB at bus 30 would help boost
voltage at bus 30 and reduce power injection from upstream
system. In turn, it would help reduce system losses and
achieve lower DLMPs. Voltage magnitudes of bus 30 are
0.9833p.u., 0.9788p.u., and 0.9978p.u., when GB is connected
at buses 16, 8, and 30, respectively. This shows the DER’s

effect on boosting voltages at connecting buses. In addition,
the subgraph in Fig. 4 clearly shows that when GB is
connected at bus 30, DLMP at bus 29 is higher than that of
bus 30, which is caused by the reversed power flow on branch
29-30. The results indicate that locations of DERs are critical
to system economical operation and also have significant

impact on DLMPs.
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Fig. 4 DLMPs of phase ¢ when GB is connected at three different buses
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Revenue of the modified IEEE 34-bus distribution system is
2964¢, which is calculated via (25) with respect to DLMPs in
Fig. 2 and real power dispatches in Table II. Table IV further
shows revenues when all fixed loads are adjusted from 90%
up to 120% of the original values. As shown in Table IV, with
the increase in load, the total money collected from loads as
well as the total payment to DERs and the main grid will also
increase. However, the revenue may not be monotonically
increasing. This is a main feature of LMPs for distribution
power systems as discussed in [27]. Nevertheless, although the
revenue is not strictly monotonous with the increase in loads,
the revenue adequacy is achieved in all the cases.

TABLE IV THE SYSTEM REVENUE UNDER DIFFERENT LOAD LEVELS ($)

Load Level 90% 100% 110% 115% 120%
Payment from Loads 1647.57 1788.81 1925.20 2006.19 2078.93
Payment to Substation
Bus and DERs 1624.01 1759.17 1896.22 1965.45 2034.97
Revenue 23.56 29.64 28.98 40.74 43.96

B.  The Hierarchical Approach

The modified IEEE 34-bus system is revised to further
illustrate the validation of the proposed hierarchical solution
procedure. That is, all FLs are excluded, real power upper
bounds of DERs are increased to 300% of original values, and
reactive power upper bounds of DERs are decreased to 75%.
In addition, ¢, ; of all DERs are set as zeros.

The ACOPF problem is solved by the first-order sparse
moment relaxation model in 1.31s. The optimal system
operation cost is 678.91$. Solutions to 27 out of 34 sub-
matrices are not rank one. In all sub-matrices, Ws,, namely
the sub-matrix corresponding to the hub bus 31, has the most
significant second largest nonzero eigenvalue of 0.0021.

It clearly shows that the first-order sparse moment
relaxation model is inexact in this case. Based on the proposed
hierarchy approach, U, is obtained by solving (17). The
Iterative Recovering procedure is used to recover a feasible
solution to the original ACOPF. Voltage V, converges after 9
iterations in 11.10s with respect to the threshold € of 5x10*. In
the iterative procedure, all single-phase sub-problems are
exactly solved and the hierarchical approach terminates at Step
2.4 of Iterative Recovering described in Section III. Thus, the



recovered solution is a feasible solution of the original
problem. Indeed, it is a good enough feasible solution since
the objective value of the recovered solution is 681.89%, which
is very close to the lower bound of 678.91$ from the first-
order sparse moment relaxation model.

C. Discussion on the Inexactly Solved System

Based on our experience in numerical case studies, the first-
order sparse moment relaxation can solve a broad set of radial
distribution systems to derive exact solutions. Radial
distribution systems which cannot be exactly solved by the
first-order moment relaxation are usually constructed
intentionally by manipulating certain system parameters for
algorithm testing purposes. Indeed, finding a system that
cannot be exactly solved via the first-order sparse moment
relaxation may not be easy. [28] discussed several approaches
which may contribute to constructing a system that cannot be
solved exactly. However, the general approach to construct
such a system remains unknown, and characters which could
intuitively indicate that a system cannot be exactly solved
have not been sufficiently studied.

Nevertheless, a small 4-bus system shown in Fig. 5 is
provided to illustrate some interesting observations. A three-
phase DER is connected at bus 2. Three-phase voltages of the
substation bus are set as 1.05p.u. with 120 degree difference
among phases. Voltage upper and lower bounds are set as
1.05p.u. and 0.95p.u., respectively. Electricity price at the
substation bus is 10¢/kWh. Detailed line and load data are
given in Tables V-VII. Load power factors are fixed, and load
levels are adjusted for 80% to 110% of nominal values in
Table VI with the step of 1%. Results with different real
power load levels are shown in Table VIII. It can be seen that
solution inexactness occurs in several discontinuous load
levels. In addition, for load levels larger than 110% (up to the
value that the system can physically supply) or less than 80%,
inexactness never occurs again. That is, inexactness may not
follow certain load patterns. In addition, for all inexactness
cases, feasible solutions can be recovered by the proposed
iterative hierarchical approach.

Substation bus 0

Load

2 3
DER
Fig. 5 A 4-bus example

TABLE V LINE PARAMETERS
Line admittance matrix in (ohms/ mile)

Line Length (feet)

0-1 10000 0.527 — 0.676j —0.142 + 0.143j —0.202 + 0.160j
1-2 5000 —0.142 + 0.143j  0.465 — 0.669j —0.130 + 0.1311]
1-3 5000 —0.202 + 0.160j —0.130+ 0.131  0.491 — 0.671;

TABLE VI LOAD PARAMETERS
0 1 2 3
c a b c ab c a b c
0
0

Bus

a b
Real power (kW) 00
Reactive power (kVar) 0 0

0 310 310 310 0 0 15 60 100

0 175 175 175 0 0 90 30 60

TABLE VII DER PARAMETERS

¢ C¢ C¢ P¢ max ¢ min ¢ max ¢ min
Phase n2 n,1 n,0 Gn Gn Gn Gn
(¢/kWh?)  (¢/kWh) (¢/h) (kW) (kW) (kVar)  (kVar)
a 0.00214 0 0 350 0 150 0
b 0.00310 0 0 350 0 150 0
c 0.00233 0 0 350 0 150 0
TABLE VIII RESULTS OF THE 4-BUS SYSTEM
Load level 80% 81% 82% 83% 84% 85% 86% 87%
Is exact Yes Yes Yes Yes Yes No No Yes
Load level 88% 89% 90% 91% 92% 93% 94% 95%
Is exact Yes Yes Yes Yes Yes Yes Yes No
Load level 96% 97% 98% 99% 100% 101% 102% 103%
Is exact No No No No No No No No
Load level 104% 105% 106% 107% 108% 109% 110%

Is exact Yes Yes Yes Yes Yes Yes Yes

VI. CONCLUSION

This paper discusses an effective DLMP calculation
approach which can be used in restructuring process of the
distribution sector. DLMPs of individual phases at each bus
are derived by solving the unbalanced three-phase distribution
ACOPF problem, with the objective of minimizing system
operation cost. The ACOPF problem is formulated as a
moment relaxation based SDP model, and the sparse moment
relaxation technique is further adopted for improving
computational performance. In addition, a hierarchical
approach is proposed to deal with possible inexactness of the
moment relaxation. Numerical results show that the proposed
approach can effectively solve ACOPF problems of
unbalanced three-phase distribution systems and provide
effective DLMP signals. In addition, the impact of locations of
DERs on DLMPs is analyzed. System revenue is also
discussed to illustrate the performance of DLMPs as an
effective price signal for restructuring the distribution sector.

APPENDIX

Proof of Proposition 1:
The three-phase ACOPF problem is represented as
min Fy, v, v;er(Va, Vp, V) for the sake of discussion, where

V., V,, and V, are respectively voltage variables of phases a, b,
and ¢, and F represents feasible region of the three-phase
ACOPF problem. Taking phase a for instance, the single-
phase problem is written as min Fyy, v, vjer(Var Vo V) »

w ~ 9

where superscript means a given solution from a
previous iteration. With the assumption that the single-phase
problem can be solved to global optimal by first- or second-
order sparse moment relaxation, the voltage vector of current
iteration V, can be recovered, which lies in the feasible region
F.F (Va, VD,VC) denotes the objective value of the original
three-phase ACOPF problem with respect to given voltage
solutions V,,, V,,, and V..

Without loss of generality, in iteration r, phase a problem
with given voltage values of the other two phases from the last
iteration is solved as in (26a).

V= argmin F(Vy,Vp—1, V1) (26a)

Similarly, phase b and phase ¢ problems are solved via (26b)
and (26c¢) successively.



V= argmin F(Vr, vy, Vi 1) (26b)
b
V= argmin F(V, Vi, VD) (26¢)
From (26), (27) can be obtained.
F(vy, Vi,V > F(VE, V-1, Vi) (27a)
F(Vz, vy, Vi-1) = F(VI,V;, V1) 27b)
F(Vr, Vi, vr) = F(V;, Vi, VD) (27¢)

Considering the objective value F(VI~1, V7=, VI~1) of
iteration (r — 1), (28) can be derived.
F(Vr-LV- Vi Y) > min F(VE, V)74, V1) =
F(Vg, V5, Vo) (28)
F(Vr, Vi1,V Y) > min F(V;, Vi, Vi—t) = F(VE, Vi, Vi-t)
(28b)
F(VZ, V7, V=) > min F(V;, Vi, VD) = F(V;, V5, VD) (28¢)
From (28), (29) can be finally obtained.
F(Vz-L, V-t VY > F(VE, V], VD) (29)
(29) shows that along the proposed iterative procedure,
objective value of the original three-phase ACOPF problem is
monotonously decreasing. Since a lower bound to the original
three-phase ACOPF problem can be calculated via the first-
order sparse moment relaxation solution, the monotonously
decreasing sequence F (Vg VLT ) from the proposed iterative
procedure will finally converge to a certain value limited by
this lower bound. u
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