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Vorticity phase separation and defect lattices in
the isotropic phase of active liquid crystals†

Fernando Caballero, *a Zhihong You *b and M. Cristina Marchetti a

We use numerical simulations and linear stability analysis to study the dynamics of an active liquid crystal

film on a substrate in the regime where the passive system would be isotropic. Extensile activity builds

up local orientational order and destabilizes the quiescent isotropic state above a critical activity,

eventually resulting in spatiotemporal chaotic dynamics akin to the one observed ubiquitously in the

nematic state. Here we show that tuning substrate friction yields a variety of emergent structures at

intermediate activity, including lattices of flow vortices with associated regular arrangements of

topological defects and a new state where flow vortices trap pairs of +1/2 defect that chase each

other’s tail. These chiral units spontaneously pick the sense of rotation and organize in a hexagonal

lattice, surrounded by a diffuse flow of opposite rotation to maintain zero net vorticity. The length scale

of these emergent structures is set by the screening length lZ ¼
ffiffiffiffiffiffiffiffi
Z=G

p
of the flow, controlled by the

shear viscosity Z and the substrate friction G, and can be captured by simple mode selection of the

vortical flows. We demonstrate that the emergence of coherent structures can be interpreted as a phase

separation of vorticity, where friction plays a role akin to that of birth/death processes in breaking

conservation of the phase separating species and selecting a characteristic scale for the patterns. Our

work shows that friction provides an experimentally accessible tuning parameter for designing

controlled active flows.

I. Introduction

The unique way in which active liquid crystals transform energy
into directed motion is responsible for a number of phenomena
not present in equilibrium, such as self-sustained laminar flows1,2

and spatio-temporal chaotic flows known as active turbulence.3

Active turbulence is observed in a variety of systems, from
liquid crystalline fluids reconstituted from cell extracts to
epithelial monolayers. It has been quantified in active liquid
crystals of cytoskeletal microtubule bundles cross-linked by
kinesins, motor proteins that consume ATP as they move along
the bundles, creating extensile stresses on the flow in which
they are submerged.4–8 Active liquid crystals have been studied
extensively through continuum theories, and there is now a
large body of analytical and numerical work characterizing
their stability, dynamical regimes and interactions with other
immiscible species.9–16

Controlling this chaotic spontaneous flow to create coherent
structures holds the promise of engineering active fluids for
microfluidic applications and functional materials capable of
delivering directed mechanical forces.17 Active liquid crystals
have become promising candidates for these applications,6,8 as
physical confinement, substrate friction and substrate pattern-
ing allow control of chaotic flow and development of coherent
structures. These effects have been mainly examined so far in
regimes of parameters corresponding to the ordered nematic
state of the passive liquid crystal.18–24

In this work, we examine numerically the effect of substrate
friction on two-dimensional active nematic liquid crystals in a
regime of parameters where the fluid is isotropic when passive
and we reveal the emergence of new coherent structures. These
include previously observed18,25,26 lattices of flow vortices with
an associated regular arrangement of half integer disclinations
and a novel state where flow vortices trap pairs of +1/2 defects
forcing them to rotate and chase each other’s tail. This state
breaks the symmetry between positive and negative vorticity, as
the +1/2 pairs are all trapped in vortices of the same sign and
coherently rotate in the same direction. The requirement of
zero net vorticity is mantained by diffuse counterrottaing flows
that permeate the interstitial region between localized vortices.
Similar configurations of +1/2 pairs chasing each other’s tails
have been observed in active nematics trapped in small circular
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wells,13 where the required net topological charge is +1, or in
systems with anisotropic and spatially varying friction.27,28

Here, in contrast, both the vortex lattice and the coherent chiral
motion of defect pairs emerge spontaneously in unconfined
bulk fluids. These structures arise in a narrow range of activity
from the interplay between the tendency of the unbound
system to destabilize on length scales B|a|�1/2 (where a is the
scale of the active stress), and the stabilizing effect of substrate
friction G that screens flows on scales of the order of the

viscous length lZ ¼
ffiffiffiffiffiffiffiffi
Z=G

p
, with Z the shear viscosity. This

length controls the size of the flow structures in this intermedi-
ate activity regime. The numerical work is complemented by
linear stability analysis that identifies the length scales of the
emergent structures, in excellent agreement with numerics.
Finally, we show that a simple ansatz for the lattice-like structure
of flow vortices naturally reproduces the associated defective
nematic texture, demonstrating that the established connection
between flow and defect structures in these active liquid crystals
holds in the regime where the passive system is isotropic.

One can draw a suggestive parallel between the emergence of
coherent structures observed here and motility induced phase
separation (MIPS).29 InMIPS a conserved density of Active Brownian
Particles spontaneously undergoes bulk phase separation into a

dense liquid and an active gas.30–33 Breaking mass conservation
arrests phase separation and stabilizes low wavelength modes,
yielding regular arrays of dense droplets or rings with a character-
istic steady state length scale.29 Similarly, our system can be thought
of as undergoing phase separation into regions with opposite sign
of vorticity. In the absence of substrate friction, whenmomentum is
conserved, vortical phase separation spans the entire system and the
scale of the vortical flows is set by the system size, as shown in
Fig. 1(b). Substrate friction breaks momentum conservation and
screens flows on scales lZ, effectively arresting vortical phase separa-
tion. The result consists of ordered micro phase-separated states
with rectangular and distorted hexagonal lattices of flow vortices, in
which pairs of +1/2 defects chase each other, as hinted previously
with effective theories of active flows.34

In the remainder of this paper, we first introduce the model,
which stems from previous continuum theories of active liquid
crystals.2 We then show that a linear stability analysis properly
captures the behaviour of the system as the isotropic state
becomes unstable due to active flows. We show that the length
scales predicted by this analysis for the emerging structures
are in excellent agreement with the length scales we observe
numerically. Finally, we will show that the lattices of flow
vortices can be captured by constructing stream profiles that
are static solutions to the linear Stokes’ flow, as done in

Fig. 1 Structures observed by increasing substrate friction G (top to bottom) and activity a (left to right respectively), as indicated by the arrows. The
color represents the vorticity, the lines indicate the nematic director, the dots and arrows indicate, respectively, �1/2 and +1/2 defects, with the arrows
pointing in the direction of the polarization of the +1/2 defects. Colorbars have not been added to avoid clutter, since each frame has a different vorticity.
The first row shows the behavior for G = 0, where the scale of the observed structures is controlled by the system size, for |a| = 3.6,3.62,5,8,50. The
second row corresponds to G = 0.01 and |a| = 4.23,4.5,4.8,5,8. The third row is for G = 0.15 and |a| = 6.46,6.5,8,10,15. Defects are denoted by black
arrows (+1.2) and magenta dots (�1/2). As we increase activity, the system transitions from a uniform state to a band state (first column), then vortex
lattices (columns 2–4) and finally to states of active turbulence (column 5).
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previous work.34 This method properly reproduces the observed
vorticity profiles, as well as the texture of the liquid crystal in
said lattice states.

II. Hydrodynamic model

We consider a familiar model for a two-dimensional active liquid
crystal on a substrate. The state of the system is described in
terms of the velocity field, v, and the nematic tensor, Q � S(nn�
I/2). Here, the director n is a unit vector identifying the direction
of order and S is the nematic order parameter, with I the identity
tensor. The dynamics is governed by the following equations,
used before to describe active liquid crystals with substrate
friction24

DtQ = lD + Q�o � o�Q + g�1H, (1a)

rDtv = Zr2v � rP � Gv + r�r, (1b)

where Dt = qt + v�r is the material derivative. The first term on
the right hand side of eqn (1a) tends to align the nematic
director with the local strain rate D = (rv + rvT)/2, with l the
flow alignment parameter. The second and third terms capture
co-rotation of the director with the local vorticity x = (rv �
rvT)/2. The last term describes relaxation to minimize the
Landau–de Gennes free energy,

FLdG ¼
ð
r

a

2
TrðQ2Þ þ b

4
TrðQ2Þ2 þ K

2
ð@iQjkÞ2; (2)

with H = �dFLdG/dQ and g a rotational viscosity. The free energy
captures an order–disorder transition upon tuning the para-
meter a, with b 4 0. For a 4 0 the ground state is an isotropic
fluid with S = 0. For ao 0 the equilibriumn state is nematic with

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2a=b

p
. Finally, K is a stiffness constant that characterizes

nematic elasticity, assumed for simplicity to be isotropic.
The velocity is governed by the Navier–Stokes equation,

eqn (1b), with viscosity Z, density r and the condition of
incompressibility r�v = 0 that determines the pressure P. The
third term on the right hand side of eqn (1b) is the frictional
force from the substrate, with G a friction per unit area. Finally,
the liquid crystalline degrees of freedom create a stress r = re + ra

on the flow that includes the elastic stress

re = �lH + (Q�H � H�Q), (3)

and the active stress ra = aQ that describes the effect of active
force dipoles on the fluid. Here we consider the case of
extensile active stresses, corresponding to ao 0, as appropriate
for instance for microtubule-kinesin suspensions.

We focus below on the case a 4 0, which corresponds to the
situation where the passive liquid crystal is in the isotropic
state. We rescale lengths with the nematic correlation length

‘c ¼
ffiffiffiffiffiffiffiffiffi
K=a

p
, times with the nematic correlation time tc = g/a,

and stress with the typical nematic relaxational stress a. Unless
otherwise specified, all numerical results are presented in
dimensionless units. We use the following values for the para-
meters: r = 0.04, Z = 1, l = 0.7, b = 1000, and vary a, and G. We
have observed that the coherent structures described below

occur in the isotropic regime of the passive liquid crystal and
are most easily observed close to the critical point related to the
isotropic/nematic transition, i.e. a = 0. This can also be achieved
by setting b � Oð1Þ and choosing a small positive value of a.
Choosing bc a overdamps the active liquid crystal, but does not
increase the correlation length lc, which should diverge at the
critical point. To observe the coherent flow structures reported
here, lc must remain smaller than the screening length lZ, which
sets the length scale of the structures themselves. We have
observed that the interval of activities in which we observe these
coherent structures becomes wider if the system is placed closer
to the critical point by increasing lc (for instance by increasing K)
without making it greater than lZ. The structures can, however,
also be observed away from the critical point.

We have integrated numerically eqn (1a) and (1b) in a
periodic square box of size L � L. The default system size is
L = 64, but we have also investigated other values of L. Finite
difference is used to discretize the system on a uniform square
grid with a grid size of 0.5. To integrate in time, we use the
Runge–Kutta–Chebyshev scheme, which provides enhanced
numerical stability and allows for a large time step Dt = 0.1.
All simulations are initialized with zero velocity and a nearly
zero nematic tensor with a small random perturbation.

III. Spatio-temporal patterns induced
by activity: numerical results

The variety of spatiotemporal structures obtained upon varying
activity and substrate friction is shown in Fig. 1. At low activity
(not shown in the figure), the system is homogeneous with no
flow and zero nematic order (S = 0). Increasing activity desta-
bilizes the isotropic state and drives local nematic order that
eventually organizes in a variety of coherent structures. Some of
these structures, specifically the rectangular lattices in the
second column of Fig. 1, have been observed before in active
liquid crystals coupled to phase separating fields.18 We show
here that these regular lattices of flow vortices and nematic
texture are also found without coupling to additional fields, but
rather emerge spontaneously from the interplay of active stres-
ses and flow screening.

For vanishing substrate friction, flow structures evolve
with increasing activity in a manner similar to what is observed
in the well-studied nematic state, as shown in the top row
of Fig. 1 and studied before.35–38 The patterns are controlled
by the interplay of the system size L and the active length

la �
ffiffiffiffiffiffiffiffiffiffiffiffi
K=jaj

p
. Just above the critical activity for the instability of

the isotropic quiescent state, where la c L, we observe system-
spanning structures consisting of two parallel bands, with
opposite flow directions and a zigzag nematic orientation
(Fig. 1(a)).18,35,39 At higher activity, the bands are replaced by
two system-spanning vortices, separated by large regions of
nematic order interrupted by pairs of topological defects. Fig. 2
highlights that in this regime flow structures are indeed con-
trolled by the system size, scaling up to span the whole system
for L up to L = 256.
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Surprisingly, this state displays stable +1 defects. While +1
defects are generally unstable at finite activity and decay into
pairs of +1/2 defects, we observe here that there is a range of
activity where the nematic order is enslaved to the flow and
+1 defects can be trapped at the center of flow vortices, as seen
in Fig. 2.

Further increasing activity yields la B L and promotes defect
pair unbinding. The defects unbind in the large shear rate
regions at the boundaries between opposite vorticity and orga-
nize in lanes that slide past each other (Fig. 1(c), (d) and ESI,†
Video 1). Further increasing activity, yields la { L. Unbound
defect pairs then proliferate, rendering the system’s dynamics
chaotic and leading it into active turbulence (Fig. 1(e) and ESI,†
Videos 2 and 3).

Introducing friction screens the flows and yields a variety of
regular emergent structures on scales set by the viscous length
lZ. These include: (i) defect-free bands of opposite flowing
material (Fig. 1(f) and (k)), (ii) rectangular lattices of flow
vortices with defects arranged in static patterns in the high
shear rate regions between vortices of opposite sign (Fig. 1(g),
(h), (l) and (m)), and (iii) states of nearly hexagonal vortex lattice
that trap pairs of +1/2 defects. At the highest activity eventually
flows become spatiotemporally chaotic and defects proliferate.
The defect separation and the scale of vortical flows are again
largely controlled by the viscous screening length, as suggested
by experiments.22,40

The nearly hexagonal arrangement of vortices shown for
instance in Fig. 1(i) has the interesting property that all vortices
rotate in the same direction, with pairs of +1/2 defects trapped
in each vortex and rotating to chase each other’s tails. It is a
state of spontaneously broken symmetry, as the system will
randomly choose either a CW or CCW direction for all the
vortices and trapped defect pairs, which are then surrounded
by a diffuse flow of opposite vorticity. The total vorticity
throughout the system remains zero, as it must be for incom-
pressible Stokes’ flow. The localized vorticity of the ‘‘chiral

blobs’’ trapping defect pairs is thus compensated by vorticity of
opposite sign created in the high shear regions where the
isolated �1/2 defects are located. Interestingly, the rotation of
defect pairs is synchronized, giving rise to propagating waves
(see Video 5, ESI†).

States with a similar chiral structure to the one found here
have been observed before deep in the nematic region of chiral
active liquid crystals,41 where chirality is explicitly introduced
in the free energy. Here, in contrast, the system breaks this
symmetry spontaneously, choosing a spinning direction. In
addition, unlike previous work, ordered states are found here
in the isotropic regime of the passive liquid crystal for inter-
mediate activities, before reaching active turbulence. The range
of activity over which ordered structures appear is admittedly
narrow, which may have prevented their experimental observa-
tion so far.

Another type of emergent structures observed in our fric-
tional film resemble a space-extended version of the Ceilidh
dancing state12 found in active nematics confined to a channel,
where defects march forward while exchanging partners (ESI,†
Video 4). Physical confinement, however, requires fine tuning
of the channel width such that it can only fit two defects. Here,
in contrast, the size selection is intrinsic as it is provided by the
flow screening length.

As mentioned in the Introduction, the emergence of coher-
ent flow structures at finite flow screening length can be
interpreted as a form of phase separation of vorticity, analogue
to MIPS in systems with birth and death.29 This is supported by
Fig. 3 that shows how in the absence of substrate friction, regions
of positive and negative vorticity coarsen in time until flow
consists of two oppositely rotating system-spanning vortices.
The dynamics resembles qualitatively the coarsening dynamics
of a conserved field undergoing bulk phase separation. Substrate

Fig. 2 The steady state flow structures for G = 0 and different system
sizes: (a) L = 64, (b) L = 128, (c) L = 256 show that in absence of friction the
scale of emergent structures is controlled by the system size. All para-
meters except the system size are the same across all three frames. The
color indicates the vorticity and the lines indicate the orientation of the
nematic director.

Fig. 3 Coarsening of vortices in time at L = 256 in absence of friction. The
four panels, starting at the top and from left to right, correspond to: (a) t =
7, (b) t = 10, (c) t = 40, and (d) t = 144. The color indicates vorticity and the
lines indicate the orientation of the nematic director.
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friction plays a role similar to birth/death in MIPS by arresting
phase separation.29 Friction breaks momentum conservation and
selects the size of the flow vortices. When the flow screening
length is comparable to the active length of the unscreened
system, the size of emerging structures is cut off through a
mechanism that can be thought of as a form of micro phase
separation of vorticity. We will draw this parallel in a quantitative
manner in the following section through linear stability analysis
of the dynamics.

IV. Linear stability analysis

The phase separation-like dynamics of vorticity can be understood
qualitatively by examining the linear stability of the isotropic state.
To do so, we linearize eqn (1a) and (1b) about Q = v = 0 and
Fourier transform in space. It is useful to introduce the compo-
nents of Q parallel and perpendicular to the wavevector q, given

by C8 = qiqjQ̂ij(q) and C> = eijqiqkQ̂jk(q), where Q̂ijðqÞ ¼Ð
dreiq�rQijðrÞ is the Fourier transform of the order parameter.

These components decouple and their dynamics is given by

@tCk ¼ �aþ Kq2

g
Ck; (4a)

@tC? ¼ �aþ Kq2

g
C? � lq2

2
ô; (4b)

where o = qxvy � qyvx is the flow vorticity. The parallel component
C8 is always stable, so we ignore it in what follows. To close
eqn (4b), we consider the Stokes limit for the flow, and drop all
nonlinear terms. Taking the curl of eqn (1b) and transforming to
Fourier space gives the vorticity in Fourier space, ô,

ô ¼ aþ lðaþ Kq2Þ
Gþ Zq2

C?: (5)

Substituting eqn (5) in eqn (4b), we finally arrive at the linearized
equation for qtC> = iO(q)C>, with

iOðqÞ ¼ �aþ Kq2

g
� lq2

2

aþ lðaþ Kq2Þ
Gþ Zq2

: (6)

It is evident that an extensile stress a o 0 can render qtC>

positive for some wavevectors q, thus destabilizing the isotropic
state.8,35,38 The nature of this activity-driven instability depends
on the interplay of the two dissipation mechanisms: substrate
friction and viscosity. It is instructive to first analyze the limiting
cases G- 0 and Z- 0. When G = 0, the dispersion relation of the
mode controlling to dynamics of C> is given by

iOðqÞjG¼0¼ � ~a

g
þ al
2Z

� �
�

~K

g
q2; (7)

where ~a ¼ a 1þ l2g
2Z

� �
and ~K ¼ K 1þ l2g

2Z

� �
. Given that the

shear viscosity Z and nematic rotational viscosity g can be
assumed to be of the same order, the dimensionless factor gl2/
2Z will just be of order unity. It is evident that in this limit
extensile activity can change the sign of the relaxation rate at q = 0,

effectively driving the system into the nematic state, as evident
from the large ordered regions shown in Fig. 1(b). The dispersion
relation is shown in Fig. 4(a). This is a type-III instability according
to the classification of ref. 42 and 43 with system-size spanning
emergent structures. Such long-wavelength instability is com-
monly seen in phase separating systems without conserved mass,
such as the Allen–Cahn model, and signals coarsening of struc-
tures over time, corresponding here to the development of bulk
regions of positive and negative vorticity.

Substrate friction changes the nature of this instability,
which can be seen in the Z = 0 limit of eqn (8)

iOðqÞjZ¼0¼ �a

g
� K

g
þ alþ al2

2G

� �
q2 � Kl2

2G
q4: (8)

In this case activity renormalizes the stiffness K, rendering
it negative above a critical value. As discussed in detail in

ref. 35, the system is unstable above the critical activity a0c ¼

G
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K=gl2

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
a=2G

p� �2

in a band of wavenumbers. Coherent

structures emerge at a characteristic length scale corres-
ponding to the most unstable mode q0c = lc

�1(2Glc
2/gl2)1/4, in

a process qualitatively resembling an initial spinodal decom-
position, which is then arrested on length scales comparable to
1/q0c by frictional dissipation that screens the flows. The dis-
persion relation of the modes has the same structure as shown
in Fig. 4(b) at finite viscosity.

In the presence of both viscosity and substrate friction the
critical activity ac and most unstable mode qc at onset can be
found from eqn (8), by solving the coupled equations O(qc) = 0
and [qqO(q)]q=qc = 0, with the result

ac ¼ laþ la
2Z
l2g

1þ lc
2

lZ2
þ lc

lZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2g

2Z

s2
4

3
5 (9)

Fig. 4 This plot shows sketches of the dispersion relation below and
above the critical activity ac for the cases of no friction (a), and finite friction
(b). Plot (c) shows the critical activity |ac| as a function of friction G, while (d)
shows the most unstable mode as a function of G, where the value of a for
each point is the one shown in (c) for that friction. The points are results of
numerically integrating eqn (1a) and (1b), while the lines are the predictions
of eqn (11) and (12).
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and

qc
2 ¼ ðlclZÞ�1 1þ l2g

2Z

� ��1=2

; (10)

For vanishing friction the instability occurs at ac(G = 0) = al(1 +
2Z/(lg)) with qc = 0.35 Substrate friction shifts the instability to
higher values of activity and yields a finite length scale Bqc

�1

for emergent structures.
We have validated the linear theory by measuring the critical

activity ac and the wavenumber qc of the emerging patterns from
simulations. Fig. 4(c) and (d) show excellent agreement between
simulations and the linear predictions of eqn (11) and (12). In
particular, the linear stability analysis captures the observed
dependence of the length scale of the emerging structures with
friction, qc B G1/4. Interestingly, increasing activity does not
change much the characteristic length scale of the patterns,
which is mainly controlled by lZ, as evident from Fig. 1.

V. Vortex lattices

Vortex lattices similar to those observed in the previous section
have been studied before in the context of nonequilibrium
hydrodynamics.34,44 These previous studies offer a path to an
analytical description of these lattices that we provide in this
section.

The emergence of lattice structures of flow vortices can be
rationalized in terms of linear hydrodynamics. The combi-
nation of eqn (4b) and (5) implies that the relaxation rate of
vorticity fluctuations is determined by the same dispersion
relation that controls C>, given by eqn (8). Expanding the
mode for q { lZ

�1 gives a simple linear equation commonly
seen in models of pattern-formation, qtô = iO4(q)ô, with

iO4(q) = �[tc
�1 + k2q

2 + k4q
4] +O(q6), (11)

where k2 = K/g + l(a + al)/(2G) and k4 = (�aZl + KGl2 � aZl2)/
(2G2), both depend on activity. Such an equation has been used
as a minimal model to study emergent structures and dynamics
in active fluids, where it has been shown to support various
time-independent solutions in the form of vortex lattices34

when k2 o 0. This explains the origin of the periodic structures
observed in our simulations. Specifically, an extensile active
stress combined with flow alignment can give rise to a negative
effective stiffness35 - or equivalently a negative effective viscos-
ity when applied to flow. Since modes are always damped at
very small and large q, at the onset of instability only a small
interval of wavenumbers become unstable (see Fig. 4(b)) near
the wavenumber of the most unstable mode qc (eqn (12)), which
therefore controls the scale of the periodic structures observed.

To find the static solutions that correspond to vortex lattices,
we use the following ansatz for the stream function c, defined
by o = �r2c, in polar coordinates34

cðr; yÞ ¼
ð
dfĉðfÞeiqr cosðy�fÞ: (12)

Different lattices can be constructed by choosing ĉ(f) to be the

sum of different modes in the unit circle. For instance, we can
form the band configuration by choosing two symmetric modes,

i.e. ĉ = d(f) � d(f � p), which, in Cartesian coordinates, gives a
band solution c(x,y) = cos(qx). To build a square lattice, we choose

four modes along the unit circle ĉ(f) = d(f � p/4) +d(f � 3p/4)
+d(f � 5p/4) + d(f � 7p/4), giving the stream function for the
square lattice c4(x,y) = cos(kx)cos(ky). Similarly, if we choose six
equidistant points, we obtain the stream function for the hex-

agonal lattice c6ðx; yÞ ¼ cos
ffiffiffi
3

p
x=2

� �
cos y=2ð Þ � cosðyÞ=2. These

three main configurations are plotted in Fig. 5, corresponding to
the ones observed numerically for low activity in Fig. 1.

When inserted in eqn (1a), and assuming a static state, in
which DtQij = 0, the stream functions generated by this method
also reproduce the liquid crystalline textures observed numeri-
cally and shown in Fig. 1. The solution is trivial in the case of
bands, as has been found before,39 with the director oriented
45 degrees with respect to the bands, and rotated 90 degrees
from band to band. For the structures shown for instance in
Fig. 1(g) and (h), the defects are organized in a rectangular, rather
than square lattice with D4 symmetry. A perfectly square lattice of
vorticity will not therefore reproduce the observed liquid crystal
texture. We adjust the stream function corresponding to a square
lattice by using two different wavevectors along orthogonal coor-
dinate directions, i.e., c4 = cos(k1x)cos(lk1y), where the parameter
l a 1 describes the ratio between the two axis’ wavelengths. The
velocity calculated from this stream function as vi = eijqjc is
inserted in eqn (1a), which is then solved numerically with
DtQij = 0. This gives the nematic texture shown in Fig. 6a), with
+1/2 defects aligned across the direction of shorter wavelength of
vorticity, and �1/2 defects across the direction of longer wave-
length, in agreement with what obtained from simulations.

Likewise, to obtain the hexagonal lattice structure shown in Fig. 1(i)
and (n) we use a stream function with hexagonal and two diff-

erent wavevectors, c6 ¼ cos k1
ffiffiffi
3

p
x=2

� �
cos lk1y=2ð Þ � cosðlk1yÞ=2.

Inserting the velocity field generated by this stream function into
eqn (1a) and solving the equation numerically yields the liquid crystal
texture observed in simulations, with pairs of +1/2 defects trapped
within each vortex, and �1/2 defects trapped at the stagnation points
where opposite vorticities meet, forming a hexagonal lattice around
each flow vortex (see Fig. 6b).

The fact that we can reproduce the nematic texture from a
simple ansatz for the vortical flows demonstrates the direct

Fig. 5 Different states that can be built as static vorticity structures from
solutions of eqn (12), corresponding to those observed numerically, for
both finite G and a (see Fig. 1). The amplitude in this plot has been chosen
to be 1, as it is arbitrary when built from eqn (12).
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connection between flow and texture that allows us to tune
flows by controlling defects.

Finally, we stress that although the rectangular lattice is a
static solution to eqn (1a) and (1b), the hexagonal lattice is not.
In the hexagonal case, the +1/2 are motile and continuously
spin chasing each other’s tail. The stream function would then
be a time-dependent version of c6, in which the wavevectors
make the lattice continuously rotate as seen in Video 5 (ESI†).
We leave the full characterization of these dynamical states for
future work.

VI. Discussion and conclusion

The capability of producing diverse forms of collective motion
is a distinct feature of active matter. Here we have demon-
strated that activity and substrate friction can be used as
handles for generating highly organized and controllable struc-
tures in the isotropic phase of active liquid crystals. These
coherent structures exist in an intermediate range of activity,
out of which the system becomes either isotropic and quiescent
or chaotic. Their existence requires that the nematic coherence
length lc that controls spatial variations of the order parameter
be smaller than or at most comparable to the screening length
of the flow lZ. The range of activity where we observe coherent
structure is wider when the system is close to the passive
critical point. This can be achieved, while maintaining lc o lZ
by either increasing the nematic stiffness K or the nonlinear
damping b. Tuning substrate friction allows us to change the
characteristic scale of the flow and associated texture continu-
ously, as well as the symmetry of the vortex lattice, with self-
organized structures that resemble those found in phenomen-
ological models of active pattern formation.37 This tunability
may provide a path for the application of active fluids to
microfluidics, for instance by tuning friction as realized in
ref. 27.

Perhaps the most intriguing structure is the lattice of rotating
chiral blobs that trap pairs of topological defects. Each of this
chiral units exhibit a structure that resembles that of nematic
liquid crystals confined to circular wells. In our case confine-
ment is effectively provided by the screening length lZ, hence is
emergent.

The behavior observed here can be interpreted in analogy
with MIPS as a phase separation of vortical flow. In the absence
of friction, the system organizes in system-spanning counter-
rotating vortices through a dynamics that resembles spinodal
decomposition. Substrate friction screens the flow and breaks
momentum conservation, arresting this vortical phase separa-
tion and organizing the system in ordered flow structures.
Friction therefore plays a role very similar to that of the break-
ing of mass conservation in MIPS.29

It would be interesting to examine the coarsening of vortices
over time to extract scaling laws analogue to those that hold in
equilibrium phase separation, as well as study the dynamics
and stability of the defect/vortex lattices. Another direction left
for future studies is the role of confinement provided either by
physical boundaries or deformable interfaces. The interplay
between activity, flow screening and boundaries could lead to
even richer behaviors that could be exploited to create smart
functional materials.
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