

Diagnosis of COVID-19 Impact on the Construction Employment: Decline and Recovery

Anil Baral, S.M.ASCE¹; Abdullah Alnuaimi, S.M.ASCE²; Yunping Liang, A.M.ASCE³; Baabak Ashuri, M.ASCE⁴; and Mohsen Shahandashti, M.ASCE⁵

¹Graduate Student, Department of Civil Engineering, The University of Texas at Arlington, 416 S. Yates St., Arlington, TX 76019, email: anil.baral@mavs.uta.edu

²Undergraduate Student, Department of Civil Engineering, The University of Texas at Arlington, 416 S. Yates St., Arlington, TX 76019, email: abdullah.alnuaimi@mavs.uta.edu

³Assistant Professor, Department of Building, Civil and Environmental Engineering, Concordia University, Sir George Williams Campus, Montreal, QC, Canada H3G 1M8. email: yuping.liang@concordia.ca

⁴Professor, School of Building Construction and School of Civil and Environmental Engineering, Georgia Institute of Technology, 280 First Dr., Atlanta, GA 30332-0680, email: baabak@gatech.edu

⁵Assistant Professor, Department of Civil Engineering, The University of Texas at Arlington, 416 S. Yates St., Arlington, TX 76019, email: mohsen@uta.edu

Abstract

The Coronavirus Disease 2019 (COVID-19) had an unprecedented impact on U.S. construction employment. The assessment of employment declines and recoveries across various construction sectors, workforce demographics, and geographic regions helps develop inclusive long-term plans to overcome the setbacks of natural hazards, such as the COVID-19 pandemic. Existing methods for quantifying the employment decline from sudden shocks do not consider trends and seasonality of construction employment under normal conditions. Hence, it is not clear whether the employment declines are due to the impact of a disaster or associated with trends and seasonal patterns of employment. The objective of this research is to develop an approach based on time series models, i.e., seasonal autoregressive integrated

27 moving average (SARIMA) models, and cumulative sum (CUSUM) control charts to statistically quantify
28 the impact of the COVID-19 pandemic on construction employment. Seasonal ARIMA models are
29 developed using the pre-pandemic employment data from January 2011 to December 2019, and
30 employment estimates under normal conditions are projected for the period from January 2020 to August
31 2021. CUSUM control charts are then used to detect employment declines and recovery timeframes for
32 different construction employment. Results show declines in all construction sectors, faster recovery for
33 women and Hispanic workers, and residential building jobs rebounding first. By August 2021, 14 states
34 recovered construction employment, but 36 states lagged. It is anticipated that construction workforce
35 decision-makers can benefit from this study by enhancing their understanding of the employment declines
36 and the recovery status across industry sectors, gender, race, and geographical regions.

37 **Introduction**

38 The COVID-19 pandemic has adversely impacted employment across the United States. Nearly 25 million
39 jobs were lost in the United States between February and April 2020 (Saenz and Sparks 2020). Despite the
40 efforts from the federal and state governments to recover the lost employment, the US employment in
41 February 2021 was 8.5 million less than the employment in February 2020 (Kochhar and Bennett 2021).
42 As the shock wave of COVID-19 rippled through the US economy in early 2020, the construction industry
43 was no exception. Following the overall trend of employment decline in the pandemic, the construction
44 industry lost nearly one million jobs from March to April 2020 (Hilburg 2020). The social distancing, state
45 and territorial COVID-19 stay-at-home order, disruption of supply-chain, project suspension, delays in
46 securing permits, economic deterioration, and high risk of COVID-19 transmission in construction sites led
47 to a halt in construction activities, thereby causing a sharp decline in construction employment (Alsharef et
48 al. 2021; Bou et al. 2021; Jeon et al. 2022). Although construction employment showed some recovery after
49 a sharp decline in March and April of 2020, the number of jobs in construction in 2021 was far from what
50 should have been in normal conditions. The employment in the construction industry was 0.31 million less
51 in February 2021 than the peak employment of nearly 7.6 million in February 2020 (AGC 2021a). The

52 construction employment decline varied by the construction industry, demographics, and geographic
53 regions. The COVID-19 pandemic had a disproportionate impact on Hispanic construction workers, leading
54 to higher job losses compared to their non-Hispanic counterparts (Jan and Clement 2020). Particularly, the
55 construction industry in the Northeast, including states like Vermont, Michigan, and New York, saw a
56 significant decline in employment, with a loss of more than 40 percent from March to April 2020 (Brown
57 et al. 2020). When examining specific construction subsectors, there were notable 12-month employment
58 losses in various construction sectors. Building construction experienced an 11.7% decrease, heavy and
59 civil engineering saw an 8.4% drop, and specialty trade suffered a 13.4% decline from April 2019 to April
60 2020 (Baral et al. 2022). There was a substantial increase in construction workers missing work due to
61 personal medical reasons, with a 70 percent jump from March to April 2020 (Brown 2020). Before the
62 onset of the COVID-19 pandemic, the construction industry was already facing challenges such as the need
63 to improve project performance, enhance productivity, address labor shortages, introduce standardization,
64 reduce fragmentation, and promote collaboration (Bou et al. 2021). The COVID-19 pandemic exacerbated
65 these issues by causing a significant loss of construction employment. Furthermore, the construction job
66 recovery varied among different sectors of the construction industry, demographics, and geographic regions
67 (Saenz and Sparks, 2020; Baral et al. 2022).

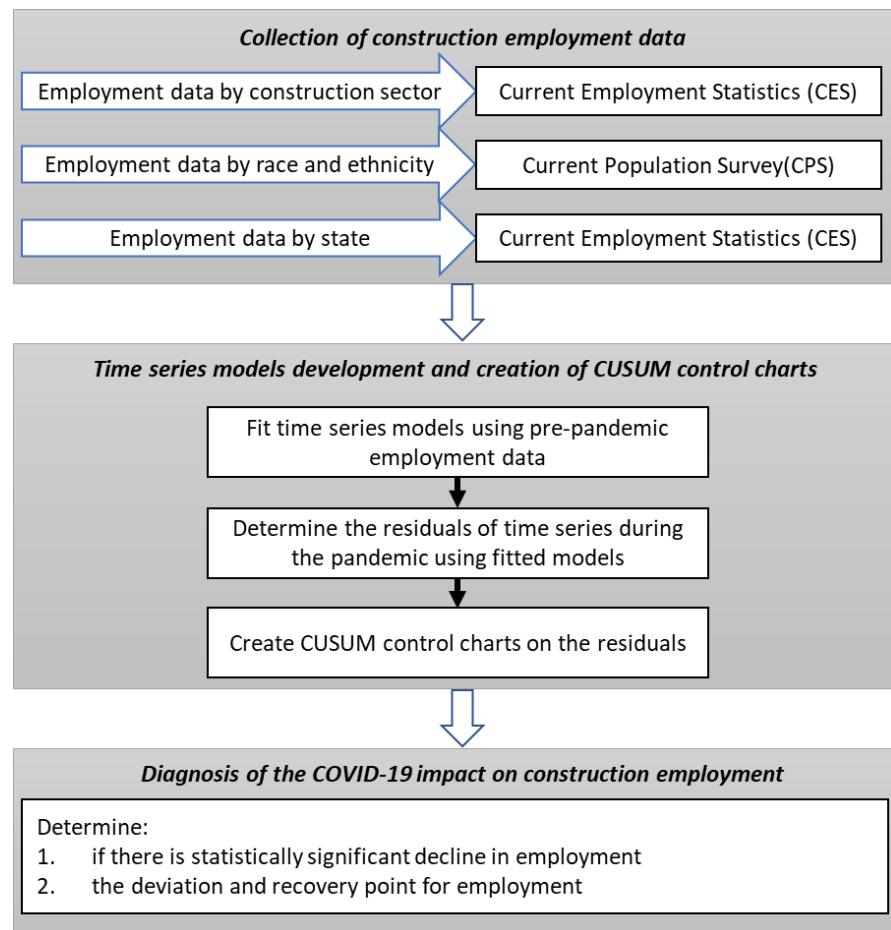
68 To develop inclusive long-term recovery policies, policymakers should be aware of the pandemic impact
69 on different construction sectors, demographics, and geographic regions along with the current state of
70 employment recovery. Proper understanding of the current recovery status helps policymakers develop
71 intervention measures targeting specific groups that are yet to recover from the setbacks of the COVID-19
72 pandemic. The impact of COVID-19 on employment and the current recovery state can be understood by
73 studying fluctuations between actual employment and normal condition employment, which would have
74 occurred in the absence of the COVID-19 pandemic. Construction employment in normal conditions has
75 inherent trends and seasonality that should be considered while studying the fluctuation of employment
76 caused during the pandemic. Existing studies quantifying the employment decline from the sudden shock

77 of COVID-19 pandemic do not consider trends and seasonality of construction employment under normal
78 conditions (Kochhar and Bennett 2021; Baral et al. 2022). Hence, it is not clear whether the change in
79 construction employment across various construction sectors, demographics, and geographic regions is due
80 to the impact of COVID-19 or a mere reflection of the inherent cyclic pattern in construction employment.

81 Efforts have been made to quantify the impact on construction employment during past shock events,
82 including the great recession of 2007-2009 (Taylor et al. 2011; Hadi 2011; Tilley et al. 2013; Aum et al.
83 2017) and the 1990-1991 recession (Singleton 1993). Taylor et al. (2011) studied the recovery of jobs
84 among men and women workforce from the end of the great recession in June 2009 through May 2011.
85 Two years post the end of the 2007-2009 recession, construction employment was still shedding jobs
86 (Taylor et al. 2011); from June 2009 to May 2011 the women workforce in construction decreased by 11.8
87 percent compared to 7.8 percent for men. Aum et al. (2017) studied the impact on employment in the
88 construction industry during the 2007-2009 recession and the recovery of jobs post-recession. The
89 construction industry shed more than 2 million jobs in the 2007-2009 great recession; this job loss alone
90 accounted for 30 percent of the total job losses during the 2007-2009 recession. The recovery of jobs post-
91 recession (2007-2009) was sluggish; in 2014, employment in the construction industry was 15 percent
92 below the peak of 2007 employment (Aum et al. 2017). Hadi (2011) studied the impact on residential and
93 nonresidential construction employment during the 2007-2009 recession. Employment during the recession
94 (December 2007-June 2009) fell by 27 percent and 14.8 percent for residential and nonresidential
95 construction, respectively (Hadi 2011). Tilley et al. (2013) revealed that the recovery of construction jobs
96 after the 2007-2009 recession varied among the Federal Reserve's third district, which includes the states
97 of Delaware, New Jersey, and Pennsylvania. The employment decline from December 2007 to December
98 2012 was highest for Delaware (33 %) followed by New Jersey (26.8 %) and Pennsylvania (16.1%).
99 Singleton (1993) studied the impact on construction jobs during the 1990-1991 recession; the study revealed
100 that employment for special trade contractors fell by 265,000 (9 percent) and by 35,000 (5 percent) for
101 heavy construction between May 1990 and March 1991. All these studies determining the employment

102 declines and recovery during shock events ignored the trends and seasonality in the construction job market
103 which are present in normal conditions. Therefore, it is unclear if the impacts are entirely due to the shock
104 events or are outturn of the ingrained employment trends and seasonality in the construction industry. To
105 accurately assess the impacts and recovery, the actual employment during the shock events should be
106 compared with the employment in normal conditions, which can be projected considering the inherent
107 cyclic behavior of construction employment.

108 This research uses an approach based on time series models and cumulative sum (CUSUM) control charts
109 to study the fluctuations in construction employment during the COVID-19 pandemic. This is the first
110 attempt to diagnose pandemic-led construction employment variations considering the employment trends
111 and seasonality that would have occurred under normal conditions. In addition to assessing the fluctuations
112 in construction employment, the proposed approach is also used to determine if there is a statistically
113 significant decline in construction employment for different construction sectors, demographics, and
114 geographic regions. The results from the proposed approach will help policymakers to develop an inclusive
115 policy by revealing the sectors, demographics, and geographic regions that are most impacted by the
116 COVID-19 pandemic.


117 **Methodology**

118 Figure 1 shows the methodology used for assessing the impact of the COVID-19 pandemic on construction
119 employment. First, the data on construction employment is obtained from the Current Population Survey
120 (CPS) and Current Employment Statistics (CES) program, both of which are administered by the Bureau
121 of Labor Statistics (BLS) (Bowler 2006). The CPS provides employment data for different races and
122 Hispanic ethnicity (BLS 2021a). CES provides data on construction employment in different sectors (also
123 sub-sectors) of the construction industry and construction employment for the 50 states in US (BLS 2021b).
124 The construction employment data from January 2011 to August 2021 was obtained from CES and CPS
125 databases for different categories, including construction sectors, race, and states as shown in Table 1. The
126 time series models are fitted using the employment data from January 2011 to December 2019, and the

127 employment forecast is made from January 2020 to August 2021, as a projection of the normal conditions
 128 (i.e., absence of pandemic). This period is selected because the first US COVID-19 case was detected in
 129 January 2020 (Jorden 2020), and August 2021 was the latest month whose data on construction employment
 130 is available by the time of this study. Before fitting the time series models using the pre-pandemic
 131 employment data, the Augmented Dickey-Fuller (ADF) test was used to examine the stationary of the time
 132 series data (Said and Dickey 1984; Worden et al. 2019). The seasonality of the times series was examined
 133 using the autocorrelation function (ACF) plot and partial autocorrelation function (PACF) plot on
 134 incremental monthly change in construction employment. To capture the seasonality and trends in the time
 135 series data, SARIMA models were fitted to the employment data. Equation 1 shows the SARIMA (p, d, q),
 136 (P, D, Q) model for projecting the construction employment (E_c) during normal conditions (Khodahemmati
 137 and Shahandashti 2020; Kim et al. 2022).

$$138 \quad (1 - B)^d (1 - B^s)^D E_c(t) = \mu + \frac{\theta(B)\Theta(B)}{\phi(B)\Phi(B)} W(t) \quad \text{Eq. 1}$$

139 where B is the backshift operator, i.e., $B \bullet E_c(t) = E_c(t - 1)$; d is the order of differencing; D is the order
 140 of seasonal differencing; s is the period of seasonality; μ is the mean for time series $(1 - B)^d (1 - B^s)^D E_c(t)$;
 141 $\theta(B)$ is the non-seasonal moving average operator, i.e., $\theta(B) = 1 - \theta_1 B^1 - \theta_2 B^2 - \dots - \theta_q B^q$;
 142 $\phi(B)$ is the non-seasonal autoregressive operator, i.e., $\phi(B) = 1 - \phi_1 B^1 - \phi_2 B^2 - \dots - \phi_p B^p$;
 143 $\Theta(B)$ is the seasonal moving average operator, i.e., $\Theta(B) = 1 - \Theta_1 B^1 - \Theta_2 B^2 - \dots - \Theta_Q B^Q$;
 144 $\Phi(B)$ is the seasonal autoregressive operator, i.e., $\Phi(B) = 1 - \Phi_1 B^1 - \Phi_2 B^2 - \dots - \Phi_P B^P$; and W(t) is
 145 a white noise time series with mean zero and standard deviation (σ).

146

147 **Figure 1.** Methodology to analyze the impact of the COVID-19 pandemic on construction employment

148

149 **Table 1.** Categories examined for construction employment analysis

Construction Sector	Race	States
<ul style="list-style-type: none"> ○ Construction of building ○ Heavy and civil engineering construction ○ Specialty trade contractor <p><i>Source: BLS (2021b)</i></p>	<ul style="list-style-type: none"> ○ Whites ○ Hispanic and Latino ○ Black or African American ○ Asian <p><i>Source: BLS (2021a)</i></p>	<ul style="list-style-type: none"> ○ 48 conterminous states, Alaska, and Hawaii <p><i>Source: BLS (2021b)</i></p>

150

151 The order of differencing (d) and the order of seasonal differencing (D) were used in model-fitting to make
 152 the data stationary. One differencing, i.e., d=1 and D=1, is commonly sufficient to transform non-stationary
 153 data to stationary (Ashuri and Lu 2012). The period of seasonality of the employment data is 12 months,
 154 i.e., s=12. The values for parameters p, q, P, and Q in the SARIMA models are selected through the

155 observation of ACF and PACF plots of differenced construction employment data (Watson and Teelusingh
156 2002). In selecting the parameter values for the time series models, the combination of p, q, P, and Q that
157 yield a lower value of the Akaike information criterion (AIC) was selected over the parameters that led to
158 a higher value of AIC.

159 After fitting the time series to the employment data, residuals were calculated using Equation 2. The
160 residuals are the difference between actual employment (E_A) during the pandemic and the projected
161 employment (E_P) from the time series models.

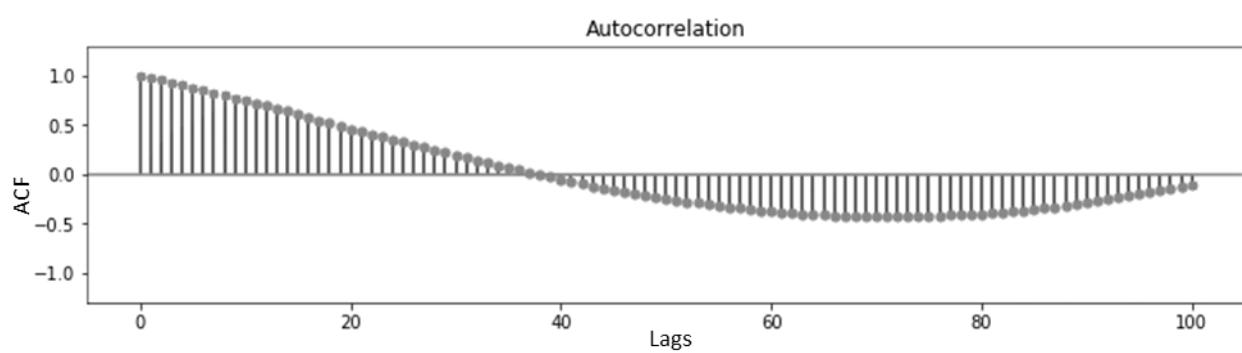
162
$$\hat{Z} = E_A - E_P \quad \text{Eq. 2}$$

163 The residuals were used to create CUSUM control charts if the time series models provide a good fit to data
164 and residuals are not serially correlated. The Ljung-Box test was used to check if the residuals are
165 independently distributed (Fisher 2011). If the Ljung-Box test results yield a p-value higher than 0.05, the
166 residuals are independently distributed, and a CUSUM analysis is performed on the residuals. The CUSUM
167 control charts detect if the process is within normal operating conditions (in-control) or has exceeded the
168 normal conditions (out-of-control). The CUSUM accumulates the deviation above the target value in
169 statistics C^+ and the deviation below the target value in statistics C^- . The statistics C^- and C^+ are called one-
170 sided lower CUSUM and upper CUSUM, respectively. The C^+ and C^- can be calculated using Equation 3
171 and Equation 4 (Montgomery 2019).

172
$$C_i^+ = \max [0, x_i - (\mu_0 + K) + C_{i-1}^+] \quad \text{Eq. (3)}$$

173
$$C_i^- = \max [0, (\mu_0 - K) - x_i + C_{i-1}^+] \quad \text{Eq. (4)}$$

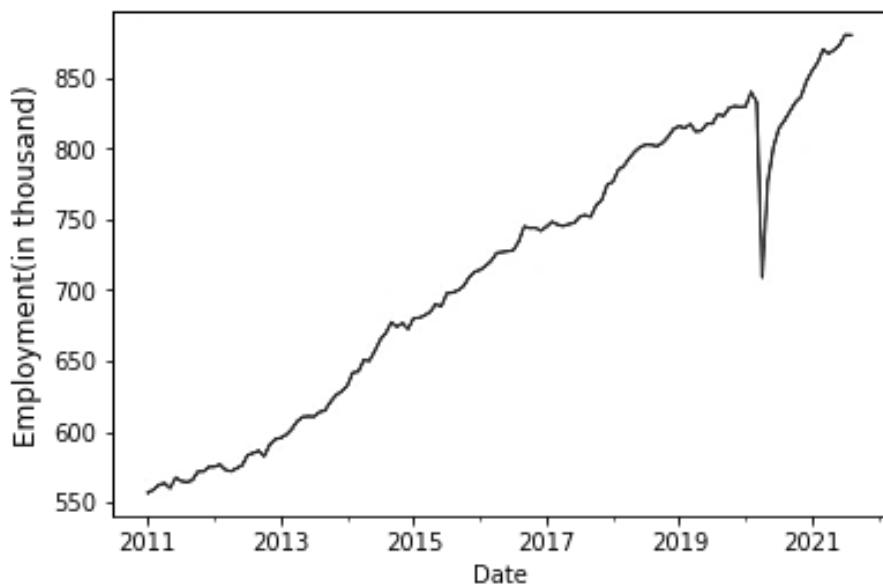
174 where C_i^+ is the cumulative deviation of point i above $(\mu_0 + K)$; C_i^- is the cumulative deviation of point i
175 below $(\mu_0 - K)$; μ_0 is the mean employment value.

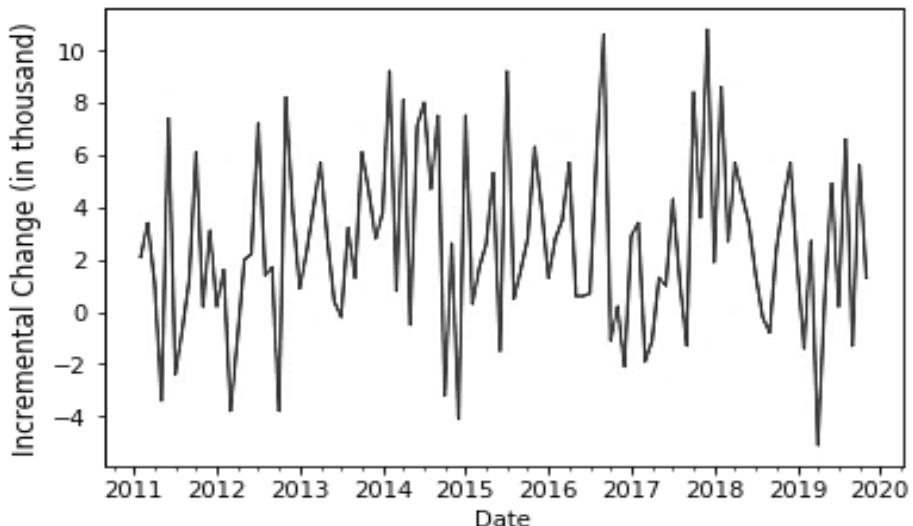

176 K is the reference value (or the slack value), which is usually halfway between the target value μ_0 and out
177 of control value μ_1 . The process is out-of-control when the cumulative deviation (i.e., either C^+ or C^-)

178 exceeds the decision interval H . The reasonable value of decision interval (H) is three to five times the
179 process standard deviation (Montgomery 2019; Novoa 2020).

180 The CUSUM charts were used to detect any deviation of construction employment from the usual condition
181 during the COVID-19 pandemic. The authors used forward process and reverse processes in the CUSUM
182 control charts to determine the deviation and recovery point of employment. The forward process measures
183 the cumulative deviation from the start point to the endpoint to determine the deviation or out-of-control
184 point. The out-of-control point is the place where the cumulative deviation exceeds the upper or lower
185 control point in the CUSUM charts. The reverse process measures the deviation from the endpoint to the
186 start point to determine the recovery point. At the recovery point, the fluctuation in employment is within
187 the normal variation (Mesnil and Petitgas 2009).

188 **Results**


189 Time series models and CUSUM control charts were developed based on the construction employment data
190 collected from BLS by different construction sectors, demographics, and states. The process of fitting a
191 time series model and creating a CUSUM control chart for residential building construction is outlined
192 here. First, the ACF plot (Figure 2) was developed to detect autocorrelation in employment data. The slow
193 decay of ACF values represents the high serial autocorrelation in the construction employment data.


194
195 **Figure 2.** Autocorrelation Function (ACF) plot of employment time series data for the residential
196 building construction sector

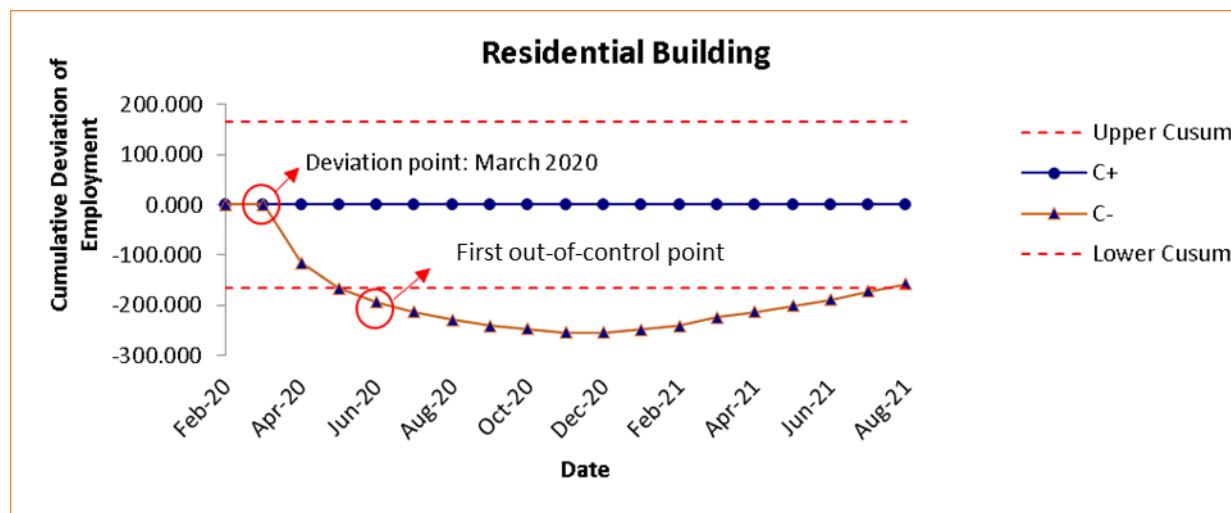
197 The employment data was also checked for stationarity using the ADF test before fitting the appropriate
198 time series model. The ADF result shows that the employment data are non-stationary. Hence, differencing

199 order should be determined before fitting the time series model. Figure 3 and Figure 4 show the residential
200 building construction employment and incremental change in residential building construction
201 employment. From Figures 3 and 4, it is validated that one difference is sufficient to make the data
202 stationary. ACF and PACF plots are developed to determine the seasonality in the time series data. Figure
203 5 shows ACF and PACF plots for incremental employment data with a significant spike on the 12th lag
204 representing strong seasonality in residential construction employment. Hence, a SARIMA model was
205 fitted to the employment data due to the seasonality and non-stationarity of the time series. The data from
206 January 2011 to December 2019 were used for fitting the time series model. The probable values of p, q, P,
207 and Q were selected based on the ACF and PACF plots (Figure 5). The model with the least AIC value for
208 p, q, P, and Q was used to forecast the projected normal employment from January 2020 to August 2021.
209 A similar approach was used for fitting the time series models for other construction sectors, demographics,
210 and construction employment by state.

211
212 **Figure 3.** Time series of total employment in residential building construction (Data from Current
213 Employment Statistics (BLS 2021b))

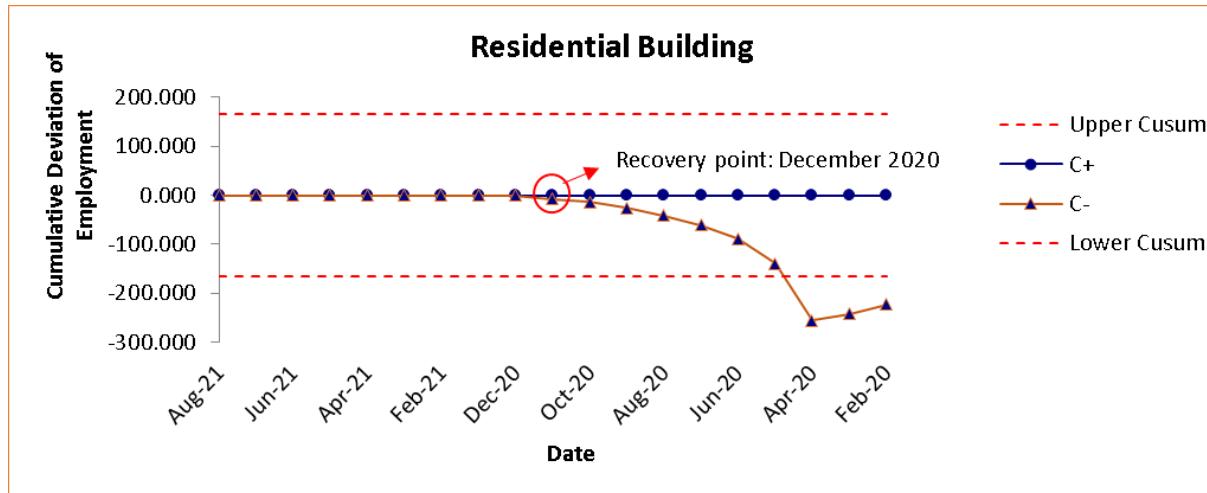
214
215

Figure 4. Time series of incremental employment change in residential building construction


216

217 **Figure 5.** ACF and PACF plots of monthly incremental change in employment of residential building
218 construction

219
220 For the forecasted residential building construction employment, the residuals were determined using
221 Equation 2. CUSUM analysis was then performed using the residuals of the time series model. Figures 6
222 and Figure 7 show the forward process and backward process for determining deviation and recovery points


223 in the employment of residential building construction, respectively. In the forward process, the cumulative
224 deviation from beginning to end is plotted in a CSUSM control chart to determine the deviation point of
225 employment. The out-of-process point in a CUSUM chart is a point where the process deviates from the
226 usual variations. The sectors of construction, the demographic group, and the states that have out-of-control
227 points during the COVID-19 pandemic were identified as having experienced statistically significant
228 declines in employment. Tables 2 to Table 5 show the time series models fitted to the employment data of
229 different construction sectors, demographics, and states. These tables also show the percentage declines in
230 construction employment compared with the projected normal employment in April 2020, when the most
231 job decline occurred at the outset of the COVID-19 pandemic.

232

233

234 **Figure 6.** Forward CUSUM process to detect deviation and out-of-control point

235

236 **Figure 7.** Reverse CUSUM process to detect the recovery point

237 Table 2 shows the SARIMA models fitted to the employment time series in different construction sectors.
 238 The construction industry is divided into three sectors: 1) Construction of buildings, 2) Heavy and civil
 239 engineering construction, and 3) Specialty trade contractors. The three construction sectors are further
 240 divided into subsectors, as shown in Table 2. CUSUM analysis was performed on the residuals of the time
 241 series from January 2020 to August 2021. Construction employment in all the sectors and sub-sectors of
 242 the construction industry was out-of-control due to the COVID-19 pandemic. Compared to the projected
 243 normal employment, the actual employment was lower by 15 percent in April 2020. Employment in the
 244 'specialty trade contractor' sector had the highest decline (16 percent) in April 2020 followed by the
 245 'construction of buildings' and 'highway and civil engineering construction'. The actual construction
 246 employment for different subsectors in April 2020 is also shown in Table 2.

247

248

249

250

251 **Table 2.** Impact on construction employment due to the COVID-19 pandemic based on the result of the
 252 CUSUM control charts (overall construction)

Industry	Seasonal ARIMA (p, d, q), (P, D, Q)	AIC	Statistically Significant Change in Employment	Employment in April 2020 (in thousands)	Percentage Decline in April 2020
Construction	(0, 1, 3), (0, 1, 1)	777.48	Major decline	6556	15.05%
<i>Construction of buildings</i>	(1, 1, 1), (1, 1, 1)	569.28	Major decline	1456.7	14.65%
Residential building	(2, 1, 0), (1, 1, 1)	528.86	Major decline	712.8	16.16%
Nonresidential building	(0, 1, 0), (1, 1, 1)	532.78	Major decline	743.9	12.90%
<i>Heavy and civil engineering construction</i>	(1, 1, 1), (0, 1, 1)	639.11	Major decline	992.9	9.25%
Utility System Construction	(0, 1, 3), (0, 1, 1)	543.73	Major decline	508.3	11.60%
Land Subdivision	(1, 1, 0), (0, 0, 1)	164.95	Major decline	34.8	12.79%
Highway, Street, and Bridge Construction	(0, 1, 2), (0, 1, 1)	534.5	Major decline	331.1	8.75%
Other Heavy and Civil Engineering Construction	(2, 1, 1), (0, 1, 0)	434.39	Major decline	112.7	8.33%
<i>Specialty trade contractors</i>	(0, 1, 0), (0, 1, 1)	755.35	Major decline	4106.6	16.27%
Building foundation and exterior contractors	(1, 1, 0), (0, 1, 1)	622	Major decline	786.2	18.05%
Building equipment contractors	(0, 1, 0), (0, 1, 1)	597.45	Major decline	2004.5	14.45%
Building finishing contractors	(1, 1, 0), (1, 1, 1)	560.21 2	Major decline	691.5	19.36%
Other specialty trade contractors	(0, 1, 0), (1, 1, 1)	563.71	Major decline	618.5	14.01%

253
 254 Source: Data from Current Employment Statistics (BLS 2021b)
 255 Note: Major decline occurs when the value of cumulative deviation in a CUSUM chart exceeds the lower CUSUM threshold
 256 Table 3 shows the SARIMA models fitted to the women's employment data in different construction
 257 sectors. The CUSUM analysis performed on the residual of the time series from January 2020 to August
 258 2021 reveals that women's employment in all construction sectors was out-of-control due to the impact of
 259 the COVID-19 pandemic (Table 3). Compared to the projected normal employment, the actual women's
 260 employment in construction was lower by 12 percent in April 2020. The actual employment for women
 261 construction workers in different subsectors in April 2020 is also shown in Table 3.

262
 263

264

265 **Table 3.** Impact on construction employment due to the COVID-19 pandemic based on the result of the
266 CUSUM control charts (Women Employment)

Industry	Seasonal ARIMA (p, d, q), (P, D, Q)	AIC	Statistically Significant Change in Employment	Employment in April 2020 (in thousands)	Percentage Decline in April 2020
Construction	(2, 1, 1), (1, 1, 1)	457.07	Major decline	887.0	12.19%
<i>Construction of buildings</i>	(2, 1, 2), (0, 1, 0)	370.51	Major decline	281.8	9.43%
Residential building	(0, 1, 0), (1, 1, 1)	320.92	Major decline	163.3	12.67%
Nonresidential building	(1, 1, 1), (0, 1, 1)	250.08	Major decline	117.6	8.72%
<i>Heavy and civil engineering construction</i>	(0, 1, 1), (1, 1, 1)	260.04	Major decline	104.8	9.19%
Utility System Construction	(0, 1, 1), (1, 1, 1)	184.28	Major decline	49.6	8.55%
Land Subdivision	(3, 1, 0), (1, 1, 1)	101.95	Major decline	12.9	8.06%
Highway, Street, and Bridge Construction	(0, 1, 0), (0, 0, 1)	81.20	Major decline	29.6	9.44%
Other Heavy and Civil Engineering Construction	(1, 1, 0), (0, 1, 1)	88.86	Major decline	13.0	4.82%
<i>Specialty trade contractors</i>	(0, 1, 0), (0, 1, 1)	385.97	Major decline	501.5	12.31%
Building foundation and exterior contractors	(0, 1, 0), (1, 1, 1)	244.82	Major decline	77.6	15.38%
Building equipment contractors	(0, 1, 0), (1, 1, 1)	300.10	Major decline	258.2	10.99%
Building finishing contractors	(1, 1, 1), (1, 0, 0)	290.63	Major decline	94.7	16.13%
Other specialty trade contractors	(1, 1, 1), (1, 0, 1)	227.43	Major decline	70.3	12.68%

267 Source: Data from Current Employment Statistics (BLS 2021b)

268 Note: Major decline occurs when the value of cumulative deviation in a CUSUM chart exceeds the lower CUSUM threshold

269 Table 4 shows the SARIMA models fitted to the construction employment by race and ethnicity. The
 270 CUSUM analysis performed on the residual of the employment time series from January 2020 to August
 271 2021 reveals that employment was out-of-control for all races during the pandemic (Table 4). There was a
 272 disproportionate impact of the COVID-19 on minority construction workers, especially African Americans
 273 and Hispanics, at the outset of the COVID-19. The actual construction employment for Blacks or African
 274 Americans construction workers was 24 percent lower than the projected normal employment in April 2021.
 275 For Hispanic construction workers, the employment decline was 23.37 percent in April 2020 compared to
 276 the projected normal employment.

Table 4. COVID-19 impact on construction employment (Race and Ethnicity)

Race	Seasonal ARIMA (p, d, q), (P, D, Q)	AIC	Statistically Significant Change in Employment	Percentage Employment Decline in April 2020
Whites	(1, 1, 1), (1, 1, 1)	1249.03	Major decline	17.22%
Hispanic And Latino	(4, 1, 0), (0, 1, 1)	1157.31	Major decline	23.37%
Black or African American	(1, 1, 1), (1, 1, 1)	1002.57	Major decline	24.45%
Asian	(1, 1, 1), (1, 1, 1)	891.69	Major decline	14.95%

278 Source: Data from Current Population Survey (BLS 2021a)

279 Note: Major decline occurs when the value of cumulative deviation in a CUSUM chart exceeds the lower CUSUM threshold

280 Table 5 shows the SARIMA models fitted to construction employment for 50 states in the US. The CUSUM
 281 analysis performed on the residual of state employment from January 2020 to August 2021 reveals that
 282 employment in all states was out-of-control after the occurrence of the COVID-19 pandemic. Table 5 also
 283 shows the percentage declines in April 2020 based on the projected normal employment and the actual
 284 employment for all the states in the US. South Dakota was the only state to add construction jobs in April
 285 2020, when there was a 15 percent job decline in the US construction industry (Table 2). Nonetheless,
 286 construction employment in South Dakota declined as the pandemic progressed (Table 9). The lowest
 287 employment decline in April 2020 occurred in Utah (2.49%), followed by Nebraska (2.72%), Montana
 288 (3.19%), and Virginia (4.7%). The highest employment decline in April 2020 occurred in Michigan (42.27
 289 %), followed by New York (38.61 %), Pennsylvania (38.11%), and Vermont (37.53%).

290 **Table 5.** COVID-19 impact on construction employment (States)

State	Seasonal ARIMA	AIC	Statistically Significant Change in Employment	Percentage Employment Decline in April 2020
Alabama	(1, 1, 0), (1, 0, 1)	191.98	Major decline	5.88%
Alaska	(1, 1, 0), (0, 1, 1)	10.21	Major decline	13.58%
Arizona	(1, 1, 0), (0, 1, 1)	191.73	Major decline	4.38%
Arkansas	(3, 1, 1), (0, 1, 1)	165.68	Major decline	4.12%
California	(1, 1, 0), (1, 1, 1)	598.23	Major decline	18.83%
Colorado	(2, 1, 0), (0, 1, 1)	216.9	Major decline	7.41%
Connecticut	(1, 1, 0), (0, 1, 1)	119.56	Major decline	15.75%
Delaware*	(0, 1, 0), (1, 1, 1)	42.99	Major decline	9.91%
Florida	(1, 1, 0), (0, 1, 1)	556.48	Major decline	7.67%
Georgia	(1, 1, 0), (0, 1, 1)	289.03	Major decline	6.30%
Hawaii*	(2, 1, 2), (0, 1, 0)	63.62	Major decline	9.24%
Idaho	(0, 1, 0), (0, 1, 1)	83.88	Major decline	4.82%
Illinois	(0, 1, 0), (1, 1, 1)	383.64	Major decline	13.27%
Indiana	(0, 1, 0), (0, 1, 1)	259.11	Major decline	10.28%
Iowa	(1, 1, 1), (0, 1, 1)	284.63	Major decline	6.20%
Kansas	(1, 1, 1), (0, 1, 0)	244.85	Major decline	7.95%
Kentucky	(0, 1, 0), (1, 0, 1)	192.98	Major decline	7.78%

State	Seasonal ARIMA	AIC	Statistically Significant Change in Employment	Percentage Employment Decline in April 2020
Louisiana	(1, 1, 0), (0, 1, 1)	362.72	Major decline	18.33%
Maine	(0, 1, 0), (0, 1, 1)	5.19	Major decline	7.05%
Maryland*	(1, 1, 1), (1, 0, 1)	222.07	Major decline	10.03%
Massachusetts	(0, 1, 1), (0, 0, 1)	277.13	Major decline	30.06%
Michigan	(1, 1, 1), (1, 1, 1)	369.07	Major decline	40.28%
Minnesota	(1, 1, 0), (0, 1, 1)	387.07	Major decline	9.15%
Mississippi	(1, 1, 0), (0, 0, 1)	140.89	Major decline	8.22%
Missouri	(0, 1, 1), (1, 1, 1)	281.51	Major decline	7.06%
Montana	(0, 1, 0), (2, 1, 0)	89.87	Major decline	3.19%
Nebraska*	(1, 1, 1), (0, 1, 1)	143.39	Major decline	2.72%
Nevada	(2, 1, 1), (0, 1, 1)	206.97	Major decline	8.26%
New Hampshire	(2, 1, 0), (1, 1, 1)	-21.18	Major decline	9.90%
New Jersey	(0, 1, 0), (0, 1, 1)	329.12	Major decline	18.80%
New Mexico	(1, 1, 0), (1, 1, 1)	145.22	Major decline	6.90%
New York	(0, 1, 0), (0, 1, 1)	434.47	Major decline	38.61%
North Carolina	(1, 1, 0), (0, 1, 1)	306.71	Major decline	6.01%
North Dakota	(1, 1, 0), (1, 0, 1)	210.49	Major decline	11.16%
Ohio	(0, 1, 1), (0, 1, 1)	375.33	Major decline	15.90%
Oklahoma	(0, 1, 2), (0, 1, 1)	214.85	Major decline	5.56%
Oregon	(0, 1, 0), (0, 1, 1)	209.07	Major decline	11.40%
Pennsylvania	(0, 1, 0), (0, 1, 1)	402.29	Major decline	38.11%
Rhode Island	(0, 1, 1), (0, 1, 1)	-26.52	Major decline	20.40%
South Carolina	(1, 1, 1), (0, 1, 0)	255.39	Major decline	6.03%
South Dakota*	(1, 1, 1), (1, 1, 0)	100.69	Major decline	-0.66%
Tennessee*	(0, 1, 0), (1, 1, 1)	242.10	Major decline	4.98%
Texas	(0, 1, 0), (1, 1, 1)	483.68	Major decline	8.57%
Utah	(1, 1, 1), (1, 1, 0)	164.74	Major decline	2.49%
Vermont	(1, 1, 1), (1, 1, 0)	-3.31	Major decline	37.53%
Virginia	(0, 1, 0), (1, 1, 1)	273.40	Major decline	4.72%
Washington	(1, 1, 1), (0, 1, 1)	356.46	Major decline	18.06%
West Virginia	(2, 1, 2), (1, 1, 1)	218.85	Major decline	22.05%
Wisconsin	(0, 1, 1), (0, 1, 1)	277.69	Major decline	7.69%
Wyoming	(0, 1, 1), (0, 1, 1)	124.10	Major decline	9.94%

Source: Data from Current Employment Statistics (BLS 2021b)

Note: Major decline occurs when the value of cumulative deviation in a CUSUM chart exceeds the lower CUSUM threshold

*Employment number is for combined mining, logging, and construction industry

291

292

293

294

295 The forward process and the reverse process in CUSUM were used to detect the deviation and recovery
296 points of the construction employment. From the forward CUSUM process, it was observed that deviation
297 for all the sectors and subsectors of the construction industry occurred in March 2020 (Table 6). The reverse
298 CUSUM process reveals two subsectors, i.e., 'residential building' and 'other heavy and civil engineering
299 construction', recovered lost jobs in December and October 2020, respectively. The 'residential building'
300 subsector includes builders, general contractors, construction management firms, and design firms involved
301 in residential housing construction (Industrius CFO, 2021). The 'Other and heavy civil engineering
302 construction' subsector includes projects associated with open space improvement (e.g., trails and parks),

303 water resources (e.g., drainage and dredging), and the development of marine facilities (Industrius CFO,
304 2021). All other subsectors of construction have not recovered employment by August 2021.

305 **Table 6.** Calculation of recovery period (overall construction)

Industry	Deviation point for construction employment	Recovery point for construction employment	Recovery period (Months)
Construction	March 2020	Not Recovered by August 2021	–
<i>Construction of buildings</i>	March 2020	Not Recovered by August 2021	–
Residential building	March 2020	December 2020	9
Nonresidential building	March 2020	Not Recovered by August 2021	–
<i>Heavy and civil engineering construction</i>	March 2020	Not Recovered by August 2021	–
Utility System Construction	March 2020	Not Recovered by August 2021	–
Land Subdivision	March 2020	Not Recovered by August 2021	–
Highway, Street, and Bridge Construction	March 2020	Not Recovered by August 2021	–
Other Heavy and Civil Engineering Construction	March 2020	November 2020	7
<i>Specialty trade contractors</i>	March 2020	Not Recovered by August 2021	–
Building foundation and exterior contractors	March 2020	Not Recovered by August 2021	–
Building equipment contractors	March 2020	Not Recovered by August 2021	–
Building finishing contractors	March 2020	Not Recovered by August 2021	–
Other specialty trade contractors	March 2020	Not Recovered by August 2021	–

306
307 Table 7 shows the results of the forward and reverse CUSUM processes on women's construction
308 employment. Women's employment in the construction industry is recovering quickly compared to overall
309 construction employment in the US. The deviation from normal construction employment for women
310 workers took place in March 2020. Two sectors of construction, 'construction of building' and 'specialty
311 trade contractors', have recovered women's construction employment by March 2021 and December 2020,
312 respectively. However, the total women's employment in construction has not been fully recovered by
313 August 2021.

314
315
316

317

Table 7. Calculation of recovery period (Women employment)

Industry	Deviation point for construction employment	Recovery point for construction employment	Recovery period (Months)
Construction	March 2020	Not recovered by August 2021	
<i>Construction of buildings</i>	March 2020	March 2021	13
Residential building	March 2020	March 2021	13
Nonresidential building	March 2020	Not recovered by August 2021	—
<i>Heavy and civil engineering construction</i>	March 2020	Not recovered by August 2021	—
Utility System Construction	March 2020	Not recovered by August 2021	—
Land Subdivision	March 2020	April 2021	14
Highway, Street, and Bridge Construction	March 2020	November 2020	8
Other Heavy and Civil Engineering Construction	March 2020	Not recovered by August 2021	
<i>Specialty trade contractors</i>	March 2020	December 2020	9
Building foundation and exterior contractors	March 2020	June 2021	17
Building equipment contractors	March 2020	October 2020	7
Building finishing contractors	March 2020	December 2020	9
Other specialty trade contractors	March 2020	June 2020	3

318

319 Table 8 shows the results of the forward and reverse CUSUM processes on construction employment by
 320 race and ethnicity. The employment deviation from normal conditions occurred in March 2020 for Whites,
 321 Hispanics, and Asians. For Blacks or African Americans, the deviation point is February 2020, a month
 322 earlier than the construction workers of other races. Hispanics and Asians have recovered lost jobs by
 323 October 2020, whereas employment for Whites and Blacks (or African Americans) has not recovered by
 324 August 2021.

325

326

327

328

329

330

Table 8. Calculation of recovery period (Race and Ethnicity)

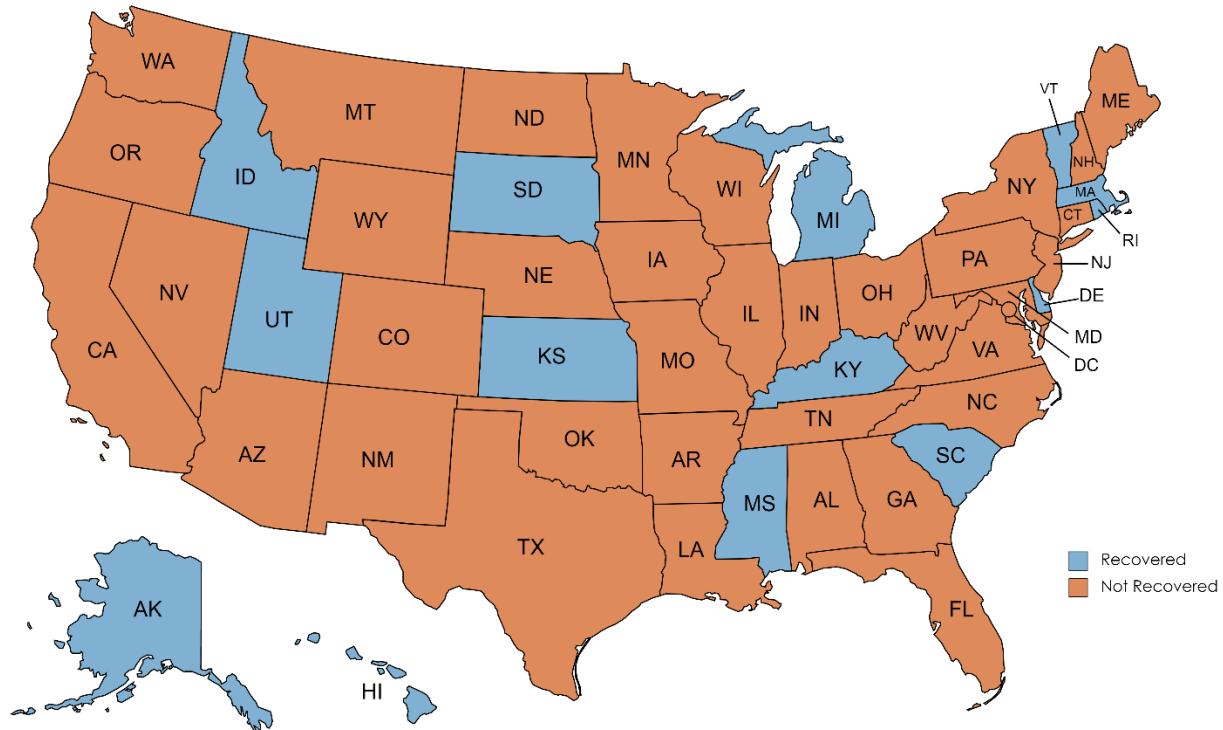
Industry	Deviation point for construction employment	Recovery point for construction employment	Recovery period (Months)
Whites	March 2020	Not recovered by August 2021	-
Hispanic And Latino	March 2020	October 2020	7
Black or African American	February 2020	Not recovered by August 2021	-
Asian	March 2020	October 2020	7

331

332 Table 9 shows the results of the forward and reverse CUSUM processes on construction employment for
 333 50 states in the US. The employment deviation from normal conditions occurred in March 2020 for all the
 334 states but Hawaii, Montana, South Dakota, and Utah. Employment deviation from normal process occurred
 335 in February 2020 in Hawaii and Utah, in August 2020 in South Dakota, and in April 2021 in Montana.
 336 Fourteen states have recovered the construction jobs that declined due to the sudden impact of the COVID-
 337 19 (Figure 8). These states are Alaska, Delaware, Hawaii, Idaho, Kansas, Kentucky, Massachusetts,
 338 Michigan, Mississippi, Rodhe Island, South Carolina, South Dakota, Utah, and Vermont. These findings
 339 are consistent with the recent study by AGC (2020b) that suggests the 14 states added jobs in construction
 340 from the pre-pandemic level in February 2020. Table 9 also shows the recovery periods for construction
 341 employment for the US states that have recovered the lost employment.

342

Table 9. Calculation of recovery period (State Construction employment)


Industry	Deviation point for construction employment	Recovery point for construction employment	Months to recovery
Alabama	March 2020	Not Recovered by August 2021	-
Alaska	March 2020	November 2020	8
Arizona	March 2020	Not Recovered by August 2021	-
Arkansas	March 2020	Not Recovered by August 2021	-
California	March 2020	Not Recovered by August 2021	-
Colorado	March 2020	Not Recovered by August 2021	-
Connecticut	March 2020	Not Recovered by August 2021	-
Delaware*	March 2020	March 2021	12
Florida	March 2020	Not Recovered by August 2021	-
Georgia	March 2020	Not Recovered by August 2021	-
Hawaii*	February 2020	May 2021	15
Idaho	March 2020	December 2021	9
Illinois	March 2020	Not Recovered by August 2021	-
Indiana	March 2020	Not Recovered by August 2021	-
Iowa	March 2020	Not Recovered by August 2021	-
Kansas	March 2020	March 2021	12
Kentucky	March 2020	April 2021	13

Industry	Deviation point for construction employment	Recovery point for construction employment	Months to recovery
Louisiana	March 2020	Not Recovered by August 2021	-
Maine	March 2020	Not Recovered by August 2021	-
Maryland*	March 2020	Not Recovered by August 2021	-
Massachusetts	March 2020	November 2020	8
Michigan	March 2020	August 2020	5
Minnesota	March 2020	Not Recovered by August 2021	-
Mississippi	March 2020	October 2020	7
Missouri	March 2020	Not Recovered by August 2021	-
Montana	April 2021	Not Recovered by August 2021	-
Nebraska*	March 2020	Not Recovered by August 2021	-
Nevada	March 2020	Not Recovered by August 2021	-
New Hampshire	March 2020	Not Recovered by August 2021	-
New Jersey	March 2020	Not Recovered by August 2021	-
New Mexico	March 2020	Not Recovered by August 2021	-
New York	March 2020	Not Recovered by August 2021	-
North Carolina	March 2020	Not Recovered by August 2021	-
North Dakota	March 2020	Not Recovered by August 2021	-
Ohio	March 2020	Not Recovered by August 2021	-
Oklahoma	March 2020	Not Recovered by August 2021	-
Oregon	March 2020	Not Recovered by August 2021	-
Pennsylvania	March 2020	Not Recovered by August 2021	-
Rhode Island	March 2020	February 2021	11
South Carolina	March 2020	March 2021	12
South Dakota*	August 2020	March 2021	7
Tennessee*	March 2020	Not Recovered by August 2021	-
Texas	March 2020	Not Recovered by August 2021	-
Utah	February 2020	November 2020	9
Vermont	March 2020	December 2020	9
Virginia	March 2020	Not Recovered by August 2021	-
Washington	March 2020	Not Recovered by August 2021	-
West Virginia	March 2020	Not Recovered by August 2021	-
Wisconsin	March 2020	Not Recovered by August 2021	-
Wyoming	March 2020	Not Recovered by August 2021	-

*Employment number is for combined mining, logging, and construction industry

343

344

345

346 **Figure 8.** Status of construction employment recovery by state as of August 2021

347 **Discussion**

348 The COVID-19 pandemic generated a sudden and severe impact on construction employment in April 2020.
 349 Interventions from the federal government in the form of the Paycheck Protection Program (PPP) (CARES
 350 Act, 2021) helped the construction industries to immediately add jobs after a sudden loss of one million
 351 jobs during the initial stage of the COVID-19 pandemic (Hilburg 2020). Despite federal and state support,
 352 all three construction sectors (construction of buildings, heavy and civil engineering construction, and
 353 specialty trade contractors) in the United States suffered statistically significant declines in employment
 354 during the COVID-19 pandemic (Table 2). The residential building, a subsector of building construction,
 355 has recovered the jobs that were lost at the outset of the pandemic. The residential building subsector had
 356 a nearly 15 percent decline in employment in April 2020 compared to March 2020 (Brown, 2020). The
 357 employment recovery in residential building construction is due to a strong surge in housing demand in
 358 2021 (Bhaney 2021; Sorrentino 2021). However, nonresidential construction has yet to recover the lost

359 construction jobs. In April 2020, employment in nonresidential construction was 3 points lower than the
360 residential building construction (Table 2). The nonresidential construction sector is affected due to
361 decreasing demand for projects related to public infrastructures (Buckshon 2021). The rising cost of key
362 materials and disruption in the supply chain is further slowing the employment gains for the nonresidential
363 construction sector. The ‘specialty trade contractors’ sector, which experienced a decline of 706,000 jobs
364 in April 2020 compared to March 2020 (Brown 2020), has yet to recover the lost construction jobs.
365 Although the construction jobs will take years to recover in normal conditions, the recent Infrastructure
366 Investment and Jobs Act (2021), with the commitment to spend more than \$1 trillion on roads, bridges,
367 water infrastructure, power grids, and other infrastructures, is expected to significantly increase the
368 construction jobs, helping to overcome the setbacks of the COVID-19 pandemic.

369 Nearly 12 percent of the women workforce lost jobs in April 2020 compared to 15 percent for the overall
370 construction workforce (Table 2 and Table 3). Women's employment in the construction industry is
371 recovering quickly compared to the overall US construction employment (Table 6 and Table 7). The women
372 workforce in two construction sectors, ‘construction of buildings’ and ‘specialty trade contractors’, have
373 recovered the construction jobs by March 2021 and December 2020, respectively. Although women
374 represent only 10 percent of the workforce in the construction industry, the recovery of women’s jobs in
375 the construction industry is greater than in any other industry (Zhavoronkova and Khattar, 2021). Moreover,
376 the shortage of skilled labor and the high demand for construction workers to rebuild the crumbling US
377 infrastructure (Yurkevich 2021) can provide women with an unparalleled opportunity to increase their
378 proportion in the construction industry (Shrestha et al. 2020; Smith 2021).

379 The Hispanic construction workers and Asian construction workers recovered construction jobs sooner than
380 White construction workers (Table 8). Hispanics had a 19.8 percent decline in construction employment
381 from April 2020 compared to March 2020, while employment decline was 14.1 percent for White
382 construction workers (Brown 2020). Nevertheless, Hispanic construction workers have recovered the jobs
383 lost by August 2021, but White construction workers and Black or African construction workers have yet

384 to recover from the job decline during the COVID-19 pandemic. The Black or African Americans might be
385 lagging in employment recovery due to the low rate of employment recovery in low-paying jobs (Bateman
386 and Ross 2021), which enroll most minorities construction workers (Baral et al. 2022). Policy-level
387 interventions are essential to support the recovery of construction employment among the Black or African
388 American workers, who only represented 6 percent of the construction workforce before the COVID-19
389 pandemic (Adolphus 2020). It is worth noting that despite Hispanics also occupying a sizeable portion of
390 low-paying jobs, the negative effects on workforce recovery have been more than offset by the huge
391 increase of new Hispanic workers. According to Dubina (2021), Hispanics are projected to account for 78%
392 of net new workers between 2020 and 2030, based on the data from the U.S. Department of Labor. The
393 diversity and inclusion goals, which have been long desired in the construction industry, are likely to be
394 hurt if policy-level interventions are not directed to promote minority construction workers who are
395 significantly impacted by the pandemic.

396 Construction jobs have recovered in fourteen states (Table 9). These states are Alaska, Delaware, Hawaii,
397 Idaho, Kansas, Kentucky, Massachusetts, Michigan, Mississippi, Rhode Island, South Carolina, South
398 Dakota, Utah, and Vermont (Figure 8). The most significant percentage gain in construction employment
399 from February 2020 to August 2021 was observed in South Dakota (7.1%), Idaho (6.7%), and Utah (6.5%)
400 (USGNN, 2021). Thirty-six states have not recovered jobs that were lost due to the sudden impact of the
401 COVID-19 (Figure 8). Texas shed the most construction jobs between February 2020 to August 2021.
402 Texas had 48,000 less construction employment in August 2021 compared to February 2020 (USGNN,
403 2021). New York and California shed 47,300 and 32,600 construction jobs during the same period
404 (USGNN, 2021). Certain states, including New York, New Jersey, and Pennsylvania, implemented
405 widespread closures of construction projects, with limited exceptions for emergency repairs and
406 construction related to healthcare facilities (Berenato et al. 2020; Dunn 2023). These abrupt shutdowns
407 resulted in a significant wave of layoffs in the construction industry during the early stages of the pandemic.
408 The reopening of construction activities in these states took place gradually, with strict operational

409 restrictions in place. This cautious approach contributed to a slow recovery in construction employment
410 (Dunn, 2023). The decline of employment can be attributed to various factors, including material price and
411 supply shortages, suspension of ongoing projects, permit and inspection delays, cost escalation, varying
412 state policies regarding the essentiality of construction operations, anticipated rise in dispute and litigation,
413 safety concerns among workers (McLoud 2021; Bou et al. 2021; Liang et al. 2022). These multifaceted
414 challenges have collectively contributed to the downturn in employment across different construction
415 sectors. The recovery of construction jobs in states will most likely depend on the state's population growth,
416 housing affordability, housing demand, the state's resiliency, and the capacity of state transportation
417 agencies to fund transportation projects (Pain et al. 2020; Black 2020). For instance, South Dakota had the
418 fourth-highest influx of people moving into the state of all 50 states in 2020, which contributed to a very
419 high demand for housing and further led to a notable rebound in the construction sector (Chinander 2021).
420 The \$10 billion aid approved by Congress to the state DOTs as a year-end legislative package in December
421 2020 will enhance the DOTs' capacity to fund the construction project in the upcoming years (Franks 2020).
422 The recently approved Infrastructure Investment and Jobs Act (2021) can further increase the construction
423 activities in states, significantly increasing the number of jobs in individual states' construction industry.
424 The findings from this research hold significant implications in various facets. Specifically, the research
425 underscores the need for customized strategies in response to sectoral variations within the construction
426 industry, encompassing residential, commercial, and infrastructure sectors, in order to optimize
427 employment recovery efforts. Additionally, it underscores the necessity of regional economic planning,
428 especially in areas impacted by the pandemic, to foster fair economic growth and alleviate regional
429 disparities. Furthermore, the study unveils a notably greater impact of COVID-19 on construction workers
430 of Black and African American heritage, emphasizing the pressing requirement for prioritized and tailored
431 approaches to expedite the recovery of lost construction jobs within this demographic group. In summary,
432 these insights make substantial contributions to the broader discourse on pandemic-induced effects on

433 construction employment and advocate for adaptable solutions to address the complex challenges
434 confronting the construction sector.

435 This study enhances the theoretical framework by introducing a methodological approach that measures
436 the impact of unforeseen disruptions, such as the COVID-19 pandemic, on employment by fusion of time
437 series models with control charts. The study also addresses a theoretical gap by acknowledging that existing
438 methods often fail to differentiate between employment declines caused by disasters and those associated
439 with normal trends and seasonal patterns. By using the integration of time series analysis and a control
440 chart, the study seeks to provide a more accurate understanding of the pandemic's impact on construction
441 employment. The research contributes to practical applications by offering insights that can guide decision-
442 makers in the construction industry. By analyzing employment declines and recovery timelines across
443 various construction sectors, demographics, and geographic regions, this study provides valuable
444 information for formulating more inclusive, equitable, and informed long-term plans. This study aids in
445 identifying vulnerable groups within the construction industry, allowing for tailored recovery strategies to
446 be devised not only for the current pandemic but also for future unforeseen crises.

447 **Conclusion**

448 This paper explores the impacts of the COVID-19 pandemic on construction employment in terms of
449 decline and recovery with consideration of different construction sectors, demographics, and geographic
450 regions. An approach based on SARIMA and CUSUM analysis was used to determine if there was a
451 significant deviation in construction employment from the projected normal conditions. Forward and
452 reverse processes in CUSUM were used to detect the deviation and recovery points of the construction
453 employment. There was a statistically significant decline in construction employment due to the COVID-
454 19 in all sectors of the construction industry. The residential building subsector has recovered quickly
455 compared to other construction subsectors, such as nonresidential, highway, and utility constructions.
456 Employment recovery among women construction workers is more rapid compared to the overall
457 construction workforce. As of August 2021, women's employment has recovered in two sectors: a)

458 construction of buildings and b) specialty trade contractors. Hispanic construction workers who experienced
459 a decline of 23 percent in April 2020 have recovered employment by October 2020. Black or African
460 American construction workers and White construction workers have yet to recoup from the employment
461 decline prompted by the COVID-19 pandemic. Fourteen US states have recovered the lost construction
462 jobs by August 2021, while 36 states have yet to recover the declined employment. This paper contributes
463 to the state of practice by proposing an objective and quantitative method to identify the time points of
464 employment decline and the time points of recovery. The policy-level intervention focused on different
465 construction sectors, demographics, and geographic regions should be considered by policymakers to
466 facilitate the recovery among the groups that are experiencing disproportionate impacts of the COVID-19
467 pandemic.

468 This study primarily focuses on the immediate and short-term effects of COVID-19 on construction
469 employment and its recovery. Future research opportunities lie in examining the long-term consequences
470 of the pandemic and evaluating the effectiveness of policy interventions in expediting the industry's
471 recuperation from its impact. The Seasonal ARIMA models and CUSUM control charts used in this study
472 to analyze construction employment assume certain characteristics of the data and stability in trends of
473 construction employment. Future studies should investigate alternative modeling techniques that are less
474 reliant on these assumptions to improve the accuracy of analyses related to construction employment trends.

475 **Data Availability Statement**

476 All data, models, or codes used during the study are available from the author upon reasonable request.

477 **Acknowledgment**

478 This paper is supported by the National Science Foundation under Award Numbers: 2035198 and 2035299.
479 Hence, we are grateful to the National Science Foundation for supporting this work.

480 **References**

481

482 Alsharef, A., Banerjee, S., Uddin, S. J., Albert, A., & Jaselskis, E. (2021). Early impacts of the COVID-19
483 pandemic on the United States construction industry. *International journal of environmental research
484 and public health*, 18(4), 1559.

485 Adolphus, E. D. (2020, November 13). *Race Rises as a Top Construction Industry Issue After Protests*.
486 2020-06-17 | Engineering News-Record. <https://www.enr.com/articles/49578-race-rises-as-a-top->
487 [construction-industry-issue-after-protests](https://www.enr.com/construction-industry-issue-after-protests)

488 AGC. (2021a, March 8). *Construction employment declines by 61,000 in February* | *Building Design +*
489 *Construction*. [Https://Www.Bdcnetwork.Com/](https://Www.Bdcnetwork.Com/). <https://www.bdcnetwork.com/construction->
490 [employment-declines-61000-february](https://www.bdcnetwork.com/construction-employment-declines-61000-february)

491 AGC. (2021b, October 22). *Only 14 States And D.C. Added Construction Jobs Since Pandemic Began As*
492 *Supply Problems, Lack Of Infrastructure Bill Undermine Recovery* | *Associated General Contractors*
493 *of America*. <https://www.agc.org/news/2021/10/22/only-14-states-and-dc-added-construction-jobs->
494 [pandemic-began-supply-problems-lack-0](https://www.agc.org/news/2021/10/22/only-14-states-and-dc-added-construction-jobs-pandemic-began-supply-problems-lack-0)

495 Ashuri, B., and J. Lu. 2010. “Time series analysis of ENR construction cost index.” *J. Constr. Eng. Manage.*
496 136 (11): 1227–1237. [https://doi.org/10.1061/\(ASCE\)CO.1943-7862.0000231](https://doi.org/10.1061/(ASCE)CO.1943-7862.0000231)

497 Aum, S., Lee, S. Y., & Shin, Y. (2017). Industrial and occupational employment changes during the Great
498 Recession.

499 Bahney, A. (2021, March 25). *Homes are selling at record speed as buyers scramble to find properties*.
500 CNN Business. <https://edition.cnn.com/2021/03/22/success/existing-home-sales-feseries/index.html>

501 Baral, A., Liang, Y., Li, M., Gonzalez, M., Shahandashti, M., & Ashuri, B. (2022). Impact of COVID-19
502 on the Diversity of the Construction Workforce. *Natural Hazards Review*, 23(3), 04022015.

503 Bateman, N., & Ross, M. (2021, November 9). *The pandemic hurt low-wage workers the most—and so*
504 *far, the recovery has helped them the least*. Brookings. <https://www.brookings.edu/research/the->
505 [pandemic-hurt-low-wage-workers-the-most-and-so-far-the-recovery-has-helped-them-the-least/#1](https://www.brookings.edu/research/the-pandemic-hurt-low-wage-workers-the-most-and-so-far-the-recovery-has-helped-them-the-least/#1)

506 Berenato, N., Keene, J.S., Stephen, M.S. (2020). COVID-19 Construction Update: NJ, NY, DE, and PA
507 close businesses. (n.d.). <https://www.cozen.com/news-resources/publications/2020/covid-19->
508 [construction-update-nj-ny-and-pa-close-businesses](https://www.cozen.com/news-resources/publications/2020/covid-19-construction-update-nj-ny-and-pa-close-businesses)

509 Black, A. P. (2020, September). Impacts Of Covid-19 On State & Local Transportation Revenues &
510 Construction Programs. American Road & Transportation Builders Association.
511 <https://www.artba.org/wp->
512 [content/uploads/2020/09/2020.09.15_ARTBA_COVID19RevImpact_v21.pdf](https://www.artba.org/wp-content/uploads/2020/09/2020.09.15_ARTBA_COVID19RevImpact_v21.pdf) Accessed 11 December
513 2020.

514 Bou Hatoum, M., Faisal, A., Nassereddine, H., & Sarvari, H. (2021). Analysis of COVID-19 concerns
515 raised by the construction workforce and development of mitigation practices. *frontiers in built*
516 *environment*, 7, 66.

517 Bowler, M. (2006). Understanding the employment measures from the CPS and CES survey. *Monthly Lab.*
518 *Rev.*, 129, 23.

519 Brown, S., Brooks, R. D., & Dong, X. S. (2020). Impact of COVID-19 on construction workers and
520 businesses. Data Bulletin. CPWR

521 Buckshon, M. (2021, August 8). *Construction industry adds 11,000 jobs in July but non-residential sector*
522 *trails overall recovery amid materials cost and supply challenges*. Chicago Construction News.
523 [https://chicagoconstructionnews.com/construction-industry-adds-11000-jobs-in-july-but-non-](https://chicagoconstructionnews.com/construction-industry-adds-11000-jobs-in-july-but-non-residential-sector-trails-overall-recovery-amid-materials-cost-and-supply-challenges/)
524 [residential-sector-trails-overall-recovery-amid-materials-cost-and-supply-challenges/](https://chicagoconstructionnews.com/construction-industry-adds-11000-jobs-in-july-but-non-residential-sector-trails-overall-recovery-amid-materials-cost-and-supply-challenges/)

525 Bureau of Labor Statistics (BLS). 2021a. *Labour Force Statistics from Current Population Survey. U.S.*
526 *Bureau of Labor Statistics (BLS)*. Retrieved from <https://www.bls.gov/cps/data.htm> Accessed 28
527 November 2021.

528 Bureau of Labor Statistics (BLS). 2021b. *Current Employment Statistics*. U.S. Bureau of Labor Statistics
529 (BLS). Retrieved from <https://www.bls.gov/ces/> Accessed 28 October 2021

530 CARES Act, S. 3548, 116th Cong. 2020. <https://www.congress.gov/bill/116th-congress/senate-bill/3548/text?q=product+actualizaci%C3%B3n> Accessed 10 December 2020.

532 Chinander, H. 2021. "Construction in South Dakota cities soars despite a year of challenges." Federal
533 Reserve Bank of Minneapolis.

534 Dubina, K. (2021). "Hispanics in the Labor Force: 5 Facts." U.S. Department of Labor Blog.

535 Dunn, R. T. (2023, August 25). *Construction shutdown is lifted in Massachusetts*. Legal News &
536 Business Law News. <https://www.natlawreview.com/article/construction-shutdown-lifted-massachusetts>

538 Fisher, T. J. (2011). Testing adequacy of arma models using a weighted portmanteau test on the residual
539 autocorrelations. *Contributed Paper*, 327, 2011.

540 Franks, D. (2020, December 22). *COVID Relief Package Includes \$45 Billion for Transportation Programs*
541 | ARTBA Newsline. Newsline. <https://newsline.artba.org/2020/12/22/covid-relief-package-includes-45-billion-for-transportation-programs/> Accessed 22 December 2020.

543 Hadi, A. (2011). Construction employment peaks before the recession and falls sharply throughout
544 it. *Monthly Lab. Rev.*, 134, 24.

545 Hilburg, J. (2020, August 25). *Nearly one million U.S. construction jobs were lost in April*. The Architect's
546 Newspaper. <https://www.archpaper.com/2020/05/nearly-one-million-construction-jobs-lost-april/>

547 Industrius CFO (2021). *NAICS 2379 - Other Heavy and Civil Engineering Construction*.
548 Industriuscfo.Com. Retrieved from: <https://secure.industriuscfo.com/industry-metrics/naics/2379-other-heavy-and-civil-engineering-construction> Accessed 11 22 2021

550 Infrastructure Investment and Jobs Act, H.R. 3684, 117th Cong. 2021.
551 <https://www.congress.gov/bill/116th-congress/senate-bill/3548/text?q=product+actualizaci%C3%B3n>
552 Accessed 23 November 2021.

553 Jan, T., Clement, S. (2020). Hispanics are almost twice as likely as whites to have lost their jobs amid
554 pandemic, poll finds. The Washington Post.
555 <https://www.washingtonpost.com/business/2020/05/06/layoffs-race-poll-coronavirus/>

556 Jeon, J., Padhye, S., Bhattacharyya, A., Cai, H., & Hastak, M. (2022). Impact of COVID-19 on the US
557 Construction Industry as Revealed in the Purdue Index for Construction. *Journal of Management in
558 Engineering*, 38(1), 04021082.

559 Jorden, M. A., Rudman, S. L., Villarino, E., Hoferka, S., ... & Chung, J. R. (2020). Evidence for limited
560 early spread of COVID-19 within the United States, January–February 2020. *Morbidity and Mortality
561 Weekly Report*, 69(22), 680.

562 Khodahemmati, N., & Shahandashti, M. (2020). Diagnosis and quantification of postdisaster construction
563 material cost fluctuations. *Natural Hazards Review*, 21(3), 04020019.

564 Kim, S., Abediniangerabi, B., & Shahandashti, M. (2022). Forecasting architecture billings index using
565 time series models. In *Construction Research Congress 2022* (pp. 391-402).

566 Kochhar, R., & Bennett, J. (2021, April 14). *U.S. labor market inches back from the COVID-19 shock, but
567 recovery is far from complete*. Pew Research Center. [https://www.pewresearch.org/fact-tank/2021/04/14/u-s-labor-market-inches-back-from-the-covid-19-shock-but-recovery-is-far-from-complete/](https://www.pewresearch.org/fact-
568_tank/2021/04/14/u-s-labor-market-inches-back-from-the-covid-19-shock-but-recovery-is-far-from-
569_complete/)

570 Liang, Y., Baral, A., Shahandashti, M., & Ashuri, B. (2022). Availability heuristic in construction
571 workforce decision-making amid COVID-19 pandemic: empirical evidence and mitigation
572 strategy. *Journal of management in engineering*, 38(5), 04022046.

573 McLoud, D. (2021, March 23). *Will the construction industry rebound to pre-pandemic levels?*
574 Equipment World. [https://www.equipmentworld.com/business/article/15064191/will-the-
construction-industry-rebound-to-prepandemic-levels](https://www.equipmentworld.com/business/article/15064191/will-the-
575 construction-industry-rebound-to-prepandemic-levels)

576 Mesnil, B., and P. Petitgas. 2009. “Detection of changes in time-series of indicators using CUSUM control
577 charts.” *Aquat. Living Resour.* 22 (2): 187–192. <https://doi.org/10.1051/alr/2008058>.

578 Montgomery, D. C. 2001. *Introduction to statistical quality control*. John wiley & sons.

579 Novoa, N. M., & Varela, G. (2020). Monitoring surgical quality: the cumulative sum (CUSUM)
580 approach. *Mediastinum*, 4.

581 Pain, L., Korsch, M., McGrath, G., & Bromfield, P. (2020, November 3). *Which States Are Likely To
582 Perform Well in a Construction Recovery?* L.E.K. Insights, L.E.K. Consulting.
583 <https://www.lek.com/insights/ei/which-states-are-likely-perform-well-construction-recovery>.
584 Accessed 10 December 2020

585 Saenz, R., & Sparks, C. (2020). The inequities of job loss and recovery amid the COVID-19 pandemic.
586 Carsey ResearchBrown, S., Brooks, R. D., & Dong, X. S. (2020). Impact of COVID-19 on construction
587 workers and businesses. CPWR

588 Said, S. E., & Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models of
589 unknown order. *Biometrika*, 71(3), 599-607.

590 Singleton, C. J. (1993). Industry employment and the 1990-91 recession. *Monthly Lab. Rev.*, 116, 15.

591 Shrestha, B. K., Choi, J. O., Shrestha, P. P., Lim, J., & Nikkhah Manesh, S. (2020). Employment and
592 wage distribution investigation in the construction industry by gender. *Journal of Management in
593 Engineering*, 36(4), 06020001.

594 Smith, C. (2021). *Why Women in Construction Are Celebrating*. Construct Connect.
595 <https://www.constructconnect.com/blog/why-women-in-construction-are-celebrating-in-2021>

596 Sorrentino, F. (2021, April 22). *2021: Building Momentum In The Construction Industry Post-COVID-19*.
597 Forbes. <https://www.forbes.com/sites/franksorrentino/2021/04/22/2021-building-momentum-in-the->
598 construction-industry-post-covid-19/?sh=3f8662b9533e

599 Taylor, P., Kochhar, D. R., Dockterman, D., & Motel, S. (2011). In two years of economic recovery,
600 women lost jobs, men found them. *Pew Research Center*.

601 Tilley, L. A., Wurtzel, A. L., & Risser, N. (2013). Recession and recovery. *Economic Development
602 Journal*, 12(2), 58.

603 USGNN. (2021, September 17). *August Construction Employment Lags Pre-Pandemic Peak in 39 States
604 As COVID, Supply Problems Hold Back Recovery*. USGlass Magazine & USGNN Headline News.
605 <https://www.usglassmag.com/2021/09/august-construction-employment-lags-pre-pandemic-peak-in->
606 [39-states-as-covid-supply-problems-hold-back-recovery/](https://www.usglassmag.com/2021/09/august-construction-employment-lags-pre-pandemic-peak-in-39-states-as-covid-supply-problems-hold-back-recovery/)

607 Watson, P. K., and S. S. Teelucksingh. 2002. A practical introduction to econometric methods: Classical
608 and modern. Mona, Kingston, Jamaica: University of West Indies Press.

609 Worden, K., Iakovidis, I., & Cross, E. J. (2019). On stationarity and the interpretation of the ADF
610 statistic. In *Dynamics of Civil Structures, Volume 2: Proceedings of the 36th IMAC, A Conference
611 and Exposition on Structural Dynamics 2018* (pp. 29-38). Springer International Publishing.

612 Yurkevich, V. (2021, July 12). *America desperately needs 1 million more construction workers*. CNN.
613 <https://edition.cnn.com/2021/07/08/economy/construction-worker-shortage/index.html>

614 Zhavoronkova, M., & Khattar, R. (2021, November 5). *Infrastructure Bill Must Create Pathways for
615 Women To Enter Construction Trades*. Center for American Progress.
616 <https://americanprogress.org/article/infrastructure-bill-must-create-pathways-women-enter->
617 [construction-trades/](https://americanprogress.org/article/infrastructure-bill-must-create-pathways-women-enter-construction-trades/)

618

619