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Abstract—Arbitrary-precision integer multiplication is the core ker-
nel of many applications including scientific computing, cryptographic
algorithms, etc. Existing acceleration of arbitrary-precision integer mul-
tiplication includes CPUs, GPUs, FPGAs, and ASICs. To leverage the
hardware intrinsics low-bit function units (32/64-bit), arbitrary-precision
integer multiplication can be calculated using Karatsuba decomposition,
and Schoolbook decomposition by decomposing the two large operands
into several small operands, generating a set of low-bit multiplications
that can be processed either in a spatial or sequential manner on the
low-bit function units, e.g., CPU vector instructions, GPU CUDA cores,
FPGA digital signal processing (DSP) blocks. Among these accelerators,
reconfigurable computing, e.g., FPGA accelerators are promised to
provide both good energy efficiency and flexibility. We implement the
state-of-the-art (SOTA) FPGA accelerator and compare it with the SOTA
libraries on CPUs and GPUs. Surprisingly, in terms of energy efficiency,
we find that the FPGA has the lowest energy efficiency, i.e., 0.29x of
the CPU and 0.17x of the GPU with the same generation fabrication.
Therefore, key questions arise: Where do the energy efficiency gains of
CPUs and GPUs come from? Can reconfigurable computing do better? If
can, how to achieve that?

We first identify that the biggest energy efficiency gains of the
CPUs and GPUs come from the dedicated vector units, i.e., vector
instruction units in CPUs and CUDA cores in GPUs. FPGA uses DSPs
and lookup tables (LUTs) to compose the needed computation, which
incurs overhead when compared to using vector units directly. New
reconfigurable computing, e.g., “FPGA+vector units” is a novel and
feasible solution to improve energy efficiency. In this paper, we propose to
map arbitrary-precision integer multiplication onto such a “FPGA+vector
units” platform, i.e., AMD/Xilinx Versal ACAP architecture, a heteroge-
neous reconfigurable computing platform that features 400 AI engine
tensor cores (AIE) running at 1 GHz, FPGA programmable logic (PL),
and a general-purpose CPU in the system fabricated with the TSMC
7nm technology. Designing on Versal ACAP incurs several challenges and
we propose AIM: Arbitrary-precision Integer Multiplication on Versal
ACAP to automate and optimize the design. AIM accelerator is composed
of AIEs, PL, and CPU. AIM framework includes analytical models to
guide design space exploration and AIM automatic code generation to
facilitate the system design and on-board design verification. We deploy
the AIM framework on three different applications, including large
integer multiplication (LIM), RSA, and Mandelbrot, on the AMD/Xilinx
Versal ACAP VCK190 evaluation board. Our experimental results show
that compared to existing accelerators, AIM achieves up to 12.6x, and
2.1x energy efficiency gains over the Intel Xeon Ice Lake 6346 CPU, and
NVidia A5000 GPU respectively, which brings reconfigurable computing
the most energy-efficient platform among CPUs and GPUs.

Index Terms—Heterogeneous reconfigurable computing architecture,
Versal ACAP, mapping framework, arbitrary-precision integer computing

I. INTRODUCTION

Abitrary-precision or large integer multiplication (e.g., ≥1024 bit)
is one of the most important arithmetic operations for scientific
big data analysis [1] (e.g. π, dispersion coefficients, n-body sys-
tem) and high-security level data encryption and decryption (e,g.
RSA [2], [3], ECC [4]). According to “Application-Specific Key
Management Guidance” report from National Institute of Standards
and Technology (NIST) [3], the highest security level RSA key size
is 15,360-bit. As the computational power keeps growing, a larger
key size RSA will be necessary. Large-bit integer multiplication
(LIM) cannot be directly deployed on modern computing platforms
which have fixed and lower-bit (32/64-bit) precision function units.
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Fig. 1: Energy efficiency in kTasks/s/Watt comparison between the
prior and the current generation of CPUs, GPUs, and FPGA/ACAP.
One common solution is adopting Karatsuba [5], Schoolbook [6]
algorithms, and their variants [7] to decompose the high-precision
data into smaller segments or limbs, therefore, generating a set
of smaller-bit multiplication that can be mapped onto the native
hardware intrinsics, e.g., CPU vector instruction units, GPU CUDA
cores, FPGA digital signal processing (DSP) blocks. Among these
computing platforms, reconfigurable computing, e.g., FPGA accel-
erators [8]–[11] are promised to achieve a balance between energy
efficiency and flexibility, i.e., better energy efficiency than general-
purpose CPUs while preserving flexibility from programmable logic
and interconnects. We implement the state-of-the-art (SOTA) FPGA
LIM accelerator IMpress [6] on the AMD/Xilinx 16nm Ultrascale+
U250 FPGA board [12] and compare it with two generations of CPUs
(14nm and 10nm) and GPUs (14nm and 8nm) with SOTA CPU/GPU
libraries to compute 32768-bit unsigned integer multiplication. We
calculate the energy efficiency in thousand tasks per second per watt
(kTasks/s/Watt) for each computing platform and plot the bar chart.
As shown in Figure 1, in terms of energy efficiency, we observe that
IMpress on 16nm FPGA has the lowest energy efficiency, i.e., 0.29x
of the 14nm CPU and 0.17x of the 14nm GPU. Therefore, one key
question arises: Where do the energy efficiency gains of CPUs and
GPUs over FPGAs come from?

We first perform detailed profiling and analyze the energy effi-
ciency gains of the CPUs and GPUs over FPGAs. By using Intel
Software Development Emulator (Intel SDE) [13] and Intel Vtune
Profiler [14], we find that over 70% instructions are vector instruc-
tions vmul and vadd on Intel 14nm 19-10900X CPU [15] (Cascade
Lake, Intel 2nd Generation Scalable Processor). In Cascade Lake
CPU, there are two 512-bit Advanced Vector Extensions (AVX-512)
instruction units in each core [16]. Each vector instruction performs 8
lanes of computation with each lane computing up to 64-bit operands
to accelerate performance. Intel 10nm Xeon 6346 CPU [17] (Ice
Lake, Intel 3rd Gen.) has a similar architecture added with AVX-512
Integer Fused Multiply-Add (AVX512 IFMA) [18] instructions and
the profiling results show that about 78% of instructions being vector
AVX512 IFMA instructions. GPU 14nm Volta GPU V100 [19] and



8nm Ampere GPU A5000 [20] also feature abundant vector units.
In Volta and Ampere GPU, there are four CUDA cores in each
streaming multiprocessor (SM), and each CUDA core is capable
of executing 16 INT32 operations per clock. In contrast, FPGA
uses byte-level computation block DSPs and bit-level lookup tables
(LUTs) to compose the needed coarse-grained larger-bit computation
module and needs to pay the control overhead for every single
module. With the dedicated vector units, CPUs and GPUs execute
the same instruction for multiple data lanes, therefore, spend less
energy in control logic, i.e., instructions, and this explains the energy
efficiency gains of the CPUs and GPUs over FPGAs in LIM as SOTA
CPU/GPU libraries decompose LIM into 32/64-bit multiplications
and summations that are efficiently mapped to the dedicated vector
units on the CPUs and GPUs. A follow-up question arises: Can
reconfigurable computing do better if with vector units?

Our answer is “Yes”. In this paper, we propose to map arbitrary-
precision integer multiplication onto such a “FPGA+vector units”
platform, i.e., AMD/Xilinx Versal ACAP architecture [21], a het-
erogeneous reconfigurable computing platform that features 400 AI
engine tensor cores (AIE) running at 1 GHz, FPGA programmable
logic (PL), and a general-purpose CPU in the system fabricated with
the TSMC 7nm technology. Designing on Versal ACAP incurs new
challenges: First, how to decompose the large-bit integer multiplica-
tion onto smaller-bit computation modules and map them onto AIEs,
PL, and CPU on Versal ACAP? Second, how to decide the parallelism
within a single accelerator kernel and how to perform resource
allocation among multiple accelerators to achieve the optimal system
throughput? Third, how to integrate the accelerator in end-to-end
real-world applications that have different kernels? Fourth, can we
automate the design process and reduce the programming efforts for
the system implementation?

To solve the challenges and answer the research questions, we
propose the AIM architecture and its automation framework, the AIM
framework. Our contributions are summarized below:
● AIM Systematical Design Methodology and AIM Architecture:

In Section IV, we propose a thorough design methodology includ-
ing workload partition and AIM architecture featured with four-
level dataflow to accelerate arbitrary-precision integer multiplica-
tion on Versal ACAP. To the best of our knowledge, AIM is the
first accelerator for this domain on Versal ACAP.

● AIM Design Automation Framework: In Section V, we introduce
the AIM framework which includes analytical models to guide
design space exploration and AIM automatic code generation to
facilitate the system design and on-board design verification. We
also show how to deploy the AIM framework and integrate AIM
accelerators in three different applications, including large integer
multiplication (LIM), RSA, and Mandelbrot, on the AMD/Xilinx
Versal ACAP VCK190 evaluation board.

● Our on-board experiments in Section VI show that compared to
SOTA accelerators and libraries, AIM achieves up to 46.7x, 12.6x,
and 2.1x, energy efficiency gains over FPGA accelerator IMpress
on AMD/Xilinx 16nm Alveo U250, Intel 10nm Ice Lake 6348
CPU, and NVidia 8nm A5000 GPU.

● AIM Open-Source Tools: We open-source our tools with a detailed
step-by-step guide to reproduce all of the results presented in this
paper and for others to learn and leverage AIM in their end-to-end
applications: https://github.com/arc-research-lab/AIM.

II. RELATED WORK
In this section, we discuss different decomposition methods and

existing accelerators and libraries for large integer multiplication on
various platforms, including CPU, GPU, FPGA, and ASIC.

A. Decomposition Methods

By adopting decomposition methods, the two operands of a
large multiplication are decomposed into smaller limbs and can
be calculated using smaller multipliers in parallel. The Schoolbook
decomposition is as follows:

opA = opAh ∶ opAl

opB = opBh ∶ opBl

opA ∗ opB = (opAh ∗ opBh)
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(1)

The key idea of Schoolbook decomposition is to decompose the
operands into two parts (e.g., a 64-bit opA into higher 32-bit as
opAh and lower 32-bit as opAl) and perform four partial products:
opAh ∗opBh, opAl ∗opBl, opAh ∗opBl, opAl ∗opBh followed by
summations. Although the computation complexity of Schoolbook
decomposition is O(N2

) with N as the number of bits, and the
largest one among existing decomposition algorithms, Schoolbook
decomposition is hardware-friendly and has been selected to build
the fundamental compute block (base-case) in existing libraries such
as GNU Multiple Precision Arithmetic Library (GMP) [22] and
MPApca [23]. Karatsuba [5] and Toom-Cook [7], [24] decompo-
sition algorithms introduce more additions to the partial results of
smaller limbs to decrease the total number of multiplication needed.
Equation 2 shows that Karatsuba performs three partial products:
opAh ∗ opBh, opAl ∗ opBl, (opAh + opAl) ∗ (opBh + opBl).
However, Karatsuba needs more temporary storage to reuse the
already-computed partial products and introduces three extra sum-
mations. Toom-Cook decomposition splits operands into more limbs
and applies more complicated arrangements.

opA ∗ opB = (opAh ∗ opBh)
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Therefore, those decomposition algorithms have smaller com-
plexity. However, this trick entails a larger memory footprint to
store the partial results than Schoolbook decomposition. As reported
in [23], decomposing one 1,000,000-bit multiplication into 32-bit
multiplications requires 1.72 GB of storage and the memory footprint
can be smaller if a larger multiplier is available (1024-bit multiplier
requires 223.71 MB storage in this case).

B. Prior Accelerators and Libraries

CPU. The GMP [22] is one of the most popular high-performance
libraries for CPUs to compute arbitrary precision arithmetic. Some
work [25]–[27] utilize Intel’s Advanced Vector Extensions to ef-
ficiently compute large integer multiplication on the CPU. GMP
adopts Schoolbook decomposition as its base-case multiplication (up
to 2048-bit) and selects other decomposition methods for large-bit
multiplications on base-case multipliers.
GPU. GPUs also rely on software libraries to compute large multipli-
cations. Cooperative Groups Big Numbers (CGBN) [28] is a general
solution for GPU that utilizes CUDA cores to realize high parallelism.
However, CGBN only supports up to 32k bits multiplication, and for
smaller sizes, the operands must be evenly divisible by 32. Dieguez et
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Fig. 2: (a) Different workload partition schemes based on Schoolbook algorithm; (b) AIM architecture overview.
al. [29] adopts the Strassen FFT algorithm and a divide-and-conquer
algorithm to efficiently compute large integer multiplication on GPU.
Goey et al. [30] accelerate large integer multiplication on GPU using
NTT and apply it to a homomorphic encryption scheme.
FPGA. On FPGA, users can directly use vendor tools, for example,
on AMD/Xilinx FPGAs, users can compute multiplications up to
2048-bit directly using HLS [31]. Langhammer et al. [32] pro-
poses an efficiently folded multiplier using Karatsuba decomposition.
IMpress [6] designs HLS-based [33] FPGA accelerators, combines
Karastuba and Schoolbook decomposition methods, and adopts equal-
ity saturation to balance the hardware resource utilization. Vitali et
al. [34] combine Karastuba and Comba decomposition to generate a
throughput-oriented multiplier design on FPGA.
ASIC. Cambricon-P [23] is an efficient ASIC for arbitrary integer
computing, and its base-case hardware multiplier (up to 32768-
bit) is based on Schoolbook decomposition and aligns the partial
results to enable fast carry propagation. Similar to GMP, for larger
multiplication, Cambricon-P is able to choose different decomposition
methods on base-case multipliers. Mert et al. [35] design a low-
latency large integer modular squaring ASIC.
ACAP. Prior works have proposed accelerators on ACAP for deep
learning [36], [37], graph neural network [38], stencil computa-
tion [39], [40], etc. To the best of our knowledge, we are the first work
to implement arbitrary-precision integer multiplication on ACAP. We
use Schoolbook decomposition for hardware-friendly mapping and
we leave the other decomposition methods as future work.

III. VERSAL ACAP ARCHITECTURE OVERVIEW
In this section, we introduce the overall architecture of the Versal

heterogeneous SoC platform and the AIE Array of the Versal ACAP.
A. Versal ACAP Architecture

Versal ACAP is a computation platform with high performance
and high heterogeneity. As shown in Figure 3, it is composed of
scalar engines (CPU) for general-purpose processing, programmable
logic providing bit-level flexibility, and AI Engines (AIEs) optimized
for computation-intensive processing. Versal ACAP adopts the multi-
level scratchpad memory hierarchy in PL and AIE including the 20
MB SRAM in PL and 12.8 MB local memory in AIE. The data in PL
SRAM storage can be shared with all the AIEs through the interface
connections between PL and AIE, namely PLIO.
B. AIE Array

We highlight the data movement and computation of the intelligent
engines (AIEs) in Figure 3. Each AIE is a very long instruction word
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Fig. 3: Versal architecture overview.
(VLIW) supported vector processor that runs at 1 GHz. In each cycle,
it supports up to 7-instruction parallelism including 2 loads, 1 store,
1 vector operation, 1 scalar operation, and 2 move operation. For our
target device VCK190, there are 400 AIEs and physically form an 8
rows × 50 columns array. The AIE array applies a tiled architecture
in that each AIE owns a 32KB local memory, 2Kb vector register,
and 3Kb accumulation register. The local memory of AIE can be
shared with the neighboring 4 AIEs through the 256bits/cycle high
bandwidth connections and with the non-neighboring AIEs through
the 32bits/cycle AXIS stream connections. Between the neighboring
AIEs in the same row, a dedicated cascade connection enables fine-
grained data transmission from the accumulation registers.

IV. AIM SINGLE ACCELERATOR DESIGN

In this section, we first introduce the schoolbook decomposition al-
gorithm and analyze the challenges of designing the high throughput
accelerator when mapping this algorithm on ACAP. We then provide
the AIM dataflow architecture overview and our mapping strategy on
Versal ACAP. We also elaborate on the AIM architecture details from
the single AIE optimization, scaling out to the AIE array, to the PL
fully pipelined carry propagation module.

A. Workload Partition Based on Schoolbook Algorithm

When dealing with arbitrary size integer multiplication, the school-
book decomposition algorithm serves as the building block for its
relatively low storage demand compared with other decomposition
methods, e.g., Karatsuba. In the decomposition, the large integers can
be evenly separated into multiple smaller segments at a certain gran-
ularity. Taking a 128-bit multiplication as an example, in Figure 2(a),



Listing 1 Data tiling and dataflow in AIM.
1 L3: PL_load_input_data_from_DDR(...);
2 L2: data_preprocessing_on_PL(...);
3 L1: // Parallel computation in AIE array
4 for(int c = 0; c < AIE_COL; c++):
5 // Dependency exists on different rows
6 for(int r = 0; r < AIE_ROW; ++r):
7 L0: // Single AIE compute flow
8 for(int w = 0; w < B_W/P_W; ++w):
9 for(int h = 0; h < A_H/P_H; ++h):

10 vector_mul(...); //call packed instr.
11 L2: carry_propagation_on_PL(...);
12 L3: PL_store_results_DDR(...);

the two operands are divided into four 32-bit segments. Sixteen
multiplications are needed to generate the partial results which have
O(N2

) complexity. The final result is obtained by accumulating the
partial results within the same column and propagating carry bits to
the next column. While the large integer multiplication provides good
parallelism, a large amount of temporal memory footprint and the
long carry chain computation make it non-trivial to design.

B. AIM Overall Architecture

Figure 2(b) shows the overview of our proposed AIM architecture,
which is composed of the AIE array, PL data processing modules, and
the corresponding I/Os. The sub-multiplications in Figure 2(a) can be
grouped with different workload partition schemes and mapped onto
different numbers of AIEs. Here we use workload 2 to illustrate. The
16 multiplication are partitioned into 6 groups and mapped to 6 AIEs
(AIE0-AIE5). The AIEs with read-after-write (RAW) dependency
(AIE1→AIE3, AIE2→AIE4) are connected with the cascade stream
that passes the temporal results in a fine-grained manner. To explore
the PLIO reuse, the input data on the same row or in the same
hypotenuse direction will be broadcast by the senders on the PL
side via the PLIO interface. In order to overlap the long latency
caused by the carry chain, AIM takes advantage of the flexibility
of programmable logic on ACAP and designs a dedicated high-
throughput fine-grained carry propagation module.

C. AIM Four-Level Dataflow of AIM Architecture

Listing 1 shows the pseudo-code of the four-level dataflow:
L0: Single AIE Level (Lines 7-9). In a single AIE level, each
AIE/tile computes with carefully designed and packed vector intrin-
sics instructions.
L1: AIE Array Level (Lines 4-6). The grouped tiles are distributed
to multiple AIEs computed in parallel. Parallel loop Line 6 shows
that for AIEs within the same column, the partial results need to be
accumulated and these AIEs are connected using the cascade stream.
Parallel loop Line 4 describes AIEs in different columns. The AIE
array size AIE COL×AIE ROW is determined by the input size
and tile granularity in Figure 2(a). For Workload 2, the AIE array
size is 3 × 2.
L2: PL Data Processing Level (Lines 2&11). On the PL side, we
design multiple stream-based data processing modules. By applying
a fine-grained sending and receiving strategy, the dedicated data pre-
processing and carry propagation modules can keep pace with the
throughput of the AIE array and hide the latency of carry propagation.
L3: Off-Chip Level (Lines 1&12). At the last level, data will be
streamed between the DDR and the BRAM on the PL side.

D. Single AIE Kernel Optimization

The simplified single AIE level computation flow is shown in
Listing 2. The kernel takes two local memory pointers (in0, in1) and
one cascade stream (acc in) as input (Line 1). The input data will be

Listing 2 Optimized AIM kernel compute flow
1 AIE_Krnl(in0, in1, out, acc_in):
2 for(int w = 0; w < B_W / P_W; ++w):
3 // Read partial results from previous AIE
4 v8acc80 = read_acc(acc_in)
5 v8a = read(in0) // Read new segment A
6 v16b = read(in1) // Read new segment B
7 for(int h = 0; h < A_H / P_H; ++h):
8 vector_mul(v8a,v16b,v8acc80)
9 write_acc(out, v8acc80)

10 // carefully pack instructions here:
11 vector_mul(v8a,v16b,v8acc80):
12 v8acc80 += v16b[0:7] * v8a[0]
13 v8acc80 += v16b[1:8] * v8a[1]
14 v8acc80 += v16b[2:9] * v8a[2]
15 v16b_next = read(in1) // load instruction
16 v8a_next = read(in0) // load instruction
17 ...
18 v8acc80 += v16b[7:15] * v8a[7]
19 v16b = v16b_next
20 v8a v8a_next

loaded from the local memory or cascade stream into the local vector
registers as shown in Lines 4-6. Then multiple SIMD instructions
are packed together in the vector mul function to process the
vector registers (Lines 11-20). In order to explore the instruction-
level parallelism, AIM inserts the load instructions (Lines 15 & 16)
with multiplication instructions to hide the latency for preparing the
data needed in the next iteration. The output stationary dataflow is
used to avoid frequent vector eviction. The results will only be sent
to the output stream and passed to the next tile/AIE after finishing
all the reductions in this tile (Line 9). On the AIM architecture,
the accumulator is up to 80-bit and the result segments in AIM are
31bits × 31bits = 62bits. Therefore, the accumulator register is safe
to sum up 217 partial results with 1 sign bit left.

E. Scaling Out to AIE Arrays

To achieve the highest system-level throughput, more AIEs should
be utilized. In AIM, we adopt a spatial computing fashion. In this
spatial computing, we also exploit the data broadcasting mechanism
to reduce the PLIO demand. Still, take the AIE array of workload 2
in Figure 2(a) as an example, the AIEs within the same row share the
same segments from operand A, and AIEs aligned in the hypotenuse
direction share the same segments from operand B. In this case, only
5 input PLIOs and 4 output PLIOs are needed instead of using 12
input PLIOs and 6 output PLIOs. The PLIO saving is more significant
when mapping to a larger AIE array.

The cascade stream connects AIEs with the RAW dependency to
make better use of the accumulator register and reduce the amount of
data that needs to be streamed out to PL for reduction. Although this
introduces dependencies in the AIE array, the performance is not hurt
as we adopt the fine-grained pipeline to minimize the transmission
overhead. In Listing 2, each AIE first calculates multiplications that
need to be accumulated together. Then, it transmits the partial results
to the next AIE at line 9 and starts accumulating on another register
for the rest multiplications. In this way, both AIEs can start computing
earlier, and their computation timelines largely overlap.
AIE Placement Optimization. When scaling out to multiple AIEs,
both logical connection and physical connection constraints should be
fulfilled. For logical connection, shown in Figure 2(b), segments from
operand A are broadcast to AIEs in the same row, segments from
operand B are broadcast along the same column, and the cascade
stream connects AIEs in the reduction dimension. This is difficult
for the physical connection. As mentioned in Section III, the 400
AIEs on ACAP are distributed in 8 rows and 50 columns, and
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Fig. 5: AIE placement before vs. after two-step placement algorithm.
the cascade stream connects AIEs in the same row. Without proper
guidance, the search space is huge. As shown in Figure 5(a), the
vendor-provided default AIE placer tends to occupy the middle part
of the AIE array, and the occupied AIEs form an irregular shape.
This default placement fails if more AIEs are used. Thus, a better
placement algorithm is needed.

We propose a two-step placement algorithm to solve this and
enable more AIE usage. Figure 4(a) shows the logic connection when
mapping the whole computation onto 20 AIEs. In the first step,
we rearrange AIEs in different columns and match them to form
AIE links with the same length. This gives a regular rectangular
shape, as shown in Figure 4(b). We transpose the AIE link direction
from the vertical direction in Figure 4(a) to the horizontal direction
in Figure 4(b) to match the physical cascade stream direction as
horizontal. After the rearrangement, the AIEs in the same link will
be placed together. In the second step, we find the exact AIEs to
put each AIE link. We place AIE links and map them onto the
physical AIEs starting from the left part of AIE arrays to the right
and from the bottom part of the AIE arrays to the up. Considering the
actual cascade streams flow in opposite directions for every adjacent
two rows, Figure 4(c) shows the actual placement to reflect this. By
adopting the proposed placement algorithm, AIM is able to use up
to 396 AIEs. Figure 5(b) shows the optimized placement results.
F. Specialized PL Data Processing Module Design

To keep pace with the high throughput of the AIE array and hide
the latency caused by the long carry chain, we design dedicated
senders and carry propagation processing modules on the PL side.
PL Sender. The senders in Figure 2(b) are responsible for doing
the bitwidth conversion between DDR and PL as well as exploring
the broadcast opportunity for feeding the data to the AIE array. To
achieve higher off-chip DDR bandwidth, 512 bits data granularity is
applied to load the two input operands. In contrast, the maximum
bitwidth of PLIO (PL ↔ AIE) is 128-bit. A bitwidth conversion
module is created inside each sender module. Besides, AIEs only
support 32-bit data selection granularity with signed integers and lack
unsigned 32-bit vector instructions. Therefore, the senders need to
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Fig. 6: AIM framework.

prepare data for AIE by slicing the large chunks into 31-bit segments
and inserting zero as the sign bit.
PL Carry Propagation. The carry propagation module propagates
carry bits for the partial results from the AIE array. In AIM, the
multiplication results are first reduced in the accumulator register.
The carry bits in the accumulator are further reduced on the PL side.
The carry chain can be very long and can easily be the bottleneck
of the whole system. In AIM, this is avoided by breaking the long
carry chain into shorter carry chains and processing the carry in two
steps. As shown in Figure 2(b), each PLIO is connected to a module
to calculate carry bits in 128-bit granularity. These carry adders are
computing simultaneously. Then, more bits (512-bit granularity) can
be added in one cycle by using LUTs and flip-flops (FFs) to generate
the correct carry bits.

V. AIM DESIGN AUTOMATION FRAMEWORK AND INTEGRATION

IN END-TO-END APPLICATIONS

In this section, we will discuss the AIM design automation
framework. Then, we will use three representative applications to
illustrate how to integrate AIM into end-to-end applications.

A. AIM Design Automation Framework Overview

Figure 6 shows the AIM framework overview. The AIM framework
generates customized AIM architecture with user-specified input data
sizes and hardware resource constraints. A one-time HLS profiling
results with LUT/BRAM utilization and PL kernel execution time
are needed to guide the design space exploration (DSE) in the next
step. The AIM-DSE module is responsible for searching optimal
PL and AIE configurations to create a customized AIM architec-
ture exploiting inter-task and intra-task level parallelism. Then, the
Python-based AIM automatic code generator (AIM-ACG) takes the
optimal configurations as input and emits the code for AIE kernels,
AIE array mapping, high throughput PL modules, and CPU host.
Finally, AIM automatically launches the vendor-provided back-end
tools, Vivado [41], Vitis HLS [33], AIE Compiler [42], etc., to
generate the hardware configuration bitstream (.xclbin) for PL & AIE
and host executable binary (.hostexe) for ARM CPU on ACAP.

B. AIM Architecture Exploiting Inter-/Intra-task Parallelism

We consider two different levels of parallelism, inter-task par-
allelism, and intra-task parallelism as shown in Figure 7. In this
example, every PE calculates an independent task and occupies 9
AIEs. Therefore, the intra-task is 9. The AIM architecture is able to
accommodate multiple PEs for different tasks. In Figure 7, N PEs
are placed and the inter-task parallelism is N.

The generated sub-multiplications can be calculated in parallel. As
shown in Figure 2(a), the necessary multiplications to be computed
form a parallelogram shape, and different workload partition schemes
on each AIE lead to different mapping efficiency and AIE kernel
efficiency. Workload 1 in Figure 2(a) maximizes the intra-task paral-
lelism, and maps the whole computation with 16 AIEs within each
task or PE. However, if the input size is smaller, fewer instructions
can be packed which leads to a decreased AIE kernel execution
efficiency. Workload 3 in Figure. 2(a) maps the whole computation
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TABLE I: System level performance of 8192-bit multiplier on differ-
ent parallelism strategies.

Case PIntra PInter #bits/AIE PKT LUT BRAM Tasks/s

1 306 1 496 1 43.6% 4.7% 1.6M
2 30 7 1736 1 78.1% 16.7% 9.6M
3 1 80 8192 4 60.5% 98.6% 5.7M

onto a single AIE within each task or PE and maximizes the inter-
task parallelism by calling multiple PEs. As each task or PE needs
corresponding PL resources for the sender modules and the carry
propagation modules, more PEs mean more PL resource usage. We
explore the proper intra-task and inter-task parallelism by model-
guided DSE and find the “sweet point” in the whole DSE space.
Table I shows the system level throughput of the three different
parallelism configurations. Case 2 (workload 2) in Figure 2(a) is
the optimal design and the total number of AIEs in the system is
210. Workload 1 occupies more AIEs with fewer PL resources and
it is easier to use more total numbers of AIEs (306). However, each
AIE’s efficiency is low in this case. In workload 3, each AIE tends
to consume more programmable logic. Therefore the total number of
AIEs can be used (80) is bounded by the PL resource. In summary,
the AIM architecture is flexible with different design configurations
and we will use DSE to guide the search to achieve the optimal
system-level throughput.
C. AIM Analytical Models and Design Space Exploration
DSE Configurable Variables: (PInter , PIntra). To maximize the
overall system throughput, we build the AIM-DSE that takes user-
specified data size N and hardware resource constraints Ci, i ∈
{LUT,RAM,DSP,#AIE} as inputs. The output of our AIM-
DSE is the inter-level parallelism PInter and intra-level parallelism
PIntra.

The optimization goal and constraints are summarized as follows:
max Throughput(PInter , PIntra)
s.t. Resourcei(PInter , PIntra) ≤ Ci

i = LUT,BRAM,PLIO,AIE

(3)

Overall Throughput Modeling. Since the AIE array is a 2D array,
the PIntra has two dimensions which represent the number of AIEs
in AIE array’s row and column as shown in Equation 4.

PIntra = PIntra0 ⋅ PIntra1 (4)
The number of segments (S0,1) for two operands assigned to

a single AIE is determined by the input size N and intra-task
parallelism PIntra:

S0,1 =
⌈N
31
⌉

PIntra0,1

(5)

where SIMD is the adopted vector parallelism in the single AIE
kernel and the 31-bits is set as the segment granularity in Equation 5.

Once the workload is determined, the execution efficiency Eff of
the single AIE kernel can be obtained from the cycle-accurate AIE
simulator. The AIE compute clock cycle is formulated as follows:

AIEcyc = S0 ⋅ S1

SIMD ⋅Eff
(6)

We characterize the execution time of the sender and carry propa-
gation modules based on the Vitis HLS [33] report. The system’s
overall throughput can be calculated as follows:

Throughput = PInter

max(Sendercyc, Carrycyc, AIEcyc) (7)

Hardware Resource Constraints. The AIE and PLIO consumption
need to meet the hardware constraints:

PInter ⋅ PIntra < CAIE

(PIntra0 ⋅ 2 + PIntra1 ⋅ 2 − 1) ⋅ PInter < CPLIO
(8)

The consumption of LUT and BRAM are profiled using the Vitis
HLS tool and should meet the constraints:

LUTprofile ⋅ PInter < CLUT

BRAMprofile ⋅ PInter < CBRAM
(9)

D. AIM Integration into More Complex End-to-end Applications

Here we use two more complex real-world applications, RSA and
Mandelbrot, to demonstrate the integration of AIM into an end-to-end
design. The advantage of using AIM is the non-multiplication parts
can be designed in a pipeline fashion on the PL side, and executed
simultaneously with the multiplier. Therefore, the control flow and
other operations’ execution time can be hidden with batch processing.
This explains the reason why AIM achieves higher energy efficiency
gains when integrated into end-to-end applications when compared
to instruction-based CPUs and GPUs.
RSA. RSA is a commonly used asymmetric cryptographic algorithm
that uses different encryption and decryption keys. The security of
RSA is based on the mathematical problem of big integer factorizing.
The highest security level RSA size in the NIST standard [3] is
15,360-bit. As the computational power keeps growing, a larger key
size RSA will be necessary. The encryption and decryption processes
of RSA are shown in Equation 10.

Cyphertext = Plaintextepub mod M

Plaintext = Cyphertexteprv mod M
(10)

M is a factor of two large prime numbers (p, q), epub and eprv
satisfy the following conditions:

ϕ = (p − 1)(q − 1)
1 < eprv < ϕ

gcd(eprv , ϕ) = 1

1 < epub < eprv

epub ⋅ eprv mod ϕ = 1

(11)

The fundamental part of RSA encryption and decryption is modular
exponentiation in Equation 10. For fast execution, we adopt exponen-
tiation by squaring and Montgomery Multiplications (MontMul) to
reduce the total multiplications needed and avoid slow modular calcu-
lation. RSA encryption is processed in three steps. First, the plaintexts
and parameters will be read from DDR, and the Montgomery repre-
sentation of plaintexts will be calculated. Second, the RSA modules
and MontMul modules perform fast exponentiation and stream data
to the AIM architecture. Third, the encrypted data exits Montgomery
space. Considering the side-channel issue in the exponentiation by
squaring, AIM calculates Montgomery multiplication regardless of
the key value.

Figure 8 and Figure 9 show the RSA dataflow architecture and
pipeline of different modules in RSA. To fully utilize the AIE array,
independent tasks need to be streamed in the AIM architecture. AIM
reads new tasks and writes computation results simultaneously and
it is better for users to decouple the execution of the sender modules
and receiver modules via first-in-first-out (FIFO) streams. The RSA’s
pipeline in Figure 9 demonstrates the full utilization of AIEs. The
key takeaway is that the AIE kernels (3) are fully pipelined and hide
the latency of the other kernels (1,2,4,5) that are implemented on PL.
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Fig. 9: Pipeline of different modules in RSA. The key takeaway is
that the AIE kernels (3) are fully pipelined and hide the latency of
the other kernels (1,2,4,5) that are implemented on PL.

Kernels 2 & 4 are the sender and receiver of MontMul and kernels 1
& 5 are the sender and receiver of the exponentiation module. Here
we use two independent tasks (denoted T0, T1) to illustrate. The two
tasks are loaded to kernel 1; each task will be sent to kernel 2 twice
in each RSA iteration (denoted M0,M1); Montgomery multiplication
requires three multiplications (denoted S0, S1, S2). A fine-grained
pipeline is designed for PL modules 1, 2, 4, and 5 in Figure 8. In
the beginning, kernel 2 reads one multiplication task from kernel
1 and sends it to the AIM architecture. (Time 0) The AIEs start
computing when the first task is completely loaded (Time 1). During
the computation, AIE architecture keeps reading another new task
(Time 1) and prepares it for the computation of the next time step
(Time 2). In Time 2, the multiplication result of T0I0M0S0 is ready
and kernels 4 & 2 need to prepare multiplication task T0I0M0S1

while computing T1I0M0S0.
Mandelbrot. Mandelbrot set is a type of fractal with detailed struc-
tures at arbitrary precision. Mandelbrot set is plotted by performing
divergence tests, shown in Equation 12, for sampled points on the
complex plane. The divergence tests stop if ∣fc(z)∣ > 2 or the
iteration number reaches a certain threshold. The different color
shows the number of iterations for this coordinate before stopping. It
has high demands on precision to represent the coordinates since
tiny differences in coordinates have significantly different results.
Figure 10 depicts Mandelbrot set in the same area with the same
image size but different precision bits. Different from RSA, the
number of multiplications cannot be determined ahead of time.
The divergence test is performed for every pixel. Different pixels
have various iterations before divergence. Therefore, this application
requires a run-time scheduler. AIM takes advantage of programmable
logic to implement this run-time scheduler.

fc(0), fc(fc(0)), fc(fc(fc(0))), ...
fc(z) = z2 + c

(12)

VI. EXPERIMENTS RESULTS
In this section, we report the performance, and energy efficiency

of the AIM designs from on-board measurement, demonstrate the

Fig. 10: Plotting the Mandelbrot set from lowest precision (left) to
highest precision (right). More precision bits show finer features.

TABLE II: Experiment Setup for CPU and GPU.

CPU

Type Intel Xeon Gold 6346
Fabrication 10nm
Frequency 3.1GHz

TDP 205W/CPU
Library GMP Version 6.2.1

GPU

Type NVIDIA A5000
Fabrication 8nm
Frequency 1.17GHz

TDP 230W
Library CGBN Version 2.0

TABLE III: Model VS. on-board measured performance (Tasks/s) for
65,536-bit LIM on AIM. PL frequency is reported in MHz.
PIntra Pinter #bits/AIE Freq. Model On-board Error

20 8 16616 175 185.7k 186.2k 0.3%
30 7 13144 176 255.5k 256.2k 0.3%
42 6 11160 184 299.6k 302.2k 0.8%
56 5 9424 190 344.4k 348.3k 1.1%
72 4 8432 190 340.0k 344.5k 1.3%
90 4 7440 186 430.1k 436.6k 1.5%
110 3 6696 207 392.6k 399.1k 1.7%
132 3 6200 209 452.8k 459.8k 1.5%
156 2 5704 206 352.1k 356.5k 1.3%
182 2 5208 207 415.9k 387.3k -6.9%
210 1 4712 206 249.4k 254.5k 2.0%
272 1 4216 208 280.3k 270.6k -3.5%

accuracy of our analytical model, and compare AIM designs with
other platforms including CPUs, GPUs, FPGA, and ASIC.
A. Experimental Setup

We evaluate AIM designs on AMD/Xilinx Versal VCK190
board [43], and we use Vitis 2021.1 for system implementation.
All AIEs are running at 1 GHz and the PL modules’ frequency
is the maximal achievable frequency after implementation. We use
AMD/Xilinx board evaluation and management tool [44] to measure
the power of VCK190 during the execution. We compare AIM
designs with state-of-the-art arbitrary integer multiplication libraries
on CPU and GPU, and the CPU and GPU setup is summarized in
Table II. We measure the CPU performance on a Dell PowerEdge
R750 server with two Intel Xeon Gold 6346 CPUs. We modify
the GMPbench 6.2.1 to enable multi-thread execution. We measure
the single-core performance and also the 32-thread, and 64-thread
performance on the CPU server. We choose 32-thread performance
as it is higher than 64-thread and calculate the energy efficiency by
dividing the total power of two CPU cores, i.e., 205 Watts x 2 = 410
Watts. For GPU measurement, we adopt perf tests provided in GPU
CGBN [28] library, and the power consumption is measured using
nvidia-smi [45].
B. AIM On-board Implementation Results and Discussions
Model Accuracy. To verify the accuracy of the analytical model,
we select different configurations of inter-task parallelism and intra-
task parallelism for 65,536-bit LIM. Table III shows the comparison
between the analytical models and the on-board measurement. The
max error rate is 6.9% and the average error rate is 1.8%, which
shows that our analytical models achieve good accuracy. The maximal
throughput can be achieved with inter-task parallelism equal to 3 and
intra-task parallelism equal to 132. This configuration uses 396 AIEs,
and the implementation layout is shown in Figure 11.
Comparisons among AIM, FPGA, CPU, GPU, and ASIC. We
leverage AIM-DSE to search for optimal configurations for applica-
tion LIM with data sizes from 4,096-bit to 262,144-bit. Table IV com-
pares performance, and energy efficiency among Versal AIM, CPU
GMP, and GPU CGBN respectively. AIM Architecture achieves up to
1.43x throughput gain over the CPU server which has two Intel 10nm
Xeon 6346 CPUs, in total, 32-cores. AIM achieves 44.61x throughput
gain over a single CPU thread. It is worth mentioning that the CPU



TABLE IV: Optimal AIM Implementation for LIM with input sizes from 4,096-bit to 262,144-bit. We show performance and energy efficiency
comparisons among AIM, Intel 10nm Xeon 6346 CPU, and Nvidia A5000 GPU. For GPU, × means it is not supported in the library.

CPU (32 cores, 410W) GPU (230W) AIM (<77W) Energy Eff. Gain
Input Bits kTasks/s kTasks/s/Watt kTasks/s kTasks/s/Watt kTasks/s kTasks/s/Watt AIM vs CPU AIM vs GPU

4,096 23,259 56.73 145,474 632.50 17,685 467.87 8.25x 0.74x
8,192 7,619 18.58 36,760 159.83 9,578 220.04 11.84x 1.38x

16,384 2,726 6.65 11,355 49.37 3,901 84.02 12.63x 1.70x
32,768 1,026 2.50 2,970 12.91 1,438 27.46 10.96x 2.13x
65,536 386.0 0.94 × × 459.8 6.86 7.29x ×
131,072 145.3 0.35 × × 128.1 1.75 4.93x ×
262,144 57.0 0.14 × × 33.8 0.44 3.15x ×

PE 0 PE 1 PE 2

PE0

PE1

PE2

Fig. 11: Layout of the optimal design point for 65,536-bit LIM.

TABLE V: Performance and energy efficiency comparison between
GMP on Intel 10nm Xeon 6346 CPU (32 core, 410 Watt) and AIM
on VCK190 for RSA.

CPU AIM
Input Bits Tasks/s Tasks/s/Watt Tasks/s Tasks/s/Watt

4,096 6124 14.97 (1x) 81734 2458.2 (162.6x)
8,192 930 2.27 (1x) 44737 1196.2 (527.2x)

16,384 161 0.39 (1x) 19017 435.2 (1109.2x)
32,768 28 0.07 (1x) 10639 134.8 (1966.6x)

GMP baseline does not only adopt schoolbook decomposition. We
use Intel Vtune [14] to obtain the function call stack and find that
more advanced decomposition methods such as toom-cook [24], etc.
are adopted, which reduce the number of required multiplications by
introducing more additions and memory footprints. This is the reason
that the throughput gap between CPU GMP and AIM drops.

In terms of energy efficiency, AIM achieves up to 12.6x and 2.1x
gains over Intel Ice Lake 6346 CPU and Nvidia A5000 GPU. Note
that AIM achieves similar or better performance with less than 77
watts of total power in contrast to 410 watts of CPUs and 230 watts
of the GPU A5000. Compared to the FPGA IMpress [6] accelerator
on Alveo U250, AIM achieves up to 46.7x energy efficiency gain.
We believe that we can achieve higher performance for AIM if we
combine different decomposition methods adopted in CPU GMP,
and we leave this as our future work. Compared to ASIC design
Cambricon-P [23], AIM achieves 2.21x throughput gain. Indeed
AIM consumes 13x more power than Cambricon-P. However, to be
noted, we achieve ASIC-like performance by designing accelerators
on a reconfigurable computing platform with a cost of $10K in
contrast to designing a customized 14nm ASIC chip which costs
over $100M [46].
RSA Encryption. We compare AIM in accelerating more complex
applications, e.g., RSA, with CPU using GMPBench [22] library in
Table V. We do not include GPU results because the GPU CGBN
library does not provide an RSA implementation. AIM achieves up

TABLE VI: Performance and energy efficiency comparisons among
GMP [22] on Intel 10nm Xeon 6346 CPU, and CGBN [28] on Nvidia
8 nm A5000 GPU (230 Watt), and AIM (ours) on VCK190 for
plotting Mandelbrot set.

CPU GPU AIM
Input Bits Tasks/s Tasks/s/Watt Tasks/s Tasks/s/Watt Tasks/s Tasks/s/Watt

8,192 0.048 0.0037 (1x) 6.790 0.0326 (8.80x) 0.641 0.0228 (6.15x)
16,384 0.016 0.0013 (1x) 1.799 0.0087 (6.74x) 0.241 0.0088 (6.85x)
32,768 0.006 0.0005 (1x) 0.509 0.0024 (4.99x) 0.126 0.0042 (8.62x)

to 380x throughput gain and 1966.6x energy efficiency gain over
Intel Xeon Gold 6346. We look into CPU GMPBench and find
that CPU RSA adopts a different algorithm and spends a lot of
time computing large integer modulo operations. AIM adopts an
alternative efficient algorithm that transforms modulo operations into
shift and multiplication. Still, in AIM RSA implementation, the AIE
kernels are fully pipelined, and the latency of the other kernels that
are implemented on PL is hidden, which does not introduce extra
execution time in the end-to-end applications. This is different from
the CPU programming model where non-accelerated kernels easily
diminish the performance gain from the accelerated kernels on AVX
instructions.
Mandelbrot Set. Table VI shows the comparisons among AIM,
Intel Xeon 6346 CPU (GMP 6.2.1), and Nvidia A5000 GPU (CGBN
2.0) in plotting the same area of the Mandelbrot set using the same
configuration. We use a single CPU core as the baseline. AIM
achieves up to 8.62x and 1.73x energy efficiency gains over CPU and
GPU respectively. The energy efficiency gains are smaller than that
in LIM (Table IV). One reason is that Mandelbrot heavily computes
in square multiplication and the CPU GMP library calculates faster
when two operands are the same than when calculating two different
operands. We leave this optimization in AIM in our future work.

VII. CONCLUSION

In this work, we first analyze the energy efficiency gains when
mapping arbitrary-precision integer multiplication onto CPUs and
GPUs over reconfigurable computing, e.g., FPGA comes from the
vector units in CPUs and GPUs. We propose the AIM, a customized
accelerator architecture on Versal ACAP, i.e., a new heterogeneous
reconfigurable computing platform with added vector processors.
We propose the AIM framework that can systematically generate
and optimize AIM designs. We integrate AIM architecture into
multiple end-to-end applications and demonstrate that AIM achieves
the highest energy efficiency among the SOTA accelerators and
libraries including CPUs, GPUs, and FPGA. We will explore the
other decomposition methods and more applications in future work.
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