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A quantitative analysis of human gait patterns in space–time provides an
opportunity to observe variability within and across individuals of varying
motor capabilities. Impaired gait significantly affects independence and qual-
ity of life, and thus a large part of clinical research is dedicated to improving
gait through rehabilitative therapies. Evaluation of these paradigms relies on
understanding the characteristic differences in the kinematics and underlying
biomechanics of impaired and unimpaired locomotion, which has motivated
quantitativemeasurement and analysis of the gait cycle. Previous analysis has
largely been limited to a statistical comparison ofmanually selected pointwise
metrics identified through expert knowledge. Here, we use a recent statistical-
geometric framework, elastic functional data analysis (FDA), to decompose
kinematic data into continuous ‘amplitude’ (spatial) and ‘phase’ (temporal)
components, which can then be integrated with established dimensionality
reduction techniques. We demonstrate the utility of elastic FDA through
two unsupervised applications to post-stroke gait datasets. First, we dis-
tinguish between unimpaired, paretic and non-paretic gait presentations.
Then, we use FDA to reveal robust, interpretable groups of differential
response to exosuit assistance. The proposed methods aim to benefit clinical
practice for post-stroke gait rehabilitation, and more broadly, to automate the
quantitative analysis of motion.
1. Introduction
Human gait biomechanics vary widely based on individual physiological par-
ameters such as age, height, weight and muscle strength [1,2]. Gait can also be
affected by neuromotor disorders such as stroke [3] or Parkinson’s disease [4],
which can further reduce patient quality of life and community participation
[5]. Characterizing gait can provide valuable information for the diagnosis,
understanding and treatment of impairment [6], to the extent that gait speed
has been termed the ‘sixth vital sign’ [7]. Thus, the development of methods
that enable a quantitative analysis of gait, at the population and individual
levels, along with associated clinical and biomechanical interpretations, has
become an important focus of research in gait diagnostics and rehabilitation.

Common methods for analysing gait presentations from different groups can
be broadly categorized into either statistical comparisons of point metrics or
dimensionality reduction methods on engineered feature sets. In both cases, the
chosenmeasures encapsulate signal amplitude (themagnitudes of local extrema),
signal phase (relative timing within the gait cycle) or a combination of both [8].
These methods, while effective, rely heavily on expert domain knowledge to
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both identify metrics of interest and to define significant
changes within them [9], which can be labour and time inten-
sive. Moreover, as these methods are confined to a predefined,
finite-dimensional space, they are limited in their ability to dis-
tinguish between gait characteristics that span across domains,
such as multi-joint or spatiotemporal variance. As a result,
insight into the biomechanical locomotor strategies used by
individuals is limited to the space of chosen metrics. These
challenges are further compoundedwhen analysing the effects
of an intervention, such as robotic assistance, due to the redun-
dancy in the musculoskeletal system and high heterogeneity of
clinical gait and neurophysiology.

In clinical settings, functional measures focus on high-
level outcomes such as walking speed, symmetry and
capacity, through standardized tests such as the 6-min and
10-m walk tests [10]. These measures require minimal equip-
ment and are thus highly accessible to clinicians. However,
there is growing appreciation for studying the geometry of
gait through kinematics (e.g. joint angles) and dynamics
(e.g. joint torques) and understanding the biomechanical
mechanisms underlying a specific gait presentation. For
example, people post-stroke often increase the high-level out-
come of walking speed through compensatory mechanisms,
such as hip circumduction or hip hiking, rather than through
increased ankle torque production [11,12]. Such biomechani-
cal measures are typically obtained by using motion capture
and force ergometry, in conjunction with inverse dynamics
techniques. Both clinical and biomechanical measures have
been used to successfully differentiate between gait from
clinical and unimpaired populations [8], stratify gait from
within a single population [13] and evaluate the efficacy of
assistive devices [14].

With access to these kinematic and dynamic measure-
ments, one is naturally led to ask if we can move beyond
point metrics to a holistic analysis of gait, using the full
time series data. For instance, some studies have directly
applied methods such as principal component analysis
(PCA) [15] or statistical parametric mapping [16] to gait time
series and demonstrated continuous biomechanical differ-
ences between groups of participants. However, continuous
analysis holds an inherent challenge due to variation in rela-
tive timings within the gait cycle. Even when data are time
normalized to account for variable stride duration, misalign-
ment in measurements across strides can introduce noise
into summary calculations, such as the mean and variance
curves. One solution to mitigate this issue is to align events
within the gait cycle with algorithms such as dynamic time
warping (DTW) before further analysis. Such algorithms
stretch and contract the time axis of a signal to optimally
match a reference signal [17,18]. Multiple studies have
shown that DTW-based analysis can improve stride segmenta-
tion [19,20], enable recognition of unimpaired individuals by
gait [21] and yield clinically meaningful metrics [22]. How-
ever, DTW is designed for pairwise time series alignment,
rather than for collections of strides. Moreover, while DTW
addresses the challenges of temporal variability within data,
it ultimately causes temporal information to be removed
from analysis. Finally, this algorithm lacks a rigorous theoreti-
cal framework in which desirable properties of alignment,
such as symmetry, are met. To mitigate these issues, we look
into elastic functional data analysis (FDA), a recent statistical
framework under which to perform alignment, termed elastic
alignment, and calculate representative templates of
temporally variable data [23–25]. Promising recent work has
shown that elastic FDA can enhance statistical analysis of
impaired gait, but has yet to be extended for automating
extraction of biomechanically interpretable features from gait
[26]. In this work, we build on existing literature by integrating
ideas from continuous gait analysis, time series alignment and
spatiotemporal functional analysis.

Specifically, we demonstrate how elastic alignment can be
used alongside common dimensionality reduction techniques
to enhance clinical gait analysis at both the population and
individual levels, while removing the need for manual fea-
ture selection. We conduct this proof of concept using gait
kinematics as it both serves as a representation of postural
geometry during gait and is an accessible measure that can
be estimated through low-cost wearable sensors [27]. First,
we show that the decomposition of a signal into its amplitude
and phase through elastic FDA, together with PCA, provides
interpretable characterizations of unimpaired, post-stroke
paretic (more impaired) and post-stroke non-paretic (less
impaired) gait presentations. We then show that the inte-
gration of elastic FDA with unsupervised clustering
methods [28] reveals two types of user responses to gait
assistance with a soft exosuit and improves robustness to
intra-subject variability relative to conventional methods.
We discuss the mathematical background in §2, describe
our data collection and pre-processing methods before pre-
senting application-specific details in §3 and present results
in §§4 and 5. Finally, we conclude with a discussion on the
utility of this approach and future directions in §6.
2. Mathematical background
Elastic FDA presents a theoretical foundation for time series
analysis through decomposition into an amplitude com-
ponent, which describes the magnitudes assumed by a
function (e.g. joint angles), and a phase component, which
captures its relative temporal structure [29]. More formally,
consider a set of N time series, or functions, { f1, f2,…, fN},
sampled at T + 1 equally spaced times t = {0, 1/T, 2/T,…,
(T− 1)/T, 1}. The distortion of a function along the horizontal
axis can be formulated by introducing a warping function γ(t),
which represents a transformation between two time axes:
~t ¼ gðtÞ. Then, time warping can be represented as the com-
position of an original function fi with γ, to obtain the
warped function gi(t) = fi(γ(t)). Notably, a valid warping func-
tion γ(t) must satisfy three requirements: (1) it transforms the
finite time interval t∈ [0, 1], such that γ(0) = 0 and γ(1) = 1; (2)
warping must be a reversible operation, i.e. γ should be inver-
tible and therefore strictly monotonic; and (3) the function
and its inverse γ−1 should be smooth to have theoretical guar-
antees and reduce artifacts.

The problem of pairwise alignment of two functions f1
and f2 can be formulated as finding the warping function γ*
which minimizes some cost, E[ f1, f2(γ)], that encodes the
desired properties of alignment. Ideally, we would like warp-
ing to exhibit inverse symmetry, with optimal alignment of f2
to f1 given by (γ*)−1. Moreover, γ* should optimally align
f1 � ~g to f2 � ~g for any other warping function ~g to exhibit
invariance to simultaneous warping. While a common
choice for the cost function E is the Euclidean (L2) norm,
this cost satisfies neither inverse symmetry nor invariance
to simultaneous warping [23]. Instead, we consider the elastic
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Figure 1. Elastic functional analysis of joint angles. (a) Joint angle conventions for the hip (θh), knee (θk) and ankle (θa). (b) Demonstration of elastic alignment as
described in §2. The top row demonstrates the process with Gaussian functions of varying means and standard deviations, and the bottom three rows show example
data from the three joints of a representative unimpaired individual walking overground. The middle column (shaded) consists of the original curves, while the left
and right columns consist of the aligned functions (amplitudes) and warping functions (phases), respectively. The composition of an original function fi(t) with the
associated warping function γi(t) yields the aligned function gi(t) = fi(γi(t)). We observe improved alignment for this participant’s data in certain regions of the gait
cycle such as maximum plantarflexion and knee extension.
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FDA framework proposed by Srivastava et al. [24]. In this fra-
mework, we first define the square-root slope function operator:

qðtÞ ¼ signðf 0ðtÞÞ
ffiffiffiffiffiffiffiffiffiffiffi
jf 0ðtÞj

q
¼ f 0ðtÞffiffiffiffiffiffiffiffiffiffiffijf 0ðtÞjp : ð2:1Þ

Conceptually, this function is a normalized representation of
the slope f0(t). Then, the corresponding cost function satisfies
the desired properties described earlier (see [23] for details):

E½f1, f2� ¼ kq1ðtÞ � q2ðtÞk2 ð2:2Þ

¼
ð1
0

f 01ðtÞffiffiffiffiffiffiffiffiffiffiffiffijf 01ðtÞj
p � f 02ðtÞffiffiffiffiffiffiffiffiffiffiffiffijf 02ðtÞj

p
 !2

dt: ð2:3Þ

We can now calculate a mean time series, the Karcher mean
ð fKÞ [23], that is informed by both amplitude and phase dis-
tributions. The iterative calculation of the Karcher mean also
yields the corresponding warping functions {γi} for each orig-

inal function in { fi}, such that fi(γi(t)) are aligned with f
K
.

These warping functions form the phase component of the
dataset, while the aligned functions form the amplitudes.

In figure 1, we provide intuition for elastic FDA alongside
an overview of the kinematic data used in this work. Specifi-
cally, figure 1b (top row) demonstrates amplitude–phase
decomposition over a set of Gaussian curves that exhibit vari-
ation in the amplitudes along the vertical axis, and in the
phases along the horizontal axis. We align a set of functions
{ fi(t)} (middle column) to obtain the aligned functions
{ fi(γi(t))} (left column) and the corresponding warping func-
tions {γi(t)} (right column). A point on the warping function
below the identity line (γ(t) = t) indicates earlier timing com-
pared to the mean, while a point above the identity line
indicates later timing. For example, we see that the blue orig-
inal function attains the highest and earliest peak;
consequently, it has the largest amplitude and the lowest
warping function. Conversely, the green and purple functions
have similar peak magnitudes but are shifted in time; we see
that their amplitudes align closely, while their phases are
offset throughout the time interval.

In the context of the current study, the set of time series { fi(t)}
represents joint angles across strides, from 0% to 100% of the
gait cycle. Figure 1b (rows 2–4) shows the results of the ampli-
tude–phase analysis for the hip, knee and ankle angles
during overground walking for a representative unimpaired
individual.We observe improved alignment in amplitude, par-
ticularly at maximum ankle plantarflexion (∼70% GC) and
knee extension (∼50% GC). These regions of large improve-
ments in alignment correspond to regions of high variance in
{γi} and indicate sections of the gait cycle that experience high
temporal variability across strides, whichwe can nowquantify.
3. Data collection
3.1. Participants
Overground gait data from unimpaired young adults (N = 10,
5 female; 26 ± 4 yrs (mean ± s.d.); 68 ± 17 kg) and from
chronic post-stroke patients (>6 months post-stroke; N = 21,
9 female; 78 ± 19 yrs; 54 ± 11 kg) were used for this work.
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All unimpaired participants reported no previous history of
musculoskeletal injury or disease, and all participants pro-
vided written informed consent prior to participation. The
study procedures were approved by the Harvard Longwood
Medical Area and Boston University Institutional Review
Boards.
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3.2. Experimental protocol
Participants walked around an oval overground track at their
self-selected walking speeds for 6min. Lower limb kinematics
and ground reaction forces were measured using optical
motion capture (Qualisys Inc., Sweden) and instrumented
force plates (Bertec, Columbus, OH), respectively.

Post-stroke participants completed an additional 6-min
walk while wearing a mobile, unilateral soft ankle exosuit
[30] (figure 4a). The soft exosuit applied assistive stance-
phase plantarflexion and swing-phase dorsiflexion torques
at the paretic ankle (see [31] for hardware and controller
details).
20220402
3.3. Software
Inverse dynamics were calculated with biomechanics soft-
ware, Visual 3D (C-Motion, Germantown, MD). The data
were then segmented into strides using heel strikes detected
by the force plates and interpolated to 101 points. All ensuing
analyses were performed in MATLAB (The MathWorks Inc.).
All alignment and Karcher mean calculations were per-
formed using the ‘fdasrvf’ MATLAB package developed by
J. Derek Tucker [32].
3.4. Data pre-processing
We focused on sagittal-plane joint kinematics for this study,
using standard joint angle conventions (figure 1a). The
range of motion (ROM) of each joint during gait varies
widely, with the ankle, knee and hip spanning approximately
30°, 60° and 40°, respectively, in unimpaired individuals [33].
The ROM further varies across people post-stroke depending
upon the severity of impairment [34]. Thus, to weight
changes at each joint equally, we divided each joint angle
curve by a measure of its ROM. For comparison between
unimpaired and post-stroke populations (Application I), the
average unimpaired ROM was used to normalize the data.
For evaluation of individual response to exosuit assistance
(Application II), data were normalized by the baseline (no
exosuit) ROM for each participant. In the latter application,
the normalization aimed to also mitigate any biases from
correlations between participant impairment level and their
capacity to change gait kinematics. Further detail on appli-
cation-specific normalization is provided in §§4.1.1 and 5.1.1.
4. Application I: differentiating unimpaired and
post-stroke gait

First, we aimed to use this continuous and unsupervised
framework to understand the spatial and temporal differ-
ences that characterize post-stroke gait kinematics relative
to unimpaired gait, using a combination of elastic alignment
and PCA.
4.1. Methods
4.1.1. Pre-processing
We analysed data from the right side of the 10 unimpaired par-
ticipants and the paretic and non-paretic sides of the 21 post-
stroke individuals as they walked without any device, for a
total of 52 sets of gait measurements, { fij}. For each joint j of
each set i, we used elastic alignment to calculate the Karcher

mean, fij
K
, across strides. After normalization by the mean unim-

paired joint-level ROM, we concatenated the hip, knee and ankle
Karcher means to obtain a single representative gait vector per
set. Finally, we aligned all such gait vectors, { fi}, yielding an over-

all fi
K
for the dataset, a set of amplitude functions ffi � gig and a

set of warping functions {γi}.

4.1.2. Principal component analysis
In this work, we leveraged PCA, an established method for
dimensionality reduction [35], to understand structure within
the resultant amplitudes and phases. Specifically, we construct
a data matrix X in which each column contains a separate obser-
vation, subtract the mean X and calculate the singular value
decomposition of the result using the form X � X ¼ USVT . The
columns Up, termed the principal components (PCs), form the
basis vectors for the lower-dimensional space, and each data
sample i is associated with coefficients Vi, representing coordi-
nates within this space. The diagonal matrix S contains
singular values, which represent the relative significance of the
components. We separately applied PCA to the aligned ampli-
tudes (ffi � gig) and phases ({γi}) to differentiate among
unimpaired, paretic and non-paretic gait.

To understand how each component manifests across the gait
cycle, we scaled each PC to span the range of coefficients
observed in the unimpaired, paretic and non-paretic data,
while keeping the other components fixed. Formally, we visual-
ized:

gC,p,b ¼ X þ SpðVC,p þ bSD½VC,p�ÞUp, ð4:1Þ
where VC,p is a vector containing the coefficients for strides in cat-
egory C, corresponding to PC p, and gC,p,β is the resulting curve
for scaling factor β. We considered C∈ {‘unimpaired’, ‘paretic’,
‘non-paretic’}, p∈ {1, 2, 3}, and chose b [ f�1, � 1

2 , 0,
1
2 , 1g to

act over one standard deviation of VC,p.
To analyse the phase, we repeated this approach and gener-

ated gC,p,β for each PC in the space of warping functions {γi}. We
then composed the unimpaired Karcher mean with gC,p,β to
understand how variation in the warping functions translated
to variation in the gait cycle. Finally, for further visualization of
the amplitude and phase PCs, animations of gait defined by
gC,p,0 for each category and PC are provided in the electronic
supplementary material.

4.1.3. Statistical evaluation
The separability of the three categories (unimpaired, paretic and
non-paretic) in the PC coefficient space quantifies how much the
PCs correspond to the distinguishing characteristics of each cat-
egory. For each PC, we performed a Kruskal–Wallis test at a
significance level of α = 0.05 to test for differences in the coeffi-
cient distributions across categories. If a significant main effect
of category was observed, we conducted post hoc pairwise
Wilcoxon rank-sum tests with Tukey–Kramer corrections.

4.2. Results
4.2.1. Amplitude
In figure 2a, we applied PCA to the set of amplitudes and found
that in the three-dimensional PC coefficient space, the three
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categories formed largely separable clusters. The first, second
and third PCs accounted for 52%, 20% and 10% of the variation
in the data, respectively. Specifically, we found that coefficients of
PC1 for paretic strides were significantly different from those for
unimpaired (p = 0.002) and non-paretic (p < 0.001) strides. Simi-
larly, in figure 2b, we see that PC2 separated unimpaired from
paretic (p = 0.002) and non-paretic (p < 0.001) strides, and that
PC3 separated unimpaired and paretic strides (p = 0.001).

In figure 2c, we isolated the effects of each PC as described in
equation (4.1). PC1 underscored the reduced paretic hip and
knee flexion across the gait cycle and reduced ankle excursion
in both dorsiflexion and plantarflexion, indicating lower ROM
in the paretic limb than in the non-paretic or unimpaired
limbs. PC2 showed that impaired gait is associated with lower
absolute ankle angle across the gait cycle, along with reduced
hip extension. Finally, PC3 captured variation in peak ankle plan-
tarflexion and peak hip extension, with the coefficients for non-
paretic gait falling between those for unimpaired and paretic
gait. For an intuitive picture of how these differences manifest
within the gait cycle, we also generated gait animations for
these PCA components (see electronic supplementary material).
4.2.2. Phase
In figure 3a, applying PCA to the phase data also led to separ-
ability across categories in the PC coefficient space. The first,
second and third PCs accounted for 44%, 27% and 8% of the vari-
ation in the data, respectively. The coefficients for PC1 were
significantly different across all three categories—unimpaired
and paretic (p = 0.025), unimpaired and non-paretic (p = 0.029)
and paretic and non-paretic (p < 0.001)—with the unimpaired
samples occupying a narrow intermediate range, and the paretic
and non-paretic samples covering either side. PC2 differentiated
unimpaired from impaired data (p < 0.001). Finally, PC3 did not
provide additional separation between categories.
By examining the gait cycle visualizations, we observed that
PC1 extracted differences in the stance-to-swing ratio, with paretic
strides spending less time in stance relative to unimpaired data,
and the non-paretic strides compensating with increased time in
stance. PC2 identified differences in the early–mid stance phase
while PC3 represented minor variation in the relative timing of
late swing phase. While this third component did not differentiate
between categories, we found that paretic strides exhibited higher
variation in the corresponding coefficients. Once again, we gener-
ated gait animations to visualize these differences within the gait
cycle (see electronic supplementary material).
5. Application II: evaluating individual response
to exosuit assistance

Functional alignment can also be used to reduce the effects of
individual variance and noise during group-level analysis. In
this application, we aimed to mitigate the effects of intra-sub-
ject variability through alignment and enable unsupervised
stratification of user response to exosuit assistance with clus-
tering. We posited that this approach would (i) extract
distinct categories of user response to exosuit assistance
from geometric representations of their gait and (ii) result
in improved robustness compared to analysis without
alignment. A summary of the methods is shown in figure 4a.

5.1. Methods
5.1.1. Pre-processing
We analysed data from the paretic limb as post-stroke partici-
pants walked with (EXO+) and without (EXO−) the soft ankle
exosuit, for a total of 42 sets of gait measurements, { fij}. As in
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Application I, for each joint j of each set i, we used elastic

alignment to calculate the Karcher mean, fKij , across strides.

We then normalized each element of fKij by the ROM

observed in joint j during EXO− for the corresponding sub-
ject. The normalized Karcher means were concatenated
across joints to generate a single representative gait vector

per set fKi . Finally, we generated a difference curve between

EXO+ and EXO− gait, ds ¼ fs,EXOþ � fs,EXO� , to serve as the
input vector for each subject s.
5.1.2. Clustering
Clustering is an unsupervised learning paradigm that separ-
ates a set of observations, in our case {δs}, into distinct
subgroups. Here, we applied agglomerative hierarchical clus-
tering as it is deterministic for a given set of data and thus is
more robust for small datasets. With this method, each obser-
vation begins in its own subgroup, after which the two
closest subgroups are merged, and the process continues
until all observations are placed in the same subgroup.

We used Euclidean distance for comparing observations,
and Ward’s linkage method [36] for computing inter-cluster
distances dab:

dab ¼ nanb
na þ nb

kma � mbjj2,

where μa and μb are the means of clusters a and b, which con-
tain na and nb elements, respectively. dab quantifies the
additional variance resulting from merging clusters a and b.
Thus, this distance minimizes the squared total within-cluster
variance at each merging step.
To define the optimal number of subgroups, we maxi-
mized the silhouette coefficient (SC) [37], a measure of the
mean inter-cluster (�m) to intra-cluster (�x) distance ratio:

SC ¼ �m� �x
maxð�m, �xÞ :

We evaluated SC for two to six clusters to determine the final
number of subgroups.

We then leveraged the ability of clustering to detect out-
liers in our data to reduce the sensitivity of the algorithm
[38]. We used an automated iterative process to identify out-
liers as observations that were clustered alone, i.e. a difference
curve δs was an outlier if the distance between δs and every
member of {δr} for r≠ swas greater than the distance between
all pairs of elements in {δr}. We removed observations until
the smallest generated cluster contained at least two samples.
Finally, we applied a hierarchical clustering algorithm to the
resulting cleaned dataset of normalized difference curves to
investigate categories of response to exosuit assistance.
5.1.3. Evaluation
Biomechanics We hypothesized that stroke survivors would
use the combination of plantarflexion and dorsiflexion exo-
suit assistance to increase gait speed with a reliance on hip
circumduction, a common compensatory mechanism, main-
tain walking speed with reduced circumduction, or both
increase gait speed and reduce circumduction [39,40]. We
further hypothesized that clustering on {δs} would elucidate
these categories of gait response. Thus, we evaluated changes
in gait kinematics, speed, joint torques and hip circumduc-
tion. The net change in joint kinematics due to exosuit
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Figure 4. Effects of exosuit assistance on post-stroke gait biomechanics using elastic functional data analysis (FDA). (a) Collection and processing methods for
evaluating individual response to exosuit assistance (ankle data for one subject shown). People post-stroke walked along an overground path at their comfortable
walking speeds with (EXO+) and without (EXO−) a unilateral soft assistive ankle exosuit, while optical motion capture, force plate and exosuit sensor data were
collected. For each subject, kinematics for each joint were aligned using FDA to generate a representative curve of EXO+ and EXO− gait, then divided by the EXO−
range of motion and finally subtracted from each other to obtain a set of difference curves {δs} = EXO+− EXO− for clustering (see §5.1.2). Two clusters resulted
from this process. (b) Metrics used in evaluating dynamic gait quality (see §5.1.3). People post-stroke typically present with low ankle torque (τa), low walking
speed (v) and high circumduction (Δxf ) [34]. (c) Average joint angle time series for the quality-based group (QBG) and speed-based group (SBG) during EXO+ and
EXO−. The magnitude of change between EXO+ and EXO− differs between the two clusters, with the largest distinction at the ankle joint. (d ) Changes between
EXO+ and EXO− in walking speed, peak paretic net and biological ankle torque, and peak hip circumduction in QBG and SBG. The clusters show significant (p <
0.05) differences in their response to exosuit assistance. Although both groups increased net ankle torque, the two groups did not significantly differ in the mag-
nitude of increase (p = 0.083). SBG also increased in biological ankle torque with an associated increase in walking speed. Conversely, QBG reduced biological ankle
torque without any change in walking speed, but reduced hip circumduction (see §5.2.1).
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assistance was defined as the mean absolute value of δj,s for
each joint j and subject s. Net ankle torque (τa,net) was com-
puted through inverse dynamics, and biological ankle
torque (τa,bio) was calculated as the difference between τa,net
and exosuit-applied torque [41]. Maximum hip circumduc-
tion (Δxf ) was measured from lateral movement of the heel
marker. A decrease in Δxf indicates an improvement in the
quality of gait. Given the small sample size, we used the
non-parametric Kruskal–Wallis test [42] to check for signifi-
cant differences in user response to assistance across the
resultant clusters, with a significance level of α = 0.05.

Robustness To evaluate whether using alignment influ-
enced sensitivity to intra-subject stride-by-stride variability,
we used the evaluation score introduced by Gloumakov
et al. [43]. Briefly, the evaluation score assumes that obser-
vations from one individual are likely to be more similar to
each other than to observations from any other individual.
The score is the percentage of pairs of intra-subject strides
that are grouped together when clustering on all strides
from all subjects. For example, the evaluation score with
one cluster is 100%, as all strides are placed in the same
group. As the number of clusters increases, the evaluation
score decreases monotonically. This score can then be used
to compare the performance of different clustering algor-
ithms up to k clusters, where k is the number of individuals
in the dataset.

We reran the clustering process using individual strides
from each subject and condition, with and without align-
ment. Since the number of strides varied by condition and
subject, we first constructed the set of all possible difference
curves for each subject using every pairwise combination of
EXO+ and EXO− strides. To avoid biasing towards individ-
uals with more strides, we randomly selected n curves for
each subject, where n = 15 was the size of the smallest set of
generated difference curves. We repeated this process 25
times to get a distribution of evaluation scores for 1 to 21 clus-
ters. We further used this metric to compare the performance
of hierarchical versus two common non-hierarchical cluster-
ing algorithms, k-means and k-medoids, with and without
alignment.
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5.2. Results
5.2.1. Biomechanics
As hypothesized, clustering the aligned difference curves as
described in §5.1.2 resulted in separable clusters based on
exosuit-driven changes in sagittal-plane gait kinematics
(figure 4a). Two subjects were removed as outliers and two
clusters, with 8 and 11 subjects, respectively, were identified
from the cleaned dataset. The two groups adopted different
functional strategies in response to the exosuit assistance,
one that increased walking speed, hereafter referred to as
the speed-based group (SBG), and one that reduced hip cir-
cumduction, hereafter referred to as the quality-based
group (QBG). Individuals in SBG showed significantly
higher increases in comfortable walking speed (p = 0.026)
and peak τa,bio (p = 0.013) than in QBG (figure 4d ). Specifi-
cally, with exosuit assistance, individuals in SBG increased
walking speed by 0.08 ± 0.04 m s−1 (mean ± standard error;
13:5+ 6%), which is between the thresholds for small and
substantial meaningful changes in the literature [44]. Mean-
while, those in QBG showed negligible changes of −0.01 ±
0.02 m s−1 (�0:8+ 2%). Although both SBG and QBG
increased peak τa,net by 0.18 ± 0.03 N m kg−1 (30:1+ 5:9%)
and 0.11 ± 0.02 N m kg−1 (11:4+ 3:1%), respectively, the
magnitude of change was not significantly different between
groups (p = 0.083). However, peak τa,bio increased by 0.04 ±
0.03 N m kg−1 (9:5+ 4:1%) in SBG, but decreased by 0.08 ±
0.03 N m kg−1 (�5:2+ 2:7%) in QBG. Conversely, subjects
in QBG demonstrated larger improvements in hip circumduc-
tion than those in SBG (p = 0.039). Specifically, while
maximum hip circumduction worsened by 6.4 ± 4 mm
(20:9+ 12:8%) in SBG, it improved by 9.4 ± 6.3 mm
(16:6+ 12:6%) in QBG, both of which are of the same
order of magnitude of change observed in past exosuit
studies [39]. These results suggest that (i) this approach
may differentiate between subcategories of response to exter-
nal assistance and (ii) individuals may use assistance to
improve high-level gait function or low-level gait quality.

Subjects in SBG also showed significantly more kinematic
deviation from EXO− during EXO+ than those in QBG at the
ankle (p < 0.001) and knee (p = 0.002) joints, but not at the
hip (p = 0.283) (figure 4c). The average absolute change of the
normalized joint angle (degrees/subject-specific ROM) was
0.19 ± 0.02, 0.10 ± 0.01 and 0.10 ± 0.02 at the ankle, knee and
hip, respectively, for those in SBG, and 0.10 ± 0.01, 0.05 ± 0.01
and 0.07 ± 0.01 for those in QBG. Rescaling by the original nor-
malization factors, these changes approximately corresponded
to 5.0° ± 1.9°, 5.0° ± 2.3° and 3.4° ± 1.7° for SBG, and 2.5° ± 1.1°,
2.2° ± 1.1° and 2.7° ± 1.9° for QBG. Finally, we applied the FDA
framework to align kinematics during EXO+ and EXO− for
each subject and investigated the resultant warping functions
for the two groups (electronic supplementary material, figure
S1). We observed negligible differences between the temporal
responses of the two groups.However, both showed the largest
changes in phase at the ankle joint, followed by the knee joint
and finally the hip joint.

5.2.2. Robustness
The mean evaluation score was higher when using aligned
gait data compared to the original data across the range of
clusters tested (electronic supplementary material, figure
S2). Moreover, the magnitude of improvement increased as
the number of clusters grew, and at 21 clusters, we obtained
a mean evaluation score of 78% with FDA versus 65% with-
out. The difference in evaluation score was also present when
using non-hierarchical clustering algorithms, with FDA lead-
ing to improvements at 21 clusters of 12% in both k-means
and k-medoids.

Hierarchical clustering contributed towards increased
robustness compared to using k-means and k-medoids,
across all numbers of clusters tested (electronic supplemen-
tary material, figure S2). At two clusters, both k-means and
k-medoids achieved evaluation scores of 89% with FDA,
while hierarchical clustering achieved 92%. With 21 clusters
and alignment, the scores of k-means and k-medoids were
68% and 70%, respectively, versus 78% with our approach.
6. Discussion
In this work, we have described a framework for gait analysis
integrating elastic alignment with conventional dimensional-
ity reduction techniques, and presented results from two
complementary applications for post-stroke gait. In our first
application, we used elastic alignment followed by PCA to
understand the primary modes of gait variation in both the
spatial (amplitude) and temporal (phase) dimensions,
demonstrating the advantages of continuous, unsupervised
analysis. In our second application, we combined alignment
with hierarchical clustering to reveal stratification of user
response to gait assistance with a soft exosuit and demon-
strated robustness to individual variation. Within both
applications, this approach yielded biomechanical interpret-
ations that align with and build upon prior work.

Unlike most conventional approaches, this framework
automatically leverages information from the full gait cycle
while remaining biomechanically interpretable. Specifically,
we found that the principal modes of variation in our dataset
of unimpaired, paretic and non-paretic gait corresponded to
statistically significant differences across the three categories,
in both spatial and temporal domains. These results are con-
sistent with recent work that employed a similar approach to
identify statistically significant amplitude and phase differ-
ences between the centre-of-pressure trajectories of
unimpaired individuals and patellofemoral pain syndrome
patients [26]. Notably, the gait characteristics corresponding
to regions of high spatiotemporal variance in our data were
similar to manually selected features and point metrics from
prior clinical studies. Analysis of amplitude PC1 was consist-
ent with prior work showing that peak hip flexion, knee
flexion at toe-off and peak knee flexion during swing are
reduced in the paretic limb due to muscular weakness and
low propulsion in late stance [45,46]. Similarly, PC2 of the
amplitudes identified knee hyperextension, a common charac-
teristic of post-stroke gait, as a differentiating factor [46]. Phase
PCA also extracted a key temporal difference between paretic
and non-paretic gait, i.e. the paretic limb spends less time in
stance relative to unimpaired gait, while the non-paretic
limb compensates with higher stance time. This observation
has been attributed clinically to muscleweakness and reduced
stability in this population [46]. From phase PC2, we found a
slower rise in ankle angle in people post-stroke during early
stance (∼10–20%GC), which aligns with observations of
reduced tibial progression attributable to reduced walking
speed and knee extensor strength [47]. For comparison, we
also applied PCA without alignment by using standard



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220402

9
arithmetic means instead of Karcher means for each partici-
pant (electronic supplementary material, figure S4).
Although we still observed statistical separation, the com-
ponents were difficult to interpret due to the interactions of
spatial and temporal characteristics. While PCA with
alignment could also be extended to examine amplitude–
phase interactions through analysis of correlation in principal
coefficients, we chose to focus on interpretation of individual
components and leave more complex analysis of pairwise
interactions for future work. These results suggest the poten-
tial for this framework to automate identification of key
spatiotemporal point metrics, thereby bridging the gap with
conventional techniques.

We also demonstrated the utility of FDA with continuous
time series gait data at the individual level. We introduced
the concept of difference curves to cluster on changes in
joint kinematic trajectories between EXO+ and EXO− gait,
thereby capturing characteristics of user strategy in response
to external assistance. While hierarchical clustering has been
used to successfully subgroup post-stroke joint kinetics [13]
and upper limb motions in unimpaired individuals [48],
here we extended these approaches to evaluate user response
to exosuit assistance and used a continuous representation of
change for this analysis. Similar to our first application, our
geometric approach to representing gait enabled us to
account for variations in posture of the user throughout the
gait cycle without the need for feature engineering. Interest-
ingly, despite only using sagittal-plane geometry as the
input to the algorithm, we observed significant differences
in both dynamic and out-of-plane measures, which then
allowed for functional subgrouping of individuals into qual-
ity-based and speed-based groups. For a comparison, we
considered whether clustering on changes in walking speed
alone would yield informative clusters, as increased speed
is both a desired outcome and a factor that may affect gait
kinematics [49]. However, we found that while this approach
resulted in groups that differed in their walking speed
response, no statistically significant differences were found
in other biomechanical metrics (electronic supplementary
material, figure S3), suggesting that using the full time
series data could offer a more holistic understanding of
user response. Unlike the group-level analysis of the first
application, comparing phase information across subgroups
did not provide much additional insight. Given that the mag-
nitude of change in phase can be two orders smaller than the
time period of a stride (∼1–2%GC), it is possible that this
dataset was too small to identify changes at that resolution.

An additional strength of our approach is its capacity to
reduce stride-to-stride variability in data during pre-proces-
sing. The observed improvements in robustness in our
application are consistent with those observed by Gloumakov
et al., who used a similar alignment step before clustering
upper limb motions [43]. This outcome is particularly ben-
eficial for clinical applications in which the signal-to-noise
ratio is low, hindering the ability to find structure across
data samples. Thus, we expect that this approach will provide
most utility in unsupervised investigations of high-dimen-
sional data, such as in the case of gait, where domain
knowledge may be less accessible. Furthermore, as the field
largely recognizes that each individual is unique and that a
single model cannot capture population-level behaviour,
there is a need for methods that identify individual locomotor
strategies. The approach presented here may begin to enable
a theoretical method for simultaneously mitigating the effects
of variation in the data while also capturing salient features of
the data across strides.

This work is a proof of concept that demonstrates the
feasibility of the proposed continuous and unsupervised fra-
mework for gait analysis. Still, there are a few considerations
that future work must account for to enable broader trans-
lation. First, the small sample size of the dataset used in
this work limits the generalizability of the proposed
method, and additional investigation is needed to under-
stand and quantify the tradeoffs between dataset size and
validity of the method. With more clinical trials with assistive
and rehabilitative devices underway, the field can soon begin
to evaluate whether similar techniques can be applied to
these larger datasets to obtain separable clusters of response.
Moreover, all strides corresponding to a single subject were
collected in one experimental visit, and thus we expect
future work will evaluate the feasibility of these methods
for longitudinal applications, such as categorizing recovery
trajectories during rehabilitation. Longitudinal studies
would further provide data to address the inability of the cur-
rent work to separate the effects of age and neuromotor
impairment. Finally, we note that while we opted to focus
on sagittal-plane gait kinematics given their rising accessibil-
ity in real-world environments, these methods are applicable
to complex functions and thus can be explored with neuro-
physiological signals such as electromyography. Hence, we
expect that future work will focus on expanding the appli-
cations of elastic alignment combined with dimensionality
reduction to incorporate larger datasets, longer timescales
and more complex physiological input.

In summary, this article presents the use of elastic align-
ment alongside unsupervised dimensionality reduction
methods to characterize post-stroke gait and understand the
response of stroke survivors to soft exosuit assistance. Our
work aims to enable improved understanding of impaired
gait, inform the evaluation of assistive devices and ultimately
advance physical rehabilitation for individuals with motor
impairment.
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