

Adopting Model-Eliciting Activities in an
Undergraduate Software Engineering Course through

Real-World Projects

Young Lee
Dept. Computational, Engineering, and

Mathematical Sciences
Texas A&M University-San Antonio

San Antonio, TX, USA
young.lee@tamusa.edu

Jeong Yang
Dept. Computational, Engineering, and

Mathematical Sciences
Texas A&M University-San Antonio

San Antonio, TX, USA
jeong.yang@tamusa.edu

Young Rae Kim
Dept. Curriculum and Instruction
Texas A&M University-San Antonio

San Antonio, TX, USA
youngrae.kim@tamusa.edu

Abstract—This innovative practice work in progress paper
discusses the integration of Model-Eliciting Activities (MEA) into
in software engineering (SE) classes, and the challenges faced in
preparing and delivering these activities. The preparation and
implementation of MEA in SE classes can be challenging, as it
requires creating self-assessable MEA questions that simulate
real-world problems, ensuring the integration of MEA in SE
course topics, providing feedback, and analyzing learning
outcomes. In this research, the authors address these challenges
and gain practical experience in designing and implementing
MEA in SE classes.

The authors conducted experiments over two consecutive
semesters in SE courses that cover topics such as requirement
solicitation, design and implementation, software testing
techniques, secure software, and software quality assurance. They
incorporated MEA questions that simulate real-world problems
into both face-to-face and online classes, ensuring the integration
of MEA in SE course topics, providing feedback, and analyzing
the learning gains. This paper contributes to the distribution of
MEA application for SE courses. It presents the authors'
experiences, challenges, reports evaluations, and findings in
implementing MEA in SE courses. Overall, this paper provides
insights into the effective integration of MEA into SE courses, and
the benefits it can bring to students' learning outcomes.

Keywords— software engineering, computer science education,
model-electing activity, MEA

I. INTRODUCTION
This Innovative Practice work in progress paper discusses

the integration of Model-Eliciting Activities (MEAs) in software
engineering classes, and the challenges faced in preparing and
delivering these activities. MEAs are a problem-solving
approach that aims to enhance students’ critical thinking,
creativity, problem-solving, and communication skills by
presenting real-world problems that require them to work in
teams to create, test, and refine their models in response to the
needs of a hypothetical client [1, 2, 3].

A few research on MEAs have been applied to computer
science [4, 5]. Software engineering can benefit from MEAs as
they are an effective way to deepen students’ conceptual

knowledge and evaluate their problem-solving processes.
However, MEAs have not yet been applied extensively to the
field of software engineering. Thus, further research is needed
in this area.

The concept of correctness is essential for secure software
development. That is why it is so important to have an effective
learning model to help students gain a better comprehension of
the concept. However, this can be a challenging task, as software
engineering is a complex subject. Thus, it is important to find a
way to deliver the material in a way that students can understand
and apply the concept taught and assess students’ capabilities.

The primary goal of this study is to create effective learning
experiences within software engineering courses through
integration of MEA into software engineering. In this study, we
create an MEA entitled “Software Correctness Measurement”
for computer science students within the context of software
engineering (SE) courses and explore how students, and teams
of students, navigate the problem-solving process of the MEA,
and how the MEA impact student learning.

II. METHODOLOGY AND RESEARCH SETTING
This study uses a teaching experiment design methodology

to investigate the nature of the intervention and its effectiveness
in student learning. This methodology enables us to examine the
impact of a particular intervention on student learning and
teaching practices in a complex educational setting, and to
effectively improve the design of the intervention based on
instructor-researcher partnerships [6].

The authors incorporated MEA questions that simulate real-
world problems into both face-to-face and online classes,
ensuring the integration of MEA in SE course topics, providing
feedback, and analyzing the learning gains. 18 undergraduate
students participated in Fall 2022, software engineering I (SEI)
class and 19 undergraduate students participated in Spring 2023
software engineering II (SEII) class.

The concepts of Software Requirement analysis, Software
Design and implementation, Software Process Models, Software
Unit Testing, Software Acceptance Testing, Risk Analysis were
taught at Fall 2022 SEI class; Software Testing, Static Analysis,

20
23

 IE
EE

 F
ro

nt
ie

rs
 in

 E
du

ca
tio

n
Co

nf
er

en
ce

 (F
IE

) |
 9

79
-8

-3
50

3-
36

42
-9

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

FI
E5

87
73

.2
02

3.
10

34
34

38

Authorized licensed use limited to: Texas A & M University - San Antonio. Downloaded on January 14,2024 at 16:35:43 UTC from IEEE Xplore. Restrictions apply.

Secure Software Development, Software Quality and Metrics,
Software Planning and Estimation were taught in Spring 2023,
SEII class with the incorporation of some security modules
introduced and developed in [9, 10]. The book used for the
course was Software Engineering: A Practitioner’s Approach
with other related papers, software testing tools, and static
analysis tools.

A pilot MEA construction began with initial
implementations in Fall 2022. The researchers identified
problem topics that are cornerstones or capstones in software
engineering courses, such as requirement solicitation, design
and implementation, software testing techniques, secure
software, and software quality assurance.

However, the preparation and implementation of MEA in SE
classes posed challenges, as it requires addressing the six
principles for a well-designed MEA: the Reality Principle, the
Model Construction Principle, the Model Documentation
Principle, the Self-Assessment Principle, the Generalizability
Principle, and the Effective Prototype Principle. Adherence to
these design principles for MEAs is necessary to enhance
students’ understanding of engineering concepts, in addition to
improving their problem-solving, communication, and
teamwork capabilities [1, 2].

 For example, when developing the initial version of Static
Analysis MEA, the Self-Assessment Principle posed a challenge
for the research team, requiring the integration of MEA into a
junior Software Engineering course to ensure students could
gain experience in self-assessment. After conducting a pilot
study using the initial version of the Static Analysis MEA, the
research team modified it in order to create the Software
Correctness Measurement MEA utilized in this study. Table 1
provides a brief description of each of the principles that map to
the Software Correctness Measurement MEA presented in
Figures 1 and 2. The MEA project served as a practical
application of Software Quality Measurement Concept,
presented in the lecture materials of SEII.

Read the following email individually before beginning teamwork.

To: Software Engineering II Students,
From: Software Development Team, Jaguar metasoft
Subject: Measuring Software Correctness

Software Engineering II Students,

Software Development team at Jaguar metasoft has invited our class to help
them create a program measurement formula for their software
developers. This company, Jaguar metasoft, is in the process of designing
and implementing a social network platform like an Instagram. But Jaguar
metasoft software engineers have been struggling with proving whether their
social network platform application is correct.

Static Measuring Software is best described as a method of software quality
such as correctness by source code analysis before a program is run.

As a software engineer or programmer, you will be required to develop a
formula that reads a source code to generate the correctness rating between
1 to 10 (higher metric value means higher quality).

In line with this view, Jaguar metasoft requests our help with program
analysis. This is where your team comes in. Your team needs to develop a
formula to measure the correctness of the social network platform. The
formula should be reusable for measuring of any social network software. It
is important that you offer a detailed explanation for the reasons behind all
the decisions you made in this formula, because it will be used as a program
correctness measuring tool for Jaguar metasoft’s future social network
software projects. The formula should increase overall product quality in
terms of correctness and reliability with shorter verification time and less
development cost.

I look forward to hearing from you.

Figure 1. Letter from the Industry.

Table 1. Principles for guiding the Software Correctness Measurement
MEA development.

Principle Description Software Correctness

Measurement
Reality Ensures that the

activity is
contextualized in a
realistic situation.

Student teams develop a
program measurement
formula for software
developers in the process of
designing and implementing a
social network platform like
an Instagram.

Model
Construction

Asks students to
construct an
explicit
description,
explanation, or
procedure for a
significant system.

Students are asked to develop
a formula that reads a source
code to measure the
correctness of the social
network platform.

Model
Documentation

Mandates that
students create a
form of
documentation to
clearly
communicate their
solution process.

Student teams prepare a
report, presentation, and
demonstration which feature
the essential problem-solving
strategies utilized in their
formula.

Self-
Assessment

Has criteria in the
activity to which
the students can
test and revise
their ways of
thinking.

Student teams test to see if
their formula meets the
requirements and detect any
issues through their own test
cases. If necessary, they then
modify the formula based on
the tests conducted.

Generalizability Requires students
to create solutions
that can be shared
with others, and
adapted for other
engineering
scenarios that are
closely related.

Students’ formula should be
reusable for measuring any
social network software. It
should allow others to reuse it
as a program correctness
measuring tool for future
social network software
projects.

Effective
Prototype

Ensures the model
created is simple
yet involves
grounded concepts
or principles from
engineering.

The purpose of this MEA is
to enhance technological
literacy related to static
analysis as a method of
software quality assurance,
such as correctness achieved
through source code analysis
without executing a program.

Authorized licensed use limited to: Texas A & M University - San Antonio. Downloaded on January 14,2024 at 16:35:43 UTC from IEEE Xplore. Restrictions apply.

III. PRELIMINARY RESULTS AND DISCUSSION
For the study to explore the students’ experiences with the

Software Correctness Measurement MEA, the outcomes of the
MEA were collected and analyzed, including student team
reports containing solutions, processes with written and visual
descriptions, team presentations, and individual students’ self-
reflections on the MEA. An open-coding technique was utilized
to explore how the student teams navigated the problem-solving
process of the MEA and how the students reflected on their
experiences with the MEA in terms of learning, benefits, and
challenges. Discrepancies in the coding were discussed and
resolved by consensus amongst the researchers.

A. Problem-Solving Processes
The MEA created in the study requires the problem-solving

processes, “definition building” and “operationalizing
definitions” [3]. Definition building is the act of forming
definitions, which are commonly qualitative constructs, to solve
an MEA, while operationalizing definitions is the process of
quantifying those definitions involving qualitative information
and providing evidence to prove they meet the needs of the
situation. Business and industry often use these problem-solving
processes to tackle real-world issues. In the MEA, students are
required to measure software quality factor of Correctness. Each
student team must define their own definitions of the correctness
and to develop a formular that reads a source code to generate
the correctness rating between 1 to 10 (higher metric value
means higher quality).

The problem-solving process on the Software Correctness
Measurement MEA consists of four steps: 1) definition building
(developing the definition of Correctness), 2) operationalizing
definitions (developing the formula to measure Correctness), 3)
providing an example of how the formula works, and 4)
providing information on how other programmers apply this
formula to their projects (See Figure 2).

The correctness formula report must include the following:

A. You can assume that source code analysis tools are available to collect

data from the source code.
B. Active participants names
C. You need to provide the definition of correctness.
D. A detailed explanation of how your team’s formula measures a source

code and decides the metric values (1 – 10) in terms of correctness.
Metric value 10 means the perfect software in terms of the correctness.
So that it can be used to implement the automated correctness
measurement tool for social network software.

E. An application of your formula to a sample program which will be
provided as an example of how your formula works.

F. Any Explanations and information to help Jaguar Metasoft engineers
can implement and apply it to their social network projects.

Figure 2. MEA Team Activity.

Table 2. SEII, Spring 2023.

Definition of the Correctness Formular Variables

A system or software must function correctly. Correctness can
be defined as the degree to which software performs its
specified function. Correctness is achieved when the program
behaves exactly as intended for all the uses-cases. It can be
measured in terms of defects per KLOC.

Nr = Number of Functional Requirements,
No of tests passed/total number of requirements.
0: one indicates none of the tests were completed, while 1
means all the tests were passed

Requirement, Test case

software program meets its specified requirements and
performs its intended functions accurately and without
unexpected behavior or errors

Definition of correctness in our formula is based on
performance, error handling, correctness, security, code
readability, testability. Each factor has a score of 1-10 and
its own individual weight. performance 10%m error
handling 20%, correctness 35%, security 25%, code
readability 5%, testability 5 %

performance, error handling,
correctness, security, code
readability, testability

Source code has a low detected issue rate and there are no
errors that crash the application.

Correctness = |1- ((I * (1 - F) / L) | * 10
I = # of issues detected by static analyzer
L = # of lines in source code
F = Estimated percentage of false positives

Error, size, security

Correctness is measured on how well the code implements the
functional requirements and specified quality standards.

Correctness (0-10pts) = Security + Readability + Unit
Testing + Performance

Security, Readability, Unit
Testing, Performance

Correctness can be defined as the degree to which the social
network platform software meets its specified requirements and
operates as intended without unexpected behavior or errors.
The correctness rating generated by our formula should reflect
the extent to which the software satisfies its requirements and
meets the expectations of Jaguar metasoft stakeholders.

The formula considers various factors such as the
complexity of the code, the presence of potential security
vulnerabilities, and the frequency and severity of any
detected errors or bugs.
To arrive at a final correctness rating between 1 and 10,
our formula assigns weights to each of these factors based
on their relative importance.

Security vulnerabilities,
code complexity, frequency
bug, severity of bug

the ability to run code efficiently and effectively. Run time of
individual methods does not go below the average time. When
compiling code, there should be zero errors.

Formula starts off at the maximum (score of 10) and the
longer an application takes to finish, the more points will
be taken off.

Reusability, Speed (run
time, static time), Space,
Accuracy

number of bugs found by spotbugs and the number of lines of
code.

10 - (No. of bugs detected by spotbugs/total LOC) * 100 Error, size

Authorized licensed use limited to: Texas A & M University - San Antonio. Downloaded on January 14,2024 at 16:35:43 UTC from IEEE Xplore. Restrictions apply.

A total of 9 teams submitted their reports at SEI, while 7
teams submitted theirs at SEII. Firstly, each team defined their
own definition of Software Correctness. Student teams exhibited
relatively clear goals, such as defining software correctness as
“the degree to which software performs its specified function.”
Table 2 illustrates that most definitions revolve around whether
the software meets the functional requirements without any
errors.

Secondly, to develop the formula, the students identified
various variables, including the number of requirements, test
cases, program size, and number of errors, among others. They
also recognized abstract variables such as performance, security,
readability, and complexity, as shown in Table 3.

Thirdly, the teams provided a formula to determine the
metric values, ranging from 1 to 10, that represent the level of
correctness achieved using these variables. A metric value of 10
indicates a perfect software in terms of correctness. This
problem-solving process provided the student teams with an
opportunity for modeling to establish a relationship between the
abstract software quality factor, correctness, and the static and
dynamic features of the software system (See Table 2).

Fourthly, the subsequent step required the students to apply
the formula to a sample program, which was provided as an
example to demonstrate how the formula functions and
information on how other programmers apply this formula to
their projects. This step served as a self-assessment, enabling
them to review whether their formula generated the metrics as
defined while illustrating it using examples and demonstrating
how to apply it to other projects.

B. Impact of MEAs on Student Learning
 According to the students’ self-reflections on the MEA, the

majority of them felt that they had a better understanding of a
software quality modeling concept after completing the MEA.
The students expressed their experiences on the MEA as highly
rewarding, citing its advantages of team collaboration, multiple
perspectives, communication, and better understanding. The
most rewarding aspect of the activity was illustrated in their
experiences, such as: “communicating with my partner and
working together to figure out the formula”; “getting a better
grasp on what it takes to have a correct program”; “what I found
most rewarding was the fact that we all figured out the formula
quickly and then just started to test it to see if the formula would
work to complete the parameters. As we were going along, we
came up with two different formulas that could work using
various ideas”; and “I feel that the team collaboration was the

most rewarding. Hearing and experiencing the process other
people take to the same problem always serves as a good way to
view other perspectives to the same problem”; and “we got to
see the bigger picture of the activity on how this report could
essentially be used for other programs not just a social
networking application.”

The majority of students also indicated that the most
challenging aspect of the activity was operationalizing their
definitions of correctness, which involved quantifying
qualitative information and choosing appropriate variables and
mathematical operations that were consistent with the definition
constructed. This is illustrated by the following statements: “The
most challenging aspect of the activity was trying to find the
correct attributes that would define a correct formula”; “Coming
up with the different factors for the formula and how they should
be weighed against each other”; “Finding the correct attributes
to use in the formula to help find the proper correctness of the
program”; “Understanding how to come up with a formula and
trying to follow along with my teammates who had previous
experience.”

These students’ reflections are likely to support previous
research studies illustrating how MEAs can help improve
students’ core professional skills, such as conceptual learning,
problem-solving, communication, and teamwork, by engaging
them in critical thinking and metacognitive learning
environments [3, 7]. Research shows that the processes of
operationalizing definitions is a key element of critical thinking,
which is a metacognitive process involving the ability to
interpret problem situations, make decisions, solve problems,
and take actions. The process of critical thinking involves
identifying and examining an issue, understanding its meaning,
gathering evidence, assessing the evidence, drawing
conclusions, considering other relevant information, and
forming an overall judgment [7, 8]. Kim et al. [3] demonstrated
that MEAs promote metacognition by encouraging problem-
solvers to consider their own and others’ thought processes,
while also allowing them to monitor and evaluate potential
alternative strategies.

IV. CONCLUSIONS
The authors found that the majority of the students valued

the MEA project topic using real-world problems. Reasonable
solutions to the MEA project also indicated a strong
understanding of the Software Quality Measurement concept
especially in the SEII. This paper contributes to the distribution
of MEA application for SE courses in the classroom and
distance learning. It presents the authors’ experiences,
challenges, and findings in implementing an MEA in SE
courses. Overall, this paper provides insights into the effective
integration of MEA into SE courses, and the benefits it can bring
to students’ learning outcomes.

ACKNOWLEDGEMENT
This material is based upon work supported by the National

Science Foundation (NSF)’s Grant No #1832433. Any opinions,
findings, conclusions, or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

Table 3. Variables in Correctness Formular.

Variables Test
case

Run
time

No of
errors

No of
lines
(size)

Compl
-exity

Bug
severity

SEII 3 3 5 2 1 1

SEI 4 4 4 3 2 1

Variables of requirements, security, readability, space, accuracy are
found only at formular in SEII MEA activity; Variables of efficiency,
flexibility are found only at formular in SEI MEA activity.

Authorized licensed use limited to: Texas A & M University - San Antonio. Downloaded on January 14,2024 at 16:35:43 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
[1] R. Lesh, M. Hoover, B. Hole, A. Kelly, and T. Post, “Principles for

developing thought- revealing activities for students and teachers,” in The
handbook of research design in mathematics and science education, A.
Kelly and R. Lesh, Eds. Mahwah, NJ: Lawrence Erlbaum Associates,
2000, pp. 591–646.

[2] R. Lesh and H. Doerr, “Foundations of a models and modelling
perspective on mathematics teaching, learning and problem solving,” in
Beyond constructivism: A models and modeling perspectives on
mathematics problem solving, learning and teaching, R. Lesh and H.
Doerr, Eds, Mahwah, NJ: Lawrence Earlbaum Associates, 2003, pp. 3-
33.

[3] Y. R. Kim, M. S. Park, T. J. Moore, and S. Varma, “Multiple levels of
metacognition and their elicitation through complex problem-solving
tasks,” Journal of Mathematical Behavior, vol. 32, no 3, pp. 377-396,
2013.

[4] J. Yang, B. Earwood, Y. R. Kim, and A. Lodgher, “Implementation of
security modules with model-eliciting activities in computer science
courses,” in Proceedings of the 2020 American Society for Engineering
Education (ASEE) Virtual Annual Conference, 2020.

[5] J. Yang, Y. R. Kim, and B. Earwood, Brandon, “A study of effectiveness
and problem solving on security concepts with model-eliciting activities,”

in Proceedings of the 2022 IEEE Frontiers in Education Conference
(FIE), 2022.

[6] R. Lesh and A. Kelly, “Multitiered teaching experiments.” in Research
design in mathematics and science education, A. Kelly and R. Lesh, Eds.
Mahwah, N.J.: Lawrence Erlbaum Associates, 2000, pp. 197-230.

[7] G. X. Chen, X. Q. Qu, L. P. Huang, L. Huang, C. Zhou, and Y. Qiao,
“Modeling-eliciting activities in an online engineering course for
improving conceptual learning, professional skill, interaction,” IEEE
Access, vol. 10, pp. 87767-87777, 2022.

[8] C. P. Dwyer,	M. J. Hogan, and I. Stewart, “An integrated critical thinking
framework for the 21st century,” Thinking Skills and Creativity, vol. 12,
pp. 43–52, 2014.

[9] J. Yang, A. Lodgher and Y. Lee, "Secure Modules for Undergraduate
Software Engineering Courses," 2018 IEEE Frontiers in Education
Conference (FIE), San Jose, CA, USA, 2018, pp. 1-5, doi:
10.1109/FIE.2018.8658433.

[10] A. Lodgher, J. Yang and U. Bulut, "An Innovative Modular Approach of
Teaching Cyber Security across Computing Curricula," 2018 IEEE
Frontiers in Education Conference (FIE), San Jose, CA, USA, 2018, pp.
1-5, doi: 10.1109/FIE.2018.8659040.

Authorized licensed use limited to: Texas A & M University - San Antonio. Downloaded on January 14,2024 at 16:35:43 UTC from IEEE Xplore. Restrictions apply.

