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ABSTRACT

Fairness and robustness are critical elements of trustworthy
machine learning systems that need to be addressed. Using a
minimax framework, in this paper, we aim to design an adver-
sarially robust fair regression model that achieves optimal per-
formance in the presence of an attacker who is able to perform
a rank-one attack on the dataset. By solving the proposed non-
smooth nonconvex-nonconcave minimax problem, the opti-
mal adversary as well as the robust fairness-aware regression
model are obtained. Based on two real-world datasets, nu-
merical results illustrate that the proposed adversarially robust
fair model has better performance on the poisoned dataset
than other fair machine learning models in both prediction
accuracy and group-based fairness measure.

1. INTRODUCTION

Machine learning models have been used in various domains,
including several security and safety critical applications,
such as banking, education, healthcare, law enforcement etc.
However, it has been shown that machine learning algorithms
can mirror or even amplify biases against population sub-
groups [1], for example, based on race or sex. With direct
social and economic impact on individuals, it is imperative
to build ML models ethically and responsibly to avoid these
biases. To this end various algorithms have been developed to
find fair machine models (FML) that satisfy different fairness
measures [2, 3, 4, 5].

Since a large body of work has shown that machine learn-
ing models are vulnerable to various types of attacks [6, 7],
a major and natural concern for fair machine learning algo-
rithms is their robustness in adversarial environments. Recent
works show that well-designed adversarial samples can sig-
nificantly reduce the test accuracy as well as exacerbating the
fairness gap of ML models [8].

In light of the vulnerabilities of existing fair machine
learning algorithms, there is a pressing need to design
fairness-aware learning algorithms that are robust to adver-
sarial attacks. As the first step towards this goal, in this paper,
we focus on regression problems and design a fair regression
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model that is robust to rank-one adversarial attacks. The de-
sign of such robust model is formulated as a minimax game
between a defender aiming to minimize the accuracy loss
and bias, and an attacker aiming to maximize these objec-
tives. The attacker is assumed to be able to observe the entire
training dataset and carefully modify the training data so as
to reduce the accuracy and fairness of the regression model.
To characterize both the prediction and fairness performance
of a model, the objective function is selected to include both
prediction accuracy loss and group fairness gap. Since the
goals of the adversary and the fairness-aware defender are
opposite, a minimax framework is introduced to characterize
the considered problem. By solving the minimax problem,
the optimal adversary as well as the robust fair regression
model can be derived simultaneously.

One major challenge of the work is that the proposed min-
imax problem is nonsmooth nonconvex-nonconcave, which
may not have a local saddle point in general [9]. Although
there exist many iterative methods for finding stationary point
or local optima of nonconvex-nonconcave minimax prob-
lems [10, 11], the non-smooth terms they consider usually
have special forms. However, the proposed realistic minimax
problem does not satisfy assumptions made in these papers.
To solve the complicated minimax problem in hand, we first
investigate the inner maximization problem and then the outer
minimization problem. Through various transformations,
the original nonconvex-nonconcave minimax problem for
two vectors will be converted into a weakly-convex-weakly-
concave minimax problem for one vector and one scalar,
which can be approximately solved using existing algorithms
such as [12].

Using the proposed algorithm, the optimal attack scheme
of the adversary and the adversarially robust fairness-aware
model can be obtained simultaneously. On two real-world
datasets, numerical results illustrate that the performance
of the adversarially robust model relies on the trade-off pa-
rameter between prediction accuracy and fairness guarantee.
By properly choosing such parameter, the robust model can
achieve desirable performance in both prediction accuracy
and fairness. On the other hand, for other fair regression
models, at least one performance metric will be severely
affected by the rank-one attack.



2. RELATED WORK

Adversarial attacks on FML. There are many research
works exploring the design of adversarial examples to reduce
the testing accuracy and fairness of FML models. For ex-
ample, [8] provides three online attacks based on different
group-based fairness measures, and [13] shows that adversar-
ial attacks can worsen the model’s fairness gap on test data
while satisfying the fairness constraint on training data.
Adversarial robustness. A large variety of methods have
been proposed to improve the model robustness against ad-
versarial attacks [14, 15]. Although promising to improve
the model’s robustness, those adversarial training algorithms
have been observed to result in a large disparity of accuracy
and robustness among different classes while natural training
does not present a similar issue [16].
Intersection of fairness and robustness. Fairness and ro-
bustness are critical elements of trustworthy AI that need
to be addressed together. Firstly, in the field of adversarial
training, several research works are proposed to interpret the
accuracy/robustness disparity phenomenon and to mitigate
the fairness issue [17, 18]. For example, [17] presents an
adversarially-trained neural network that is closer to achieve
some fairness measures than the standard model on the Cor-
rectional Offender Management Profiling for Alternative
Sanctions (COMPAS) dataset. Secondly, a sample selection-
based method is shown to obtain more fair standard and ro-
bust classifiers [19]. Thirdly, [20] investigates the class-wise
robustness and proposes methods to improve the robustness
of the most vulnerable class, so as to obtain a fairer robust
model.

3. PROBLEM FORMULATION

Using a set of training samples {xi, yi, Gi}ni=1 := {X,y,G},
where xi ∈ Rp is the feature vector, yi is the response vari-
able and Gi indicates the group membership or sensitive
status (for example, race, gender), we aim to develop a model
that can predict the value of a target variable Y from the input
variables X . In this paper, we consider the case when there
are only two groups, i.e., Gi ∈ {1, 2} and assume that the
first m training samples are from group 1 and the remaining
samples are from group 2. We denote

X =

[
X1

X2

]
,y =

[
y1

y2

]
.

To build a robust model, we assume that there is an ad-
versary who can observe the whole training dataset and then
perform a rank-one attack on the feature matrix. This type
of attack covers many practical scenarios, for example, mod-
ifying one entry of the feature matrix, deleting one feature,
changing one feature, replacing one feature, etc. In particular,
the attacker will carefully design a rank-one feature modifica-
tion matrix ∆ and add it to the original feature matrix X , so

as to obtain the modified feature matrix X̂ = X + ∆. Since
∆ is of rank 1, we assume that ∆ = cdT , where c ∈ Rn
and d ∈ Rp. Moreover, recall that there are samples from
two groups, we denote the modification matrix of the first
group as ∆1, i.e., the first m rows of ∆, and assume that
∆1 = c1d

T , where c1 consists of the first m components of
c. Similarly, for the second group, the modification matrix
is ∆2 = c2d

T . Then the modified feature matrices for two
groups are X̂1 =X1 + ∆1 and X̂2 =X2 + ∆2.

From the poisoned dataset {X̂,y,G}, we aim to design
a robust fairness-aware regression model. In order to char-
acterize both the prediction and the fairness performance, we
consider the following objective function

L = f(β, X̂) + λF (β, X̂), (1)

where β is the regression coefficient, f(β, X̂) corresponds
to the prediction accuracy loss, F (β, X̂) corresponds to the
group fairness gap and λ is the trade-off parameter. The goal
of the adversary is to design ∆ to maximize (1) to make the
model less fair and less accurate, while the robust fairness-
aware regression model aims at minimizing (1). To make the
problem meaningful, we introduce an energy constraint on
the rank-one attack and use the Frobenius norm to measure
the energy of the modification matrix ∆. Thus, we have the
minimax problem

min
β

max
‖∆‖F≤η

f(β, X̂) + λF (β, X̂), (2)

where η is the energy budget. To measure the predic-
tion accuracy, we consider the mean-squared error (MSE),
f(β, X̂) = E[(Y − Ŷ )2], where Ŷ is the prediction result.
For the group fairness gap, we consider a measure that is
closely related to the accuracy parity criterion [21] and use
F (β, X̂) = |E[(Y − Ŷ )2|G = 1] − E[(Y − Ŷ )2|G = 2]| to
measure the severity of violations.

4. PROPOSED METHOD

For the objective function of the formulated minimax problem
(2), we have

f(β, X̂) + λF (β, X̂) =
1

n
‖y − X̂β‖22

+λ

∣∣∣∣ 1m‖y1 − X̂1β‖22 −
1

n−m
‖y2 − X̂2β‖22

∣∣∣∣
= max{g(β, X̂), h(β, X̂)},

in which g(β, X̂) = a‖y1 − X̂1β‖22 + b‖y2 − X̂2β‖22,
h(β, X̂) = a′‖y1 − X̂1β‖22 + b′‖y2 − X̂2β‖22, with
a = 1

n + λ
m , b = 1

n −
λ

n−m , a′ = 1
n −

λ
m , b′ = 1

n + λ
n−m .

Lemma 4.1. For g(β, X̂) and h(β, X̂), we have that



(i) if b ≥ 0, g(β, X̂) is convex in c1 for any given c2,d,
and also convex in c2 for any given c1,d; otherwise,
g(β, X̂) is convex in c1 for any given c2,d, and con-
cave in c2 for any given c1,d;

(ii) if a′ ≥ 0, h(β, X̂) is convex in c1 for any given c2,d,
and also convex in c2 for any given c1,d; otherwise,
h(β, X̂) is concave in c1 for any given c2,d, and con-
vex in c2 for any given c1,d.

Based on Lemma 4.1, we can solve the maximization
problem in (2). First, note that

max
‖cdT ‖F≤η

max{g(β, X̂), h(β, X̂)}

= max

{
max

‖cdT ‖F≤η
g(β, X̂), max

‖cdT ‖F≤η
h(β, X̂)

}
,

which indicates that the maximization problem can be sepa-
rated into two sub-problems. For h(β, X̂), we have

• if a′ ≥ 0, the maximum value of h(β, X̂) is ha(ηc1 ,β)
= a′(‖y1−X1β‖2 +ηc1‖β‖2)2 + b′(‖y2−X2β‖2 +√
η2 − η2

c1‖β‖2)
2;

• if a′ < 0, the maximum value of h(β, X̂) is

hb(ηc1 ,β) =

{
hb1(ηc1 ,β), if ‖y1 −X1β‖2 ≤ η‖β‖2,
hb2(ηc1 ,β), otherwise,

with hb1(ηc1 ,β) = b′(‖y2−X2β‖2+
√
η2 − η2

c1‖β‖2)
2,

hb2(ηc1 ,β) = a′(‖y1−X1β‖2−ηc1‖β‖2)2+b′(‖y2−
X2β‖2 +

√
η2 − ηc1‖β‖2)2.

Similar results apply to g(β, X̂).
Subsequently, the minimax problem (2) can be trans-

formed to a minimax problem for one vector and one scalar
with a piece-wise max-type ojective function. For example,
if b ≥ 0 and a′ < 0, (2) can be written as

min
β

max
0≤ηc1≤η

max{ga(ηc1 ,β), hb(ηc1 ,β)}, (3)

where

ga(ηc1 ,β) = a(‖y1 −X1β‖2 + ηc1‖β‖2)2

+b(‖y2 −X2β‖2 +
√
η2 − η2

c1‖β‖2)
2.

Then we have the following two lemmas characterizing
the nice properties of the sub-functions in the objective func-
tion.

Lemma 4.2. If the norm of β is bounded, i.e. ‖β‖2 ≤ Bβ ,
then we have

(i) ga is weakly-concave in ηc1 for any given β and weakly-
convex in β for any given ηc1 ;

(ii) hb is a piece-wise function and each piece (hb1 or hb2 )
is weakly-concave in ηc1 for any given β and weakly-
convex in β for any given ηc1 .

Lemma 4.3. For any given β, ga and hb2 are unimodal func-
tions with respect to ηc1 that increase first and then decrease.

Note that (3) can be transformed to three sub-problems:

1. min
β

max
0≤ηc1≤η

hb1(ηc1 ,β),

s.t. ga(ηc1 ,β) < hb1(ηc1 ,β), ‖y1−X1β‖2 ≤ η‖β‖2;

2. min
β

max
0≤ηc1≤η

hb2(ηc1 ,β),

s.t. ga(ηc1 ,β) < hb2(ηc1 ,β), ‖y1−X1β‖2 > η‖β‖2;

3. min
β

max
0≤ηc1≤η

ga(ηc1 ,β), s.t. ga(ηc1 ,β) ≥ hb(ηc1 ,β).

For the sub-problem 1, the maximization on ηc1 can be
solved exactly and the saddle-point can be easily derived.

For sub-problems 2 and 3, we will ignore the constraints
first and derive the saddle-point of the minimax problem, and
then check the constraints. For example, for sub-problem 2,
we assume that ‖β‖2 ≤ Bβ , which is reasonable in reality,
and have that: 1) the feasible set {β : ‖β‖2 ≤ Bβ} × [0, η]
is convex and compact; 2) the objective function is weakly-
convex-weakly-concave by Lemma 4.2; 3) the saddle-point
exists by Lemma 4.3. Based on those properties, we are
able to apply a first-order algorithms proposed by [12] to
solve the non-convex non-concave minimax problem as in
sub-problem 2 and derive the nearly ε-stationary solution.
In particular, define Z = {β : ‖β‖2 ≤ Bβ} × [0, η] and
the mappingH(z) := (∂βhb2(ηc1 ,β), ∂ηc1 [−hb2(ηc1 ,β)])

T ,
where z = (β, ηc1). The minty variational inequality (MVI)
problem corresponding to the saddle-point problem in sub-
problem 2 is to find z∗ ∈ Z such that 〈ξ, z − z∗〉 ≥ 0, ∀z ∈
Z, ∀ξ ∈ H(z). Then the saddle-point problem can be solved
through the lens of MVI. In [12], the proposed inexact prox-
imal point method consists of approximately solving a se-
quence of strongly monotone MVIs constructed by adding
a strongly monotone mapping to H(z) with a sequentially
updated proximal center. Thus, the complex non-convex non-
concave minmax problem can be decomposed into a sequence
of easier strongly-convex strongly-concave problems.

5. NUMERICAL RESULTS

In this section, we test our proposed adversarially robust mod-
els on practical regression problems. We conduct experiments
on two real-world datasets: Law School Dataset (LSD) [22]
and Medical Insurance Cost Dataset (MICD) [23].

For comparison purpose, we introduce an unrobust fair
regression model that does not consider the existence of the
adversary. In particular, the unrobust fair model is

βunrobust = argmin
β
f(β,X,y,G) + λF (β,X,y,G).



Moreover, we also compare our proposed adversarially ro-
bust model with other fair regression models, including the
fair linear regression (FLR) model and fair kernel learning
(FKL) model [24]. The optimal regression coefficient for
each model is derived by fitting the model on the original
dataset {X,y,G}. To obtain the performance of each model
on the poisoned dataset, we apply the derived optimal regres-
sion coefficient on the poisoned dataset, {X̂,y,G}, and cal-
culate the MSE as well as the group fairness gap.

In the first experiment, for our proposed adversarially ro-
bust fair model and unrobust fair model, we explore the ef-
fects of the energy constraint parameter η as well as the trade-
off parameter λ. We carry out the attack with three different
energy levels, η = 0.2σ, η = 0.5σ and η = 0.8σ, where σ is
the smallest singular value of the feature matrix of the train-
ing data. As shown in Fig. 1, we first observe that MSE and
the group fairness gap for the adversarially robust model are
almost always smaller than those for the unrobust fair model,
which illustrates that the proposed robust model achieves bet-
ter performance in both accuracy and fairness. We also notice
that the performance of the adversarially robust model differs
under different choices of λ. In particular, as λ increases, the
value of MSE also increases because we care more about fair-
ness and give more weight to the fairness-related term in the
objective function. Especially, as shown in Fig. 1(b), when
the energy constraint is comparable to the smallest singular
value of the feature matrix (η = 0.8σ) and the trade-off pa-
rameter λ is large (λ = 5.2), the MSE for the robust model be-
comes larger than that of the unrobust model as the limitation
on the adversary is small, which in turn affects the prediction
performance considerably.
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Fig. 1. Effects of λ and η on MSE and fairness gap

In the second experiment, we compare our proposed ad-
versarially robust fair model with other fair regression mod-
els. In Fig. 2, we provide the performance of different regres-

sion models on the original dataset as well as the poisoned
dataset with η = 0.5σ. For the unrobust fair model and adver-
sarially robust fair model, since the choice of the trade-off pa-
rameter λwill affect the model performance, we explore mod-
els with various choices of λ. As shown in Fig. 2(a), on the
original dataset, the overall performance of FKL is better than
other models, since it is a nonlinear model based on kernels.
FLR has similar performance with the proposed unrobust fair
regression model (with certain choice of λ). Moreover, for
the unrobust fair model, it is observed that as λ increases, the
group fairness gap decreases while the MSE increases. How-
ever, on the poisoned dataset, as shown in Fig. 2(b), the per-
formance of FKL and FLR has been severely impacted. In
particular, for FKL (which is the optimal model on the orig-
inal dataset), the value of the group fairness gap has been
increased from 4.3 × 10−3 to 2.8 × 10−2, and the value of
MSE also increases. Similar observations can be found for
FLR. Besides, for the unrobust fair model, we observe a con-
cave curve in the group fairness gap v.s. MSE plot, which
is convex in the original dataset. Thus, we conclude that fair
regression models are vulnerable to adversarial attacks and
may not preserve their performance in adversarial environ-
ment. On the contrary, for the adversarially robust model, the
curve between the group fairness gap and the MSE locates in
the lower left corner and is convex. Thus, by appropriately
choosing the value of λ, a model that performs well in terms
of both fairness and prediction accuracy can be obtained.
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Fig. 2. MICD: fairness gap v.s. MSE.

6. CONCLUSION

In this paper, we have proposed a minimax framework to
characterize the best attacker that generates the optimal rank-
one attack on the original dataset, as well as the adversar-
ially robust fair defender that can achieve the best perfor-
mance in terms of both prediction accuracy and fairness guar-
antee, in the presence of the best attacker. We have pro-
vided a method to solve the proposed nonsmooth nonconvex-
nonconcave minimax problem. Moreover, we have performed
numerical experiments on two real-world datasets and shown
that the proposed adversarially robust fair model can achieve
better performance in prediction accuracy and fairness guar-
antee than other fair models with a proper choice of λ.
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[24] A. Pérez-Suay, V. Laparra, G. Mateo-Garcı́a, J. Muñoz-
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