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AN INTEGRATED TRANSPORTATION DISTANCE BETWEEN
KERNELS AND APPROXIMATE DYNAMIC RISK EVALUATION IN

MARKOV SYSTEMS\ast 

ZHENGQI LIN\dagger AND ANDRZEJ RUSZCZY\'NSKI\dagger 

Abstract. We introduce a distance between kernels based on the Wasserstein distances between
their values, study its properties, and prove that it is a metric on an appropriately defined space
of kernels. We also relate it to various modes of convergence in the space of kernels. Then we
consider the problem of approximating solutions to forward--backward systems, where the forward
part is a Markov system described by a sequence of kernels, and the backward part calculates the
values of a risk measure by operators that may be nonlinear with respect to the system's kernels. We
propose recursively approximating the forward system with the use of the integrated transportation
distance between kernels and we estimate the error of the risk evaluation by the errors of individual
kernel approximations. We illustrate the results on stopping problems and several well-known risk
measures. Then we develop a particle-based numerical procedure, in which the approximate kernels
have finite support sets. Finally, we illustrate the efficacy of the approach on the financial problem
of pricing an American basket option.
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MSC codes. 49M25, 60J05, 93E20

DOI. 10.1137/22M1530665

1. Introduction. We consider a discrete-time Markov system described by the
relations

Xt+1 \sim Qt(Xt), t= 0,1, . . . , T  - 1,(1.1)

where Xt \in \scrX represents the state at time t, \scrX is a Polish space, and Qt : \scrX \rightarrow 
\scrP (\scrX ), t= 0,1, . . . , T - 1, are stochastic kernels (the symbol \scrP (\scrX ) denotes the space
of probability measures on \scrX ). The initial state X0 = x0 is fixed. The model (1.1)
is understood as follows: given Xt = x, the conditional distribution of Xt+1 is Qt(x).
The sequence of kernels Qt, t = 0, . . . , T , and the distribution of the initial state \lambda 0
define a probability measure P on the canonical space \scrX T+1. We also consider the
filtration \scrF t =\scrB (\scrX t+1), t= 0, . . . , T .

Suppose a sequence of Borel measurable functions ct : \scrX \rightarrow \BbbR , t = 0, . . . , T , is
given. Together with the dynamical system (1.1), we consider the following backward
risk evaluation system:

vt(x) = ct(x) + \sigma t
\bigl( 
x,Qt(x), vt+1(\cdot )

\bigr) 
, x\in \scrX , t= T  - 1, T  - 2, . . . ,0;

vT (x) = cT (x), x\in \scrX .
(1.2)

In (1.2), the operator \sigma t :\scrX \times \scrP (\scrX )\times \scrV \rightarrow \BbbR , where \scrV is a space of Borel measurable
real functions on \scrX , is a transition risk mapping. Its first argument is the present
state x. The second argument is the probability distribution Qt(x) of the state fol-
lowing x in the system (1.1). The last argument, the function vt+1(\cdot ), is the next
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3560 ZHENGQI LIN AND ANDRZEJ RUSZCZY\'NSKI

state's value: the risk of running the system from the next state in the time interval
from t+ 1 to T . In the next section, we briefly review the background of this back-
ward system in the dynamic risk theory and provide a more formal definition of the
objects involved, but we want to stress that the evaluation (1.2) is of relevance for
other problems as well.

A simple case of the transition risk mapping is the bilinear form

\sigma t
\bigl( 
x,\mu , vt+1(\cdot )

\bigr) 
=\BbbE \mu 

\bigl[ 
vt+1(\cdot )

\bigr] 
.(1.3)

In this case, the scheme (1.2) evaluates the conditional expectation of the total cost
from stage t to the end of the horizon T :

vt(x) =\BbbE 
\bigl[ 
ct(Xt) + \cdot \cdot \cdot + cT (XT )

\bigm| \bigm| Xt = x
\bigr] 
, x\in \scrX , t= 0, . . . , T.

A more interesting application is the optimal stopping problem, in which ct(\cdot ) \equiv 0,
and

\sigma t
\bigl( 
x,\mu , vt+1(\cdot )

\bigr) 
=max

\Bigl( 
rt(x) ; \BbbE \mu 

\bigl[ 
vt+1(\cdot )

\bigr] \Bigr) 
.(1.4)

Here, rt :\scrX \rightarrow \BbbR , t= 0, . . . , T , represent the rewards collected if the decision to stop at
time t and state x is made. Clearly, with the mappings (1.4) used in the scheme (1.2),

vt(x) = sup
\tau  - \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p}\mathrm{p}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}

t\leq \tau \leq T

r\tau (X\tau ), x\in \scrX , t= 0, . . . , T ;

see, e.g., [10]. The most important difference between (1.3) and (1.4) is that the latter
is nonlinear with respect to the probability measure \mu . In the next section, we provide
other examples of nonlinear transition risk mappings derived from coherent measures
of risk.

One of the challenges associated with the backward system (1.2) is the numerical
solution in the case when the transition risk mappings are nonlinear with respect to
the probability measures involved. The objective of this paper is to present a compu-
tational method based on approximating the kernels Qt(\cdot ) by simpler, easier-to-handle
kernels \widetilde Qt(\cdot ), and using them in the backward system (1.2). For this purpose, after
the preliminary section, in section 3 we introduce the space of kernels under consid-
eration and define a metric on this space. The metric generalizes the transportation
(Wasserstein) metric between probability distributions. We relate it to various con-
vergence modes in the space of kernels. In section 4 we describe an iterative scheme
for building the approximate system and we estimate the error of the approximation
by the distances of the kernels involved at each stage. We also illustrate the applica-
tion of the theory to various specific risk evaluation systems with nonlinear transition
risk mappings. Next, in section 5, we specialize our method by considering kernels
supported on finite sets, and we derive tractable linear programming models for min-
imizing the approximation error. Finally, in section 6, we illustrate our approach on
the problem of evaluating an American basket option.

The problem of approximating stochastic processes in discrete time has attracted
the attention of researchers for several decades. The basic construction is that of a
scenario tree. In [20], the construction of the tree is based on statistical parameters,
such as moments and correlations. A further contribution of [22] involves copulas to
capture the shape of the distributions. The use of probability metrics to reduce large
scenario trees was first proposed in [19]. A concept of a distance between stochas-
tic processes was proposed by [33], and used by [29, 26] to generate scenario trees.
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TRANSPORTATION DISTANCE BETWEEN KERNELS 3561

The concept of nested (adapted) distance, using an extension of the Wasserstein met-
ric for processes, was introduced in [34] and further developed in [35, 36]. Similar
ideas are pursued in continuous time in [3]. Reference [4] addresses the sensitivity
of the optimal value of an expected-value problem, when the probability measure
perturbation is small in the nested distance. None of these contributions focuses on
Markov systems and the approaches proposed do not reduce to our construction in
the Markovian case.

Reference [23] considers perturbations in a transition kernel of a controlled Markov
system. The distance between probability kernels defined in [23, section 3] is close to
our idea, but it uses the ``sup norm"" over the state space, rather than the ``\scrL p norm""
in our case (a similar idea appeared earlier in [29] for scenario trees). This is further
used to estimate the error of the value function in risk-neutral models in [46]. We
discuss it in more detail in sections 3 and 4.

Finally, some recent contributions focus on mixture models, which are some-
how related to our approach, but which measure the distance of mixture distributions
rather than kernels. The sketched Wasserstein distance, a type of distance metric ded-
icated to finite mixture models, was proposed in [6]. Research on Wasserstein-based
distances specifically tailored to Gaussian mixture models is reported in [7, 12, 24].

2. Preliminaries. In this section, we briefly present the mathematical foun-
dations of the techniques discussed in the paper. In section 2.1, we summarize the
relevant concepts of Markov risk evaluation, and in section 2.2 we recall the basic
ideas of the transportation distance between probability measures.

2.1. Markov risk measures. A dynamic risk measure evaluates the sequence
of random costs Zt = ct(Xt), t = 0,1,2, . . . , T , where ct : \scrX \rightarrow \BbbR , t = 0,1, . . . , T , are
measurable functions. Because of the need to evaluate the risk of the future costs at
any time period, a dynamic measure of risk is a collection of conditional risk measures
\rho t,T (Zt, . . . ,ZT ), t = 0, . . . , T . Formally, for t = 0, . . . , T , we consider \sigma -subalgebras
\scrF t =\scrB (\scrX t+1) and spaces \scrZ t of \scrF t-measurable real random variables. A conditional
risk measure is a functional \rho t,T :\scrZ t \times \cdot \cdot \cdot \times \scrZ T \rightarrow \scrZ t. We postulate three properties
of each conditional risk measure:

Normalization: \rho t,T (0, . . . ,0) = 0, t= 0,1, . . . , T .
Monotonicity: For every t= 0, . . . , T , if Zs \leq Vs for s= t, . . . , T , then \rho t,T (Zt, . . . ,ZT )

\leq \rho t,T (Vt, . . . , VT ).
Translation equivariance: \rho t,T (Zt,Zt+1, . . . ,ZT ) =Zt+ \rho t,T (0,Zt+1, . . . ,ZT ) \forall t=

0, . . . , T .

Fundamental for such a nonlinear dynamic risk evaluation is time consistency,
discussed in various forms in [2, 8, 9, 43]. We adopt the definition and the following
discussion from [41]: A dynamic measure of risk is time consistent if for every t =
0, . . . , T  - 1, if Zt = Vt and \rho t+1,T (Zt+1, . . . ,ZT )\leq \rho t+1,T (Vt+1, . . . , VT ) a.s., then

\rho t,T (Zt, . . . ,ZT )\leq \rho t,T (Vt, . . . , VT ).

Such risk measures, under the conditions specified above, must have a specific recur-
sive form [41, Thm. 1]:

\rho t,T (Zt, . . . ,ZT ) =Zt + \rho t

\Bigl( 
Zt+1 + \rho t+1

\bigl( 
Zt+2 + \cdot \cdot \cdot + \rho T - 1(ZT ) \cdot \cdot \cdot 

\bigr) \Bigr) 
,
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3562 ZHENGQI LIN AND ANDRZEJ RUSZCZY\'NSKI

where each \rho t :\scrZ t+1 \rightarrow \scrZ t is a one-step conditional risk measure. This result, gener-
alizing the tower property of conditional expectations, is germane for our approach.

Markov risk measures evaluate the risk of future costs Zs = cs(Xs), s = t, . . . , T ,
in a Markov system (1.1) in such a way that the risk of the future cost sequence is a
function of the current state:

\rho t,T (Zt, . . . ,ZT ) = vt(Xt).

This, combined with the properties specified above, implies a very specific structure
[16, 5]: transition risk mappings \sigma t : \scrX \times \scrP (\scrX ) \times \scrV \rightarrow \BbbR , t = 0, . . . , T  - 1, exist
such that the risk of each state can be evaluated by the procedure (1.2). Conversely,
any collection of transition risk mappings satisfying the properties of normalization,
monotonicity, and translation equivariance define via (1.2) a time-consistent Markov
risk measure.

As mentioned in the introduction, the simplest transition risk mappings are the
bilinear forms (1.3), which lead to the risk-neutral evaluation: the expected value of
the sum of the costs. A more interesting example is the mean--semideviation mapping
derived from the corresponding coherent risk measure [30, 31, 43]:

msdp
\bigl( 
x,\mu , vt+1(\cdot )

\bigr) 
=

\int 
\scrX 

vt+1(y) \mu (dy)(2.1)

+\varkappa (x)
\biggl( \int 

\scrX 

\Bigl[ 
v(y) - 

\int 
\scrX 

v(y\prime ) \mu (dy\prime )
\Bigr] p
+

\mu (dy)

\biggr) 1/p

,

with p\in [1,\infty ), and the parameter \varkappa (x)\in [0,1] controlling the degree of risk aversion.
Another example is the Average Value at Risk [39, 32, 43]:

AVaR\alpha 
\bigl( 
x,\mu , vt+1(\cdot )

\bigr) 
= inf
\eta \in \BbbR 

\Bigl\{ 
\eta +

1

\alpha 
\BbbE \mu 

\bigl[ 
max(0, vt+1(\cdot ) - \eta )

\bigr] \Bigr\} 
, \alpha \in (0,1].(2.2)

Usually, it does not occur alone, but rather in mixtures, as in spectral measures (see,
e.g., [37, 43])

\sigma t
\bigl( 
x,\mu , vt+1(\cdot )

\bigr) 
=

\int 1

0

AVaR\alpha 
\bigl( 
x,\mu , vt+1(\cdot )

\bigr) 
\theta (d\alpha ),(2.3)

where \theta is a probability measure on (0,1].
Summing up, the risk evaluation procedure (1.2) is not an arbitrary construction,

but rather the result of assumptions of normalization, monotonicity, translation, time
consistency, and the Markov property. The transition risk mappings are nonlinear
operators with respect to the probability measure, and the numerical evaluation of
risk is a difficult task. Structures of the form (1.2) arise also in the discretization of
backward stochastic differential equations [42]. For recent applications of Markov risk
measures in the control of dynamical systems, see [28, 44, 25].

2.2. The Wasserstein distance. Another essential ingredient of our construc-
tion is the Wasserstein distance between measures. As before, \scrX is a Polish space,
with the metric d(\cdot , \cdot ), and the associated Borel \sigma -field \scrB (\scrX ). The symbol \scrP (\scrX )
denotes the space of probability measures on \scrB (\scrX ). For p\geq 1, we consider the space

\scrP p(\scrX ) :=

\biggl\{ 
\mu \in \scrP (\scrX ) :

\int 
\scrX 

d (x0, x)
p
\mu (dx)<+\infty 

\biggr\} 
,

where x0 \in \scrX is arbitrary. In the brief summary below, we follow [45]. The reader is
referred to this monograph, as well as to [38], for an extensive exposition and historical
account.
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TRANSPORTATION DISTANCE BETWEEN KERNELS 3563

Definition 2.1. The Wasserstein distance of order p\in [1,\infty ) between two prob-
ability measures \mu ,\nu \in \scrP p(\scrX ) is defined by the formula

Wp(\mu ,\nu ) =

\biggl( 
inf

\pi \in \Pi (\mu ,\nu )

\int 
\scrX \times \scrX 

d(x, y)p \pi (dx,dy)

\biggr) 1/p

,(2.4)

where \Pi (\mu ,\nu ) is the set of all probability measures in \scrP p(\scrX \times \scrX ) with the marginals
\mu and \nu . The measure \pi \ast \in \Pi (\mu ,\nu ) that realizes the infimum in (2.4) is called the
optimal coupling or the optimal transport plan.

For each p \in [1,\infty ), the function Wp(\cdot , \cdot ) defines a metric on \scrP p(\scrX ). Further-
more, for all \mu ,\nu \in \scrP p(\scrX ) the optimal coupling realizing the infimum in (2.4) exists.
From now on, the space \scrP p(\scrX ) will be always equipped with the distance Wp(\cdot , \cdot ).

Remark 2.2. Problem (2.4) has a convenient linear programming representation
for discrete measures. Let \mu and \nu be discrete measures in \scrP (\scrX ), supported at
positions \{ x(i)\} Ni=1 and \{ z(s)\} Ss=1 with normalized (totaling 1) positive weight vectors

wx and wz: \mu =
\sum N
i=1w

(i)
x \delta x(i) , \nu =

\sum S
s=1w

(s)
z \delta z(s) . For p \geq 1, let D \in RN\times S

+

be the distance matrix defined as Dis = d(x(i), z(s))p . Then the pth power of the
p-Wasserstein distance between the measures \mu and \nu is the optimal value of the
following transportation problem:

min
\pi \in RN\times S

+

\sum 
is

Dis\pi is s.t. \pi \top 1N =wx, \pi 1S =wz.(2.5)

Its regularized version can be efficiently solved with almost linear complexity with
respect to NS; see [11, 1].

The following classical result, known as the Kantorovich--Rubinstein duality [21],
provides an alternative characterization of W1(\cdot , \cdot ).

Theorem 2.3. For any \mu ,\nu in \scrP 1(\scrX ),

W1(\mu ,\nu ) = sup
\| \psi \| Lip\leq 1

\biggl\{ \int 
\scrX 

\psi (x) \mu (dx) - 
\int 

\scrX 

\psi (x) \nu (dx)

\biggr\} 
,(2.6)

where \| \psi \| Lip denotes the minimal Lipschitz constant of the function \psi :\scrX \rightarrow \BbbR .

In the discrete case, it follows from the linear programming duality for
problem (2.5).

We now briefly review the convergence concepts in the space \scrP p(\scrX ). The nota-
tion \mu k\rightharpoonup \mu means that \mu k converges weakly to \mu , i.e.,

\int 
\varphi (x) \mu k(dx)\rightarrow 

\int 
\varphi (x) \mu (dx)

for all bounded continuous functions \varphi :\scrX \rightarrow \BbbR .

Definition 2.4. Let (\scrX , d) be a Polish space, and let p\in [1,\infty ). Let \{ \mu k\} k\in N be
a sequence of probability measures in \scrP p(\scrX ), and let \mu be an element of \scrP p(\scrX ).

Then \{ \mu k\} is said to converge to \mu weakly in \scrP p(\scrX ), written \mu k
p\rightarrow \mu , if for some

(and then any) x0 \in \scrX , and for all continuous functions \varphi with | \varphi (x)| \leq 1+d (x0, x)
p

one has \int 
\varphi (x) \mu k(dx) - \rightarrow 

\int 
\varphi (x) \mu (dx).(2.7)

The fundamental property of the Wasserstein distanceWp(\cdot , \cdot ) is that it metricizes
the topology of weak convergence in \scrP p(\scrX ).
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3564 ZHENGQI LIN AND ANDRZEJ RUSZCZY\'NSKI

Theorem 2.5. Let (\scrX , d) be a Polish space, p \in [1,\infty ); then \mu k
p\rightarrow \mu if and only

if Wp(\mu k, \mu )\rightarrow 0. Furthermore,
\bigl( 
\scrP p(\scrX ),Wp

\bigr) 
is a Polish space.

By the triangle inequality, Wp(\cdot , \cdot ) is continuous on \scrP p(\scrX )\times \scrP p(\scrX ).

3. The integrated transportation distance between kernels. We now in-
troduce an essential concept in our research: the integrated transportation distance
between kernels.

Suppose \scrX and \scrY are Polish spaces. By the measure disintegration formula,
every probability measure \mu \in \scrP (\scrX \times \scrY ) admits a disintegration \mu = \lambda \circledast Q, where
\lambda \in \scrP (\scrX ) is the marginal distribution on \scrX , and Q : \scrX \rightarrow \scrP (\scrY ) is a kernel (a
function such that for each B \in \scrB (\scrY ) the mapping x \mapsto \rightarrow Q(B| x) is Borel measurable):

\mu (A\times B) =

\int 
A

Q(B| x) \lambda (dx) \forall 
\bigl( 
A\in \scrB (\scrX )

\bigr) 
, \forall 

\bigl( 
B \in \scrB (\scrY )

\bigr) 
.

Conversely, given a marginal \lambda \in \scrP (\scrX ) and a kernel Q : \scrX \rightarrow \scrP (\scrY ), the above
formula defines a probability measure \lambda \circledast Q on \scrX \times \scrY . Its marginal on \scrY is the
mixture distribution \lambda \circ Q given by

(\lambda \circ Q)(B) =

\int 
\scrX 

Q(B| x) \lambda (dx) \forall B \in \scrB (\scrY ).

We intend to define a distance between kernels with the use of the Wasserstein metric
in the space of probability measures. To this end, we restrict the class of kernels under
consideration. We use the same symbol d(\cdot , \cdot ) to denote the metrics on \scrX and \scrY ; the
space will be clear from the context.

Definition 3.1. The kernel space of order p\in [1,\infty ) is the set

\scrQ p(\scrX ,\scrY ) =
\Bigl\{ 
Q :\scrX \rightarrow \scrP p(\scrY ) : \forall 

\bigl( 
B \in \scrB (\scrY )

\bigr) 
Q(B| \cdot ) is Borel measurable,(3.1)

\exists (C > 0)\forall (x\in \scrX )

\int 
\scrY 

d(y, y0)
p Q(dy| x)\leq C

\bigl( 
1 + d(x,x0)

p
\bigr) \Bigr\} 
.

It is evident that the choice of the points x0 \in \scrX and y0 \in \scrY is irrelevant in this
definition.

Definition 3.2. The integrated transportation distance of degree p between two
kernels Q and \widetilde Q in \scrQ p(\scrX ,\scrY ) with fixed marginal \lambda \in \scrP p(\scrX ) is defined as

\scrW \lambda 
p(Q, \widetilde Q) =

\biggl( \int 
\scrX 

\bigl[ 
Wp(Q(\cdot | x), \widetilde Q(\cdot | x))

\bigr] p
\lambda (dx)

\biggr) 1/p

.(3.2)

From now on, for a fixed marginal \lambda \in \scrP p(\scrX ), we shall identify the kernels Q

and \widetilde Q if Wp(Q(\cdot | x), \widetilde Q(\cdot | x)) = 0 for \lambda -almost all x \in \scrX . Thus, we consider the space
\scrQ \lambda 
p(\scrX ,\scrY ) of equivalence classes of \scrQ p(\scrX ,\scrY ).

Theorem 3.3. For any p \in [1,\infty ) and any \lambda \in \scrP p(\scrX ), the function \scrW \lambda 
p(\cdot , \cdot ),

defines a metric on the space \scrQ \lambda 
p(\scrX ,\scrY ).

The proof is provided in Appendix A.

Remark 3.4. Our construction of the kernel space (3.1) and the metric (3.2) are
related to the ideas used in [29] for scenario trees, and refined in [23, section 3] for
Markov systems. In our notation, the authors of [23] propose the metric \BbbD p(Q, \widetilde Q) =

supx\in \scrX 
1

\psi (x)Wp(Q(\cdot | x), \widetilde Q(\cdot | x)), with a gauge function \psi : \scrX \rightarrow [1,\infty ). If \psi (\cdot ) \equiv 1,
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TRANSPORTATION DISTANCE BETWEEN KERNELS 3565

we have \scrW \lambda 
p(Q,

\widetilde Q)\leq \BbbD p(Q, \widetilde Q). The uniformity (relative to the gauge function) of the
approximation over all states x \in \scrX is most suitable for situations when nothing is
known about the distribution of x. In our approximation method in the next section,
the marginal \lambda is not arbitrary, but it closely approximates the marginal distribution of
the state in the original system. Thanks to that, the use of the metric (3.2) allows for
controlling the propagation of errors in the backward system (1.2). It also eliminates
the need to work with gauge functions in unbounded spaces.

For a kernel Q \in \scrQ p(\scrX ,\scrY ), and every \lambda \in \scrP p(\scrX ) the measure \lambda \circ Q is an
element of \scrP p(\scrY ), because\int 

\scrY 

d(y, y0)
p (\lambda \circ Q)(dy) =

\int 
\scrX 

\int 
\scrY 

d(y, y0)
p Q(dy| x) \lambda (dx)

\leq C(Q)

\int 
\scrX 

\bigl( 
1 + d(x,x0)

p
\bigr) 
\lambda (dx)<\infty .

In a similar way, the measure \lambda \circledast Q\in \scrP p(\scrX \times \scrY ), because\int 
\scrX 

\int 
\scrY 

\bigl[ 
d(x,x0)

p + d(y, y0)
p
\bigr] 
Q(dy| x) \lambda (dx)

=

\int 
\scrX 

\biggl[ 
d(x,x0)

p +

\int 
\scrY 

d(y, y0)
p Q(dy| x)

\biggr] 
\lambda (dx)

\leq (C(Q) + 1)

\int 
\scrX 

\bigl( 
1 + d(x,x0)

p
\bigr) 
\lambda (dx)<\infty .

The integrated transportation distance provides an upper bound on the distances
between two mixture distributions and between two composition distributions.

Theorem 3.5. For all \lambda \in \scrP p(\scrX ) and all Q, \widetilde Q\in \scrQ \lambda 
p(\scrX ,\scrY ),

\scrW \lambda 
p(Q,

\widetilde Q)\geq Wp(\lambda \circledast Q,\lambda \circledast \widetilde Q)\geq Wp(\lambda \circ Q,\lambda \circ \widetilde Q).(3.3)

The proof is provided in Appendix A.
The inequalities in Theorem 3.5 may be strict, as illustrated in the example of

\scrX = \{ 0, \varepsilon \} with \varepsilon \in (0,1), \scrY = \{ 0,1\} , \lambda = (1/2,1/2), Q(\cdot | x) = \delta \{ sign(x)\} , and \widetilde Q(\cdot | x) =
\delta \{ 1 - sign(x)\} , in which \scrW \lambda 

p(Q, \widetilde Q) = 1, Wp(\lambda \circ Q,\lambda \circ \widetilde Q) = 0, and Wp(\lambda \circledast Q,\lambda \circledast \widetilde Q) = \varepsilon .
We can define a topology of weak convergence in the space \scrQ \lambda 

p(\scrX ,\scrY ).

Definition 3.6. The sequence of kernels \{ Qk\} converges weakly to Q in
\scrQ \lambda 
p(\scrX ,\scrY ), where \lambda \in \scrP p(\scrX ) if for every continuous function f : \scrX \times \scrY \rightarrow \BbbR 

such that | f(x, y)| \leq 1 + d (y0, y)
p \forall (x\in \scrX , y \in \scrY ),\int 

\scrX 

\int 
\scrY 

f(x, y)Qk(dy| x) \lambda (dx) - \rightarrow 
\int 

\scrX 

\int 
\scrY 

f(x, y)Q(dy| x) \lambda (dx).

This entails that \lambda \circledast Qk \rightharpoonup \lambda \circledast Q, and, due to Definition 2.4(i), \lambda \circ Qk p\rightarrow \lambda \circ Q.
The latter property is essential to our approximation scheme, because it allows us to
derive the convergence of integrals or other functionals of the mixture distributions
in the space \scrP p(\scrX ). It also implies that \scrW \lambda 

p(Qk, \delta \{ y0\} ) \rightarrow \scrW \lambda 
p(Q,\delta \{ y0\} ) (see (A.1)

in Appendix A).
The distance \scrW \lambda 

p(\cdot , \cdot ) metrizes the topology of weak convergence in \scrQ \lambda 
p(\scrX ,\scrY ).
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3566 ZHENGQI LIN AND ANDRZEJ RUSZCZY\'NSKI

Theorem 3.7. Let \scrX and \scrY be Polish spaces, p \in [1,\infty ), and \lambda \in \scrP P (\scrX ).
Then the following statements are equivalent: (i) Qk \rightarrow Q weakly in \scrQ \lambda 

p(\scrX ,\scrY ); (ii)
\scrW \lambda 

p(Qk,Q)\rightarrow 0.

The proof is provided in Appendix A.
By the triangle inequality, we obtain the following corollary.

Corollary 3.8. The functional \scrW \lambda 
p(\cdot , \cdot ) is continuous with respect to the weak

convergence in the space \scrQ \lambda 
p(\scrX ,\scrY )\times \scrQ \lambda 

p(\scrX ,\scrY ).

We can also establish an extension of the Kantorovich--Rubinstein duality.

Theorem 3.9. For all Q, \widetilde Q\in \scrQ \lambda 
1 (\scrX ,\scrY ) we have

\scrW \lambda 
1 (Q,

\widetilde Q) = sup
f(\cdot ,\cdot )\in F

\biggl\{ \int 
\scrX \times \scrY 

f(x, y) (\lambda \circledast Q)(dx dy) - 
\int 

\scrX \times \scrY 

f(x, y)(\lambda \circledast \widetilde Q)(dx dy)

\biggr\} 
,

(3.4)

where F is the set of measurable functions on \scrX \times \scrY such that \| f(x, \cdot )\| Lip \leq 1 for
\lambda -almost all x\in \scrX . With no loss of generality, we may also assume that f(\cdot , y0)\equiv 0,
for all f \in F .

The proof is provided in Appendix A.

4. Approximate risk evaluation in Markov systems. Our objective in this
section is to propose and analyze a method for approximating forward--backward
Markov systems which are described by (1.1)--(1.2), with the use of the integrated
transportation distance as the criterion for constructing the approximation and a
measure of its accuracy. Throughout this section, the parameter p\in [1,\infty ) is fixed.

The method proceeds in stages for t = 0,1, . . . , T . At each stage t, for all \tau =
0, . . . , t - 1, we already have approximate transition kernels \widetilde Q\tau : \scrX \rightarrow \scrP p(\scrX ), \tau =
0, . . . , t - 1. These kernels define the approximate marginal distribution\widetilde \lambda t = \lambda 0 \circ \widetilde Q0 \circ \widetilde Q1 \circ \cdot \cdot \cdot \circ \widetilde Qt - 1 = \widetilde \lambda t - 1 \circ \widetilde Qt - 1.(4.1)

We also have the subspaces \scrX \tau \subset \scrX as \scrX \tau = supp(\widetilde \lambda \tau ), \tau = 0,1, . . . , t. For t = 0,\widetilde \lambda 0 = \lambda 0, and \scrX 0 = supp\lambda 0.
At the stage t, we construct a kernel \widetilde Qt :\scrX t\rightarrow \scrP p(\scrX ) such that

\scrW 
\widetilde \lambda t
p (Qt, \widetilde Qt)\leq \Delta t.(4.2)

If t < T  - 1, we increase t by one, and continue; otherwise, we stop. Observe that
the approximate marginal distribution \widetilde \lambda t is well-defined at each step of this abstract
scheme.

We then solve the approximate version of the risk evaluation algorithm (1.2), with
the true kernels Qt replaced by the approximate kernels \widetilde Qt, t= 0, . . . , T  - 1:\widetilde vt(x) = ct(x) + \sigma t

\bigl( 
x, \widetilde Qt(x),\widetilde vt+1(\cdot )

\bigr) 
, x\in \scrX t, t= 0,1, . . . , T  - 1;(4.3)

we assume that \widetilde vT (\cdot )\equiv vT (\cdot )\equiv cT (\cdot ).
Our plan is to estimate the error of this evaluation in terms of the kernel errors

\Delta t. For this purpose, we make the following general assumptions:
(A1) For every t= 0,1, . . . , T - 1 and for every x\in \scrX t, the operator \sigma t(x, \cdot , vt+1) is

Lipschitz continuous with respect to the metricWp(\cdot , \cdot ) with the constant Lt:\bigm| \bigm| \sigma t\bigl( x,\mu , vt+1(\cdot )
\bigr) 
 - \sigma t

\bigl( 
x, \nu , vt+1(\cdot )

\bigr) \bigm| \bigm| 
\leq LtWp(\mu ,\nu ) \forall \mu ,\nu \in \scrP p(\scrX ).
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TRANSPORTATION DISTANCE BETWEEN KERNELS 3567

(A2) For every x\in \scrX t and for every t= 0,1, . . . , T - 1, the operator \sigma t(x, \widetilde Qt(x), \cdot )
is Lipschitz continuous with respect to the norm in the space \scrL p(\scrX ,\scrB (\scrX ),\widetilde Qt(x)) with the constant Kt:\bigm| \bigm| \sigma t\bigl( x, \widetilde Qt(x), v(\cdot )\bigr)  - \sigma t

\bigl( 
x, \widetilde Qt(x),w(\cdot )\bigr) \bigm| \bigm| \leq Kt \| v - w\| p

\forall v,w \in \scrL p(\scrX ,\scrB (\scrX ), \widetilde Qt(x)).
These are fairly schematic conditions, but they are exactly what we need for the

analysis below. After the theorem, we discuss several important cases, in which these
conditions are satisfied.

Theorem 4.1. If assumptions (A1)--(A2) are satisfied, then for all t= 0, . . . , T - 1
we have \biggl( \int 

\scrX 

\bigm| \bigm| \widetilde vt(x) - vt(x)
\bigm| \bigm| p \widetilde \lambda t(dx)\biggr) 1/p

\leq 
T - 1\sum 
\tau =t

L\tau 

\left(  \tau  - 1\prod 
j=t

Kj

\right)  \Delta \tau .(4.4)

In particular, for t= 0,

\bigm| \bigm| \widetilde v0(x0) - v0(x0)
\bigm| \bigm| \leq T - 1\sum 

\tau =0

L\tau 

\left(  \tau  - 1\prod 
j=0

Kj

\right)  \Delta \tau .(4.5)

Proof. First, we prove by induction backward in time that for all t= 0,1, . . . , T - 1
and all x\in \scrX t we have

\bigm| \bigm| \widetilde vt(x) - vt(x)
\bigm| \bigm| \leq T - 1\sum 

\tau =t

L\tau 

\left(  \tau  - 1\prod 
j=t

Kj

\right)  \scrW \delta x\circ \widetilde Qt\circ \cdot \cdot \cdot \circ \widetilde Q\tau  - 1
p ( \widetilde Q\tau ,Q\tau ).(4.6)

At the time t= T  - 1, assumption (A1) yields the inequality\bigm| \bigm| \widetilde vT - 1(x) - vT - 1(x)
\bigm| \bigm| \leq \bigm| \bigm| \bigm| \sigma T - 1

\bigl( 
x, \widetilde QT - 1(x), vT (\cdot )

\bigr) 
 - \sigma T - 1

\bigl( 
x,QT - 1(x), vT (\cdot )

\bigr) \bigm| \bigm| \bigm| 
\leq LT - 1Wp( \widetilde QT - 1(x),QT - 1(x)) =LT - 1 \scrW \delta x

p ( \widetilde QT - 1,QT - 1),

which is the same as (4.6) for T  - 1. Supposing (4.6) is true for t, we verify it for
t - 1. Using assumptions (A1) and (A2) we obtain\bigm| \bigm| \widetilde vt - 1(x) - vt - 1(x)

\bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm| \sigma t - 1

\bigl( 
x, \widetilde Qt - 1(x), vt(\cdot )

\bigr) 
 - \sigma t - 1

\bigl( 
x,Qt - 1(x), vt(\cdot )

\bigr) \bigm| \bigm| \bigm| 
+
\bigm| \bigm| \bigm| \sigma t - 1

\bigl( 
x, \widetilde Qt - 1(x),\widetilde vt(\cdot )\bigr)  - \sigma t - 1

\bigl( 
x, \widetilde Qt - 1(x), vt(\cdot )

\bigr) \bigm| \bigm| \bigm| 
\leq Lt - 1Wp( \widetilde Qt - 1(x),Qt - 1(x)) +Kt - 1

\biggl( \int 
\scrX 

\bigm| \bigm| \widetilde vt(y) - vt(y)
\bigm| \bigm| p \widetilde Qt - 1(dy| x)

\biggr) 1/p

.

The substitution of (4.6) and the application of the Minkowski inequality yield\bigm| \bigm| \widetilde vt - 1(x) - vt - 1(x)
\bigm| \bigm| \leq Lt - 1 \scrW \delta x

p ( \widetilde Qt - 1,Qt - 1)

+ Kt - 1

T - 1\sum 
\tau =t

L\tau 

\left(  \tau  - 1\prod 
j=t

Kj

\right)  \biggl( \int 
\scrX 

\bigl[ 
\scrW \delta y\circ \widetilde Qt\circ \cdot \cdot \cdot \circ \widetilde Q\tau  - 1

p ( \widetilde Q\tau ,Q\tau )\bigr] p \widetilde Qt - 1(dy| x)
\biggr) 1/p

.
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3568 ZHENGQI LIN AND ANDRZEJ RUSZCZY\'NSKI

Observing that

\int 
\scrX 

\bigl[ 
\scrW \delta y\circ \widetilde Qt\circ \cdot \cdot \cdot \circ \widetilde Q\tau  - 1

p ( \widetilde Q\tau ,Q\tau )\bigr] p \widetilde Qt - 1(dy| x) =
\bigl[ 
\scrW \delta x\circ \widetilde Qt - 1\circ \widetilde Qt\circ \cdot \cdot \cdot \circ \widetilde Q\tau  - 1

p ( \widetilde Q\tau ,Q\tau )\bigr] p,
(4.7)

we can write the preceding displayed inequality as\bigm| \bigm| \widetilde vt - 1(x) - vt - 1(x)
\bigm| \bigm| \leq Lt - 1 \scrW \delta x

p ( \widetilde Qt - 1,Qt - 1)

+ Kt - 1

T - 1\sum 
\tau =t

L\tau 

\left(  \tau  - 1\prod 
j=t

Kj

\right)  \scrW \delta x\circ \widetilde Qt - 1\circ \widetilde Qt\circ \cdot \cdot \cdot \circ \widetilde Q\tau  - 1
p ( \widetilde Q\tau ,Q\tau ),

which is the same as (4.6) for t - 1. By induction, (4.6) is true for all t.
The formula (4.4) follows now by integrating the right-hand side of (4.6) and

using the identity\int 
\scrX 

\bigl[ 
\scrW \delta x\circ \widetilde Qt\circ \cdot \cdot \cdot \circ \widetilde Q\tau  - 1

p ( \widetilde Q\tau ,Q\tau )\bigr] p \widetilde \lambda t(dx) = \bigl[ 
\scrW 

\widetilde \lambda \tau 
p ( \widetilde Q\tau ,Q\tau )\bigr] p, \tau = t, . . . , T  - 1.(4.8)

The formula (4.5) is a special case of (4.4) resulting from \lambda 0 = \widetilde \lambda 0 = \delta x0 .

Remark 4.2. At each time t, the ingredients of the formula (4.4): \widetilde \lambda t and \Delta t, are
known. The identities (4.7) and (4.8) explain the use of the marginal \~\lambda in (4.2), and
the mechanism of the error control. Compared to [46, Thm. 6.2], which deals with
the expected value problem in the backward system, the error estimate (4.5) is linear
in the \Delta \tau 's, \tau = 1, . . . , T  - 1.

Assumptions (A1) and (A2) can be verified in several relevant special cases.

Example 4.1. Consider the transition risk mappings of the following form:

\sigma (x,\mu , v)(4.9)

=\BbbE \mu 
\Bigl[ 
f1

\Bigl( 
x,\BbbE \mu 

\bigl[ 
f2
\bigl( 
x,\BbbE \mu [ \cdot \cdot \cdot fk(x,\BbbE \mu [fk+1(x, v(\cdot ))], v(\cdot ))] \cdot \cdot \cdot , v(\cdot )

\bigr) \bigr] 
, v(\cdot )

\Bigr) \Bigr] 
,

where v : \scrX \rightarrow \BbbR , \BbbE \mu 
\bigl[ 
f(v(\cdot ))

\bigr] 
=

\int 
\scrX f(v(y)) \mu (dy), and fj : \scrX \times \BbbR mj \times \BbbR \rightarrow \BbbR mj - 1 ,

j = 1, . . . , k, with m0 = 1 and fk+1 : \scrX \times \BbbR \rightarrow \BbbR mk . This is a fairly general class,
considered in [13], which covers several risk measures, such as the mean--semideviation
measure (2.1). Indeed, if p= 1, we can write (2.1) in the form (4.9), with k = 1 and
f1(x, \eta , v(\cdot )) = \eta +\varkappa (x)[v(\cdot ) - \eta ]+, f2(x, v(\cdot )) = v(\cdot ).

The model (4.9) also covers the mapping (1.4) in the stopping problem. In this
case, k= 1 again, and f1(x, \eta , v(\cdot )) =max(r(x);\eta ), f2(x, v(\cdot )) = v(\cdot ).

Suppose the functions fj(x, \cdot , \cdot ), j = 1, . . . , k, and fk+1(x, \cdot ) are Lipschitz continu-
ous (it is true in both special cases mentioned above). Furthermore, let the function
v(\cdot ) be Lipschitz continuous as well. Then, by virtue of the Kantorovich--Rubinstein
duality, the functional gk+1(\mu ) =\BbbE \mu 

\bigl[ 
fk+1(x, v(\cdot ))

\bigr] 
is Lipschitz continuous in the space

\scrP 1(\scrX ). In a similar way, the mapping gk(\mu ) = \BbbE \mu 
\bigl[ 
fk(x,\BbbE \mu [fk+1(x, v(\cdot ))], v(\cdot ))

\bigr] 
=

\BbbE \mu 
\bigl[ 
fk(x, gk+1(\mu ), v(\cdot ))

\bigr] 
is Lipschitz continuous as well. Proceeding in this way, we

conclude that assumption (A1) is satisfied with p = 1, as long as the optimal value
functions vt(\cdot ), t= 1, . . . , T , are Lipschitz continuous.

Consider assumption (A2). With a fixed measure \mu (corresponding to \widetilde Qt(x)
in (A2)), we observe that the functional \varphi k+1(v) = \BbbE \mu 

\bigl[ 
fk+1(x, v(\cdot ))

\bigr] 
is Lipschitz

continuous in the space \scrL 1(\scrX ,\scrB (\scrX ), \mu ). This, in turn, implies that the functional

\varphi k(v) =\BbbE \mu 
\bigl[ 
fk(x,\BbbE \mu [fk+1(x, v(\cdot ))], v(\cdot ))

\bigr] 
=\BbbE \mu 

\bigl[ 
fk(x,\varphi k+1(v), v(\cdot ))

\bigr] 
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TRANSPORTATION DISTANCE BETWEEN KERNELS 3569

is Lipschitz continuous in \scrL 1(\scrX ,\scrB (\scrX ), \mu ). Proceeding in a similar way, we conclude
that the assumption (A2) is satisfied as well.

Example 4.2. Consider the transition risk mapping (2.2) derived from the Average
Value at Risk. If v(\cdot ) is Lipschitz continuous, then the mapping \mu \mapsto \rightarrow AVaR\alpha (x,\mu , v(\cdot ))
is Lipschitz continuous on the space \scrP 1(\scrX ). Thus, assumption (A1) is satisfied with
p= 1. Furthermore, for a fixed \mu , the mapping v(\cdot ) \mapsto \rightarrow \BbbE \mu 

\bigl[ 
max(0, v(y) - \eta )

\bigr] 
is Lipschitz

continuous (with the modulus 1) in the space \scrL 1(\scrX ,\scrB (\scrX ), \mu ). Indeed, suppose \eta v
achieves the infimum in (2.2). Then

AVaR\alpha (x,\mu ,w(\cdot )) - AVaR\alpha (x,\mu , v(\cdot ))

\leq 1

\alpha 
\BbbE \mu 

\bigl[ 
max(0,w(y) - \eta v)

\bigr] 
 - 1

\alpha 
\BbbE \mu 

\bigl[ 
max(0, v(y) - \eta v)

\bigr] 
\leq 1

\alpha 
\| w - v\| 1.

Reversing the roles of v and w we obtain the Lipschitz continuity of (2.2) on the
space \scrL 1(\scrX ,\scrB (\scrX ), \mu ). If the infimum is not achieved, which may happen for \alpha = 1,
then AVaR1(x,\mu , v(\cdot )) = \BbbE \mu [v(\cdot )] and the Lipschitz continuity is evident. Therefore,
assumption (A2) is satisfied.

The last example allows for deriving the Lipschitz continuity in the space \scrP 1(\scrX )
of a broad class of coherent risk mappings in the spectral form (2.3), or, more generally,
enjoying the Kusuoka representation [27]. We refer the reader to [14, Thm. 6.5] for
the details.

Example 4.3. Consider now the mean--semideviation mapping (2.1) for p > 1. By
[14, Lem. 6.6], if v(\cdot ) is Lipschitz continuous, then the functional \mu \mapsto \rightarrow msdp(x,\mu , v) is
Lipschitz continuous on the space \scrP p(\scrX ). Thus, assumption (A1) is satisfied.

Furthermore, for a fixed \mu , the continuity of the mapping v \mapsto \rightarrow msdp(x,\mu , v) on
the space \scrL p(\scrX ,\scrB (\scrX ), \mu ) is evident, because it is a sum of a linear mapping and
the norm. Thus, (A2) holds true as well.

It follows from the above examples that the assumptions (A1) and (A2) are indeed
satisfied for a wide range of transition risk mappings. The Lipschitz continuity of the
value functions vt(\cdot ), t= 2, . . . , T , is crucial in this context.

This can be guaranteed by a simple induction argument. Suppose each func-
tion ct(\cdot ) and operator (x,\mu ) \mapsto \rightarrow \sigma t(x,\mu , vt+1(\cdot )) are Lipschitz continuous in \scrX and
\scrX \times \scrQ \lambda t(\scrX ,\scrX ), respectively, provided the function vt+1(\cdot ) is Lipschitz continuous.
Moreover, let the kernels Qt :\scrX \rightarrow \scrP p(\scrX ), t= 1, . . . , T  - 1, be Lipschitz continuous
as well: a constant LQ exists, such that

Wp(Qt(x),Qt(x
\prime ))\leq LQt d(x,x

\prime ) \forall x,x\prime \in \scrX .(4.10)

Then the function vt(\cdot ) in (1.2) is a composition of Lipschitz continuous mappings,
and it is thus Lipschitz continuous. By induction, all value functions are Lipschitz
continuous. Their Lipschitz constants, though, may grow exponentially with the
horizon T  - t if LQ > 1. The constant LQ is known as the ergodicity coefficient; see
[40] and the references therein.

We can also study the accuracy of the marginal distributions \widetilde \lambda t, t = 1, . . . , T .
First, we establish a useful continuity result.

Lemma 4.3. If a kernel Q :\scrX \rightarrow \scrP p(\scrX ) is Lipschitz continuous, then the map-
ping \mu \mapsto \rightarrow \mu \circ Q is Lipschitz continuous on \scrP p(\scrX ) with the same modulus.
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3570 ZHENGQI LIN AND ANDRZEJ RUSZCZY\'NSKI

Proof. If \lambda (dy dy\prime | x,x\prime ) is the optimal transport plan from Q(x) to Q(x\prime ), then

Wp(Q(x),Q(x\prime ))p =

\int 
\scrX \times \scrX 

d(y, y\prime )p \lambda (dy dy\prime | x,x\prime )\leq LpQd(x,x
\prime )p,

where LQ is the Lipschitz constant of Q. Suppose \pi (dxdx\prime ) is the optimal coupling
of \mu and \nu . Consider the transport plan \Pi = \pi \circ \lambda , with \pi considered as a marginal
on \scrX \times \scrX , and \lambda as a kernel from \scrX \times \scrX to \scrP (\scrX \times \scrX ). We have

\Pi (A\times \scrX ) =

\int 
\scrX \times \scrX 

\int 
\scrX 

\lambda (A,dy\prime | x,x\prime ) \pi (dxdx\prime )

=

\int 
\scrX \times \scrX 

Q(A| x) \pi (dxdx\prime ) =
\int 

\scrX 

Q(A| x) \mu (dx\prime ) = [\mu \circ Q](A).

In a similar way, \Pi (\scrX \times B)[\nu \circ Q](B), and thus \Pi is a feasible transport plan from
\mu \circ Q to \nu \circ Q. Therefore,

Wp

\bigl( 
\mu \circ Q,\nu \circ Q

\bigr) 
\leq 
\int 

\scrX \times \scrX 

d(y, y\prime )p\Pi (dy dy\prime )

=

\int 
\scrX \times \scrX 

\int 
\scrX \times \scrX 

d(y, y\prime )p \lambda (dy dy\prime | x,x\prime ) \pi (dxdx\prime )

\leq LpQ

\int 
\scrX \times \scrX 

d(x,x\prime )p \pi (dxdx\prime ) =LpQWp(\mu ,\nu )
p.

It follows that LQ is the Lipschitz constant of the mapping \mu \mapsto \rightarrow \mu \circ Q.

We can now easily estimate the errors of the marginal distributions.

Theorem 4.4. If the kernels Qt : \scrX \rightarrow \scrP p(\scrX ) are Lipschitz continuous with
constants LQt

, then

Wp(\widetilde \lambda t, \lambda t) = t - 1\sum 
\tau =1

\Delta \tau 

t - 1\prod 
i=\tau +1

LQi , t= 1, . . . , T.(4.11)

Proof. The estimate (4.11) is true for t = 1. Supposing it is valid for t  - 1, we
verify it for t:

Wp(\widetilde \lambda t, \lambda t) =Wp(\widetilde \lambda t - 1 \circ \widetilde Qt - 1, \lambda t - 1 \circ Qt - 1)

\leq Wp(\widetilde \lambda t - 1 \circ \widetilde Qt - 1,\widetilde \lambda t - 1 \circ Qt - 1) +Wp(\widetilde \lambda t - 1 \circ Qt - 1, \lambda t - 1 \circ Qt - 1)

\leq \scrW 
\widetilde \lambda t - 1
p

\bigl( \widetilde Qt - 1,Qt - 1) +Wp(\widetilde \lambda t - 1 \circ Qt - 1, \lambda t - 1 \circ Qt - 1)

\leq \Delta t - 1 +LQt - 1
Wp(\widetilde \lambda t - 1, \lambda t - 1).

The substitution of (4.11) for t - 1 yields the same estimate for t. By induction, it is
true for all t.

5. Kernel approximation by particles. In the general method discussed in
the previous section, we iteratively constructed approximate kernels \widetilde Qt, proceeding
from t= 0 to t= T  - 1, and we used their error estimates (4.2) to estimate the error
of the risk evaluation.

Now we aim at an implementable method to realize this general scheme. The
most important assumption is that the spaces \scrX t, t = 0,1, . . . , T , be finite. We
assume that we start from \scrX 0 = \{ x0\} . At each stage t, we aim to construct a finite
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TRANSPORTATION DISTANCE BETWEEN KERNELS 3571

set \scrX t+1 \subset \scrX of cardinality Mt+1 and a kernel \widetilde Qt :\scrX t\rightarrow \scrP (\scrX t+1) by solving the
following problem:

min
\scrX t+1, \widetilde Qt

\scrW 
\widetilde \lambda t
p (Qt, \widetilde Qt) s.t. supp(\widetilde \lambda t \circ \widetilde Qt) =\scrX t+1 and

\bigm| \bigm| \scrX t+1

\bigm| \bigm| \leq Mt+1.(5.1)

After (approximately) solving this problem, we increase t by one and continue. Evi-
dently, the objective function of this problem is motivated by its direct effect on the
error estimates in Theorems 4.1 and 4.4.

Let us focus on effective and scalable ways for constructing an approximate so-
lution to problem (5.1). We represent the (unknown) support of \widetilde \lambda t \circ \widetilde Qt by \scrX t+1 =\bigl\{ 
zjt+1

\bigr\} 
j=1,...,Mt+1

and the (unknown) transition probabilities by \widetilde Q(zjt+1| zst ), s =

1, . . . ,Mn, j = 1, . . . ,Mn+1. With the use of Definition 3.2, problem (5.1) can be
equivalently rewritten as

min
\scrX t+1, \widetilde Qt

Mn\sum 
s=1

\widetilde \lambda stWp

\bigl( 
Qt(\cdot | zst ), \widetilde Qt(\cdot | zst )\bigr) p

s.t. supp
\bigl( \widetilde Qt(\cdot | zst )\bigr) \subset \scrX t+1, s= 1, . . . ,Mn,\bigm| \bigm| \scrX t+1

\bigm| \bigm| \leq Mt+1.

(5.2)

Let \pi st be a transportation plan from Qt(\cdot | zst ) to \widetilde Qt(\cdot | zst ). Then it follows from the
definition of the Wasserstein distance thatWp

\bigl( 
Qt(\cdot | zst ), \widetilde Qt(\cdot | zst )\bigr) p is the optimal value

of the problem

min
\pi s
t\geq 0

Mt+1\sum 
j=1

\int 
\scrX 

\| x - zjt+1\| p \pi 
sj
t (dx)

s.t.

\int 
\scrX 

\pi sjt (dx) = \widetilde Qt(zjt+1| zst ), j = 1, . . . ,Mt+1,

Mt+1\sum 
j=1

\pi sjt (A) =Qt(A| zst ) \forall A\in \scrB (\scrX ).

(5.3)

The integration of problems (5.2)--(5.3) leads to a very difficult nonconvex infinite-
dimensional problem which can be only solved in very special cases. To develop a
tractable approach in large-scale applications, we restrict the supports of the kernels
under consideration to finite sets. We may remark that the optimal quantization of
probability distributions with the use of the Wasserstein metric was systematically
studied in [18]. Our problem is slightly different because we want to obtain a ``quan-
tization"" of kernels.

In our particle approach, for t= 0,1, . . . , T  - 1, each distribution Qt(\cdot | zst ) is rep-
resented by finitely many points (particles)

\bigl\{ 
xs,it+1

\bigr\} 
i\in \scrI s

t+1

, drawn independently from

Qt(\cdot | zst ). If the state space \scrX is finite-dimensional, the expected error of this ap-
proximation is well-investigated in [15, 17], as a function of the sample size

\bigm| \bigm| \scrI s
t+1

\bigm| \bigm| ,
the dimension of the state space, and the moments of the distribution (see formula
(5.8) below). From this point, we consider the error of this large-size discrete ap-
proximation as fixed, and we focus on constructing smaller support with as small
an error to the particle distributions as possible. To this end, we introduce the sets
\scrZ t+1 =

\bigl\{ 
\zeta kt+1

\bigr\} 
k=1,...,Kt+1

, which are preselected potential locations of the next-stage

representative states zjt+1, j = 1, . . . ,Mt+1. In the simplest case, we may consider the
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3572 ZHENGQI LIN AND ANDRZEJ RUSZCZY\'NSKI

union of the sets of particles,
\bigl\{ 
xs,it+1, i \in \scrI s

t+1, s = 1, . . . ,Mt

\bigr\} 
as the potential loca-

tions, but often computational efficiency requires that Kt+1 \ll 
\sum Mt

s=1

\bigm| \bigm| \scrI s
t+1

\bigm| \bigm| . There
are several heuristic ways to choose the set \scrZ t+1 of potential points. For instance,
they may be sampled independently along with successors at the particle generation
step, or they may be sampled from a different distribution. In any case, we still have
Mt+1 \ll Kt+1, which makes the problem of finding the best representative points
nontrivial.

Suppose temporarily the next-stage representative points
\bigl\{ 
zjt+1

\bigr\} 
j=1,...,Mt+1

have

been found. Then the particle version of problem (5.3) (for a fixed s) takes on the
form

min
\pi s
t\geq 0

Mt+1\sum 
j=1

\sum 
i\in \scrI s

t+1

\| xs,it+1  - zjt+1\| p \pi 
s,i,j
t

s.t.

Mt+1\sum 
j=1

\pi s,i,jt =
1

| \scrI s
t+1| 

, i\in \scrI s
t+1.

(5.4)

It has a straightforward solution: find for each particle i the closest representative
point, j\ast (i) = argminj=1,...,Mt+1

\| xs,it+1  - zjt+1\| , and set \pi 
s,i,j\ast (k)
t = 1

| \scrI s
t+1| 

; for other j,

we set it to 0. The implied approximate kernel is

\widetilde Qt(zjt+1| zst ) =
\sum 

i\in \scrI s
t+1

\pi s,i,jt , s= 1, . . . ,Mt, j = 1, . . . ,Mt+1,(5.5)

which simply counts the particles from \scrI s
t+1 which were assigned to zjt+1.

These considerations allow us to integrate problems (5.4) into (5.2). We introduce
the binary variables

\gamma k =

\Biggl\{ 
1 if the point \zeta kt+1 has been selected to \scrX t+1,

0 otherwise,
k= 1, . . . ,Kt+1,

and we rescale the transportation plans:

\beta s,i,k = | \scrI s
t+1| \pi 

s,i,k
t , s= 1, . . . ,Mt, i\in \scrI s

t+1, k= 1, . . . ,Kt+1.

We obtain from (5.2) the following linear mixed-integer optimization problem:

min
\gamma ,\beta 

Mn\sum 
s=1

\widetilde \lambda st
| \scrI s

t+1| 

Kt+1\sum 
k=1

\sum 
i\in \scrI s

t+1

\| xs,it+1  - \zeta kt+1\| p \beta s,i,k

s.t. \beta s,i,k \leq \gamma k, s= 1, . . . ,Mt, i\in \scrI s
t+1, k= 1, . . . ,Kt+1,

Kt+1\sum 
k=1

\beta s,i,k = 1, s= 1, . . . ,Mt, i\in \scrI s
t+1,

Kt+1\sum 
k=1

\gamma k \leq Mt+1,

\beta s,i,k \in [0,1], \gamma k \in \{ 0,1\} , s= 1, . . . ,Mt, i\in \scrI s
t+1, k= 1, . . . ,Kt+1.

(5.6)

The complicating element is that the \gamma k's are binary variables. However, we may
solve the relaxation of (5.6) in which we require only that \gamma k \in [0,1], k= 1, . . . ,Kt+1,
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TRANSPORTATION DISTANCE BETWEEN KERNELS 3573

while still bounding their sum by Mt+1. After that, we may randomly assign to
fractional \gamma k's values 0 or 1, by using independent Bernoulli random variables with
parameters \gamma k, and then resolve (5.6) with respect to the \beta variables only. This can
be accomplished by assigning each point xs,it+1 to the closest \zeta kt+1 having \gamma k = 1. The
implied approximate kernel is given by (5.5):

\widetilde Qt(\zeta kt+1| zst ) =
1

| \scrI s
t+1| 

\sum 
i\in \scrI s

t+1

\beta s,i,k, s= 1, . . . ,Mt, k= 1, . . . ,Kt+1.(5.7)

By construction, these probabilities can be positive only when \gamma k = 1.
Finally, \widetilde \lambda t+1 = \widetilde \lambda t \circ \widetilde Qt, and the iteration continues until t= T .
At each stage t, the estimate of the error \Delta t in (4.2) can be computed: it is the

sum of the pth root of the objective value of (5.6) and the particle distribution error.
Denoting by \widehat Qt the approximate kernel defined by all the particles sampled, due to
Theorem 3.3, we have

\scrW 
\~\lambda t
p ( \widetilde Qt,Qt)\leq \scrW 

\~\lambda t
p ( \widetilde Qt, \widehat Qt) +\scrW 

\~\lambda t
p ( \widehat Qt,Qt).

To recall a bound on the expected value of the second term, we assume that the state
space is finite-dimensional, and that for each point zst the measure Qt(\cdot | zst ) has a finite
moment mu for some u > p. The following inequality due to [15, 17] is true for all
N = | \scrI s

t+1| :

\BbbE 
\bigl[ 
Wp

\bigl( \widehat Qt(\cdot | zst ),Qt(\cdot | zst \bigr) \bigr] \leq Cmp/u
u(5.8)

\times 

\left\{     
N - 1/2 +N - (u - p)/u if p > n/2 and u \not = 2p,

N - 1/2 ln(1 +N) +N - (u - p)/u if p= n/2 and u \not = 2p,

N - p/n +N - (u - p)/u if p < n/2 and u \not = n
n - p ,

where n = dim(\scrX ), and C is a constant depending only on p, u, and n. If the
number N of particles sampled from each Qt(\cdot | zst ) is the same for all s = 1, . . . ,Mt,

the expected distance \BbbE 
\bigl[ 
\scrW 

\~\lambda t
p ( \widehat Qt,Qt)\bigr] is bounded by the expression (5.8) as well.

Our procedure adds to this error a fully controllable part \scrW 
\~\lambda t
p ( \widetilde Qt, \widehat Qt) by con-

structing a set of representative points zjt+1, j = 1, . . . ,Mt+1, each of which may serve
as a ``descendant"" of multiple points zst . Our experience shows that for large Mt the
total number of these points, Mt+1, is comparable toMt, and thus much smaller than
the number of particles NMt. As a result, the total number of representative points,
while still exponential in the dimension of the state space, grows only linearly with
the number of time steps. We elaborate on it in the next section.

6. Numerical illustration. Consider n stocks
\bigl\{ 
S
(i)
t

\bigr\} 
, i = 1, . . . , n, in an

arbitrage-free and complete market, following (under the risk-neutral probability mea-
sure \BbbQ ) the equations

dS
(i)
t = rS

(i)
t dt+ \sigma (i)S

(i)
t dW\BbbQ 

t , i= 1, . . . , n, t\in [0, T ].(6.1)

Here, \{ W\BbbQ 
t \} is an n-dimensional Brownian motion under \BbbQ , r is the risk-free interest

rate, and \sigma (i) is the n-dimensional (row) vector of volatility coefficients of stock i. We
assume that the coefficients r and \sigma are constant, but our methodology is applicable
to problems with varying coefficients as well.

An option is one of the most common financial derivatives that give buyers the
right, but not the obligation, to buy or sell an underlying asset at an agreed-upon
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3574 ZHENGQI LIN AND ANDRZEJ RUSZCZY\'NSKI

price during a certain period of time. The American option is the type of option
that can be exercised anytime, prior to the maturity time T . If exercised at time t,
the option pays \Phi (St) for some known function \Phi : \BbbR n \rightarrow [0,+\infty ). The price of the
American option is given by the optimal value of the stopping problem:

Vt(x) = sup
\tau  - \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p}\mathrm{p}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}

t\leq \tau \leq T

E\BbbQ \bigl[ e - r(\tau  - t)\Phi (S\tau )
\bigm| \bigm| St = x

\bigr] 
, x\in Rn,(6.2)

In our example, \Phi (St) = max
\bigl( 
0,K  - 

\sum n
i=1wiS

(i)
t

\bigr) 
is the value of the basket put

option, with the basket weights wi, i= 1, . . . , n.
To develop a numerical scheme for approximating the option value, we first

partition the time interval [0, T ] into short intervals of length \Delta t = T/N : \Gamma N =
\{ ti = i\Delta t : i= 0,1, . . . ,N\} .

With the exercise times restricted to \Gamma N , we approximate the option value by

V
(N)
t (x) = sup

\tau  - \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p}\mathrm{p}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}
\tau \in \Gamma N

E\BbbQ \bigl[ e - r(\tau  - t)\Phi (S\tau )
\bigm| \bigm| St = x

\bigr] 
, t\in \Gamma N , x\in Rn.(6.3)

We view V
(N)
t (x) as an approximation to the actual American option price when N

increases to infinity. It satisfies the following dynamic programming equations:

V
(N)
tN (x) =\Phi (x), x\in \BbbR n,

V
(N)
ti (x) =max

\Bigl\{ 
\Phi (x),E\BbbQ \bigl[ e - r\Delta tV (N)

ti+1

\bigl( 
Sti+1

\bigr) \bigm| \bigm| Sti = x
\bigr] \Bigr\} 
, i= 0,1, . . . ,N  - 1,

which is a special case of (1.4). We apply two methods to simulate the movements
of stocks and compare the values of the approximation of the American basket op-
tion. The first method is the grid point selection method based on the integrated
transportation distance. For every time step ti, we select the representative point(s)
zji , j = 1, . . . ,Mi, to represent the state space at time ti, as outlined in section 5. We
compare the above method with the binomial tree method, a lattice method based
on the random walk approximation to the Brownian motion. Between the start and
expiration dates, each grid point in a lattice represents the state of the system at a
given time step. Starting from the grid points at the final time step, the prices at the
preceding grid points are computed in a backward direction. Since every node of the
lattice has 2n descendants, the number of lattice points in the binomial tree method
grows exponentially, as the number of time steps increases. In the grid point selection
method, the total number of representative points grows approximately at a linear
rate with respect to the total number of time steps N .

In the initial experiment, both methods are applied to evaluate the American
basket put option with n= 2 and the payoff function for the American basket put is
\Phi p(St) = max(K  - 

\sum n
i=1wiS

(i)
t ,0), where wi is the percentage of stock i held in the

portfolio and K is the strike price. The values of the parameters are S0 = [10,10],
r = 0.03, K = 10, w = (0.5,0.5), and T = 1. The volatility coefficients were \sigma =\bigl[ 
0.5  - 0.2;  - 0.2 0.5

\bigr] 
.

Table 1 compares the approximated option prices using the grid point selection
method and the binomial tree method. Figure 1 summarizes the convergence of the
American basket put option as the number of time steps increases. Moreover, the
upper bound of the error in estimating value function is determined by the integrated
transportation distance at every time stage. For the grid point selection method,
we have computed the the integrated transportation distances for the first few time
stages. \Delta 0 = 0.239, \Delta 1 = 0.211, \Delta 2 = 0.192, \Delta 3 = 0.190, and \Delta 4 = 0.181.
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TRANSPORTATION DISTANCE BETWEEN KERNELS 3575

Table 1
Convergence of the American basket put option prices with respect to the number of time dis-

cretization steps.

N Grid Binomial

1 0.832 0.824
2 0.869 1.009

5 0.880 0.896

10 0.880 0.873
25 0.884 0.887

50 0.887 0.889

Fig. 1. The approximate value of the American basket put option as a function of the number
of time steps.

Fig. 2. All sample points (blue, N = 1000) versus selected grid points (black, M= 46). (Figure
in color online.)

In order to demonstrate the stability of the approximate prices using our grid
point selection method, we will also apply this method on risk measures at T = 1.
A practically relevant law-invariant coherent measure of risk is the mean--semideviation
of order p\geq 1, defined in (2.1). Figure 2 illustrates an example of selecting grid points
from the simulated stock prices at T = 1. In the grid selection method, we set the
number of grid points to be around 400 selected out of 1000 randomly sampled points.
We repeated the experiment over 900 times and recorded the mean and semideviation
estimates. In the Monte Carlo experiment, we sampled 1000 points and evaluated
plug-in estimates of the mean and the semideviation; this experiment was repeated
5000 times. In Figure 3a, we plot the histograms of the estimated expected values,
and in Figure 3b, the histograms of the estimated semideviations. It is obvious that
the approximated values from the grid selection method are more stable than those
from the Monte Carlo simulation.
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3576 ZHENGQI LIN AND ANDRZEJ RUSZCZY\'NSKI

(a) Histogram of the estimated expected
value of the stock price.

(b) Histogram of the estimated semidevi-
ation of the stock price.

Fig. 3. Monte Carlo simulation versus the grid selection method.

Table 2
Convergence of the estimates of the American put price with respect to the number of time

discretization steps N .

N Put - grid Put - binomial M -grid M -binomial

1 1.168 1.179 30343 33
2 1.188 1.223 38740 276

3 1.207 1.239 50891 1300

4 1.213 1.240 56970 4425
5 1.231 1.241 74044 12201

6 1.231 1.242 81022 29008

7 1.240 1.242 94592 61776
8 1.239 1.244 97639 120825

9 1.250 1.244 127981 220825

10 1.254 1.244 136378 381876
11 1.258 1.245 148528 630708

12 1.259 1.246 154607 1002001

In our more challenging experiment, we estimated the American put option
value for a five-dimensional stock basket. The values of the parameters are S0 =
[10,10,10,10,10], r= 0.03, K = 10, w= (0.2,0.2,0.2,0.2,0,2), T = 1, and

\sigma =

\left[      
0.5 0.2 0.3  - 0.2 0.15
0.2 0.5  - 0.15 0.3 0.12
0.3  - 0.15 0.75  - 0.1 0.1
 - 0.2 0.03  - 0.1 0.3 0.05
0.15 0.12 0.1 0.05 0.4

\right]      .

Table 2 displays the convergence of the American put option prices as we increase
the number N of time discretization points, using the grid selection method and the
binomial tree method. M refers to the total number of grid points used. As shown
in the table, the binomial tree method cannot go beyond N = 12 because the total
number of grid points, M increases exponentially with N . The grid point selection
method achieves similar results to that of the binomial tree method while requiring
only linear growth of the total number of representative points with the number of
stages.
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TRANSPORTATION DISTANCE BETWEEN KERNELS 3577

Appendix A. Proofs of the statements in section 3.

Proof of Theorem 3.3. It is obvious that \scrW \lambda 
p(Q, \widetilde Q)\geq 0 for any Q, \widetilde Q\in \scrQ \lambda 

p(\scrX ,\scrY )

and \scrW \lambda 
p(Q,

\widetilde Q) = 0 if and only if Q= \widetilde Q \lambda -a.s.. We next verify the triangle inequality.

For all Q,Q\prime , \widetilde Q \in \scrQ \lambda 
p(\scrX ,\scrY ), by the triangle inequality for Wp(\cdot , \cdot ) and then by the

Minkowski inequality, we obtain

\scrW \lambda 
p(Q, \widetilde Q)\leq 

\biggl( \int 
\scrX 

\bigl[ 
Wp(Q(\cdot | x),Q\prime (\cdot | x)) +Wp(Q

\prime (\cdot | x), \widetilde Q(\cdot | x))
\bigr] p
\lambda (dx)

\biggr) 1/p

\leq 
\biggl( \int 

\scrX 

\bigl[ 
Wp(Q(\cdot | x),Q\prime (\cdot | x))

\bigr] p
\lambda (dx)

\biggr) 1/p

+

\biggl( \int 
\scrX 

\bigl[ 
Wp(Q

\prime (\cdot | x), \widetilde Q(\cdot | x))
\bigr] p
\lambda (dx)

\biggr) 1/p

=\scrW \lambda 
p(Q,Q

\prime ) +\scrW \lambda 
p(Q

\prime , \widetilde Q).

Furthermore, setting Q\prime (\cdot | x) = \delta \{ y0\} (\cdot ) and using (3.1), we get\bigl[ 
\scrW \lambda 

p(Q,\delta \{ y0\} )
\bigr] p

=

\int 
\scrX 

\bigl[ 
Wp(Q(\cdot | x), \delta \{ y0\} )

\bigr] p
\lambda (dx)

=

\int 
\scrX 

\int 
\scrY 

d(y, y0)
p Q(dy| x) \lambda (dx)

\leq C(Q)

\int 
\scrX 

\bigl( 
1 + d(x,x0)

p
\bigr) 
\lambda (dx)<\infty ,

(A.1)

which proves the finiteness of \scrW \lambda 
p(Q, \widetilde Q) if \lambda \in \scrP p(\scrX ).

Proof of Theorem 3.5. From (3.2) we obtain\bigl[ 
\scrW \lambda 
p(Q, \widetilde Q)

\bigr] p
=

\int 
\scrX 

\int 
\scrY \times \scrY 

d(y, y\prime )p \pi \ast (dy,dy\prime | x) \lambda (dx),

where \pi \ast (\cdot , \cdot | x) is the optimal transportation plan between Q(\cdot | x) and \widetilde Q(\cdot | x). By the
measurable selection theorem, the mapping x \mapsto \rightarrow \pi \ast (\cdot , \cdot | x) may be viewed as a kernel
from \scrX to \scrP (\scrY \times \scrY ).

Now, we construct from \pi \ast a transportation plan \Pi \ast \in \scrP 
\bigl( 
(\scrX \times \scrY )\times (\scrX \times \scrY )

\bigr) 
:

for all AX ,BX \in \scrB (\scrX ) and all AY ,BY \in \scrB (\scrY ) we set

\Pi \ast \bigl( (AX \times AY )\times (BX \times BY )
\bigr) 
=

\int 
AX\cap BX

\pi \ast (AY \times BY | x) \lambda (dx).(A.2)

Setting BX =\scrX and BY =\scrY we obtain the marginal of \Pi \ast :

\Pi \ast \bigl( (AX \times AY )\times (\scrX \times \scrY )
\bigr) 
=

\int 
AX

\pi \ast (AY \times \scrY | x) \lambda (dx)

=

\int 
AX

Q(AY | x) \lambda (dx) = (\lambda \circledast Q)(AX \times AY ).

The second marginal is verified in an analogous way and thus \Pi \ast moves \lambda \circledast Q to
\lambda \circledast \widetilde Q. Then, by virtue of (A.2),

Wp(\lambda \circledast Q,\lambda \circledast \widetilde Q)p \leq 
\int 
(\scrX \times \scrY )\times (\scrX \times \scrY )

d
\bigl( 
(x, y), (x\prime , y\prime )

\bigr) p
\Pi \ast (dx dy,dx\prime dy\prime )

=

\int 
\scrY \times \scrY 

d(y, y\prime )p
\int 

\scrX 

\pi \ast (dy,dy\prime | x) \lambda (dx) =
\bigl[ 
\scrW \lambda 

p(Q, \widetilde Q)
\bigr] p
,

which verifies the left inequality in (3.3).
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Next, for the optimal transportation plan \widehat \Pi \in \scrP 
\bigl( 
(\scrX \times \scrY )\times (\scrX \times \scrY )

\bigr) 
, with

marginals \lambda \circledast Q and \lambda \circledast \widetilde Q, we construct a transportation plan \^\pi \in \scrP (\scrY \times \scrY ) as

\^\pi (AY \times BY ) = \widehat \Pi \bigl( 
(\scrX \times AY )\times (\scrX \times BY )

\bigr) 
\forall AY ,BY \in \scrB (\scrY ).

Then

\^\pi (AY \times \scrY ) = \widehat \Pi \bigl( 
(\scrX \times AY )\times (\scrX \times \scrY )

\bigr) 
= [\lambda \circledast Q](\scrX \times AY ) = [\lambda \circ Q](AY ).

The second marginal is verified analogously and thus \^\pi moves \lambda \circ Q to \lambda \circ \widetilde Q. Therefore,

Wp(\lambda \circ Q,\lambda \circ \widetilde Q)p \leq 
\int 

\scrY \times \scrY 

d(y, y\prime )p \^\pi (dy,dy\prime )

=

\int 
(\scrX \times \scrY )\times (\scrX \times \scrY )

d(y, , y\prime )p \widehat \Pi (dxdy,dx\prime dy\prime )

\leq 
\int 
(\scrX \times \scrY )\times (\scrX \times \scrY )

d
\bigl( 
(x, y), (x\prime , y\prime )

\bigr) p \widehat \Pi (dxdy,dx\prime dy\prime )

=Wp(\lambda \circledast Q,\lambda \circledast \widetilde Q)p.

which is the right inequality in (3.3).

Proof of Theorem 3.7. The implication (ii)\Rightarrow (i) follows from Theorem 3.5, because

the first inequality in (3.3) yieldsWp(\lambda \circledast Qk, \lambda \circledast Q)\rightarrow 0, and thus \lambda \circledast Qk
p\rightarrow \lambda \circledast Q, by

virtue of [45, Thm. 6.9]. The latter convergence implies that Definition 3.6 is satisfied.
To prove the implication (i)\Rightarrow (ii), we adopt some ideas of the proof of [45, Thm.

6.9]. From (3.2) we obtain

\bigl[ 
\scrW \lambda 

p(Qk,Q)
\bigr] p

=

\int 
\scrX 

\int 
\scrY \times \scrY 

d(y, y\prime )p \pi k(dy,dy
\prime | x) \lambda (dx),

where \pi k(\cdot , \cdot | x) is the optimal transport plan between Qk(\cdot | x) and Q(\cdot | x). By the
measurable selection theorem, the mapping x \mapsto \rightarrow \pi k(\cdot , \cdot | x) may be viewed as a kernel
from \scrX to \scrP (\scrY \times \scrY ). Since Definition 3.6 implies that \lambda \circledast Qk \rightharpoonup \lambda \circledast Q, it follows
that Qk(\cdot | x) \rightharpoonup Q(\cdot | x) for \lambda -almost all x \in \scrX . For every such x, by virtue of the
Prohorov theorem, the sequence \{ Qk(\cdot | x)\} is tight, and thus the sequence \{ \pi k(\cdot , \cdot | x)\} 
is tight as well [45, Lem. 4.4]. By passing to a subsequence, if necessary, we conclude
that the sequence \{ \pi k(\cdot , \cdot | x)\} is weakly convergent to some limit \{ \pi \ast (\cdot , \cdot | x)\} . The
limit must be the optimal transport from Q(\cdot | x) to itself: Q(\cdot | x) \circ \BbbI , where \BbbI is the
identity kernel y \mapsto \rightarrow \delta y. It follows that the limit does not depend on the subsequence;
the entire sequence \{ \pi k(\cdot , \cdot | x)\} is weakly convergent to \pi \ast (\cdot , \cdot | x) for \lambda -almost all x.

For any R> 0, we have a simple upper bound:

\bigl[ 
\scrW \lambda 

p(Qk,Q)
\bigr] p \leq \int 

\scrX 

\int 
\scrY \times \scrY 

\bigl[ 
d(y, y\prime )\wedge R

\bigr] p
\pi k(dy,dy

\prime | x) \lambda (dx)

+

\int 
\scrX 

\int 
\scrY \times \scrY 

\bigl[ 
d(y, y\prime )p  - Rp

\bigr] 
+
\pi k(dy,dy

\prime | x) \lambda (dx).

Using the inequality\bigl[ 
d(y, y\prime )p  - Rp

\bigr] 
+
\leq 2pd(y, y0)

p1\{ d(y,y0)\geq R/2\} + 2pd(y0, y
\prime )p1\{ d(y0,y\prime )\geq R/2\} ,
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TRANSPORTATION DISTANCE BETWEEN KERNELS 3579

we can continue the upper bound as follows:\bigl[ 
\scrW \lambda 

p(Qk,Q)
\bigr] p \leq \int 

\scrX 

\int 
\scrY \times \scrY 

\bigl[ 
d(y, y\prime )\wedge R

\bigr] p
\pi k(dy,dy

\prime | x) \lambda (dx)

+ 2p
\int 

\{ d(y,y0)\geq R/2\} 

d(y, y0)
p \pi k(dy,dy

\prime | x) \lambda (dx)

+ 2p
\int 

\{ d(y0,y\prime )\geq R/2\} 

d(y0, y
\prime )p \pi k(dy,dy

\prime | x) \lambda (dx)

=

\int 
\scrX 

\int 
\scrY \times \scrY 

\bigl[ 
d(y, y\prime )\wedge R

\bigr] p
\pi k(dy,dy

\prime | x) \lambda (dx)

+ 2p
\int 

\{ d(y,y0)\geq R/2\} 

d(y, y0)
p Qk(dy| x) \lambda (dx)

+ 2p
\int 

\{ d(y0,y\prime )\geq R/2\} 

d(y0, y
\prime )p Q(dy\prime | x) \lambda (dx).

As the sequence \{ \pi k(\cdot , \cdot | x)\} converges weakly to \pi \ast (\cdot , \cdot | x) for \lambda -almost all x, the first
term on the right-hand side converges to 0 for every R> 0. Furthermore, by Definition
2.4(ii), since \lambda \circ Qk

p\rightarrow \lambda \circ Q,

lim
R\rightarrow \infty 

limsup
k\rightarrow \infty 

\int 
\{ d(y,y0)\geq R/2\} 

d(y, y0)
p Qk(dy| x) \lambda (dx) = 0.

The same is true for the third term. Putting these estimates together, we conclude
that limk\rightarrow \infty \scrW \lambda 

p(Qk,Q) = 0.

Proof of Theorem 3.9. Theorem 2.3 implies that for all f \in F,

\scrW \lambda 
1 (Q, \widetilde Q) =

\int 
\scrX 

W1(Q(\cdot | x), \widetilde Q(\cdot | x)) \lambda (dx)

\geq 
\int 

\scrX 

\biggl\{ \int 
\scrY 

f(x, y)Q(dy| x) - 
\int 

\scrY 

f(x, y) \widetilde Q(dy| x)
\biggr\} 
\lambda (dx)

=

\int 
\scrX \times \scrY 

f(x, y) (\lambda \circledast Q)(dx dy) - 
\int 

\scrX \times \scrY 

f(x, y) (\lambda \circledast \widetilde Q)(dx dy).

This verifies the inequality ``\geq "" in (3.4). To verify the reverse inequality, let \varepsilon > 0
and define the multifunction F\varepsilon :\scrX \rightrightarrows Lip(\scrY ,\BbbR ) as follows:

F\varepsilon (x) =

\Biggl\{ 
\psi \in Lip(\scrY ,\BbbR ) : \| \psi \| Lip \leq 1,

\int 
\scrY 

\psi (y)Q(dy| x) - 
\int 

\scrY 

\psi (y) \widetilde Q(dy| x)\geq W1(Q(\cdot | x), \widetilde Q(\cdot | x)) - \varepsilon 

\Biggr\} 
, x\in \scrX .

It is measurable and, owing to Theorem 2.3, has nonempty closed values. Therefore,
by the measurable selection theorem, a selector \Psi \epsilon : \scrX \rightarrow Lip(\scrY ,\BbbR ) exists, such that
\Psi \varepsilon (x) \in F\varepsilon (x) for all x \in \scrX . Define f\varepsilon (x, y) =

\bigl[ 
\Psi \varepsilon (x)

\bigr] 
(y), x \in \scrX , y \in \scrY . By

construction, f\epsilon \in F and

\scrW \lambda 
1 (Q, \widetilde Q)\leq 

\int 
\scrX 

\biggl\{ \int 
\scrY 

f\varepsilon (x, y)Q(dy| x) - 
\int 

\scrY 

f\varepsilon (x, y) \widetilde Q(dy| x) + \varepsilon 

\biggr\} 
\lambda (dx)

\leq sup
f(\cdot ,\cdot )\in F

\biggl\{ \int 
\scrX \times \scrY 

f(x, y) (\lambda \circledast Q)(dx dy) - 
\int 

\scrX \times \scrY 

f(x, y)(\lambda \circledast \widetilde Q)(dx dy)

\biggr\} 
+\varepsilon .
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3580 ZHENGQI LIN AND ANDRZEJ RUSZCZY\'NSKI

Since \varepsilon > 0 was arbitrary, the inequality ``\leq "" (and then the equality) in (3.4) is true.
As subtracting f(\cdot , y0) from f(\cdot , \cdot ) does not affect the right-hand side of (3.4), we may
restrict F to contain only the functions whose value at y0 is 0.

Appendix B. Comparison of kernel distances on Gaussian mixture mod-
els. In this section, we consider Gaussian mixture models with varying dimensions
and numbers of centers, each having a different weight (marginal probability). We
denote by \scrX 0 the set of the centers, and by \lambda 0 the marginal distribution.

In each example, we select grid points from the same set of sample points. The
point selection process employs two metrics: \BbbD 1(Q, \widetilde Q) = supx\in \scrX 0

W1(Q(\cdot | x), \widetilde Q(\cdot | x)),
and the integrated transportation distance, \scrW \lambda 0

1 (Q, \widetilde Q) =
\sum 
x\in \scrX 0

\lambda 0(x)W1(Q(\cdot | x),\widetilde Q(\cdot | x)). The number of points to be selected by both methods is the same.
Table 3 presents the dimensions of the mixture model (dim), the number of centers

(center), the number of particles sampled from each center (particles), the number
of selected particles (selected), the solution times for both methods (in seconds),
and the corresponding Wasserstein distance W1 of the selected points to the particle
distribution. For the sake of simplicity, we refer to the supremum distance as ``sup""
and the integrated transportation distance as ``ITD"" in the table header. The selection
algorithm utilizing the integrated transportation distance consistently achieves a lower
W1 distance and faster execution time in all examples.

In Figures 4--6, the subfigures (a) and (b) illustrate the sample points and the
grid points zk (represented by black dots) selected using the supremum distance and
the integrated transportation distance, respectively, for the three two-dimensional
examples. The sample points xsi are depicted in different colors to represent the
various Gaussian distributions.

Table 3
Comparison of the supremum distance and the integrated transportation distance.

dim Centers Particles Selected sup (s) ITD (s) sup W1 ITD W1

2 5 400 100 1329.27 1320.15 0.288 0.268
2 10 200 100 1426.99 1296.43 0.466 0.457

2 16 160 128 1365.93 812.32 0.645 0.604
3 3 500 375 1296.96 530.36 0.913 0.901

3 5 400 500 1931.75 1253.03 0.953 0.784
5 3 800 600 1683.79 1235.43 1.963 1.812

(a) The supremum distance selection. (b) The ITD selection.

Fig. 4. Gaussian Mixture model with five centers and samples of 400 drawn from each center;
dim(\beta ) = 1000000, dim(\gamma ) = 500, and 100 selected representative points.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/0

5/
23

 to
 1

08
.5

0.
21

8.
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



TRANSPORTATION DISTANCE BETWEEN KERNELS 3581

(a) The supremum distance selection. (b) The ITD selection.

Fig. 5. Gaussian Mixture model with 10 centers and samples of 200 drawn from each center;
dim(\beta ) = 1000000, dim(\gamma ) = 500, and 100 selected representative points.

(a) The supremum distance selection. (b) The ITD selection.

Fig. 6. Gaussian Mixture model with 16 centers and samples of 100 drawn from each center;
dim(\beta ) = 1638400, dim(\gamma ) = 640, and 128 selected representative points.

In all experiments, the integrated transportation distance model was solved faster
and resulted in a more accurate representation of the mixture distribution. In exper-
iments with problems of higher dimension these differences were dramatic.

All numerical results were obtained using Python (version 3.7) on a Macintosh
HD laptop with a 2.9 GHz CPU and 16GB memory. The data are available in the
working paper version.
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