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Abstract—In this paper, we formulate and solve a two-stage
Bayesian sequential change diagnosis (SCD) problem in a multi-
sensor setting. In the considered problem, a change first occurs at
a sensor and then propagates across the sensor array gradually.
After a change is detected, we are allowed to continue observing
more samples so that we can identify the distribution after the
change more accurately. Our goal is to minimize the total cost
including delay, false alarm, and misdiagnosis probabilities. We
first characterize the optimal SCD rule. Moreover, to address the
high computational complexity issue of the optimal SCD rule,
we propose a low-complexity threshold SCD rule. We further
analyze the asymptotic optimality of the threshold SCD rule. In
addition, we investigate how increasing the number of sensors
can improve the performance of the proposed threshold SCD
rule. Our analysis holds for different sensor array structures,
including linear sensor arrays and 2D lattice sensor arrays.

Index Terms—Change Diagnosis, Quickest Detection, Sensor
Arrays

I. INTRODUCTION

SEQUENTIAL change diagnosis (SCD) is a joint problem
of the quickest change-point detection (QCD) problem

[2]–[13] and sequential multiple hypothesis testing (SMHT)
problem [14]–[17]. In SCD problems, the data distribution
will change from f0 to one of the I candidate distributions
at an unknown time. The goal of the SCD problem is to
detect the change point quickly and identify the post-change
distribution accurately. The SCD problem has many applica-
tions, including intrusion detection in computer networks [18],
outage detection and identification in power system [19], and
dynamic spectrum access and allocation [20], etc.
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In the one-stage SCD problem studied in [21], [22], the
change detection and identification must be made at the same
time. For the detection task, the goal is to detect the change
quickly. On the other hand, spending more time to collect
more data samples can increase the accuracy of identification.
Therefore, the requirement that the detection and identification
must occur at the same time creates a tension between the
detection and identification objectives. In practice, however,
after we detect the change, we may still have the opportunity to
observe extra data samples, which may help us to make a more
accurate identification decision. In other words, the change
detection and identification do not have to occur at the same
time. This extra degree of freedom provides opportunities to
design new detection and identification schemes to achieve
better performance. In our recent work [23], [24], we formulate
such problems as two-stage SCD problems in Bayesian setting,
provide the optimal and asumptotically optimal solutions, and
prove that the two-stage SCD rule outperforms the one-stage
SCD rule when the detection task is more urgent than the
identification task. The two-stage SCD problems may arise
in many applications. For example, in the structural health
monitoring (SHM) system [25], sensors are used to monitor a
building. When the building experiences a sudden damage, the
SHM system should detect the damage quickly and identify
the type of damage accurately. Typically, the identification task
requires more data than damage detection, i.e., more time
is needed for damage identification than damage detection.
However, the detection task is very urgent because people in
the building can be in great danger. Therefore, a smart SHM
system should allow the identification decision to be made
after the damage detection. In this case, the people can be
evacuated from the building immediately once the damage is
detected. After that, more data can be collected to make an
accurate damage identification. Other examples of such two-
stage situations include diagnosis of intrusions in computer
networks [26], industrial systems monitoring [27] etc.

In our recent work [23], [24], we focus on the case with a
single sensor. To further improve the performance, one could
employ multiple sensors that collect information and send it
to the fusion center, where the detection and identification
decision is made. In this paper, we consider a two-stage SCD
problem in the multi-sensor scenario where there are multiple
sensors monitoring the environment. A change will happen to
the environment at an unknown time. At the change point,
the distribution of the observed signal changes from f0 to one
of the I candidate distributions. After the change happens,
it will propagate across the sensor array. Using the observed
information collected by the sensors, the fusion center needs
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to decide two stopping times and one identification decision.
At the first stopping time, the fusion center raises an alarm
that a change has been detected. After that, the sensors can
still collect extra observations to facilitate the identification
task. At the second stopping time, the fusion center makes the
identification decision. It’s worth noting that the detection and
identification stages are not independent, as the end state of
the detection stage is the start state of the identification stage.
Hence the proposed problem is not a simple combination of
a QCD problem and a SMHT problem.

For the proposed problem, we characterize the structure
of the optimal diagnosis rule. The optimal stopping rule is
obtained by converting the two-stage SCD problem into a two-
ordered optimal stopping time problem, which can be solved
using dynamic programming (DP). However, the dimension of
the state space grows exponentially with the number of sensors
and candidate post-change distributions. Thus the complexity
to implement the DP solution is extremely high. To address
this issue, we propose a low complexity threshold SCD rule.
Furthermore, we analyze the performance of the proposed
multi-sensor threshold SCD rule in two different linear array
cases depending on whether the sensor first affected by the
change is known or not. Concretely, for the general case
in which the sensor first being affected by the change is
randomly chosen and unknown, we prove the threshold rule
is asymptotically optimal under some technical conditions. On
the other hand, for the special case in which the sensor first
affected by the change is fixed and known, we prove that
the threshold rule is asymptotically optimal without additional
technical conditions. Moreover, we extend the low-cost SCD
rule to a more general 2D sensor array. In this 2D sensor
array case, the change can happen to any sensor and then
gradually propagate to the surrounding sensors. For this 2D
sensor array case, we also prove the asymptotic optimality of
the multi-sensor SCD rule. In addition, we investigate how
increasing the number of sensors can improve the asymptotic
performance of the multi-sensor threshold SCD rule. Our work
is related to [11], [28], which study the QCD problem under
a multi-sensor setting. However, the identification part, which
is important in this paper, is not considered in [11], [28].

Compared with the our previous works [1], [24], [29], this
paper makes the following contributions. Firstly, [1] focuses
only on a simple case that the change propagates across the
sensor array following a fixed and known order. In this paper,
we focus on a more general sensor array model in which
the change can first reach any sensor in the array and then
propagate to other sensors. Secondly, we provide detailed
proof of the asymptotic optimality of the threshold SCD rule.
The main idea of the proof similar to the proof for the single
sensor case in [24]. However, the most important step of the
proof, the asymptotic analysis of log-likelihood-ratio (LLR)
processes of the sensor array case, is different from the single
sensor case and more challenging. Thirdly, [1] focuses only on
the linear array scenario. In this paper, we also extend the work
to the 2D array case. Fourthly, we investigate the relationship
between the performance of the threshold rule and the number
of sensors in the array. Finally, we provided comprehensive
numerical examples to illustrate the analytical results obtained

Figure 1: Change propagation model of the linear sensor array

in this paper.
The remainder of the paper is organized as follows. In

Section II, we provide our problem formulation with a linear
sensor array. In Section III, we study the evolution of the
posterior probabilities. In Section IV, we discuss the structure
of the optimal SCD rule. Then we introduce the threshold
two-stage SCD rule and prove its asymptotic optimality for the
linear sensor array case in Section V. Afterward, the threshold
rule is extended to the 2D sensor array case in Section VI. In
Section VII, we investigate the benefit of increasing the num-
ber of sensors. Simulation results are provided in Section VIII.
Finally, we provide concluding remarks in Section IX.

II. PROBLEM FORMULATION

To facilitate the presentation and easiness of understanding,
we will first present our work for the linear array case. The
more complicated 2D array scenario will be presented in
Section VI.

In the linear array scenario, there is a linear array of L
sensors monitoring the environment. The L sensors collect
data at each time unit and then immediately send data to
the fusion center for analysis. The observation of the sys-
tem is a stochastic process hosted by a probability space
(Ω,F ,P). At time k, the observation of the system is X⃗k =
(xk,1, xk,2, ..., xk,L), where xk,l is the data collected by the
lth sensor at time k. Let λ : Ω 7→ {0, 1, . . .} be the time
when an abrupt change happens in the sensing environment
and θ : Ω 7→ I := {1, . . . , I} be the environment state
after the change. The prior distribution of the change time
is P(λ = k) = ρ(1 − ρ)k. In addition, we denote I ∪ {0}
as I0. After time λ, the distribution of the data collected by
each sensor may experience a change from f0 to fθ. fθ can
be one of the candidate distributions {fi}i∈I . In addition,
F = (Fk)k≥0 is the filtration generated by the stochastic
process {X⃗k}k≥1.

A. Change Propagation Model

The change propagation model is illustrated in Fig. 1,
the change will first happen to one sensor in the array and
then propagate to other sensors. In the considered model, the
change times of different sensors may be different. We denote
the time change happen to sensor l as λl for all 1 ≤ l ≤ L.
Let S denote the index of the sensor that the change first
reaches. The prior probability P(S = l) = κl is known. We
denote (κ1, κ2, . . . , κL) as K⃗. As shown in Fig. 1, the change
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first reaches sensor S at time λS = λ, then the change will
propagate to sensors on both sides of sensor S following the
directions S → S+1 → · · · → L and S → S−1 → · · · → 1.
The propagation of the change in the sensor array follows a
geometric distribution, i.e., for k2 ≥ 0,{

P [λj−1 = k1 + k2|λj = k1, S = i] = ρ1(1− ρ1)
k2 , i > j,

P [λj+1 = k1 + k2|λj = k1, S = i] = ρ2(1− ρ2)
k2 , i < j,

where ρ1 and ρ2 are the probabilities of the change propagate
from a sensor to its neighbor at each time step for the two
directions.

B. Observation Model

In this paper, we assume that, conditioned on the change
information, the observations of different times at every sensor
are independent. Concretely, if k < λl, xk,l ∼ f0, otherwise
xk,l ∼ fθ, where θ ∈ I. The prior probability of the state after
change is defined as vi = P{θ = i}, i ∈ I . To simplify the
notation, we express the conditional probabilities as:{

Pi{·} = P{·|θ = i},
P(t)
i {·} = P{·|θ = i, λ = t}, t ≥ 0.

Correspondingly, Ei and E(t)
i are the expectations under Pi

and P(t)
i . In addition, We have the following assumption on

f0 and fθ.

Assumption 1. For every i ∈ I0 and j ∈ I0\{i}, we have
(i) 0 < fi(x)/fj(x) <∞ a.s.;
(ii)
∫
{x:fi(x) ̸=fj(x)} fi(x)(dx) > 0.

C. Two-stage Multi-sensor SCD Problem

Our goal is to quickly raise an alarm after the change occurs
and further accurately determine the state θ, based on all the
data samples {X⃗1, . . . , X⃗k}. Towards this goal, we employ a
two-stage SCD rule δ = (τ1, τ2, d) that includes two stopping
times τ1, τ1 + τ2, and an identification decision d. Here, τ1 is
the time for the change detection and τ1+τ2 is the time for the
identification. Let ∆ := {(τ1, τ2, d)|τ1 ≥ 0, τ2 ≥ 0, d ∈ I0}
be the set of all possible two-stage SCD rules. We should
note that if a wrong decision is made at τ1, i.e., τ1 < λ, then
d = 0 is the correct identification as long as this identification
is made before λ, i.e., τ1 + τ2 < λ. Besides, the parameters
ρ, ρ1, ρ2, K⃗ and {vi}i∈I are known.

The possible costs of an SCD rule include costs of delay,
false alarm, and misdiagnosis. The delay consists of the
delays in the change detection stage and the distribution
identification stage, i.e. (τ1 − λ)+ and τ2. The expected delay
costs of them are E[c1(τ1 − λ)+] and E[c2τ2], where c1
and c2 are per-unit delay costs associated with each stage
and (z)+ = max(0, z) for any z. In addition, we define
r := c2/c1 as the ratio between per-unit delay costs. A false
alarm is the situation that a change alarm is raised before
λ. The expected false alarm cost is E[a1{τ1<λ}], where a is
the penalty factor of false alarm and 1{·} is the indicator
function. Misdiagnosis occurs when a wrong identification
is made, i.e., d ̸= θ. The expected misdiagnosis cost is
E
[∑

i∈I bij1{∞>τ1+τ2>λ,θ=i,d=j} + b0j1{τ1+τ2<λ,d=j}

]
for

d = j, where bij is the penalty factor for wrong decision
d = j when θ = i and b0,j is the penalty factor of the false
alarm of the identification stage. We set bij = 0 when i = j.
Hence the Bayesian cost function for a two-stage SCD rule
δ ∈ ∆ is

C(δ) = c1E [(τ1 − λ)+] + c2E[τ2] + aE[1{τ1<λ}]+
I∑

j=0

E
[ I∑
i=1

bij1{∞>τ1+τ2>λ,θ=i,d=j} + b0j1{τ1+τ2<λ,d=j}

]
.

(1)
The goal of the SCD problem is to find an SCD rule (τ1, τ2, d)
that minimizes the expected cost C(δ).

III. POSTERIOR PROBABILITY ANALYSIS

Following the main idea of [24], we can solve a two-
stage SCD problem using posterior probability process, Πk =

(Π
(0)
k , . . . ,Π

(I)
k )k≥0 ∈ Z , which is defined as{
Π

(i)
k := P{λ ≤ k, θ = i|Fk}, i ∈ I,

Π
(0)
k := P{λ > k|Fk}

and
Z ∆

= {Π ∈ [0, 1]I+1|
∑

i∈I∪{0}
Π(i) = 1}.

Using Bayesian rule, we know that, at any time k ≥ 1, each
component of Πk can be computed as

Π
(i)
k =

α
(i)
k (X⃗1,X⃗2,...,X⃗k)∑

j∈I0
α

(j)
k (X⃗1,X⃗2,...,X⃗k)

, (2)

in which

α
(0)
k = (1− ρ)k+1

L∏
l=1

k∏
n=1

f0(xn,l),

α
(i)
k =

L∑
s=1

κsviρ
k∑

ns=0

[
(1− ρ)

ns

(
ns−1∏
n=1

f0(xn,s)

)
·

(
k∏

n=max(ns,1)

fi(xn,s)

)
Ψ

(i)
s−1(k, ns)Φ

(i)
s+1(k, ns)

]
,

Ψ
(i)
l−1(k, nl) = (1− ρ1)

k−nl+1
l−1∏
t=1

k∏
n=1

f0(xn,t)+

ρ1
k∑

nl−1=nl

[
(1− ρ1)

nl−1−nl

(
nl−1−1∏
n=1

f0(xn,l−1)

)

·

(
k∏

n=nl−1

fi(xn,l−1)

)
Ψ

(i)
l−2(k, nl−1)

]
, l > 1,

Φ
(i)
l+1(k, nl) = (1− ρ2)

k−nl+1
L∏

t=l+1

k∏
n=1

f0(xn,t)+

ρ2
k∑

nl+1=nl

[
(1− ρ2)

nl+1−nl

(
nl+1−1∏
n=1

f0(xn,l+1)

)

·

(
k∏

n=nl+1

fi(xn,l+1)

)
Φ

(i)
l+2(k, nl+1)

]
, l < L,

Φ
(i)
L+1(k, nl) = Ψ

(i)
0 (k, nl) = 1.

(3)
Assumption 1 implies 0 < Π

(i)
k < 1 for every finite k ≥ 1

and i ∈ I0. We define the log-likelihood-ratio (LLR) processes
as

Λk(i, j) := log
Π

(i)
k

Π
(j)
k

= log
α
(i)
k (X⃗1, X⃗2, . . . , X⃗k)

α
(j)
k (X⃗1, X⃗2, . . . , X⃗k)

. (4)
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Directly calculating Πk based on (2) requires us to remem-
ber all past samples, which requires large storage and is not
easy for implementation. Hence it is desirable to compute Πk

recursively once a new sample X⃗k arrives. To achieve this, we
further define the event Ti,k,s,l1,l2 = {S = s, λl1−1 > k, λl1 ≤
k, λl2+1 > k, λl2 ≤ k, θ = i} for 1 < s < L, l1 ≤ s and l2 ≥
s. Specially, Ti,k,1,1,l2 = {S = 1, λl2+1 > k, λl2 ≤ k, θ = i}
and Ti,k,L,l1,L = {S = L, λl1−1 > k, λl1 ≤ k, θ = i}. From
the definition, we know that event Ti,k,s,l1,l2 denotes the event
that the change with post-change distribution fi firstly reaches
sensor s and already propogates to sensors l1 and l2 at time k.
In addition, we define the event that change has not happened
yet as T0,k = {λ > k}. In this change process setting, we can
see that the underlying probability space Ω can be partitioned
as

Ω=

(
L⋃

s=1

s⋃
l1=1

L⋃
l2=s

⋃
i∈I

Ti,k,s,l1,l2

)⋃
T0,k.

Then, we denote the posterior probability as pi,k,s,l1,l2 :=
P{Ti,k,s,l1,l2 |Fk} and p0,k = P{T0,k|Fk}. Using Bayesian
rule, we can derive the updating rule for these posterior
probabilities as



pi,k,s,l1,l2 =
Ni,k,s,l1,l2

L∑
s=1

s∑
l1=1

L∑
l2=s

∑
i∈I

Ni,k,s,l1,l2
+N0,k

,

1 < s < L, 1 ≤ l1 ≤ s, s ≤ l2 ≤ L, i ∈ I,
p0,k =

N0,k

L∑
s=1

s∑
l1=1

L∑
l2=s

∑
i∈I

Ni,k,s,l1,l2
+N0,k

,

(5)

where Ni,k,s,l1,l2 denotes the probability density

dP((X⃗1, . . . , X⃗k), Ti,k,s,l1,l2)

=

(
l2∏

n=l1

fi(xk,n)

)(
l1−1∏
n=1

f0(xk,n)

)(
L∏

n=l2+1

f0(xk,n)

)

·

[
p0,k−1κsρ(1− ρ1)

1{l1 ̸=1}(1− ρ2)
1{l2 ̸=L}ρs−l1

1 ρl2−s
2 +(

s∑
n1=l1

l2∑
n2=s

pi,k−1,s,n1,n2
(1− ρ1)

1{l1 ̸=1}(1− ρ2)
1{l2 ̸=L}

·ρn1−l1
1 ρl2−n2

2

)]
(6)

and N0,k denotes the probability density

dP((X⃗1, . . . , X⃗k), T0,k) = p0,k−1(1− ρ)
L∏

n=1
f0(xk,n).

(7)
For k = 0, we have p0,0 = 1− ρ. For l1 ≤ s ≤ l2, we have

pi,0,s,l1,l2 = κsviρ(1− ρ1)
1{l1 ̸=1}(1− ρ2)

1{l2 ̸=L}ρs−l1
1 ρl2−s

2 .

Let Pk denote the 4-dimensional posterior probabilities
tensor in which its elements are pi,k,s,l1,l2 . In Pk, only
elements satisfying l1 ≤ s and l2 ≥ s can be non-zero
values. From (5) (6) and (7), we see that Pk can be computed
from Pk−1 and observation X⃗k at time k. Hence, we have
the recursive update formula for the posterior probabilities

{Pk, p0,k}. More importantly, by the relationship between
{Pk, p0,k} and Πk, Π

(i)
k =

L∑
s=1

s∑
l1=1

L∑
l2=s

pi,k,s,l1,l2 , i ∈ I,

Π
(0)
k = p0,k,

(8)

we can update Πk recursively.

IV. OPTIMAL MULTI-SENSOR TWO-STAGE SCD RULE

Given the updating rule of Πk, (5) and (8), the optimal rule
(τ∗1 , τ

∗
2 , d

∗) that minimizes (1) can be obtained by following
similar steps as those in our recent work [24]. In particular,
by converting the two-stage problem into two optimal single
stopping time problems and solving them in reversed order,
we can obtain the optimal SCD rule for the proposed two-
stage sensor array SCD problem. Here, for completeness,
we introduce the main steps of obtaining the optimal rule
(τ∗1 , τ

∗
2 , d

∗).
To start, using Πk, we can express the Bayesian cost (1) as

C(δ) = E

[
τ1−1∑
n=0

c1

(
1−Π(0)

n

)
+ c2τ2 + 1{τ1<∞}aΠ

(0)
τ1

+ 1{τ1+τ2<∞}

I∑
j=0

1{d=j}Bj(Πτ1+τ2)

]
,

where Bj(Π) =
∑

i∈I0
bijΠ

(i) is the misdiagnosis cost
associated with the decision d = j. Therefore, B(Π) =
min
j∈I0

Bj(Π) is the smallest misdiagnosis cost can be achieved

at time k. As a result, the optimal identification decision
is d∗ = argminj∈I0

Bj(Π). Using this result, we have
C(τ1, τ2, d

∗) = E[C1(τ1) + C2(Πτ1 , τ2)], where

C1(τ1) =

τ1−1∑
n=0

c1

(
1−Π(0)

n

)
+ 1{τ1<∞}aΠ

(0)
τ1

and C2(Πτ1 , τ2) = c2τ2 + 1{τ1+τ2<∞}B (Πτ1+τ2) are the
cost functions of the change detection stage and distribution
identification stage respectively. Then we have the minimal
expected cost for the SCD process,

C(τ∗1 , τ
∗
2 , d

∗) = min
τ1,τ1+τ2∈F

E [C1(τ1) + C2(τ1, τ2)]

= min
τ1,τ1+τ2∈F

E
[
C1(τ1) + E [C2(τ2)|Pτ1 , p0,τ1 ]

]
= min

τ1∈F
E
[
C1(τ1) + min

τ1+τ2∈F
E [C2(τ2)|Pτ1 , p0,τ1 ]

]
.

(9)

By (9), the two-stage stopping time problem becomes two
ordered optimal single stopping time problems. The first one
is for the identification stage, its goal is finding the optimal τ2
which minimizes E[C2(τ2)|Pτ1 , p0,τ1 ] for any given τ1, Pτ1

and p0,τ1 . The second single stopping time problem is to find
the best stopping rule for the detection stage. From the last line
of (9), we can find an optimal τ1 to minimize the expected cost
for the whole SCD process if the optimal rule for τ2 is known.
Therefore, we will firstly find the optimal rule for the iden-
tification stage, then select the optimal stopping time for the
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detection stage. DP is a good way to solve optimal single stop-
ping time problems. With the expression C1 and C2, we can
built the cost-to-go functions of the two optimal single stop-
ping time problems. In particular, for the identification stage,
let {P̃ , p̃0} be the posterior probabilities at time next to the
time of {P , p0}. The infinite-horizon cost-to-go function for
the DP process of the identification stage can be obtained by
solving V (P , p0) = min(B(P , p0), c2 + E[V (P̃ , p̃0)|P , p0]).
This implies that we should make an identification when
the expected cost for keep observing exceeds the cost of
making identification immediately. In addition, the optimal
identification decision is d = argminj∈I0

Bj(P ). Similarly,
in the change detection stage, for any {P , p0}, the infinite-
horizon cost-to-go function for the detection stage satisfies
the following Bellman equation W (P , p0) = min(ap0 +
V (P , p0), c1(1 − p0) + E[W (P̃ , p̃0)|P , p0]). From this, we
know that we should raise a change alarm when the expected
cost of observing more data exceeds the cost of declaring a
change has happened.

The cost-to-go functions V (P ) and W (P ) and the optimal
stopping times can be calculated using DP. However, the
size of the state space increases exponentially with L and I .
With such a high complexity, the optimal solution is hard to
implement.

V. LOW-COMPLEXITY RULE

Same as other DP-based methods, the complexity of the
optimal solution is very high, even with an array with only
two sensors and two post-change distributions. To address
this issue, we propose a threshold SCD rule that is easy to
implement. Moreover, we will prove this threshold SCD rule
is asymptotically optimal as c1 and c2 go to zero. The main
idea of the proof is similar to the proof for the single sensor
case considered in [24]. However, the most important step of
the proof, i.e., analyzing the convergence of the LLR process,
becomes much more complicated in the sensor array case. In
this section, we will introduce the main steps of the asymptotic
optimality analysis and underline the proof details of the LLR
convergence (Proposition 1).

A. Threshold SCD Rule

Here, we introduce the proposed low complexity two-stage
SCD rule. The low complexity rule is a threshold rule. In
particular, it is characterized by a set of thresholds {A, B⃗}
where B⃗ = (B0, B1, B2, ..., BI). A and all elements in B⃗ are
strictly positive constants. Using these thresholds, the proposed
threshold rule δT = (τA, τB⃗, dB⃗) is defined as

τA := inf{k ≥ 1,Π
(0)
k < 1/(1 +A)},

τB⃗ := min
i∈I0

τ
(i)

B⃗
,

τ
(i)

B⃗
:= inf{k ≥ 1,Π

(i)
k > 1/(1 +Bi)} − τA,

dB⃗ := argmin
i∈I0

τ
(i)

B⃗
.

(10)

In this threshold SCD rule, the first stopping time τA is the
first time Π

(0)
k falls below the threshold 1/(1 +A). After τA,

the rule turns to check the posterior probabilities Π
(i)
k for all

i ∈ I0. It will stop immediately if any threshold 1/(1 + Bi)
is exceeded. The identification decision depends on which
threshold is passed. In order to guarantee that this rule is in
the two-stage SCD rule space ∆, it must satisfy τB⃗ ≥ 0. This
condition can be satisfied by choosing appropriate A and B⃗,
as will be introduced in Section V-C.

For i ∈ I0 and k ≥ 1, define the logarithm of the odds-ratio
process as

π
(i)
k := log

Π
(i)
k

1−Π
(i)
k

= − log

[ ∑
j∈I0\{i}

exp(−Λk(i, j))

]
.

Using π(i)
k , δT can be expressed as:

τA = inf

{
k ≥ 1,

1−Π
(0)
k

Π
(0)
k

> A

}
= inf{k ≥ 1, π

(0)
k < − logA},

τB⃗ = min
i∈I0

τ
(i)

B⃗
,

τ
(i)

B⃗
= inf

{
k ≥ 1,

1−Π
(i)
k

Π
(i)
k

< Bi

}
− τA

= inf{k ≥ 1, π
(i)
k > − logBi} − τA,

dB⃗ = argmin
i∈I0

τ
(i)

B⃗
.

(11)

The complexity of the threshold rule (10) is very low. After
obtaining a new sample, we only need to update the posterior
probabilities using the recursive formula (5), and then compare
them with the thresholds. In the following parts, we will show
that this rule is asymptotically optimal as c1 and c2 go to zero.

B. Convergence of LLR Process

By (2) and (4), we can see that

Λk(i, j) = logα
(i)
k (X⃗1, X⃗2, . . . , X⃗k)−

logα
(j)
k (X⃗1, X⃗2, . . . , X⃗k).

For i ∈ I and time k > 0, we define

H
(i)
k =

L∑
s=1

κs

k∑
ns=0

[(
ns−1∏
n=1

(
(1− ρ)f0(xn,s)

(1− ρ1)(1− ρ2)fi(xn,s)

))

·ψ(i)
s−1(k, ns)ϕ

(i)
s+1(k, ns)

]
where

ψ
(i)
l (k, nl+1) =

k∏
n=1

[
(1− ρ1)

l∏
t=1

f0(xn,t)

fi(xn,t)

]

+ρ1

k∑
nl=nl+1

nl−1∏
n=1

f0(xn,l)

fi(xn,l)
ψ
(i)
l−1 (k, nl) , l ≥ 1,

ϕ
(i)
l (k, nl−1) =

k∏
n=1

[
(1− ρ2)

L∏
t=l

f0(xn,t)

fi(xn,t)

]

+ρ2

k∑
nl=nl−1

nl−1∏
n=1

f0(xn,l)

fi(xn,l)
ϕ
(i)
l+1 (k, nl) , l ≤ L.
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In addition, ϕ(i)L+1 (k, nL) = (1− ρ2)
nL−1 and ψ(i)

0 (k, n1) =

(1− ρ1)
n1−1. Therefore, we can express logα

(i)
k as

logα
(i)
k = log[viρ(1− ρ)] + log

(
L∏

l=1

k∏
m=1

fi(xm,l)

)
+ logH

(i)
k , for i ∈ I,

logα
(0)
k = (k + 1) log(1− ρ) + log

(
L∏

l=1

k∏
m=1

f0(xm,l)

)
.

Let q(j, i) be the KL divergence from fi to fj . We define the
following condition for i, j ∈ I.

Condition 1. log(1 − ρ) + q(j, i) − q(j, 0) ≥ 0 or q(j, i) −
q(j, 0) ≤ 0.

The next proposition describes the limit of logH
(i)
k /k as

k → ∞.

Proposition 1. For any i, j ∈ I, if Condition 1 is satisfied,

1

k
logH

(i)
k

Pj−a.s.−−−−−→
k→∞

h(i, j) (12)

where h(i, j) = (log(1− ρ) + L(q(j, i)− q(j, 0)))+.

Proof. Please see Appendix A.

C. Asymptotic Optimality

Once we show the convergence of logH
(i)
k /k, we can

proceed to show the asymptotic optimality of the threshold
rule. The main steps on this proof are: (1) Obtain approxi-
mations of the delay, false alarm probability and misdiagnosis
probability, which leads to the expression of the Bayesian cost
of the threshold rule, C(δT ), w.r.t. A and B; (2) Select the
optimal A and B that can minimize C(δT ); (3) Prove that
C(δT , Aopt,Bopt) achieves the lower bound of the Bayesian
cost for arbitrary two-stage SCD rule when c1 and c2 go to 0.

For any i ∈ I, define

w(i, j) =

{
Lq(i, j)− h(j, i), j ∈ I,
Lq(i, 0)− log(1− ρ), j = 0.

(13)

If the first affected sensor is unknown, and Condition 1 is
satisfied for i, j ∈ I, h(i, j) can be calculated as in Proposition
1. As introduced in [24], the approximation of delay can be
expressed as Ei

[
(τB⃗ + τA − λ)

+

]
Pi−a.s.−−−−−→
Bi→0

− logBi

w(i) , for i ∈ I,

Ei

[
(τA − λ)+

] Pi−a.s.−−−−−→
A→∞

logA
w(i,0) , for i ∈ I,

(14)
where w(i) = w(i, j(i)), j(i) = argmin

j∈I0\{i}
w(i, j). In addition,

the false alarm and misdiagnosis probability can be approx-
imated as ka

1+A and
∑
i∈I

viBiki, respectively. Here ka = a

and ki = maxj∈I0\{i}bji. Therefore, the Bayesian cost of
the threshold rule can be approximated as

C(c2)(δT ) = c2
∑
i∈I

vi

(
− log(Bi)

w(i)

)
+
∑
i∈I

viBiki+

c2

(
1

r
− 1

)∑
i∈I

vi logA

w(i, 0)
+

ka
1 +A

.

(15)

By minimizing (15) w.r.t A and B⃗, we get the optimal A and
B⃗ as  Aopt ≈ ka

c2(
1
r−1)

∑
i∈I

vi
w(i,0)

− 2,

Bi,opt =
c2

kiw(i) , i ∈ I.
(16)

The Bayesian cost for the optimal threshold SCD rule is

C(c2)(δ∗T ) = c2
∑
i∈I

−vi

w(i) log
(

c2
kiw(i)

)
+
∑
i∈I

vic2
w(i)+

c2
(
1
r − 1

) ∑
i∈I

vi

w(i,0) log

(
ka

c2(
1
r−1)

∑
i∈I

vi
w(i,0)

− 2

)
+

ka
1

ka

c2( 1
r
−1)

∑
i∈I

vi
w(i,0)

−1
.

(17)

Here, we need to note that A and B⃗ in (16) may not satisfy the
condition τB⃗ ≥ 0, which is necessary for the two-stage SCD
problem. In the following lemma, we introduce how to adjust
the values of A and B⃗ to make sure that the condition τB⃗ ≥ 0
is satisfied and still asymptotically achieve the Bayesian cost
in (17).

Lemma 1. If

0 < r ≤ min
i∈I

1

1 + ka

kiw(i)
∑
i∈I

vi
w(i,0)

(18)

is satisfied, we keep the optimal values of A and B⃗ as given
in (16). Otherwise, we select the values of A and B⃗ as{

A′ = Aopt,

B′
i = Bi,opt

ki

η , i ∈ I, (19)

where η is a constant such that

r = min
i∈I

1

1 + ka

ηw(i)
∑
i∈I

vi
w(i,0)

.

With the selected values of A and B⃗, the condition τB⃗ ≥ 0 is
guaranteed and the Bayesian cost will converge to that given
in (17) as c1 and c2 go to 0.

Proof. Please see Appendix B.

Finally, in the following proposition, we prove that (17) is
the lowest Bayesian cost any two-stage SCD rule can achieve
when c1 and c2 go to 0. In other words, the proposed threshold
rule is asymptotically optimal.

Proposition 2. If δT = (τAT
, τB⃗T

, dT ) is a threshold two-
stage SCD rule with thresholds as (16), then for any given
fixed r := c2/c1 we have

lim
c2→0

infδ∈∆C
(c2)(δ)

C(c2)(δT )
≥ 1.

The main steps to prove Proposition 2 are as follows: (1).
Derive a lower bound of the Baysian cost for any possible SCD
rule; (2) Prove the proposed threshold SCD rule can achieve
the lower bound as c1 and c2 go to zero. For more details of
the proof, please refer to [24]. Note that, since Proposition 2 is
proved based on Proposition 1, Condition 1 is also necessary
for Proposition 2.
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From the results of asymptotic analysis in Proposition 1 and
equation (14) and (16), we can see that the prior probabilities
of first affected sensor {κs}1≤s≤L do not affect the asymptotic
behaviors of the threshold rule. Therefore, in the case when
{κs}1≤s≤L are unknown, we can just set κs = 1/L for all
1 ≤ s ≤ L. Even if the true prior probabilities are not 1/L,
it will not affect the asymptotic optimality of the threshold
SCD rule. In addition, the Condition 1 rules out the case
0 < q(j, i) − q(j, 0) < − log(1 − ρ). In regimes of practical
importance, where the disruption is rare, i.e. ρ is small and the
range [0,− log(1− ρ)] is narrow, Condition 1 can be satisfied
in most cases. The change point analysis problems with “rare”
change-points are of significant interest in practical systems,
such as analysis of financial market crashes, equipment fail-
ures, and natural disasters. In these scenarios, the occurrence
of a major change is rare but can have a significant impact
on the system or process being monitored. Therefore, it is
important to analyze such rare change-points as quickly and
accurately as possible to minimize their impact and allow for
timely intervention. The “rare” change-point case has been
studied in [6], [11], [28], [30].

D. Special Case: When the First Affected Sensor is Known

As discussed above, when the first affected sensor S is an
unknown random variable, Condition 1 is necessary for the
asymptotic optimality of the multi-sensor threshold SCD rule.
In this section, we will show that, when the first affected sensor
is fixed and known, the multi-sensor threshold SCD rule is
asymptotically optimal with no additional condition.

When the first affected sensor is fixed and known, one
element of K⃗ is 1 and all other elements are 0. Without loss
of generality, we assume that the first affected sensor is the
sth sensor, i.e., κs = 1. With this additional assumption, the
computations in the previous section can be further simplified
and we can prove stronger asymptotic optimality results. In
particular, for any time k ≥ 1, Πk can be directly calculated
as

Π
(i)
k =

α
(i)
k (X⃗1,X⃗2,...,X⃗k)∑

j∈I0
α

(j)
k (X⃗1,X⃗2,...,X⃗k)

(20)

where

α
(0)
k = (1− ρ)k+1

L∏
l=1

k∏
n=1

f0(xn,l),

α
(i)
k = viρ

k∑
ns=0

[
(1− ρ)

ns

(
ns−1∏
n=1

f0(xn,s)

)
·

(
k∏

n=max(ns,1)

fi(xn,s)

)
Ψ

(i)
s−1(k, ns)Φ

(i)
s+1(k, ns)

]
.

(21)
For i ∈ I, we define

H
(i)
k =

k∑
ns=0

[(
ns−1∏
n=1

(
(1−ρ)f0(xn,s)

(1−ρ1)(1−ρ2)fi(xn,s)

))
·ψ(i)

s−1(k, ns)ϕ
(i)
s+1(k, ns)

]
.

(22)

Algorithm 1: Grouping the sensors

1 Initialize a11(i, j) = 1, a02(i, j) = 0, b11(i, j) = L,
b02(i, j) = L+ 1, m = 1, n = 1;

2 for l=1,2,. . . ,s-2,s-1 do

3 if
l∑

k=am
1 (i,j)

ηk(i, j) ≥ 0 then

4 am2 (i, j) = l, am+1
1 (i, j) = l + 1;

5 m+ = 1;
6 end
7 for l=L,L-1,. . . ,s+2, s+1 do

8 if
l∑

k=bm1 (i,j)

ηk(i, j) ≥ 0 then

9 bn2 (i, j) = l, bn+1
1 (i, j) = l − 1;

10 n+ = 1;
11 M(i, j) = m− 1, N(i, j) = n− 1
12 end

Define

ηl(i, j) =


log
[

1−ρ

(1−ρ1)
1{s̸=1} (1−ρ2)

1{s̸=L}

]
+ q(j, i)

−q(j, 0), l = s,
log(1− ρ1) + q(j, i)− q(j, 0), l = 1 and s ̸= 1,
log(1− ρ2) + q(j, i)− q(j, 0), l = L and s ̸= L,
q(j, i)− q(j, 0), otherwise.

(23)
For any i, j ∈ I, according to the value of ηl(i, j), we divide

the sensor labels 1 ≤ l ≤ L into several consecutive groups
(the labels in each group are consecutive). The grouping rule
is described in Algorithm 1. After implementing Algorithm
1 for the case i, j ∈ I , we will have M(i, j) + N(i, j) + 1
consecutive groups

{am1 (i, j), am1 (i, j) + 1, . . . , am2 (i, j)}1≤m≤M(i,j),

{aM(i,j)
2 (i, j) + 1, a

M(i,j)
2 (i, j) + 2, . . . , b

N(i,j)
2 (i, j)− 1},

{bn2 (i, j), . . . , bn1 (i, j)− 1, bn1 (i, j)}N(i,j)≥n≥1.

The next proposition describes the limit of logH
(i)
k /k as

k → ∞.

Proposition 3. For any i, j ∈ I,

logH
(i)
k

k

Pj−a.s.−−−−−→
k→∞

h(i, j) (24)

where

h(i, j) =
a
M(i,j)
2 (i,j)∑

l=1

ηl(i, j) +
L∑

l=b
N(i,j)
2 (i,j)

ηl(i, j)

+

 b
N(i,j)
2 (i,j)−1∑

l=a
M(i,j)
2 (i,j)+1

ηl(i, j)


+

.

(25)

Proof. Please see Appendix C.

Then following the same steps of Section V-C, we can prove
that the multi-sensor threshold SCD rule is asymptotically
optimal as c1 and c2 go to zero. Plugging (25) in (13), (16) and
(17), we will have the optimal threshold and the corresponding
Bayesian cost. Different from the asymptotic optimality for
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the general case in Section V-C, in this special case when the
first affected sensor is known, the asymptotic optimality does
not need any additional condition. This is because knowing
first affected sensor makes the structure of H(i, j) easier and
thus we can prove Proposition 3 true in general. Moreover, if
Condition 1 is true for any i, j ∈ I, we can easily check that
the h(i, j) in Proposition 1 and equation (3) are equivalent
following Algorithm 1. With equivalent h(i, j), w(i, j) and
the limit of cost function in (17) will also be equivalent. This
indicates that the performances of the general case and special
case will tend to be the same as c1 and c2 go to zero.

VI. EXTENSION OF THE PROPOSED SCD RULES TO 2D
SENSOR ARRAY CASE

In the Section V, we studied the SCD problem in a linear
sensor array. In this section, we extend our study to a 2D
lattice array scenario.

A. Change Propagation Model on 2D Lattice

Consider an 2D lattice with vertices {Va,b}1≤a≤H,1≤b≤W ,
where Va,b denotes the vertex at the ith row and the jth
column of the lattice. An edge exists between vertex pair
(Va,b, Vc,d) if |a − c|+|b − d|= 1. A change could happen
at any single vertex first and then start to diffuse outward via
the edges. At time k, the sensors collect the data samples
X⃗k = (xk,1,1, xk,1,1, ..., xk,H,W ). Let S = (S1, S2) be
index of the sensor where the change happens first, the prior
probability P(S = (a, b)) = κa,b is known. We denote
(κ1,1, κ1,2, . . . , κH,W ) as K. The change propagation process
is characterized by the distance between the target sensor and
the first affected sensor and follows a geometric distribution.
let V(a, b, r) be vertex layer whose distance to Va,b is exactly
r, i.e., V(a, b, r) = {Vm,n||a −m|+|b− n|= r}. The change
will first propagate from VS1,S2

to all the vertex in V(S1, S2, 1)
at time λV(S1,S2,1), then to all vertices in V(S1, S1, 2) at time
λV(S1,S2,2) and so on. The propagation of the change in the
2D lattice follows a geometric distribution as

P
[
λV(a,b,r+1) = k1 + k2|λV(a,b,r) = k1, S = (a, b)

]
= ρ1(1− ρ1)

k2 , k2 ≥ 0
(26)

where ρ1 is the probability of the change propagates outward
the next layer. As an example of the 2D lattice sensor array,
we illustrate the change propagation process in a 5× 5 lattice
sensor array in Fig. 2. On each vertex, a sensor is implemented
to collect data. xk,a,b denotes the data sample collected by the
sensor at Va,b at time k. For the convenience of expression,
we denote

C(S1, S2, r) = {(a, b)||a− S1|+|b− S2|= r,
1 ≤ a ≤ H, 1 ≤ b ≤W},

I(S1, S2, r) = {(a, b)||a− S1|+|b− S2|≤ r,
1 ≤ a ≤ H, 1 ≤ b ≤W},

O(S1, S2, r) = {(a, b)||a− S1|+|b− S2|> r,
1 ≤ a ≤ H, 1 ≤ b ≤W},

R(S1, S2) = max1≤a≤H,1≤b≤W (|a− S1|+|b− S2|).

Now we have a new 2D lattice sensor array and a corre-
sponding change propagation model. The other parts in the

SCD problem formulation, such as the prior distribution of
the change time λ, observation model and etc., are the same
as in Section II.

B. Posterior Probability Analysis

In the SCD problem with the 2D lattice sensor array, the
posterior probability Πk defined in (2) still plays a key role.
However, the calculation of α(i)

k in (3) will be replaced as



α
(0)
k = (1− ρ)k+1

H∏
a=1

W∏
b=1

k∏
n=1

f0(xn,a,b),

α
(i)
k =

H∑
S1=1

W∑
S2=1

κS1,S2
viρ

k∑
n0=0

[(
n0−1∏
n=1

f0(xn,S1,S2
)

)
·

(
k∏

n=max(n0,1)

fi(xn,S1,S2
)

)
(1− ρ)

n0Ψ
(i)
1 (k, n0, S1, S2)

]
,

Ψ
(i)
l+1(k, nl, S1, S2) =

∏
(a,b)∈O(S1,S2,l)

k∏
n=1

f0(xn,a,b)

·(1− ρ1)
k−nl+1 + ρ1

k∑
nl+1=nl

[
(1− ρ1)

nl+1−nl

∏
(a,b)∈C(S1,S2,l+1)

(
nl+1−1∏
n=1

f0(xn,a,b)
k∏

n=nl+1

fi(xn,a,b)

)
·Ψ(i)

l+2(k, nl+1, S1, S2)

]
, R(S1, S2) > l ≥ 0,

Ψ
(i)
R(S1,S2)+1(k, nl) = 1.

Similar to Section III, we want to compute Πk recursively
once a new sample X⃗k arrives rather than remembering all
historical data samples. To this end, we further define the event
Ti,k,a,b,r = {S1 = a, S2 = b, λV(a,b,r+1) > k, λV(a,b,r) ≤
k, θ = i} for 1 ≤ a ≤ H, 1 ≤ b ≤ W, 1 ≤ r ≤ R(a, b), i ∈ I.
From the definition, we know that event Ti,k,s,l1,l2 denotes
the event that the change with post-change distribution fi
firstly reaches vertex Va,b and already propogates to vertices
V(a, b, r) at time k. In addition, we define the event that
change has not happened yet as T0,k = {λ > k}. In
this change process setting, we can see that the underlying
probability space Ω can be partitioned as

Ω=

 H⋃
a=1

W⋃
b=1

R(a,b)⋃
r=0

⋃
i∈I

Ti,k,a,b,r

⋃T0,k.

Then, we denote the posterior probability as pi,k,a,b,r :=
P{Ti,k,a,b,r|Fk} and p0,k = P{T0,k|Fk}. Using Bayesian rule,
we can derive the updating rule for these posterior probabilities
as



pi,k,a,b,r =
Ni,k,a,b,r

H∑
a=1

W∑
b=1

R(a,b)∑
r=0

∑
i∈I

Ni,k,a,b,r+N0,k

,

1 ≤ a ≤ H, 1 ≤ b ≤W, 0 ≤ r ≤ R(a, b), i ∈ I,
p0,k =

N0,k

H∑
a=1

W∑
b=1

R(a,b)∑
r=1

∑
i∈I

Ni,k,a,b,r+N0,k

,

(27)
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(a) Sensor array status at λ (b) Sensor array status at λV(S1,S2,1) (c) Sensor array status at λV(S1,S2,2)

Figure 2: Change propagation model of the 2D lattice sensor array

where Ni,k,a,b,r denotes the probability density

dP((X⃗1, . . . , X⃗k), Ti,k,a,b,r) =
∏

(m,n)∈I(a,b,r)
fi(xm,n,k)

·
∏

(a,b)∈O(a,b,r)

f0(xm,n,k)

(
p0,k−1κa,bρ(1− ρ1)

1{r ̸=R(a,b)}ρr1

+
r∑

rk−1=1
pi,k,a,b,rk−1

ρ
r−rk−1

1 (1− ρ1)
1{r ̸=R(a,b)}

)
(28)

and N0,k denotes the probability density

dP((X⃗1, . . . , X⃗k), T0,k) = p0,k−1(1− ρ)
H∏

a=1

W∏
b=1

f0(xk,a,b).

(29)
For k = 0, we have p0,0 = 1 − ρ. For 1 ≤ a ≤ H, 1 ≤ b ≤
W, 0 ≤ r ≤ R(a, b), i ∈ I, we have

pi,k,a,b,r = κa,bviρ(1− ρ1)
1{r ̸=R(a,b)}ρr1.

Let Pk denote the 4-dimensional posterior probabilities
tensor in which its elements are pi,k,a,b,r. In Pk, only ele-
ments satisfying 1 ≤ r ≤ R(a, b) can be non-zero values.
From (27) (28) and (29), we see that Pk can be computed
from Pk−1 and observation X⃗k at time k. Hence, we have
the recursive update formula for the posterior probabilities
{Pk, p0,k}. More importantly, by the relationship between
{Pk, p0,k} and Πk, Π

(i)
k =

H∑
a=1

W∑
b=1

R(a,b)∑
1=1

pi,k,a,b,r, i ∈ I,

Π
(0)
k = p0,k,

(30)

we can update Πk recursively. Afterwards, we can follow the
same steps described in Section IV and obtain the optimal
SCD rule of the 2D lattice case. Similar to the linear sensor
array case, since the state space increase exponentially with
H , W and I , the extreme high complexity make the optimal
method hard to implement.

C. Low-complexity rule
The low-complexity threshold given in (11) works for te 2D

lattice sensor array case and the asymptotic optimality also

preserves. The only difference between the threshold rules of
the linear sensor case and the 2D lattice case is the proof
of the convergence of the LLR process. Therefore, we only
provide the proof the convergence of the LLR process for the
2D lattice case.

For i ∈ I and time k > 0, we define

H
(i)
k =

H∑
S1=1

W∑
S2=1

κS1,S2

k∑
n0=0

[
ψ
(i)
1 (k, n0, S1, S2)

·

(
n0−1∏
n=1

(
(1− ρ)f0(xn,S1,S2

)

(1− ρ1)fi(xn,S1,S2
)

))]
where

ψ
(i)
r+1 (k, nr, S1, S2) = (1− ρ1)

k
k∏

n=1

∏
(a,b)∈O(S1,S2,r)

f0(xn,a,b)

fi(xn,a,b)

+ ρ1

k∑
nr+1=nr

∏
(a,b)∈C(S1,S2,r+1)

nr+1−1∏
n=1

f0(xn,a,b)

fi(xn,a,b)

· ψ(i)
r+2 (k, nr+1, S1, S2) , R(S1, S2) > r ≥ 0.

(31)

In addition, ψ
(i)
R(S1,S2)+1

(
k, nR(S1,S2), S1, S2

)
=

(1− ρ1)
nR(S1,S2)−1. Therefore, we can express logα

(i)
k

as

logα
(i)
k = log[viρ(1− ρ)] + log

(
H∏

a=1

W∏
b=1

k∏
m=1

fi(xm,a,b)

)
+ logH

(i)
k , for i ∈ I,

logα
(0)
k = (k + 1) log(1− ρ)+

log

(
H∏

a=1

W∏
b=1

k∏
m=1

f0(xm,a,b)

)
.

The next proposition describes the limit of logH
(i)
k /k as

k → ∞.

Proposition 4. For any i, j ∈ I, if Condition 1 is satisfied,

1

k
logH

(i)
k

Pj−a.s.−−−−−→
k→∞

h(i, j) (32)
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where h(i, j) = (log(1− ρ) + L(q(j, i)− q(j, 0)))+ and L =
HW .

Proof. Please see Appendix D.

After proving the convergence of the LLR process, the
asymptotic optimality of the threshold rule (11) in the 2D
sensor array case can be proved following the same steps
introduced in Section V.

VII. BENEFITS OF INCREASING NUMBER OF SENSORS

In this section we will prove that adding more sensors to the
sensor array will always improve the performance of the multi-
sensor threshold SCD rule when c1 and c2 are sufficiently
small. From the Bayesian cost of the optimal threshold rule in
(17), we can see that if constants w(i) and w(i, 0) increase,
the cost will decrease. Although we know that C(c2)(δ∗T ) → 0
as c1, c2 → 0, greater constants w(i) and w(i, 0) can make
C(c2)(δ∗T ) converge to 0 faster. Next, we will analyze how
w(i) and w(i, 0) change as more sensors are added to different
sensor array structures.

A. Case 1: The first affected sensor is unknown
When Condition 1 is satisfied for i, j ∈ I , and the first

affected sensor is randomly chosen and unknown (as in Section
V and VI). By (13) and Proposition 1, we have

w(i, j) =

{
Lq(i, j), if log(1− ρ) ≥ q(i, 0)− q(i, j), i ∈ I
Lq(i, 0)− log(1− ρ), j = 0 or q(i, j) ≤ q(i, 0).

By Assumption 1 and the fact q(i, j) is the KL divergence,
q(i, j) is positive for i, j ∈ I. Therefore, w(i) and w(i, j) will
increase with the number of sensors. This implies that, with
more sensors in the sensor array, the performance of the multi-
sensor threshold SCD rule will be improved when Condition
1 is satisfied for all i, j ∈ I in the general case.

B. Case 2: The first affected sensor is known
As we introduced in Section V-D, when Condition 1 does

not hold and the first affected sensor is fixed and known, the
calculation of constant w is more complicated. The reason
is that adding one more sensor to the array may change the
grouping result of Algorithm 1. Without of generality, we
assume the sensor is added to the right of the first affected
sensor s, i.e., we added the l = (L + 1)th sensor to the
array. Then ηL(i, j) change from log(1−ρ2)+q(j, i)−q(j, 0)
to q(j, i) − q(j, 0). The new added ηL+1(i, j) = log(1 −
ρ2) + q(j, i) − q(j, 0). Based on the value of ηL(i, j), the
increment of h(i, j) could be different. However, it’s easy
to check that, the increment of h(i, j) is upper bounded by
(q(j, i) − q(j, 0))+. Based on this observation and (13), we
can see that by adding one sensor, w(i, j) will always increase.
Therefore, the performance of the multi-sensor threshold SCD
rule can always be improved by adding sensors to the sensor
array.

It is worth noting that the benefit introduced in this section
is for the asymptotic case, i.e. c1, c2 → 0. In other words,
adding more sensors will improve the performance when c1
and c2 are sufficiently small. However, such property many
not hold when c1 and c2 is relative large.
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Figure 3: Performance of the multi-sensor threshold SCD
rule in 7 different cases for the change on the mean of 2-
D Gaussian distribution

VIII. NUMERICAL RESULTS

Since the optimal SCD rule is too complex to implement
in the multi-sensor case, obtaining the optimal solution is
extremely time-consuming, even for a simple case with L = 2
and I = 2. Therefore, we will not carry out experiments to
directly compare the performance of the optimal SCD rule
and the threshold SCD rule. However, we still can validate
that the multi-sensor threshold SCD rule has a considerable
improvement over a single sensor threshold rule (all sensors
except the first one are ignored) and a mismatched threshold
rule (changes of all sensors are falsely assumed to happen
at the same time). Particularly, we will investigate the perfor-
mance of the multi-sensor threshold SCD rule in a general case
(first affected sensor is a random variable) and a special case
(first affected sensor is fixed and known). In this section, we
provide 4 numerical examples to illustrate the performance of
the threshold SCD rule. In all following examples, the results
are estimated by Monte-Carlo simulations. Concretely, we
generate data samples following the underlying SCD process
and apply the SCD rules to the generated sequence. An
episode ends when the SCD rule makes the final detection
and identification decisions. Then we calculate the Bayesian
cost and start another episode. The Bayesian cost C(τ1, τ2, d)
is approximated using the average value of 10,000 episodes
of Monte-Carlo simulation.

In the first example, the observed data samples are generated
by a two-dimensional normal distribution, N (µ⃗, I2). The
mean vector µ⃗ changes at the change point. In the first
example, we consider the case with two possible post-change
mean vectors µ⃗1 = (0, 1) and µ⃗2 = (0,−1) and the pre-
change mean vector µ⃗0 = (0, 0). In addition, we set ρ1 = 0.2,
ρ2 = 0.2, ρ = 0.01, (v1, v2) = (0.3, 0.7) and c2/c1 = 0.1.
All the penalty factors of the false alarm and misdiagnosis
are set to be 1. For this problem formulation, we study 7
different cases: (1). L = 5 with K⃗ = [0.2, 0.2, 0.2, 0.2, 0.2]
(General case); (2). L = 5 with K⃗ = [0, 0, 1, 0, 0] (Special
case); (3) L = 5 with K⃗ = [0, 0, 1, 0, 0] (Mismatch case);
(4). L = 2 with K⃗ = [0.5, 0.5] (General case); (5). L = 2
with K⃗ = [0, 1] (Special case); (6) L = 2 with K⃗ = [0, 1]
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c1 FAP MISDP Delay1 Delay2 Wrong decision cost Total delay cost Bayesian cost

Single sensor

0.1 0.1334 0.0045 7.6437 18.729 0.1379 0.9517 1.08956
0.05 0.058 0.0023 10.0065 10.0966 0.0603 0.5508 0.6111
0.02 0.0215 0.0013 12.4123 6.4296 0.0228 0.2611 0.2839
0.01 0.0099 0.0006 13.926 5.2957 0.0105 0.1446 0.1551

0.005 0.006 0.0004 15.3682 4.9344 0.0064 0.07931 0.08571

General case
(L=2)

0.1 0.0887 0.0044 7.2048 11.0701 0.0931 0.8312 0.9243
0.05 0.0459 0.0023 8.4144 6.9719 0.0482 0.4556 0.5038
0.02 0.0161 0.0004 9.6692 4.0748 0.0165 0.2015 0.218
0.01 0.0097 0.0002 10.5496 3.2829 0.0099 0.1088 0.1187

0.005 0.0043 0.0002 11.387 2.7081 0.0045 0.05829 0.06279

General case
(L=5)

0.1 0.0286 0.0016 8.3372 4.5829 0.0302 0.8795 0.9097
0.05 0.0134 0.0006 9.0294 2.7989 0.014 0.4655 0.4795
0.02 0.0049 0.0003 9.7337 1.9988 0.0052 0.1987 0.2039
0.01 0.0025 0.0003 10.3545 1.7942 0.0028 0.1053 0.10814

0.005 0.0015 0.0002 10.771 1.5232 0.0017 0.05461 0.05632

Special case
(L=2)

0.1 0.0885 0.0041 6.9261 11.1448 0.0926 0.8041 0.8967
0.05 0.0386 0.0022 8.1569 6.2093 0.0408 0.4389 0.4797
0.02 0.0166 0.0006 9.4394 3.9092 0.0172 0.1966 0.2138
0.01 0.0083 0.0004 10.2133 3.1732 0.0087 0.1053 0.114

0.005 0.0038 0.0002 11.0598 2.6632 0.004 0.05663 0.06063

Special case
(L=5)

0.1 0.0265 0.0018 7.0316 4.2327 0.0283 0.7455 0.7738
0.05 0.0127 0.0005 7.6022 2.8422 0.0132 0.3943 0.4075
0.02 0.005 0.0003 8.3083 1.7477 0.0053 0.1697 0.175
0.01 0.0038 0.0002 8.7582 1.6554 0.004 0.08924 0.09323

0.005 0.0008 0.0001 9.1803 1.2985 0.0009 0.04655 0.04745

Mismatch case
(L=2)

0.1 0.045 0.0017 8.8483 6.957 0.0467 0.9544 1.0011
0.05 0.0226 0.0009 9.8357 4.5418 0.0235 0.5145 0.538
0.02 0.009 0.0005 10.9599 3.3959 0.0095 0.226 0.2355
0.01 0.0035 0.0001 11.7296 2.5338 0.0036 0.1198 0.1234

0.005 0.0017 0.0001 12.5006 2.3469 0.0018 0.06368 0.06548

Mismatch case
(L=5)

0.1 0.0115 0.0003 10.0698 2.7791 0.0118 1.03477 1.04657
0.05 0.0064 0.0003 10.5553 1.9905 0.0067 0.5377 0.5444
0.02 0.0021 0 16.3119 1.7122 0.0021 0.3297 0.3318
0.01 0.001 0 11.5815 1.2742 0.001 0.1171 0.1181

0.005 0.0005 0 12.0188 1.229 0.0005 0.0607 0.0612

Table I: Performance of the multi-sensor threshold SCD rule in 7 different cases for the change on the mean of 2-D Gaussian
distribution

(Mismatch case); (7) Single sensor case. The result of these
7 cases are shown in Fig. 3. In addition, Table I presents the
performance of the two-stage SCD rule with different sensor
arrays. In Table I, we have the following columns: FAP (false
alarm probability), MISDP (misdiagnosis probability), delay1
(expected delay time in the detection stage), delay2 (expected
delay time in the identification stage), wrong decision costs
(FAP + MISDP), total delay cost (c1∗delay1+c2∗delay2),
Bayesian cost (FAP+ MISDP+total delay cost). From these
results, we can see the general trends of the performance of the
threshold rule are: (1) Special case> General case> Mismatch
case and single sensor case; (2) L = 5 > L = 2 for the general
and the special case. The advantage of the special case over the
general case is due to the additional information that the first
sensor affected by the change is known in the special case.
In conclusion, the results of this example indicate that with
more sensors and the correct information about the problem
formulation, the proposed multi-sensor threshold SCD rule can
efficiently improve the performance.

In the second example, we illustrate our results using pre-
change and post-change distributions that are more complex
than the one used in the first example. Firstly, we define a 2-D
distribution, FL(µ1, µ2). With FL(µ1, µ2), the two elements
in each data sample are independent and follow the Laplace
distributions, L(µ1, 1/

√
2) and L(µ2, 1/

√
2), respectively. In

this example, we implement three experiments: (1) Change

in the mean vector of FL(µ1, µ2). The pre-change distribu-
tion is FL(0, 0), the post-change distributions are FL(0, 1)
and FL(0,−1); (2) Change in the covariance matrix of 2-
D Gaussian distribution. The pre-change distribution is 2-D
Gaussian distribution, N (0⃗, 0.5I2), the post-change distribu-
tions are N (0⃗, I2) and N (0⃗, 2I2); (3) Change in the type of
the distribution. The pre-change distribution is a 2-D Gaus-
sian distribution, FL(0, 0), the post-change distributions are
N ((0, 1), I2) and N ((0,−1), I2). All the other parameters in
this example are the same as the first example. The simulation
results of the three settings are shown in Figure 4. These results
are very similar to the results in the first example. It indicates
that the proposed multi-sensor threshold SCD rule (general
case and special case) works well for various settings of pre-
change and post-change distributions.

In the first two examples, we know that the additional
information about the first sensor affected by the change makes
the special case has better performance than the general case.
However, from the analysis in Section V-D, the limit of the
cost function of the two cases should be the same. In the
third example, we implement an experiment to validate this
analysis result. Assume L = 5, for the general case, we
assume K⃗ = [0.2, 0.2, 0.2, 0.2, 0.2]. For the special case, we
assume K⃗ = [0, 0, 1, 0, 0]. Following similar setting of the first
example, we only change the mean vector to µ⃗1 = (0, 0.2)
and µ⃗2 = (0,−0.2). It is easy to check that Condition 1 is
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Figure 4: Performance of the multi-sensor threshold SCD rule in 7 different cases for different types of change

satisfied for all i, j ∈ I. The cost functions of the two cases
and the ratio between them are given in Table II. From that
table, we can see that, with smaller c1 (and smaller c2 since
c2/c1 is set to be 0.1), the ratio between the cost of the special
case and the general case is getting closer to 1. From the
experiments we did in the first three examples, we can see that
the prior information about the first affected sensor can help to
improve the performance of the multi-sensor threshold SCD
rule, especially when c1 and c2 is not very small. However,
this improvement will get smaller as c1 and c2 approach zero.

As we introduced in Section V-C, the threshold SCD rule
is asymptotically optimal when the Condition 1 is satisfied for
all i, j ∈ I. If the condition is not satisfied, currently we are
not able to prove the asymptotic optimality of the threshold
SCD rule for the general case. In the fourth example, we
numerically study the performance of the multi-sensor SCD
rule in the general case when Condition 1 is not satisfied. We
still use the same 2-D Gaussian setting of the first example
except for the mean vector. We set µ⃗1 = (0, 0.1) and
µ⃗2 = (0,−0.1) in order to make the Condition 1 unsatisfied.
In this setting, we compare the performance of the general
case and the special case. The result is shown in Fig. 5. From
this figure, we can see that the performance of the multi-
sensor threshold SCD rule in the general case is very close to
that in the special case. According to our analysis in Section
V, we know the multi-sensor threshold SCD rule is always
asymptotically optimal in the special case. Therefore, we know
that without the asymptotic optimal guarantee, the multi-sensor
threshold SCD rule can still have good performance.

Finally, we provide a numerical experiment for the 2D
sensor array described in Section VI. In this experiment,
the propagation probability of the 2D lattice sensor array
is ρ1 = 0.2. The change can happen to any sensor in the
array following a uniform distribution, i.e., P(S = (a, b)) =
1/(HW ) for any 1 ≤ a ≤ H and 1 ≤ b ≤ W . All other
settings of this experiment are the same as the first experiment.
The Bayesian costs of the multi-sensor threshold SCD rule
with three different 2D lattice arrays are presented in Table.
III. The performance of the single sensor case is also given as
a reference. From this table, we can see that the performance
of the threshold SCD rule in the sensor array case is generally
better than in the single sensor case. We also notice that

0 0.02 0.04 0.06 0.08 0.1
c

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

B
a

y
es

ia
n

 C
o

st

General case (L=5)

Special case (L=5)

Figure 5: Performance of the multi-sensor threshold SCD rule
in general case and special case when Condition 1 is not
satisfied

Table II: Performances of the two-stage multi-sensor threshold
SCD rules with different c1

c1 General Case Special Case Bayesian Cost Ratio

10−2 0.5291 0.4956 0.937

10−4 1.03e-2 9.83e-3 0.955

10−6 1.26e-4 1.23e-4 0.980

10−8 1.69e-6 1.66e-6 0.988

10−10 2.09e-8 2.08e-8 0.993

the performance of a large sensor array can be worse than
a smaller sensor array when the unit delay cost is relatively
big. For example, the Bayesian costs of 10 × 10 and 5 × 5
sensor array are larger than that of the 2 × 2 sensor array
when c1 = 0.1. This result indicates that the Bayesian cost of
the multi-sensor threshold SCD rule does not strictly decrease
as the number of sensors increases when the unit delay cost is
not very small. However, the results in Table. III also validate
that, when the unit delay costs are sufficiently small, e.g.
c1 = 1×10−6, 1×10−8 or 1×10−10, the performance of the
multi-sensor threshold SCD rule with a large sensor array is
always better than that with a smaller sensor array. This result
is consistent with the conclusion we obtained in Section VII.
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Table III: Performances of the two-stage multi-sensor threshold SCD rules in 2D lattice sensor array case

c1=0.1 c1=0.05 c1=0.01 c1=0.05 c1=0.001 c1=1e-6 c1=1e-8 c1=1e-10

Single Sensor 1.08956 0.6111 0.1551 0.08571 0.01958 3.2514e-05 4.1536e-07 5.08306e-09

2× 2 Sensor Array 0.8477 0.4504 0.09892 0.05267 0.01121 1.46e-05 1.73129e-07 1.96511e-09

5× 5 Sensor Array 0.8534 0.4606 0.09743 0.05018 0.01049 1.2134e-05 1.3309e-07 1.3984e-09

10× 10 Sensor Array 0.9512 0.4803 0.1017 0.05129 0.01062 1.1824e-05 1.2765e-07 1.3422e-09

IX. CONCLUSION AND FUTURE WORK

In this paper, we have formulated the Bayesian two-stage
sequential change diagnosis over a linear sensor array problem.
By analyzing the posterior probability, we have converted
the multi-sensor version SCD problem to a normal SCD
problem and characterized the optimal solution. However, the
complexity of the proposed optimal solution is high due to
the DP steps. To reduce the computational complexity, we
have designed a threshold multi-sensor two-stage SCD rule.
For the general case in which the first sensor affected by the
change is randomly chosen and unknown, we have proved
that the threshold SCD rule is asymptotically optimal under
Condition 1. For the special case that the first affected sensor
is fixed and known, we have proved that the threshold rule
is generally asymptotically optimal. Furthermore, we have
extended the threshold SCD rule to a more general 2D sensor
array case and proved its asymptotic optimality. Finally we
have analyzed how increasing the number of sensors can
improve the performance of the threshold SCD rule.

In terms of future work, it is of interest to investigate the
proposed two-stage change diagnosis model in more general
scenarios, for example, the more general change propagation
models and more complex sensor arrays, the case with un-
known parameters (such as vi) and the case that the post-
change distributions are unknown, etc. It is also of interest to
carry out the asymptotic analysis when the prior probabilities
of the change and change propagation, such as ρ, ρ1 and ρ2,
go to zero.

APPENDIX A
PROOF OF PROPOSITION 1

Before we prove Proposition 1, we introduce some helpful
results.

Lemma 2. Let {ξk}k≥1 be a positive stochastic process
and T be an a.s. finite random time defined on the same
probability space (Ω, ε,P). Given T , the random variables
{ξk}k≥1 are conditionally independent, and {ξk}1≤k≤T−1

and {ξk}k≥T have common conditional probability distri-
butions P(∞) and P(0) on (R,B(R)), the expectations with
respect to which are denoted by E(∞) and E(0), respectively.
Suppose that E(∞)[log ξ1] and E(0)[log ξ1] exist, and define
η := E(0)[log ξ1]. Then for any fixed constant c > 0

1
k log

(
c+

k∑
l=1

l∏
n=1

ξn

)
P−a.s.−−−−→
k→∞

η+. (33)

This lemma is the first part of Lemma 5.5 in the paper [22].
Here we further extend this lemma so that it can be applied
to our sensor array problem.

Lemma 3. Let {ξk}k≥1 be a positive stochastic process and
TL−1 ≤ TL are two a.s. finite random times defined on the
same probability space (Ω, ε,P). Given TL−1 and TL, the
random variables {ξk}k≥1 are conditionally independent, and
{ξk}TL−1≤k≤TL−1 and {ξk}k≥TL

have common conditional
probability distributions P(∞) and P(0) on (R,B(R)), the
expectations with respect to which are denoted by E(∞) and
E(0), respectively. Suppose that E(∞)[log ξ1] and E(0)[log ξ1]
exist, 0 < ξk <∞ for all k ≥ 1 and define η := E(0)[log ξ1].
Then for any fixed constant c > 0

1
k log

(
c+

k∑
l=1

l∏
n=1

ξn

)
P−a.s.−−−−→
k→∞

η+. (34)

Proof.

1
k log(c+

k∑
l=1

l∏
n=1

ξn)

= 1
k log

(
c+

TL−1−1∑
l=1

l∏
n=1

ξn +
k∑

l=TL−1

l∏
n=1

ξn

)

= 1
k log

((
c+

TL−1∑
l=1

l∏
n=1

ξn

)
TL−1∏
n=1

ξ−1
n +

k∑
l=TL−1

l∏
n=TL−1

ξn

)

+ 1
k log

(
TL−1−1∏
n=1

ξn

)
.

The last equality holds by setting

c′ =

(
c+

TL−1∑
l=1

l∏
n=1

ξn

)
TL−1∏
n=1

ξ−1
n > 0.

By Lemma 2, we can see that

1
k log

(
c′ +

k∑
l=TL−1

l∏
n=TL−1

ξn

)
P−a.s.−−−−→
k→∞

η+.

On the other hand, since TL−1 is a.s. finite, we have

1
k log

(
TL−1−1∏
n=1

ξn

)
P−a.s.−−−−→
k→∞

0.

Then the lemma is proved.

Now, we first prove that, for any i, j ∈ I, we have

lim inf
k→∞

1

k
logH

(i)
k ≥ (log(1− ρ) + Lq(j, i)− Lq(j, 0))+

(35)
Pj almost surely.

For any i ∈ I, define
ξ
(l)
k (i) =

f0(xk,l)
fi(xk,l)

, 2 ≤ l ≤ L− 1,

ξ
(1)
k (i) =

f0(xk,l)
fi(xk,l)

(1− ρ1),

ξ
(L)
k (i) =

f0(xk,l)
fi(xk,l)

(1− ρ2).

(36)
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With this definition, we can have

H
(i)
k =

L∑
s=1

κs

k∑
ns=0

(
ns−1∏
n=1

(
(1− ρ)ξ

(s)
n (i)

(1− ρ1)(1− ρ2)

))
·ψ(i)

s−1(k, ns)ϕ
(i)
s+1(k, ns)

(37)

where
ψ
(i)
l (k, nl+1) =

k∏
n=1

(1− ρ1)
l∏

t=1
ξ
(t)
n (i)+

ρ1
k∑

nl=nl+1

nl−1∏
n=1

ξ
(l)
n (i)ψ

(i)
l−1 (k, nl) , L− 1 ≥ l ≥ 1,

ψ
(i)
0 (k, n1) = 1,

(38)

and
ϕ
(i)
l (k, nl−1) =

k∏
n=1

(1− ρ2)
L∏
t=l

ξ
(t)
n (i)

+ρ2
k∑

nl=nl−1

nl−1∏
n=1

ξ
(l)
n (i)ϕ

(i)
l+1 (k, nl) , 2 ≤ l ≤ L,

ϕ
(i)
L+1 (k, nL) = 1.

(39)

Then, we can see that

ψ
(i)
l (k, nl+1) ≥ ρ1

(
nl+1−1∏
n=1

ξ
(l)
n (i)ψ

(i)
l−1(k, nl+1)

)
,

L− 1 ≥ l ≥ 1,

ψ
(i)
l (k, nl+1) ≥ ρ1

(
k−1∏
n=1

ξ
(l)
n (i)ψ

(i)
l−1(k, k)

)
,

ϕ
(i)
l (k, nl−1) ≥ ρ2

(
nl−1−1∏
n=1

ξ
(l)
n (i)ϕ

(i)
l+1(k, nl−1)

)
,

2 ≤ l ≤ L,

ϕ
(i)
l (k, nl−1) ≥ ρ2

(
k−1∏
n=1

ξ
(l)
n (i)ϕ

(i)
l+1(k, k)

)
.

(40)
Applying equation (40) repeatedly, we have

H
(i)
k ≥

L∑
s=1

κs
k∑

ns=0

ns−1∏
n=1

(1−ρ)f0(xs,n)
(1−ρ1)(1−ρ2)fi(xs,n)

·
[
ρs−1
1

(
s−1∏
t=1

ns−1∏
n=1

f0(xt,n)
fi(xt,n)

)
(1− ρ1)

ns−1

]
·
[
ρL−s−1
2

(
L∏

t=s+1

ns−1∏
n=1

f0(xt,n)
fi(xt,n)

)
(1− ρ2)

ns−1

]
=

(
L∑

s=1
κsρ

s−1
1 ρL−s−1

2

)(
k∑

ns=0

ns−1∏
n=1

(1− ρ)
L∏

t=1

f0(xt,n)
fi(xt,n)

)
.

Then we have

1
k logH

(i)
k ≥ 1

k log

(
L∑

s=1
κsρ

s−1
1 ρL−s−1

2

)
+

1
k log

(
k∑

ns=0

ns−1∏
n=1

(1− ρ)
L∏

t=1

f0(xt,n)
fi(xt,n)

)
.

(41)

Since the parameters ρs−1 are all positive for all 1 ≤ s ≤ L,
we have

1

k
log

(
L∑

s=1

κsρ
s−1
1 ρL−s−1

2

)
−−−→
k→∞

0. (42)

Since the change will happen at all sensors at an almost surely
finite time T , then by applying Lemma 3, we have

1
k log

(
k∑

nl=0

nl−1∏
n=1

(1− ρ)
L∏

t=1

f0(xt,n)
fi(xt,n)

)
= 1

k log

(
2 +

k∑
nl=2

nl−1∏
n=1

(1− ρ)
L∏

t=1

f0(xt,n)
fi(xt,n)

)
Pj−a.s.−−−−−→
k→∞

(log(1− ρ) + Lq(j, i)− Lq(j, 0))+.

(43)

Combining (41), (42) and (43), we can see that (35) is
proved. Next we need to prove the other direction, i.e., for
any i, j ∈ I,

lim sup
k→∞

1

k
logH

(i)
k ≤ (log(1− ρ) + Lq(j, i)− Lq(j, 0))+,

(44)
Pj almost surely.

For any integer nx ≥ 0, we can see that for L− 1 ≥ l ≥ 1

k∏
n=1

(1− ρ1)

l∏
t=1

ξ(t)n (i)

=

(
k∏

n=1

ξ(l)n (i)

)(
k∏

n=1

(1− ρ1)

l−1∏
t=1

ξ(t)n (i)

)

≤

(
k∏

n=1

ξ(l)n (i)

)
ψ
(i)
l−1(k, nx).

Similarly, for 2 ≤ l ≤ L we have
k∏

n=1
(1− ρ2)

L∏
t=l

ξ
(t)
n (i) ≤

(
k∏

n=1
ξ
(l)
n (i)

)
ϕ
(i)
l+1(k, nx). (45)

From (39), using (A) and (45) with nx = k + 1 and the fact
that ρ1 < 1 and ρ2 < 1, we can see that

ψ
(i)
l (k, nl+1) ≤

k+1∑
n
l
=n

l+1

(
nl−1∏
n=1

ξ
(l)
n (i)

)
ψ
(i)
l−1(k, nl),

L− 1 ≥ l ≥ 1,

ϕ
(i)
l (k, nl−1) ≤

k+1∑
n
l
=n

l−1

(
nl−1∏
n=1

ξ
(l)
n (i)

)
ϕ
(i)
l+1(k, nl),

2 ≤ l ≤ L.
(46)

Applying these two inequalities in (46) recursively, we have

H
(i)
k ≤

L∑
s=1

κs

k∑
ns=0

(
ns−1∏
n=1

(
(1− ρ)ξ

(s)
k (i)

(1− ρ1)(1− ρ2)

))
·ψ̃(i)

s−1(k, ns)ϕ̃
(i)
s+1(k, ns)

(47)

where

ψ̃
(i)
l (k, nl+1) =

k+1∑
nl=nl+1

(
nl−1∏
n=1

ξ(l)n (i)

)
ψ̃
(i)
l−1(k, nl),

L− 1 ≥ l ≥ 1,

ψ̃
(i)
0 (k, n1) = 1,

ϕ̃
(i)
l (k, nl−1) =

k+1∑
nl=nl−1

(
nl−1∏
n=1

ξ(l)n (i)

)
ϕ̃
(i)
l+1(k, nl),

2 ≤ l ≤ L,

ϕ̃
(i)
L+1 (k, nL) = 1.

(48)
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Since nl in (47) is no larger than nL and n1 in (48), so the
right hand side of (47) will become larger if we cancel all
(1− ρ1) and (1− ρ2) in (47). Furthermore, we know that

ψ̃
(i)
l (k, nl+1) ≤

k+1∑
n
l
=0

(
nl−1∏
n=1

ξ
(l)
n (i)

)
ψ̃
(i)
l−1(k, nl),

L− 1 ≥ l ≥ 1,

ϕ̃
(i)
l (k, nl−1) ≤

k+1∑
n
l
=0

(
nl−1∏
n=1

ξ
(l)
n (i)

)
ϕ̃
(i)
l+1(k, nl),

2 ≤ l ≤ L.
(49)

By canceling all (1 − ρ1) and (1 − ρ2) in (47) and applying

(49) reversely, we have that H(i)
k ≤

L∑
s=1

κsγs where

γs =

(
k∑

ns=0

(
ns−1∏
n=1

(
(1− ρ)ξ

(s)
k (i)

)))
·

(
s−1∏
l1=1

(
k+1∑
t=0

(
t−1∏
n=1

ξ
(l1)
n (i)

)))

·

(
L∏

l2=s+1

(
k+1∑
t=0

(
t−1∏
n=1

ξ
(l2)
n (i)

)))
.

(50)

By Lemma 3, for any 1 ≤ s ≤ L we have
1

k
log (γs)

Pj−a.s.−−−−−→
k→∞

(L− 1) (q(j, i)− q(j, 0))+

+ (log(1− ρ) + q(j, i)− q(j, 0))+ .

Since κs ≥ 0 and
L∑

s=1
κs = 1, we have

min
(
log
(
γ1

k

)
, log

(
γ2

k

)
, . . . , log

(
γL

k

))
≤

log

(
L∑

s=1
κsγs

)
k

≤ max
(
log
(
γ1

k

)
, log

(
γ2

k

)
, . . . , log

(
γL

k

))
.

We can have

1

k
log

(
L∑

s=1

κsγs

)
Pj−a.s.−−−−−→
k→∞

(L− 1) (q(j, i)− q(j, 0))+

+(log(1− ρ) + q(j, i)− q(j, 0))+ .

When Condition 1 is satisfied, we have

(log(1− ρ) + Lq(j, i)− Lq(j, 0))+
= (log(1− ρ) + q(j, i)− q(j, 0))+

+ (L− 1) (q(j, i)− q(j, 0))+ .

(51)

Hence (44) is proved. Therefore, Proposition 1 is true.

APPENDIX B
PROOF OF LEMMA 1

By the threshold rule (10), we know that τAopt is the
first time

∑
i∈I Π

(i)
n = 1 − Π

(0)
n exceeds the threshold

1 − 1/(1 +Aopt). Also, τ (i)
B⃗opt

+ τAopt
is the first time for

Π
(i)
n exceeds the threshold 1/(1 +Bi,opt). So if

1− 1

1 +Aopt
<

1

1 +Bi,opt
(52)

for all i ∈ I , it is guaranteed that the threshold B⃗ can
not be reached before threshold A, namely, τB⃗ ≥ 0. After

plugging the explicit expressions of the optimal thresholds
(16) in inequality (52), we know that a sufficient condition
of τB⃗ ≥ 0 is

0 < r ≤ min
i∈I

1

1 + ka

kiw(i)
∑
i∈I

vi
w(i,0)

. (53)

If the value of r satisfies (53), condition τB⃗ ≥ 0 is satisfied.
However, for the case (53) is not satisfied, we need to change
the threshold accordingly as{

A′ = Aopt,

B′
i = Bi,opt

ki

η , i ∈ I (54)

where η is a constant such that

r = min
i∈I

1

1 + ka

ηw(i)
∑
i∈I

vi
w(i,0)

.

We can see that with A′ and B⃗′
opt, condition τB⃗ ≥ 0 is still

satisfied even if (53) is not satisfied. In this case, the Bayesian
cost of the rule δ′T = (τA′ , τB⃗′ , d

′) is

C(c2)(δ′T ) = C(c2)(δ∗T )− c2
∑
i∈I

log

(
ki
η

)
vi
w(i)

+
∑
i∈I

viBi,opt

(
k2i
η

− ki

)
.

(55)

Since ki, w(i) and η are constants, the last two terms in (55)
decay much faster than C(c2)(δ∗T ) as c2 → 0. This implies that
the difference between the cost calculated by (17) and (55) is
negligible as c2 → 0.

APPENDIX C
PROOF OF PROPOSITION 3

Now, we first prove that, for any i, j ∈ I,

lim inf
k→∞

1

k
logH

(i)
k ≥ h(i, j) (56)

Pj almost surely. Please note that the h(i, j) in this section is
defined as (25) since we are studying the special case.

In (40), we have four inequalities about ψ(i)
l (k, nl+1) and

ϕ
(i)
l (k, nl−1). For (22), we apply the first inequality of (40)

to {ψ(i)
l }

s−1≥l≥a
M(i,j)
2 (i,j)+1

, the second inequality of (40)

to {ψ(i)
l }

1≤l≤a
M(i,j)
2 (i,j)

, the third inequality of (40) to

{ϕ(i)l }
s+1≤l≤b

N(i,j)
2 (i,j)−1

and the fourth inequality of (40) to

{ϕ(i)l }
L≥l≥b

N(i,j)
2 (i,j)+1

. Then we have

H
(i)
k ≥

k∑
ns=0

ns−1∏
n=1

 (1−ρ)
(1−ρ1)(1−ρ2)

b
N(i,j)
2 (i,j)−1∏

l=a
M(i,j)
2 (i,j)+1

ξ
(l)
n (i)


·

a
M(i,j)
2 (i,j)∏

l=1

k−1∏
n=1

ξ
(l)
n (i)

 L∏
l=b

N(i,j)
2 (i,j)

k−1∏
n=1

ξ
(l)
n (i)


·ρ1s−1ρ2

L−s(1− ρ1)
k−1(1− ρ2)

k−1.
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Therefore,

logH
(i)
k

k ≥ 1
k

a
M(i,j)
2 (i,j)∑

l=1

log

(
k−1∏
n=1

ξ
(l)
n (i)

)
+

1
k

L∑
l=b

N(i,j)
2 (i,j)

log

(
k−1∏
n=1

ξ
(l)
n (i)

)
+ 1

k log
(
ρ1

s−1ρ2
L−s

)
+

1
k log

 k∑
ns=0

ns−1∏
n=1

(1−ρ)
(1−ρ1)(1−ρ2)

b
N(i,j)
2 (i,j)−1∏

l=a
M(i,j)
2 (i,j)+1

ξ
(l)
n (i)

+

1
k log

(
(1− ρ1)

k−1
)
+ 1

k log
(
(1− ρ2)

k−1
)
.

Since L is a finite integer, we have

1
k log

(
ρ1

s−1ρ2
L−s

)
−−−→
k→∞

0. (57)

By Lemma 3 and the definition of ηl in (23), we can see that

1
k log

 k∑
ns=0

ns−1∏
n=1

(1−ρ)
(1−ρ1)(1−ρ2)

b
N(i,j)
2 (i,j)−1∏

l=a
M(i,j)
2 (i,j)+1

ξ
(l)
n (i)


Pj−a.s.−−−−−→
k→∞

 b
N(i,j)
2 (i,j)−1∑

l=a
M(i,j)
2 (i,j)+1

ηl(i, j)


+

.

(58)
In addition, by the definition of ηl and Algorithm 1, we can

see that

1
k

a
M(i,j)
2 (i,j)∑

l=1

log

(
k−1∏
n=1

ξ
(l)
n (i)

)
+ 1

k log
(
(1− ρ1)

k−1
)
+

1
k

L∑
l=b

N(i,j)
2 (i,j)

log

(
k−1∏
n=1

ξ
(l)
n (i)

)
+ 1

k log
(
(1− ρ2)

k−1
)

Pj−a.s.−−−−−→
k→∞

a
M(i,j)
2 (i,j)∑

l=1

ηl(i, j) +
L∑

l=b
N(i,j)
2 (i,j)

ηl(i, j).

(59)
Combining (57), (58) and (59), (56) is proved. Next, we need
to prove the other direction, i.e., for any i, j ∈ I,

lim inf
k→∞

1

k
logH

(i)
k ≤ h(i, j) (60)

Pj almost surely.
Applying (46) recursively, we have

H
(i)
k ≤

k∑
nl=0

(
nl−1∏
n=1

(
(1− ρ)ξ

(l)
k (i)

(1− ρ1)(1− ρ2)

))
·ψ̃(i)

l−1(k, nl)ϕ̃
(i)
l+1(k, nl).

(61)

Here ϕ̃
(i)
l+1(k, nl) and ψ̃

(i)
l−1(k, nl) are given (48). We apply

the first inequality in (49) to ψ̃
(i)
l+1(k, nl) for l = am2 (i, j)

and 1 ≤ m ≤ M(i, j), following the order from m = 1 to
m = M(i, j). Then we also apply the second inequality in

(49) to ϕ̃
(i)
l+1(k, nl) for l = bn2 (i, j) and 1 ≤ n ≤ N(i, j),

following the order from n = 1 to n = N(i, j). We define



Ωm =
k+1∑

nam
2 (i,j)=0

[(
nam

2 (i,j)−1∏
n=1

ξ
(am

2 (i,j))
n (i)

)

·ζ(i)m,am
2 (i,j)−1(nam

2 (i,j))

]
, 1 ≤ m ≤M(i, j),

Θm =
k+1∑

nbn2 (i,j)=0

[(
nbn2 (i,j)−1∏

m=1
ξ
(bn2 (i,j))
m (i)

)

·ε(i)n,bn2 (i,j)+1(nbn2 (i,j))

]
, N(i, j) ≥ n ≥ 1,

Γ =
k+1∑
ns=0

[(
ns−1∏
n=1

ξ
(s)
n (i)

)
ζ
(i)
M(i,j)+1,s−1(ns)

·ε(i)N(i,j)+1,s+1(ns)

]
(62)

where

ζ
(i)
m,t(nt+1) =

k+1∑
nt=nt+1

[(
nt−1∏
n=1

ξ
(t)
n (i)

)
ζ
(i)
m,t−1(nt)

]
,

for am2 (i, j)− 1 ≥ t ≥ am1 (i, j), 1 ≤ m ≤M(i, j) + 1,

ζ
(i)
m,t(nt+1) = 1, t = am1 (i, j)− 1,

ε
(i)
n,t(nt−1) =

k+1∑
nt=nt−1

[(
nt−1∏
m=1

ξ
(t)
m (i)

)
ε
(i)
n,t+1(nt)

]
,

for bn1 (i, j) ≥ t ≥ bn2 (i, j) + 1, N(i, j) + 1 ≥ n ≥ 1.
(63)

With the definitions in (62), we have

H
(i)
k ≤

(
M(i,j)∏
m=1

Ωm

)(
N(i,j)∏
n=1

Θn

)
Γ. (64)

In (62), we denote


a
M(i,j)+1
1 (i, j) = a

M(i,j)
2 (i, j) + 1,

a
M(i,j)+1
2 (i, j) = s− 1,

b
N(i,j)+1
1 (i, j) = b

N(i,j)
2 (i, j)− 1,

b
N(i,j)+1
2 (i, j) = s+ 1.

(65)

Now, it suffices to show that



lim sup
k→∞

1
k log Ωm =

am
2 (i,j)∑

l=am
1 (i,j)

ηl(i, j), 1 ≤ m ≤M(i, j),

lim sup
k→∞

1
k logΘm =

bn1 (i,j)∑
l=bn2 (i,j)

ηl(i, j), 1 ≤ n ≤ N(i, j),

lim sup
k→∞

1
k log Γ =

b
N(i,j)
2 (i,j)−1∑

l=a
M(i,j)
2 (i,j)+1

ηl(i, j)

(66)
Pj almost surely. The proof of the three inequalities are
similar, and the third one is more complicated. So here we
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only provide the proof of the third one. For any 1 ≤ l ≤ L,

k+1∑
nl=nl−1

nl−1∏
ml=1

ξ
(l)
ml

(
k+1∑

nl+1=nl

nl+1−1∏
ml+1=1

ξ
(l+1)
ml+1

)

=
k+1∑

nl=nl−1

nl−1∏
ml=1

ξ
(l)
mlξ

(l+1)
ml

(
k+1∑

nl+1=nl

nl+1−1∏
ml+1=nl

ξ
(l+1)
ml+1

)

≤
k+1∑

nl=nl−1

nl−1∏
ml=1

ξ
(l)
mlξ

(l+1)
ml

(
k+nl+1∑
nl+1=nl

nl+1−1∏
ml+1=nl

ξ
(l+1)
ml+1

)

≤
k+1∑

nl=nl−1

nl−1∏
ml=1

ξ
(l)
mlξ

(l+1)
ml

(
max

nl≤k+1

k+nl+1∑
nl+1=nl

nl+1−1∏
ml+1=nl

ξ
(l+1)
ml+1

)
.

(67)
Similarly, we have

k+1∑
nl=nl+1

nl−1∏
ml=1

ξ
(l)
ml

(
k+1∑

nl−1=nl

nl−1−1∏
ml−1=1

ξ
(l−1)
ml−1

)

≤
k+1∑

nl=nl+1

nl−1∏
ml=1

ξ
(l)
mlξ

(l−1)
ml

(
max

nl≤k+1

k+nl+1∑
nl−1=nl

nl−1−1∏
ml−1=nl

ξ
(l−1)
ml−1

)
.

(68)
For Γ, apply (68) from l = a

M(i,j)
2 (i, j) + 2 to l = s, then

apply (67) from to l = b
N(i,j)
2 (i, j)− 2 to l = s, we have

Γ ≤
k+1∑
ns=0

ns−1∏
q=1

b
N(i,j)
2 (i,j)−1∏

l=a
M(i,j)
2 (i,j)+1

ξ
(l)
q (i)


·

s∏
l=a

M(i,j)
2 (i,j)+1

Cl

b
N(i,j)
2 (i,j)−1∏

l=s

Dl,

(69)

where
Cl = max

nl≤k+1

1 +
k+nl∑

nl−1=nl

nl−1∏
ml−1=nl

l∏
t=a

M(i,j)
2 (i,j)

ξ
(t)
ml−1

 ,

Dl = max
nl≤k+1

1 +
k+nl∑

nl+1=nl

nl+1∏
ml+1=nl

b
N(i,j)
2 (i,j)∏

t=l

ξ
(t)
ml+1

 .

By Lemma 3, for s ≤ l ≤ b
N(i,j)
2 (i, j)− 1, we have

1
k log

1 +
k+nl∑

nl+1=nl

nl+1∏
ml+1=nl

b
N(i,j)
2 (i,j)∏

t=l

ξ
(l)
ml+1


Pj−a.s.−−−−−→
k→∞

b
N(i,j)
2 (i,j)∑

t=l

ηt(i, j)


+

= 0.

And for aM(i,j)
2 (i, j) + 1 ≤ l ≤ s, we have

1
k log

1 +
k+nl∑

nl−1=nl

nl−1∏
ml−1=nl

l∏
t=a

M(i,j)
2 (i,j)

ξ
(t)
ml−1


Pj−a.s.−−−−−→
k→∞

 l∑
t=a

M(i,j)
2 (i,j)

ηt(i, j)


+

= 0.

Therefore, we have
1
k logCl

Pj−a.s.−−−−−→
k→∞

0,

1
k logDl

Pj−a.s.−−−−−→
k→∞

0.

Similarly, by lemma 3, we can see that,

k+1∑
ns=0

ns−1∏
q=1

b
N(i,j)
2 (i,j)−1∏

l=a
M(i,j)
2 (i,j)+1

ξ
(l)
q (i)


Pj−a.s.−−−−−→
k→∞

 b
N(i,j)
2 (i,j)−1∑

l=a
M(i,j)
2 (i,j)+1

ηl(i, j)


+

.

(70)

By (69), (C) and (70), we know that the third inequality in
(66) is true. Using similar steps, we can prove the other two
inequalities in (66). Hence (56) is proved. Finally, by (56) and
(60), the proof of Proposition 3 is complete.

APPENDIX D
PROOF OF PROPOSITION 4

we first prove that, for any i, j ∈ I,

lim inf
k→∞

1

k
logH

(i)
k ≥ h(i, j) (71)

Pj almost surely. Please note that the h(i, j) in this section is
defined in Proposition 4 since we are studying the 2D case.

Then, we can see that

ψ
(i)
r+1 (k, nr, S1, S2) ≥ ρ1

∏
(a,b)∈C(S1,S2,r+1)

f0(xn,a,b)
fi(xn,a,b)

·ψ(i)
r+2 (k, nr, S1, S2) , R(S1, S2) > r ≥ 0.

(72)
Applying equation (72) repeatedly, we have

H
(i)
k ≥

H∑
S1=1

W∑
S1=1

κS1,S2

k∑
n0=0

n0−1∏
n=1

(1−ρ)f0(xn,S1,S2
)

(1−ρ1)fi(xn,S1,S2
)

·

[
ρ
R(S1,S2)−1
1 (1− ρ1)

n0−1 ∏
(a,b)∈O(S1,S2,0)

n0−1∏
n=1

f0(xn,a,b)
fi(xn,a,b)

]

=

(
H∑

S1=1

W∑
S1=1

κS1,S2
ρ
R(S1,S2)−1
1

)
·
(

k∑
n0=0

n0−1∏
n=1

(1− ρ)
H∏

a=1

W∏
b=1

f0(xn,a,b)
fi(xn,a,b)

)
.

(73)
Since R(S1, S2) is finite for 1 ≤ S1 ≤ H, 1 ≤ S2 ≤ W , we
have

1

k
log

(
H∑

S1=1

W∑
S1=1

κS1,S2
ρ
R(S1,S2)−1
1

)
−−−→
k→∞

0. (74)

Since the change will happen at all sensors at an almost surely
finite time T , then by applying Lemma 3, we have

1
k log

(
k∑

n0=0

n0−1∏
n=1

(1− ρ)
H∏

a=1

W∏
b=1

f0(xn,a,b)
fi(xn,a,b)

)
= 1

k log

(
2 +

k∑
n0=2

n0−1∏
n=1

(1− ρ)
H∏

a=1

W∏
b=1

f0(xn,a,b)
fi(xn,a,b)

)
Pj−a.s.−−−−−→
k→∞

(log(1− ρ) +HWq(j, i)−HWq(j, 0))+.

(75)

Combining (73), (74) and (75), we can see that (71) is
proved. Next we need to prove the other direction, i.e., for
any i, j ∈ I,

lim sup
k→∞

1

k
logH

(i)
k ≤ h(i, j). (76)
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For any integer nx ≥ 0, we can see that
k∏

n=1
(1− ρ1)

∏
(a,b)∈O(S1,S2,r)

f0(xn,a,b)
fi(xn,a,b)

=

(
k∏

n=1

∏
(a,b)∈C(S1,S2,r+1)

f0(xn,a,b)
fi(xn,a,b)

)

·

(
k∏

n=1
(1− ρ1)

∏
(a,b)∈O(S1,S2,r+1)

f0(xn,a,b)
fi(xn,a,b)

)

≤

(
k∏

n=1

∏
(a,b)∈C(S1,S2,r+1)

f0(xn,a,b)
fi(xn,a,b)

)
ψ
(i)
r+2 (k, nx, S1, S2) .

(77)
From (31), using (77) with nx = k+1 and the fact that ρ1 < 1,
we can see that

ψ
(i)
r+1 (k, nr, S1, S2) ≤

k+1∑
nr+1=nr

∏
(a,b)∈C(S1,S2,r+1)

nr−1∏
n=1

f0(xn,a,b)

fi(xn,a,b)
ψ
(i)
r+2 (k, nr+1, S1, S2) , R(S1, S2) > r ≥ 0.

(78)

Applying these two inequalities in (78) recursively, we have

H
(i)
k ≤

H∑
S1=1

W∑
S1=1

κS1,S2

k∑
n0=0

n0−1∏
n=1

(1− ρ)f0(xn,S1,S2
)

(1− ρ1)fi(xn,S1,S2
)

·ψ̃(i)
1 (k, n0, S1, S2)

(79)

where

ψ̃
(i)
r+1 (k, nr, S1, S2) =

k+1∑
nr+1=nr

∏
(a,b)∈C(S1,S2,r+1)

nr+1−1∏
n=1

f0(xn,a,b)

fi(xn,a,b)
ψ̃
(i)
r+2 (k, nr+1, S1, S2) ,

R(S1, S2) > r ≥ 0,

ψ̃
(i)
R(S1,S2)+1 (k, nr, S1, S2) = (1− ρ1)

nR(S1,S2)−1.
(80)

Since n0 in (79) is no larger than nR(S1,S2) in (80), so the
right hand side of (79) will become larger if we cancel all
(1− ρ1) in (79).

Furthermore, we know that

ψ̃
(i)
r+1 (k, nr, S1, S2) ≤

k+1∑
nr+1=0

∏
(a,b)∈C(S1,S2,r+1)

nr+1−1∏
n=1

f0(xn,a,b)

fi(xn,a,b)
ψ̃
(i)
r+2 (k, nr+1, S1, S2) , R(S1, S2) > r ≥ 0.

(81)
By canceling all (1− ρ1) in (79) and applying (81) reversely,

we have that H(i)
k ≤

H∑
S1=1

W∑
S2=1

κa,bγS1,S2
where

γS1,S2
=

(
k∑

n0=0

n0−1∏
n=1

(1−ρ)f0(xn,S1,S2
)

fi(xn,S1,S2
)

)
·

(
R(S1,S2)∏

r=1

(
k+1∑
t=0

( ∏
(a,b)∈C(S1,S2,r+1)

t−1∏
n=1

f0(xn,a,b)
fi(xn,a,b)

)))
.

By Lemma 3, for any 1 ≤ S1 ≤ H and 1 ≤ S2 ≤ W , we
have

1

k
log (γS1,S2)

Pj−a.s.−−−−−→
k→∞

(HW − 1) (q(j, i)− q(j, 0))+

+ (log(1− ρ) + q(j, i)− q(j, 0))+ .

Since κa,b ≥ 0 and
∑

1≤a≤H,1≤b≤W

κa,b = 1, we have

min
(
log
(γ1,1

k

)
, log

(γ1,2

k

)
, . . . , log

(γH,W

k

))
≤

log

(
H∑

S1=1

W∑
S2=1

κS1,S2
γS1,S2

)
k

≤ max
(
log
(γ1,1

k

)
, log

(γ1,2

k

)
, . . . , log

(γH,W

k

))
.

We can have

1

k
log

(
H∑

S1=1

W∑
S2=1

κS1,S2
γS1,S2

)
Pj−a.s.−−−−−→
k→∞

(HW − 1) (q(j, i)− q(j, 0))+ +

(log(1− ρ) + q(j, i)− q(j, 0))+ .

When Condition 1 is satisfied, we have

(log(1− ρ) +HWq(j, i)−HWq(j, 0))+ = (log(1− ρ)+

q(j, i)− q(j, 0))+ + (HW − 1) (q(j, i)− q(j, 0))+ .
(82)

Hence (76) is proved. Therefore, Proposition 4 is true.
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