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Abstract: Humans use different modalities, such as speech, text, images, videos,
etc., to communicate their intent and goals with teammates. For robots to become
better assistants, we aim to endow them with the ability to follow instructions and
understand tasks specified by their human partners. Most robotic policy learning
methods have focused on one single modality of task specification while ignor-
ing the rich cross-modal information. We present MUTEX, a unified approach to
policy learning from multimodal task specifications. It trains a transformer-based
architecture to facilitate cross-modal reasoning, combining masked modeling and
cross-modal matching objectives in a two-stage training procedure. After training,
MUTEX can follow a task specification in any of the six learned modalities (video
demonstrations, goal images, text goal descriptions, text instructions, speech goal
descriptions, and speech instructions) or a combination of them. We systemati-
cally evaluate the benefits of MUTEX in a newly designed dataset with 100 tasks
in simulation and 50 tasks in the real world, annotated with multiple instances
of task specifications in different modalities, and observe improved performance
over methods trained specifically for any single modality. More information at
https://ut-austin-rpl.github.io/MUTEX/
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Figure 1: Overview. We introduce MUTEX, a unified policy that learns to perform tasks conditioned on task
specifications from multiple modalities (image, video, text, and speech) in the forms of instructions and goal
descriptions. MUTEX takes advantage of the complementary information across modalities to become more
capable of completing tasks specified by any single modality than methods trained specifically for each one.

1 Introduction

When working in a team, humans regularly make use of different modalities to specify tasks and
improve communications, e.g., sharing high-level task goals (“Let’s cook a meal!”), verbal instruc-
tions (“We will go to the kitchen, get the pot from the cabinet, and then put it on the stove.”), or
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fine-grained visual demonstrations (showing a cooking video). Human-robot teams should aspire to
a similar level of understanding. While recent research in robot learning has studied various modal-
ities for specifying robotic tasks, including text, images, speech, and videos, most previous studies
have treated these individual modalities as separate problems, such as language-conditioned policy
learning [1, 2, 3, 4], instruction following [5], visual goal-reaching [6, 7, 8, 9], and imitation from
video demonstrations [10, 11, 12]. Consequently, these approaches lead to siloed systems tailored
to individual task specification modalities.

A burgeoning body of interdisciplinary AI research has suggested that joint learning across multi-
ple modalities, such as image and text [13, 14, 15, 16], video and text [17, 18, 19] and vision and
touch [20, 21, 22], gives rise to richer and more effective representations that improve understand-
ing of individual modalities. These results align with findings in cognitive science and psychology,
which suggest that incorporating multimodal cues (e.g., visual and verbal) into human learning
processes enhances learning quality over using individual modalities alone [23, 24]. Drawing inspi-
ration from the effectiveness of cross-modal learning in prior work, our goal is to develop unified
policies capable of reasoning about multimodal task specifications for diverse manipulation
tasks, where each task will be defined in a single modality that changes from task to task. We
seek to harness the complementary strengths of different modalities — some providing compact and
high-level information like goal descriptions, while others providing fine-grained information like
step-by-step video demonstrations — thereby improving the model’s ability to execute tasks from
task specifications of different modalities.

Prior works primarily focus on enhancing language understanding using visual data [25, 26, 27, 28]
or on a subset of modalities such as language and robot demonstration [29], language and image [30].
These approaches typically cover one or two modalities, failing to encompass the diverse ways in
which humans express their goals and intent. The key challenge associated with learning across var-
ied modalities is effectively leveraging cross-modal information to reinforce each other and having
a highly versatile architecture to encapsulate the variability introduced by multiple modalities.

To effectively learn from different task specification modalities, we improve upon two representation
learning techniques, masked modeling [13, 18, 31] and cross-modal matching [14, 32], to foster
cross-modal interaction through a shared embedding space. Firstly, we exploit the complementary
strengths of each modality — text and speech specifications provide guidance for the model to
extract task-relevant features from visual specifications (image goals and video demonstration), and
visual specifications, in turn, help ground the text and speech to real-world observations. The model
is trained on the representation learning objectives in tandem with the policy learning objective (i.e.,
behavior cloning) such that the representation of the task specification also captures action-relevant
information. After we build richer, more informed representations for each modality, we bring them
to a common space [13, 14, 18, 31]. Unlike prior work that maps visual specifications to language
embeddings [33], we exploit the fact that human video demonstrations contain more fine-grained
information about the task. We enrich the representations of other modalities by matching them
with the information-dense video representations. This cross-modal matching leads to compact yet
informative multimodal representations that can be used to execute tasks specified by any modality.

For the model to execute a task specified by any modality, it must handle the variable input length of
task specification tokens. Meanwhile, it has to predict robot actions alongside a variable number of
masked signals for masked modeling of different modalities. To achieve this, we design a Perceiver-
style encoder [34] where a variable number of task specification tokens are attended with a fixed
history of robot observations using the cross-attention mechanisms. The embeddings obtained from
the encoder are then passed through the Perceiver-style decoder [35] to predict robot actions and
masked signals for individual modalities. This architecture design allows the model to learn a policy
that can execute tasks specified by any single modality or arbitrary aggregation of several.

In summary, we introduce MUTEX (MUltimodal Task specification for robot EXecution), a uni-
fied policy capable of executing tasks specified as goal descriptions or more detailed instructions in
text, speech, or visual modalities. MUTEX is versatile and performant. It can not only understand
multimodal task specifications but also improve the robustness of task execution for every single
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modality. We demonstrated this with a comprehensive evaluation benchmark, including 100 di-
verse manipulation tasks in simulation and 50 in the real world, leading to 6000 evaluated trials (per
method) in simulation and 600 evaluation trials in the real world. Remarkably, real-world evalua-
tion indicates that MUTEX can effectively interpret human video demonstrations and perform tasks
successfully with the robot, albeit with morphology differences. As part of this effort, we provide
a large real-world dataset of 50 tasks for a complete list of real-world tasks with 30 trajectories for
each task containing tasks like “putting bread on a microwave tray and closing it”, “opening an air
fryer and putting hot dogs in it”, or “placing the book in the front compartment of the caddy”, spec-
ified with multiple rich multimodal task specifications: text goal description, text instruction, goal
image, video specification, speech goal description, and speech instruction [Figure 3], supporting
future research in multimodal task specification.

2 Related Work
Task Specification in Robot Manipulation. One way to communicate tasks to a multi-task policy
is through one-hot encoding vectors [36]. However, this approach is limited to a predefined set of
tasks and cannot be extended to new ones. On the other hand, methods that use language to specify
tasks [1, 33, 2, 4, 37, 38] have shown improved multi-task generalization due to a richer semantic
task representation. However, learning with language specification can be ineffective as it requires
grounding language to the robot’s observation and action spaces [39, 40]. Moreover, the compact
nature of language poses a challenge for tasks that need more detailed or accurate descriptions [30].
Visual task specifications (images [7, 9, 8, 41] or videos [10, 11, 33, 12]) offer dense information
which makes the policies falsely depend on task-irrelevant information (e.g., a visual demonstration
of moving an object also shows the locations and motions of background objects in the scene [42]),
causing poor generalization behaviors. The peculiarity of individual modalities limits methods that
focus on unimodal specifications and fail to leverage complementary information across modalities.

Cross-modal Representation Learning. In the past years, there has been a large body of lit-
erature on learning rich representation from multimodal data with cross-modal learning objec-
tives [16, 43, 44]. These works have provided convincing evidence that learning across multiple
modalities can substantially boost model performances on conventional visual recognition tasks
(such as image classification [15, 45, 46, 47], object detection [48, 49, 50], segmentation [51, 46],
activity recognition [52]), language understanding tasks (such as sentiment analysis, paraphras-
ing [53, 54]), and multimodal reasoning tasks (such as visual QA [55, 19, 56] and cross-modal
retrieval [13, 14]). In robotics, multi-sensory observations have been shown to improve the perfor-
mance of manipulation tasks [20, 21, 22]. Inspired by these successes, MUTEX learns a cross-modal
representation of task specifications for multi-task imitation learning for robot manipulation.

Multi-Task Imitation Learning in Manipulation: Multitask imitation learning for robot manipu-
lation has been extensively studied with language task specifications [1, 37, 33, 4] and visual demon-
stration [12, 9], respectively. A closer line of work to ours consists of methods that harness multi-
modal task specifications. Some leverage multimodal data for model training, but the final policies
are deployed to only operate on a single modality type [25, 26, 27, 33]. Others demonstrate that
policies consuming multimodal specifications can generalize to novel task instances in one shot, but
the new task must be specified in all modalities [29]. More recent works have explored specifying a
task with multimodal prompts (text and image tokens) defined in a combination of modalities [30],
providing a more flexible interface and partially alleviating grounding problems. Nevertheless, none
of these prior works has offered the flexibility to specify the task using any individual modality, nor
support as many different modalities as MUTEX.

3 MUTEX Model and Dataset

Our goal is to learn a unified policy that performs diverse tasks based on a dataset of demonstra-
tions annotated with multimodal task specifications, including language, speech, and visual spec-
ifications. We assume that, during test time, the task to perform will be specified in a single or
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Figure 2: MUTEX’s Model Architecture and Training Losses. Task specifications in each modality are
encoded with pretrained modality-specific encoders, CLIP, and Whisper models [15, 57]. During the first stage
of training, one or more of these modalities are randomly selected and masked before being passed to projection
layers. The resultant tokens obtained from projection layers are combined with observation tokens through N
blocks of self- and cross-attention layers. The encoder’s hidden state is passed to MUTEX’s transformer encoder
that is queried for actions (behavior learning loss) and the masked features and tokens (masked modeling loss),
promoting action-specific cross-modal learning. In the second stage of training, all modalities are enriched with
information from video features through a cross-modal matching loss. MUTEX predicts closed-loop actions to
achieve the task based on the provided observations and a task specification modality (one or more) at test time.

a subset of modalities that can vary from task to task. For each task, Ti 2 {T1, T2, . . . , Tn}, we
assume that the agent learns from a set of human demonstrations obtained through teleoperation,
Di = {d1i , d2i , . . . , dmi }, where m is the number of demonstrations for task Ti, forming an entire
dataset of demonstrations, D. Each demonstration d

j
i presents the form of a sequence of observa-

tions and expert actions, dji = [(o1, a1)
j
i , . . . (oT , aT )

j
i ].

The goal of each task Ti is specified by k alternative task descriptions (t) in six different forms within
three modalities: text instructions t 2 {L1

i , L
2
i , . . . , L

k
i }, text goal description t 2 {l1i , l2i , . . . , lki },

video demonstration t 2 {V 1
i , V

2
i , . . . , V

k
i }, goal image t 2 {v1i , v2i , . . . , vki }, speech instructions

t 2 {S1
i , S

2
i , . . . , S

k
i }, and speech goal description t 2 {s1i , s2i , . . . , ski }. Note that we characterize

the modalities with the letters L/l, V/v, and S/s, and make use of capital letters to denote detailed
instructions and small letters to denote goal state specifications. Our goal is to learn a unified policy,
⇡(a|t, o), that outputs continuous actions, a 2 A, given current observations, o 2 O, conditioned
on a task specification in one or more of the possible modalities, t 2 L|l|V |v|S|s. We aim to
create a policy that not only performs the n tasks in the training dataset D (seen tasks) in new initial
conditions (e.g. positions of the objects) but also generalizes to previously unseen task descriptions.

3.1 MUTEX Training Procedure

Our goal is not only to obtain a unified policy that understands task specifications in different modal-
ities but also to improve the policy performance when a task is specified on every single modality
by exploiting cross-modal interactions during training. To that end, we leverage two representation
learning techniques that we integrate sequentially in MUTEX’s training procedure: 1) Mask Mod-
eling to promote cross-modal interactions of all modalities into a shared learned latent space, and
2) Cross-Modal Matching to enrich each modality with information of the information-denser one.
Both stages of our procedure are combined with a behavior cloning objective for policy learning
to ensure that the learned representation contains relevant information for the agent to perform the
manipulation task. The overview of the proposed approach is shown in Fig. 2.

Masked Modeling for Cross-Modal Learning: In the first stage [Step 1 in PseudoCode 1], MU-
TEX promotes cross-modal interactions between the model components interpreting the different
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modalities: text instructions (L), text goal (l), video demonstration (V ), image goal (v), speech
instructions (S), and speech goal (s). Inspired by the success in other cross-modal learning
tasks [53, 19, 43, 44], we mask certain tokens or features of each modality and learn to predict
them with the help of other modalities. This enforces the model to use the information from other
modalities to enhance the representation of each one of them. Intuitively, text- and speech-masked
prediction helps in focusing relevant information from visual modalities, while image- and video-
masked prediction helps in grounding other modalities. During testing, a task specification in only
one or a subset of the modalities is used. Thereby, to obtain robust single-modality representations
[Table 1, 2], we recreate these conditions in our training procedure by randomly sampling modalities
in each iteration.

Specifically, at each iteration of the training process, we randomly select task specifications of one or
a subset of modalities. If more than one modality is selected, we mask certain parts of each modality.
We require MUTEX to predict the masked parts alongside the action values the expert demonstrated
at each step. Different modalities would mask either input or intermediate features and use a different
metric loss to measure prediction error (`1 or `2). For masked text modeling (masking elements of
a text goal description or text instructions), we mask out words [58] that are then passed through
pretrained CLIP language model [15] to extract the features. We use the standard cross-entropy loss
between the predicted (ŷ) and ground truth (y) tokens, i.e., LCE(y, ŷ) = �

PN
i=1 yi log(ŷi), where

N is the number of tokens in the vocabulary. For masked visual modeling (masking elements of an
image goal or a video instruction), we mask out intermediate regions of the features obtained from
a pre-trained CLIP model [15] and, following prior works in vision-language modeling [59], we
employ a simple `1-regression loss between the predicted and ground truth features, L`1 = |y � ŷ|.
For masked speech modeling (masking elements of a speech goal description or speech instructions),
we use a similar approach to visual modeling but use features from a pre-trained Whisper model [57]
instead with an `1-regression loss (Refer to Appendix 6.2).

Cross-Modal Matching for Richer Representations: In the second stage of MUTEX’s training
procedure [Step 2 in PseudoCode 1], we enrich the common embedding space for each task modal-
ity by associating it with the features of the information-richer one. To that end, in contrast to prior
works that use a cross-modal contrastive loss to learn a common embedding space [14, 16], we use
a simple `2 loss to pull the representations of all modalities towards the one with more information
and better performance. Video specifications contain the most information, leading to more elucida-
tive and stronger features; therefore, we enrich other modalities with information from the video
representation space obtained after cross-modal learning.

Concretely, let fL, fl, fv , fs, fS be the feature representations of the text instructions, text goal,
image goal, speech goal, and speech instructions, and fV the feature representation of the video
demonstration for the same task. Our cross-modal matching loss is given by:

Lmatch = L`2(fL, fV ) + L`2(fl, fV ) + L`2(fS , fV ) + L`2(fs, fV ) + L`2(fs, fV ) (1)

where L`2 is the `2-regression loss. Gradients from this loss are not backpropagated to the part of
MUTEX that encodes the video modality, leaving them unchanged.

3.2 MUTEX Architecture

The training process delineated above requires a model architecture capable of propagating and
encoding the cross-modal information from multiple modalities. MUTEX’s model consists of three
main components (see Fig. 2): 1) Modality-Specific Encoders that map input modalities to task-
specific tokens, 2) a Policy Encoder that takes in the task-specific tokens and robot observations and
outputs hidden states, and 3) a Policy Decoder that takes in the hidden states along with decoder
queries and outputs features corresponding to the queries.

MUTEX’s modality-specific encoders extract tokens from input task specification using a fixed,
pre-trained large model, which helps us to extract semantically meaningful representation from the
input modality. To learn representations that are grounded to the observation and action space, these
features are passed through a projection layer consisting of a simple MLP or single attention block
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before passing it to the policy encoder. MUTEX’s policy encoder effectively fuses information ob-
tained from multiple task specification modalities and robot observations, employing a transformer-
based architecture with stacked cross- and self-attention layers. In the cross-attention layers, queries
are derived from robot observations, whereas the keys and values are from task specification tokens.
The encoder’s output is then passed to the policy decoder. Although the policy encoder’s output is
enriched with information obtained from different task specification modalities, MUTEX requires the
policy to output features for predicting action values and a variable number of masked tokens. This
motivates us to adopt a Perceiver Decoder [35] architecture as MUTEX’s policy decoder to lever-
age learnable queries and output only the information corresponding to input queries. The decoder
features for action prediction are passed through an MLP to estimate a Gaussian Mixture Model for
continuous action values. Similarly, separate MLPs are used to predict token values or features for
the masked token queries. More details can be found in Appendix 6.3.

3.3 Multimodal Task Specification Dataset

Figure 3: MUTEX Multimodal Task Specification Dataset. We provide a dataset comprising 100 simulated
tasks (example in the first column) based on LIBERO-100 [60] and 50 real-world tasks (examples in the second
and third columns), annotated with 50 and 30 demonstrations per task, respectively. We annotate each task
with 11 alternative task specifications in each of the six following modalities (rows from top to bottom): video
demonstration, image goal, text instructions, text goal, speech instructions, and speech goal.

As part of our efforts to develop a unified multi-task imitation learning policy, we construct a new
dataset of tasks with multiple task specifications per modality in both simulated and real-world
tasks (see Fig. 3). In the simulation, we extend the LIBERO-100 benchmark [60] entailing diverse
object interactions and versatile (n = 100) tasks like “turn on the stove and put the frying pan
on it.” Each task is annotated with m = 50 human trajectories (provided by the authors) and
k = 11 task specifications per modality. Due to the inevitable sim2real gap, video demonstrations
in the simulation are collected by teleoperating the simulated robot instead of directly by a human
performing the tasks. In the real world, we collect a novel dataset with n = 50 tasks (Figure 5)
ranging from pick and place tasks such as “put the bread on the white plate”, “pick up the bowl at
the back of the scene and place it inside the top drawer” to more contact-rich tasks such as “open
the air fryer and put the bowl with dogs in it”, “take out the tray of the oven, and put the bread
on it.” All tasks are collected in the same environment but involve different objects from a set of
17 objects. Each task is demonstrated with m = 30 human-collected trajectories [61] using a 3D
spacemouse teleoperation device. Each task is annotated with k = 11 different task specifications
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Method Text Text Image Video Speech Speech
Goal Instructions Goal Demonstration Goal Instructions

Modality-Specific 41.7± 8.0 39.9± 2.8 58.7± 4.9 62.0± 5.2 22.3± 1.2 28.4± 5.5
MUTEX (joint training) 39.2± 9.1 38.3± 7.4 48.6± 14.8 50.7± 16.0 32.1± 9.9 38.2± 13.6
MUTEX (no masked modeling) 34.8± 6.0 38.7± 6.5 43.8± 6.0 46.0± 8.0 24.6± 4.2 29.1± 6.1
MUTEX (no cross-modal matching) 43.5± 8.9 39.4± 2.2 60.1± 6.4 63.2± 6.3 36.7± 4.3 46.8± 5.5
MUTEX 50.1± 7.8 53.0± 2.2 61.6± 6.4 63.2± 6.3 40.9± 8.1 46.0± 5.2

Table 1: Success Rate on the Multimodal Task Specification Dataset in Simulation.

Method Text Text Image Video Speech Speech
Goal Instructions Goal Demonstration Goal Instructions

Modality-Specific 52 48 42 52 32 46
MUTEX 64 58 62 64 50 60

Table 2: Success Rate on the Multimodal Task Specification Dataset in Real-World.

for each modality. A human performs video demonstrations specifying the tasks with their hand. To
generate 11 diverse text goal descriptions and instructions, we make use of ChatGPT with prompts to
generate alternative descriptions that we manually filter to avoid using synonyms that do not match
the right task-relevant objects (e.g., using plate as a synonym for bowl when there are other plates
in the scene). We request speech signals from several characters of the Amazon Polly service to
generate diverse speech descriptions.

4 Experimental Evaluation

Experimental Setup: We conduct our evaluations on our newly constructed dataset of multimodal
task specifications, with a split of 80%/20% (8/3) tasks for training and testing. For evaluation, we
subject the robot to both unseen task specifications (from the test split) and new initial conditions
(i.e., positions of objects). For each tested task, we evaluated 20 trials in simulation and 10 trials
in the real world. Reported results for each evaluation modality are average for all 20 trials ⇥
100 tasks ⇥ 3 seeds in the simulation and 10 trials ⇥ 5 tasks in the real world. In our evaluation, we
compare MUTEX to models trained specifically for each modality using only task specifications in
that modality. This resembles most existing prior works in video-based imitation learning [11, 12],
and goal-conditioned imitation learning [6, 9, 33, 4]. Please refer to Appendix 6.5 for details.

Experiments: In our experimental evaluation, we aim to answer the following questions:

1) Does a unified policy capable of executing tasks across multiple modalities outperform methods
trained specifically from and for each individual modality? Table 1 and Table 2 summarize the
results of our evaluation in simulation and the real world, respectively. In both cases, we observe a
significant improvement (+10.3%, +14.3% in simulation and real-world respectively) from using
our unified policy MUTEX compared to modality-specific models, indicating that the cross-modal
learning procedure from MUTEX is able to leverage more information from other modalities.

Additionally, we analyze the errors in our real-world evaluation and find that representations learned
using MUTEX generalize better to new task specifications than unimodal representations. Specif-
ically, when dealing with unseen task specifications, failed trials that were not attributed to BC
compounding error, where the policy correctly completed a semantically meaningful task in the en-
vironment, albeit not the intended task (e.g., picking and placing another object). We find that in the
unimodal baselines, 85 out of 240 trials (35.4%) are due to failed understanding of tasks specified,
whereas it reduces to 40 out of 240 (16.7%) with MUTEX.

2) What is the importance of the two stages of the MUTEX training procedure? Is it important
to perform the stages consecutively? Table 1 includes a comparison of the results obtained with
the two-staged training procedure consecutively (MUTEX) compared to training with both stages
simultaneously (joint training), training without the first stage (no masked modeling) or without
the second stage (no cross-modal matching). We observe the largest drop in performance comes
from training without masked modeling, indicating that this step is critical to learning cross-modal
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information from different task specifications. Cross-modal matching provides a boost except for
video demonstrations (we match to that modality) and observes a small drop in speech specifications.

3) Does the performance increase significantly when tasks are specified with multiple modalities?
One of the advantages of MUTEX is that it can execute tasks with a single specification in any of
the learned modalities or with multiple specifications in several of the modalities. We evaluated
using combinations of Text Goal + Speech Goal, Text Goal + Image Goal and Speech Instructions
+ Video Demonstration and obtain 50.1, 59.2, and 59.6 success rates, respectively. These values are
close to the performance using one single specification in the best of the two modalities, indicating
that the additional modality is not providing any extra information. We hypothesize it is because all
possible cross-modal information has already been learned by MUTEX. Interestingly, when using
specifications in all modalities, the success rate is 60.1, lower than when using Image goal or Video
Demonstration, possibly due to the increased complexity of interpreting multiple task specifications.

4) Are the task specification representations learned by MUTEX better than state-of-the-art task-
specification models? To further evaluate the efficacy of the MUTEX representations, we compare

Method Text Goal Text Instruction Image Goal Video Demonstration Image Goal + Text Goal

T5 [62] 40.0 44.0 - - -
R3M [63] - - 59.5 44.7 -
VIMA [30] - - - - 47.0
MUTEX 50.1 53.0 61.6 63.2 59.2

Table 3: Success Rate on the Multimodal Task Specification Dataset in Simulation.

it with other task specification models in Table 3. Although the unimodal models, T5 and R3M,
achieve better results than CLIP (Table 1) in Text Instructions (+4.1%) and Image Goals (+2%), re-
spectively, MUTEX consistently outperforms these models across all modalities. The consistent im-
provement across modalities demonstrates the value of leveraging multiple modalities during train-
ing. Moreover, MUTEX significantly outperforms VIMA, a recent method that employs both text
goals and object images for task specification, highlighting that MUTEX is not only more performant
than its unimodal counterparts but also can effectively use multiple modalities during inference.

5 Conclusion, Limitations, and Future Work

We demonstrate with comprehensive experiments in simulation and the real world that multi-task
learning, when trained on task specifications across multiple modalities, produces a more robust and
versatile policy in each modality. We are highly encouraged by the empirical results and the potential
of MUTEX for designing a more versatile multimodal human-robot communication interface.

We aim to improve MUTEX in future work by addressing several limitations. MUTEX assumes
paired access to all the task specification modalities, which may be difficult to obtain in a scalable
fashion. MUTEX uses of clean speech signals synthesized by Amazon Polly may not accurately
represent real-world speech, which is often noisier and more difficult to understand. MUTEX uses
video and image goals are provided from the same workspace as the task to be executed. Having a
policy that can execute task specified “in the wild” visual goal or demonstration will invite additional
challenges. We also plan to explore how to foster stronger generalization by training across diverse
environments, which could open the door to the use of larger human video datasets. Lastly, MUTEX
uses vanilla behavior cloning to learn policies, which possesses problems like covariate shifts and
compounding errors. To mitigate this limitation, incorporating interactive imitation learning and
reinforcement learning techniques is an exciting direction for future research.
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Method Text Text Image Video Speech Speech
Goal Instructions Goal Demonstration Goal Instructions

MUTEX (w/ pretraining representations) 42.3 46.8 46.0 48.0 34.4 32.0
MUTEX (w/ finetuning full model) 37.1 40.2 44.7 46.3 31.6 34.2
MUTEX (w/ finetuning video encoder) 49.6 53.4 57.6 61.3 38.4 46.0
MUTEX 50.1 53.0 61.6 63.2 40.9 46.0

Table 4: Model Training Ablations of MUTEX variants.

6 Appendix

6.1 Model Training Ablations

In MUTEX training, the task specification representations are learned in tandem with the policy
learning objective, i.e., behavior cloning. The policy learning objective helps capture the neces-
sary information for robot action prediction, missing in the task-specification dataset. To verify this
empirically, we pre-train the task specification representations using the two-stage training process
without utilizing the BC loss. Subsequently, we learned the policy using the frozen task specifica-
tion representations (Referred as MUTEX (w/ pretraining representations) in Table 4). MUTEX
significantly performs better (+10.9%) than MUTEX (w/ pretraining representations).

Cross-modal matching in MUTEX aims to enrich other modalities with the more-informed video
specification obtained after masked modeling. To avoid local optima, where the video specifica-
tion loses information to match representations of other modalities, we freeze the MUTEX Policy
and Video Encoder layers. To validate the hypothesis, we evaluate the performance of two vari-
ants of MUTEX with finetuning full model (including video encoder)- MUTEX (w/ finetuning full
model) and finetuning video encoder- MUTEX (w/ finetuning video encoder). The results are
highlighted in Table 4. We observe that the training strategy adopted by MUTEX consistently out-
performs other variants, corroborating our initial hypothesis that backpropagating gradients through
video encoder in cross-modal matching may lead to sub-optimal performance.

6.2 Training Details

For training MUTEX 3.2, following the standard practice, we use the AdamW optimizer [64] along
with a Cosine Annealing LR Scheduler [65]. To facilitate learning a robust model, we apply data
augmentation like ColorJitter and translation augmentation on the RGB observation images. The
hyperparameter details are adopted from LIBERO’s transformer baseline [60], and the details are
provided in Table 5. For masked modeling, we train MUTEX for 50 epochs end-to-end, whereas for
the cross-modal matching, the projection layers [Figure 2] are finetuned for 20 epochs. The model
is trained using the 2 NVIDIA RTX A5000 (24 GB) GPUs with a batch size of 64 using the PyTorch
framework [66] for all the baselines, and MUTEX with an approximate total of five days for each
experiment.

Masked Modeling: We utilize masked modeling to facilitate intermodal interaction between differ-
ent modalities [Section 3.1]. For the text modality, we mask out specific words from the input and
predict the corresponding word tokens. Regarding text goals, we randomly select one word from the
input specification. For text instructions, we repetitively mask out two random words. It is worth
noting that stop-words (e.g., ‘a’, ‘the’) are not masked, as predicting stop-words does not provide
helpful task-related information. Regarding visual specifications, we mask out features extracted
from CLIP instead of directly predicting noisy pixel values. We employ L1 regression loss for train-
ing purposes. We mask the intermediate region feature obtained after the 22nd transformer block
in CLIP for image goals. For video demonstrations, we mask out individual frame features. Simi-
larly, for speech specifications, we mask and predict features directly obtained from the pretrained
Whisper-Small encoder model for both speech goals and speech instructions.
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Training Details

Batch Size 64
Gradient Clipping 100

Epochs (Masked Modeling) 50
Epochs (Cross-Modal Matching) 20

Initial Learning Rate 1e-4
Betas (0.9, 0.999)

Weight Decay 1e-4
Minimum Learning Rate 1e-5

Masked Modeling Loss Weight 0.5
Cross-Modal Matching Loss Weight 0.5

Data Augmentation

Brightness 0.3
Contrast 0.3

Saturation 0.3
Hue 0.3

Translation 8 pixels
Table 5: Hyperparameter details for training MUTEX

6.3 Model Architecture

MUTEX leverages multiple modalities during training to effectively learn rich, well-informed rep-
resentations of each modality, allowing to specify the task using single or any combination of task
specification modalities during evaluation. To allow such flexibility, we adopt transformer architec-
ture (Details in main text 3.2).

Modality Specific Encoders extract a single embedding for each input task specification modality.
To extract semantically meaningful, grounded representations, each modality is passed through a
pre-trained large model, and then through a projection layer [Figure 2]. For (a) pre-trained large
model, MUTEX uses the CLIP Large ViT-L/14 [15] model for text and visual modalities whereas
Whisper-Small [57] encoder for speech modalities providing semantically meaningful embeddings.
The (b) projection layer layers for each modality enable MUTEX to learn a grounded, common
embedding for all modalities. For modalities with single embeddings from the pre-trained model,
we use an MLP projection layer [Refer 1], whereas for modalities with multiple embeddings from
the pre-trained model, we use a single transformer block with mean pooling [Refer 2] to aggregate
information into one embedding. The details of the modality-specific encoders are summarized in
Table 6.

Listing 1: Model Architecture for the MLP in Projection Layers
MLPBlock(

nn.Linear(768, 512),

nn.ReLU()

nn.Dropout(0.1)

nn.Linear(512, 768)

nn.Dropout(0.1)

)

Listing 2: Model Architecture for the Transformer Block with Mean Pooling in Projection Layers
TransformerPoolBlock(

nn.LayerNorm(768),

nn.MultiheadAttention(

embed_dim = 768,

num_heads = 4,

kdim = 256,

vdim = 256

dropout = 0.1,
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Modality Pretrained Pretrained Projection LayerLarge Model Embedding Shape

Text Goal CLIP (1, 768)
MLPBlock[1] +

Cross-modal Matching MLPBlock[1] +
Shared MLPBlock[1]

Text
CLIP (L, 768) TransformerPoolBlock[2] +

Instructions Cross-modal Matching MLPBlock[1] +
L = num instructions Shared MLPBlock[1]

Image Goal CLIP (1, 768)
MLPBlock[1] +

Cross-modal Matching MLPBlock[1] +
Shared MLPBlock[1]

Video CLIP (16, 768) TransformerPoolBlock[2] +
Demonstration Shared MLPBlock[1]

Speech Goal Whisper (4, 768)
TransformerPoolBlock[2] +

Cross-modal Matching MLPBlock[1] +
Shared MLPBlock[1]

Speech
Whisper (4, 768)

TransformerPoolBlock[2] +
Instructions Cross-modal Matching MLPBlock[1] +

Shared MLPBlock[1]

Table 6: MUTEX’s Modality Specific Encoder consists of a pretrained large model and a projection layer for
each modality. The embeddings extracted from the pretrained model are transformed into single embeddings
using the projection layers. The projection layers consist of a modality-specific MLP or Transformer block, an
MLP block added in the cross-modal matching, and a shared MLP block between all modalities.

)

nn.LayerNorm(768),

TransformerFeedForwardNN(

nn.Linear(768, 256),

nn.GELU(),

nn.Dropout(0.1),

nn.Linear(256, 768),

nn.Dropout(0.1)

)

nn.AvgPool1d(kernel_size = num_embeddings)

)

Policy Encoder combines the robot observations with the task specification embeddings received
from the modality specific encoders. The robot observations consist of a history (T = 10) of RGB
Images from two camera viewpoints (agentview, eye in hand) and proprioceptive information. The
RGB images are converted to token embeddings using a ResNet encoder [67] whereas the proprio-
ceptive information is encoded using an MLP [Refer to [60] for more details]. The robot observation
embeddings and task specification embeddings are combined using stacked cross-attention and self-
attention layers as shown in Figure 4, and the hyperparameters are summarized in Table 7.

Policy Decoder takes in the input from the policy encoder and the learnable queries, enabling MU-
TEX to output a variable number of tokens. These outputs are used to predict the masked token values
during masked modeling and action values. The learnable query vectors indicate the type of corre-
sponding output - {Action, Text Goal, Text Instructions, Image Goal, Video Demonstration, Speech
Goal, Speech Instructions}. These vectors are added with sinusoidal positional vectors indicating
the action index and position of the masked tokens in action queries and masked modeling queries,
respectively. Similar to policy encoder, it consists of stacked cross-attention and self-attention layers
as shown in Figure 4 and the hyperparameters are summarized in Table 7.
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Figure 4: MUTEX Policy Encoder and Decoder Architecture

Policy Encoder

Input Embedding Size 768
Input Query Embedding Size 64

Transformer Head Size 64
# Transformer Heads 6

Transformer Output Size 64
Transformer MLP Ratio 4.0

Dropout 0.1
Attention Dropout 0.1

# Self-Attention Layers 3
# Cross-Attention Layers 4

Policy Decoder

Input Embedding Size 64
Input Query Embedding Size 64

Transformer Head Size 16
# Transformer Heads 4

Transformer Output Size 64
Transformer MLP Ratio 4.0

Dropout 0.1
Attention Dropout 0.1

# Self-Attention Layers 4
# Cross-Attention Layers 4

Table 7: Hyperparameter details of MUTEX’s Policy Encoder and Decoder architecture.

Prediction Heads [Not shown in Figure 2 for simplicity] using the output of the policy decoder
is used to predict the masked token values during masked modeling and action values. For text
modeling, the embeddings are mapped to the vocabulary size using a two-layered MLP and trained
using cross-entropy loss. For visual and speech modeling, intermediate masked features are pre-
dicted using a single-layer MLP and trained using L1 loss. For action modeling, the action values
are predicted using a two-layered MLP. The action distribution is modeled as a Gaussian Mixture
Model with five components to incorporate the multimodality in human-collected demonstrations
and trained using negative log-likelihood loss.
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6.4 Multimodal Dataset Details

MUTEX Robot Data: MUTEX uses behavior cloning to learn from expert datasets collected by
humans using teleoperation. We benchmark on two environments: simulation with 100 tasks and
real-world manipulation tasks [Refer to 3.3]. For simulation, we use LIBERO 100 [60] manipu-
lation benchmarking suite consisting of tasks better representative of the real world. We use the
dataset provided by the original authors, which consists of 50 trajectories per task collected us-
ing SpaceMouse. For real world evaluation, we designed 50 tasks in the real world consisting
of pick and place tasks like “Put the bread on the white plate” to more complex tasks like “Open
the air fryer and put the bowl with hot dogs in it”. The 50 tasks are divided across eight different
scenes, with an average horizon length of 242 for each task. A complete list of tasks, along with
scene visualization, is provided in Figure 5. We use a Franka Panda robot with a Kinect Azure
workspace camera and an Intel RealSense camera for eye-in-hand view. We use SpaceMouse to col-
lect 30 trajectories per task, allowing us to collect 1,500 trajectories. The dataset is publicly available
at https://ut-austin-rpl.github.io/MUTEX/, and we hope that it will serve as a resource for
future research in real-world manipulation tasks. The real robot infrastructure is adopted from [61].

Listing 3: GPT4 Prompts for generating the annotations of the task
# GPT4 Prompt for generating single text specification

# To generate example_paragraph for text instructions

"I will give you instructions; you should break it down into smaller instructions

for a robot. Please do it without adding any extra objects in the environments

in the instructions. Break it down into 3-4 instructions, for example, ‘pick up

the apple’: ‘Move your gripper towards the apply. Hold the apple gently with

your gripper. Lift the apple from the surface.’ Some points to consider while

generating instructions: The robot can only grasp one object at a time. All the

objects are in front of the robot, and the robot does not need to move.

Give me one such example for every instruction. Each example must complete the task.

Here is the task instruction {task_instruction}"

# Prompt for generating multiple text specifications using the afore-generated

single text specification

"Replace the words with synonyms or rephrase the sentence. Use words that an English

-speaking person will use in day-to-day routine and simple English. You can

also add words to make it more polite, such as please, carefully, with caution,

etc. Give me ten such examples of rephrased paragraphs. Here is the paragraph

to rephrase: {example_paragraph}"

# Prompt for generating speech annotations using text annotations

"You are a person talking to a robot. Rewrite each paragraph with simple English,

natural, and polite. Make sure the input is an assertive sentence; keep it

assertive. If the input is imperative, keep it imperative. Here are {

text_annotations} such paragraphs, rewrite each paragraph separately:\n"

Speaker Code Speaker Name
Training Speakers

en-IN Aditi, Raveena
en-AU Nicole, Russell
en-US Joanna, Matthew
en-GB Amy, Brian

Evaluation Speakers
en-US Salli
en-GB Emma

Table 8: Amazon Polly Codes for the speakers in the speech annotations.

MUTEX Task Specification Annotations: MUTEX leverages multiple modalities of specifying the
task, including text goal, text instructions, video demonstration, image goal, speech goal, and speech
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Modality Specific Baseline
Model Text Text Image Video Speech Speech
size Goal Instructions Goal Demonstration Goal Instructions

S (13M) 47 47 54 66 34 32
M (14M) 30 30 62 67 20 25
L (15M) 46 33 56 61 14 21

Table 9: Model size ablation for baselines: We iterate over three different model sizes for each modality-specific
baseline to avoid experimental bias in model size selection and report results using the best one in Table 1. Note
that the results are obtained using one seed and averaged over 100 tasks ⇥ 20 trials.

instructions. During training, we assume access to all modalities of task specifications for each task,
where each modality helps reinforce other modalities of specification. Thus, we can specify the task
using any individual modality during evaluation more effectively. We annotate with 11 task specifi-
cations per modality per task [Refer to Figure 3 for examples of task specifications]. We follow the
standard protocol of 80%/20% train/eval split for the task specification annotations. All the results
are reported on the unseen task specification evaluation set. For simulation, to avoid the real2sim
gap, we collected the video demonstration using the teleoperation of the robot in simulation [only
RGB information is used to specify the task]. For real-world tasks, human demonstrations are used
to specify the task, allowing a more intuitive way of specifying the task for users than teleoperation.
For text specifications, we leverage GPT4 to generate initial task specifications for different tasks
with diverse variations. The generated task specifications are corrected by humans to ensure the
quality of task specification annotations. For speech specifications, we follow a similar procedure
to text annotations and, finally, use the Amazon Polly service to generate speech specifications. The
prompt used to create annotations for text and speech specifications is provided in Appendix 3, and
the details of Amazon Polly characters are provided in Table 8.

6.5 Baseline Details

We compare MUTEX against modality-specific baselines for each task specification modality, i.e.,
Text Goals, Text Instructions, Image Goals, Video Demonstrations, Speech Goals, and Speech In-
structions. To highlight the significance of multimodal training proposed in our work, we do not
change the policy architecture [Refer 6.3], BC training hyper-parameters [Refer 6.2] in baselines.
Moreover, to avoid experimental bias due to model size, we iterate over three different model sizes
for each modality-specific baseline with increasing self-attention and cross-attention layers and use
the model size with the best performance for the respective modality baseline. The ablated base-
lines are highlighted in Table 9. The Modality-Specific baselines in Table 1 use the same pretrained
model as that of corresponding modality in MUTEX, i.e., CLIP [15] for Text Goals, Text Instructions,
Image Goals, Video Demonstrations and WHISPER [57] for Speech Goals, Speech Instructions. In
Table 3, for T5 (w/ Text Goals) and T5 (w/ Text Instructions), we use T5-small [62] model to
encode the text specifications similar to language conditioned imitation learning works [2, 33]. Sim-
ilarly, we use R3M features [63] in R3M (w/ Image Goals) and R3M (w/ Video Demonstratoins).
We also compare with VIMA [30], which uses object images and text goals to specify the task.
For the VIMA baseline, we append the text goal features with the top six object crop (pad with
zeros otherwise) locations obtained from Image Goal using Mask-RCNN [68]. We observe that one
single model, MUTEX, consistently outperforms all the baselines in each evaluation modality. This
demonstrates that MUTEX training on multimodal task specifications performs better than training
with individual or a subset of modalities.
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Algorithm 1 PseudoCode for MUTEX training.
input: Training data: expert robot trajectories, task specifications ti = {Li, li, Vi, vi, Si, si} for

each task Ti, where

L : Text Instructions
l : Text Goals
V : Video Demonstrations
v : Image Goals
S : Speech Instructions
s : Speech Goals
✓ : Policy Weights
✓x : Projection layer weights of modality x 2 {L, l, V, v, S, s}; ✓x ⇢ ✓

output: Policy network with updated weights
Step 1:
for epoch = 1 to n do

# Observation (o), Expert Actions (ae), Task Specifications (t 2 {L, l, V, v, S, s})
for each batch (o, ae, t) do

Sample k task specification modalities: t0 ✓ t

t
0 = apply masking(t0) if k > 1

# Predict: (action, masked tokens)
â, t̂ = ⇡✓(o, t0)
# Calculate losses and update policy weights ✓
LBC = �

P
i ae,i log(âi)

Lmasked modelling = L(t̂, t) if k > 1

⇢
L1 regression loss for {V, v, S, s}
cross entropy loss for {L, l}

end
end
# Freeze all the policy weights except for the projection layer [Refer figure 2] of L, l, v, S, s
Step 2:
for epoch = 1 to n

0 do
# Observation (o), Expert Actions (ae), Task Specifications (t 2 {L, l, V, v, S, s})
for each batch (o, ae, t) do

Sample k task specification modalities: t0 ✓ t

# Predict: (action)
â = ⇡✓(o, t0)
# Calculate losses and update policy weights ✓L, ✓l, ✓v, ✓S , ✓s
LBC = �

P
i ae,i log(âi)

Lcrossmodal matching = L1

�
⇡✓V (V ),⇡✓t0 (t

0)
�

end
end
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Figure 5: MUTEX real-world task visualization: MUTEX real-world tasks consist of diverse tasks like “opening
the top drawer”, “placing the bread on oven tray”, “putting a bowl consisting of hot dogs inside an air fryer
after opening it” representing the complexity of tasks in a real home-kitchen environment.
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