

T25B-06 Kinematic Evolution of the Tangra Yumco Rift, South-Central Tibet

Tuesday, 13 December 2022

16:43 - 16:53

S102ab (South, Level 1, McCormick Place)

Abstract

We interpret the kinematics of the Tangra Yumco (TYC) rift by evaluating spatiotemporal trends in fault displacement, extension onset, and exhumation rates. We present new geologic mapping, U-Pb geochronology, zircon (U-Th)/He (ZHe) thermochronology, and HeFTy thermal modeling results that are critical to testing dynamic models of extension in Tibet. The TYC rift is bounded by two NNE striking (\sim N10°E-N35°E) high angle (\sim 45-70°) active normal faults that alternate dominance along strike. Footwall granodiorites show foliation, slip lineation, and fault plane striation measurements indicative of northeast directed oblique sinistral-normal slip. In North and South TYC, hanging wall deposits are cut by a series of active high-angle normal faults which likely sole into a master fault at depth, while in central TYC, hanging wall deposits display synthetic graben structures potentially indicative of low-angle faulting. Analysis of \sim 50 samples collected across key structural relationships in and around TYC yield 14 mean U-Pb dates between \sim 59-49 Ma and \sim 190 single-grain ZHe dates between \sim 60-4 Ma with spatial trends in ZHe data correlating strongly with latitude. Samples from Gangdese latitudes show a concentration of \sim 28-15 Ma ages, while those north of \sim 29.8° latitude yield both younger (\sim 9-4 Ma) and older (\sim 59-45 Ma) ages. We interpret (1) Gangdese Range samples reflect exhumation during contraction and uplift along the GCT peaking at \sim 21-20 Ma, (2) \sim 9-4 Ma ages reveal extension timing along fault segments experiencing significant rift-related exhumation, and (3) \sim 59-45 Ma ages represent un-reset or partially-reset samples from fault segments that have experienced lesser magnitudes of rift exhumation. HeFTy thermal models indicate a two-stage cooling history with initial slow cooling followed by accelerated cooling rates in Late Miocene-Pliocene time (\sim 13-4 Ma) consistent with prior results from TYC and other Tibetan rifts. Our data are consistent with a segment linkage fault evolution model for the TYC rift, with underthrusting of Indian lithosphere likely related to the northward acceleration of rifting. Future work will utilize advanced HeFTy modeling including U-

Pb and apatite fission track data to further constrain the exhumation history of TYC and test dynamic models of extension for southern Tibet.

First Author

Aislin Reynolds

Montana State University

Author

Andrew K Laskowski

Montana State University

View Related
