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Abstract 

Discovering underlying low dimensional structure of a high dimensional matrix is 

traditionally done through low rank matrix approximations in the form of a sum of 

rank-one matrices. In this paper, we propose a new approach. We assume a high 

dimensional matrix can be approximated by a sum of a small number of Kronecker 

products of matrices with potentially different configurations, named as a hybrid 

Kronecker outer Product Approximation (hKoPA). It provides an extremely flexible 

way of dimension reduction compared to the low-rank matrix approximation. 

Challenges arise in estimating a hKoPA when the configurations of component 

Kronecker products are different or unknown. We propose an estimation procedure 

when the set of configurations are given, and a joint configuration determination and 

component estimation procedure when the configurations are unknown. Specifically, 

a least squares backfitting algorithm is used when the configurations are given. 
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When the configurations are unknown, an iterative greedy algorithm is developed. 

Both simulation and real image examples show that the proposed algorithms have 

promising performances. Some identifiability conditions are also provided. The 

hybrid Kronecker product approximation may have potentially wider applications in 

low dimensional representation of high dimensional data. 

Keywords: Dimension reduction, Identifiability, Information criterion, Kronecker 

product, Low dimensional structure in high dimensional data, Matrix decomposition 

1 Introduction 

High dimensional data often has a low dimensional structure that allows significant 

dimension reduction and compression. In applications such as data compression, 

image denoising and processing, matrix completion, high dimensional matrices of 

interest are often assumed to be of low ranks and can be represented as a sum of 

several rank-one matrices (vector outer products) in the form of the singular value 

decomposition (SVD), 

1

,
K

T
k k k

k





 X u v  (1) 

where X is a P × Q matrix, ku  and kv  are P and Q dimensional vectors, and ⊗ 

denotes the outer product. Eckart and Young (1936) reveals the connection between 

singular value decomposition and low-rank matrix approximation. Recent studies 

include image low-rank approximation (Freund et al., 1999), principle component 

analysis (Wold et al., 1987; Zou et al., 2006), factorization in high dimensional time 

series (Lam and Yao, 2012; Yu et al., 2016), non-negative matrix factorization 

(Hoyer, 2004; Cai et al., 2009), matrix factorization for community detection (Zhang 

and Yeung, 2012; Yang and Leskovec, 2013; Le et al., 2016), matrix completion 

problems (Candès and Recht, 2009; Candes and Plan, 2010; Yuan and 

Zhang, 2016), low rank tensor approximation (Grasedyck et al., 2013), machine 

learning applications (Guillamet and Vitrià, 2002; Pauca et al., 2004; Zhang 

et al., 2008; Sainath et al., 2013), among many others. 

Acc
ep

ted
 M

an
us

cri
pt



As an alternative to vector outer product, the Kronecker product can also be used to 

represent a high dimensional matrix with a potentially smaller number of elements. 

For any two matrices p q
A  and 

* *p q
B , the Kronecker product A B  is a 

* *( ) ( )pp qq  matrix defined by 

1 ,1 1 , 2 1 ,

2 ,1 2 , 2 2 ,

,1 , 2 ,

,

q

q

p p p q

a a a

a a a

a a a

 

 

  
 

 

 

B B B

B B B
A B

B B B

 

where ,i ja  is the (i, j)-th element of A. The dimensions * *( , , , )p q p q  is called the 

configuration of the Kronecker product. 

The decomposition of a high dimensional matrix into the sum of several Kronecker 

products of identical configuration is known as Kronecker product decomposition 

(Van Loan and Pitsianis, 1993), in the form of 

* *

1

, ,
K

p q p q
k k k k k

k


 



   X A B A B  (2) 

where X is a P × Q matrix with *P pp  and *Q qq , and kA  and kB  are of 

dimensions p × q and * *p q  respectively. In fact, any P × Q matrix can be 

decomposed in the form (2) with at most * *m in { , }K pq p q  terms (Van Loan and 

Pitsianis, 1993). The formal definition of the Kronecker product decomposition can 

be found in Appendix D. Note that the SVD in (1) is a special case of (2) with q = 1 

and * 1p  . The form of Kronecker product appears in many fields including signal 

processing, image processing and quantum physics (Werner et al., 2008; Duarte and 

Baraniuk, 2012; Kaye et al., 2007), where the data has an intrinsic Kronecker 

product structure. 

For a given configuration, the approximation using a sum of several Kronecker 

products can be turned into an approximation using a low rank matrix after a 

rearrangement operation of the matrix elements (Van Loan and Pitsianis, 1993). Cai 

et al. (2019) considers to model a high dimensional matrix with a sum of several 

Kronecker products of the same but unknown configuration, and uses an information 

criterion to determine the unknown configuration. 
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However, it is often the case that the Kronecker outer Product Approximation (KoPA) 

using a single configuration requires a large number of terms to make the 

approximation accurate. By allowing the use of a sum of Kronecker products of 

different configurations, an observed high dimensional matrix can be approximated 

more effectively using a much smaller number of parameters (elements). We note 

that often the observed matrix can have much more complex structure than what a 

single Kronecker product can handle. For example, representing an image in a 

matrix form with Kronecker products of the same configuration is often not 

satisfactory since the configuration dimensions determine the block structure of the 

recovered image, similar to the pixel size of the image. A single configuration is often 

not possible to provide as much details as needed. Due to these limitations, we 

propose to extend the KoPA approach to allow for multiple configurations. It is more 

flexible and may provide more accurate representation with a smaller number of 

parameters. 

In this paper, we generalize the KoPA method in Cai et al. (2019) to a multi-term 

setting, where the observed high dimensional matrix is assumed to be generated 

from a sum of several Kronecker products of different configurations – we name the 

model hybrid KoPA (hKoPA). As a special case, when all the Kronecker products are 

vector outer products, hKoPA is equivalent to the low rank matrix approximation. 

We consider two problems in this paper. We first propose a procedure to estimate a 

hKoPA with a set of known configurations. The procedure is based on an iterative 

backfitting algorithm. Each step involves finding the best one-term Kronecker product 

approximation to a given matrix, under a known configuration. This operation is 

obtained through a SVD of a rearranged matrix. Next, we consider the problem of 

determining the configurations in the hKoPA for the observed matrix. As exploiting 

the space of all possible configuration combinations is computationally expensive, 

we propose an iterative greedy algorithm similar to the forward stepwise selection. In 

each iteration, a single Kronecker product term is added to the model by fitting the 

residual matrix from the previous iteration. The configuration of the added Kronecker 

product is determined similar to the procedure proposed in Cai et al. (2019). This 

algorithm efficiently fits a hKoPA model with a potentially sub-optimal solution as a 

compromise between computation and accuracy. 
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The rest of the paper is organized as follows. The hKoPA model is introduced and 

discussed in Section 2, with a set of identifiability assumptions. In Sections 3 and 4, 

we provide the details of the iterative backfitting estimation procedure for the model 

with known configurations and the greed algorithm to fit a hKoPA with unknown 

configurations. Section 5 demonstrates the performance of the proposed procedures 

with a simulation study and a real image example. Section 6 concludes. 

Notations: For a matrix M, : tr ( )T
F M M M  stands for its Frobenius norm and 

SM  its spectral norm, which is the largest singular value of M. For a positive 

integer n, [ ]n  denotes the set of positive integers up to n such that [ ] {1, , }n n  . We 

denote by ,
,
m n
i je  the m × n matrix with 1 at the (i, j)-th entry and 0 elsewhere. 

2 Hybrid Kronecker Product Model 
2.1 The Model 

In this paper we consider the K-term hybrid KoPA (hKoPA) model, in the form 

, Y X E  (3) 

where the observed matrix Y is the sum of a signal matrix X and a noise matrix E 

with i.i.d. standard Gaussian entries. We assume that the signal matrix X has the 

same form of (2) 

* *

1

, , ,k k k k

K
p q p q

k k k k k
k


 



   X A B A B  (4) 

but here the matrices ( , )k kA B  are allowed to have different configurations. 

Specifically, we assume that Y and X are of the dimension P × Q, and the matrices 

kA  and kB  in the k-th component are k kp q  and * *
k kp q , respectively. We call the 

dimensions of kA  and 
* *, ( , , , )k k k k kp q p qB , the configuration of the Kronecker product 

k kA B . Since P and Q are fixed and given by the observed matrix Y, in the sequel 

we will simply use the pair (pk, qk) to denote the configuration of k kA B . We also 

assume that 1 k kp q PQ   for all 1 k K   so that none of kA  and kB  are scalars. 

Comparing (2), we refer to (4) as a hybrid Kronecker representation of X. 
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It is helpful to understand (4) as a “multi-resolution” representation of X. More 

specifically, if X is an image, then the term k kA B  corresponds to a partition of the 

image into non-overlap * *
k kp q  blocks. By allowing different configurations, i.e. 

different sizes of kB ’s, (4) is able to extract the local patterns at different resolution 

(or pixel size), offering the flexibility to capture different texture of the image. This “

multi-resolution” interpretation also suggests that hKoPA are useful for many other 

applications, e.g. spatial-temporal data, multi-dimensional signals analysis etc. 

Define the configuration set of the hKoPA model (3) as the collection of individual 

configurations : { ( , ),1 }k kp q k K   . When the configuration set  is known, we 

need to estimate the component matrices kA  and kB , for 1, ,k K   in model (3). 

When  is unknown, the estimation of model (3) requires the determination of the 

configuration set  in advance. 

2.2 Identifiability Conditions 

The primary goal is to estimate λk, kA  and kB  in (3). However, there are some 

obvious unidentifiability regarding them. We discuss the identifiability conditions in 

this section. Due to the complexity of the hKoPA models, we use a specific definition 

of identifiability as follows. First of all, we assume that the configuration set  is an 

ordered set, that is, the order of the configurations 1 1{ ( , ), , ( , )}K Kp q p q  is fixed. With 

this assumption, the following definition automatically excludes the unidentifiability 

due to different orderings of the terms { ,1 }k k k k K   A B  when their configurations 

are all distinct. 

Definition 1 (Identifiability). We say that the representation (4) is identifiable up to 

sign changes with respect to the ordered configuration set  if there are no other 

matrices { , }k kA B  of the same configurations { , }k kp q , and coefficients { }k  such that 

1 1

,
K K

k kk k k k
k k

 

 

   A B A B  

unless k k A A , k k B B  and k kk k k k   A B A B . 

In the sequel we shall often refer to the identifiability defined above as “identifiable 

up to sign changes”, but omit “with respect to the ordered configuration set ” for 
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simplicity. Nevertheless, it should be understood that once the representation (4) is 

given, the associated ordered configuration set  is also determined, and the 

discussion of the identifiability will be based on this given . 

Two more definitions are needed for the discussion of identifiability of hKoPA model. 

Definition 2 (Conformality). Let A be a matrix of dimension (pA, qA) and B of (pB, qB). 

If pA is a factor of pB and qA is a factor of qB, A is said to be conformally smaller than 

B, denoted by A B  or B A . This includes the special case that pA = pB and qA = 

qB, which we also say that A and B are conformally equal, denoted by A B . 

Remark 1. Conformality is of interests because if A of dimension (pA, qA) is strictly 

conformally smaller than B of (pB, qB), then for any matrix C of dimension 

( / , / )B A B Ap p q q  (C is not a scalar), A C  and C A  have the same dimension as 

B, or  A C B  and  C A B . 

Definition 3 (Orthogonality). Let A Ap q
A  and B Bp q

B  be two matrices such that 

A B . We say A and B are block-wise orthogonal (b-orthogonal) if 

( / ) ( / )

a rg m in ,
p p q qB A B A

F




   0
C

B C A  

or equivalently, / , /
,tr[ ( )] 0B A B Ap p q qT
i j  B e A  for all 1, , ( / ), 1, , ( / ).B A B Ai p p j q q     

Similarly, we say A and B are grid-wise orthogonal (g-orthogonal) if 

( / ) ( / )

a rg m in ,
p p q qB A B A

F




   0
C

B A C  

or equivalently, / , /
,tr[ ( )] 0B A B Ap p q qT
i j B A e , for all 1, , ( / ), 1, , ( / ).B A B Ai p p j q q     In 

particular, if A B , then b-orthogonality and g-orthogonality are equivalent, and both 

require tr[ ] 0T
B A . In this case we say A and B are orthogonal. 

Remark 2. If A B  and write ( )i jB B  as a block matrix such that each block i jB  

has the same dimension as A . Then the b-orthogonality of A  and B  implies 

tr ( ) 0T
ij A B  for all the blocks i jB  of B . Similarly, if A B  and ( )g

ijB  is the (i, j)-th 

sub-grid of B  (consisting of all grid elements with stride size ( / , / )B A B Ap p q q , i.e. 
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1 2( / ) , ( / )B A B Ai s p p j s q qb
 

 for 1 20, , 1, 0 , , 1A As p s q      ), then that A  and B  are g-

orthogonal implies ( )tr ( ) 0T g
ij A B  for all the sub-grids ( )g

ijB  of B . 

We first list the following two conditions on the signal matrix X in (4). 

Assumption 1. For all 1, ,k K  , ∥Ak∥F = ∥Bk∥F = 1, and λk > 0. 

Assumption 2. Assume ( , ) (1, )k kp q Q  for all 1, ,k K  . 

Remark 3. Assumption 1 is standard and can be satisfied by re-scaling A  and B . 

For Assumption 2, note that when ( , ) (1, ),k k kp q Q A  is a row vector and the 

corresponding kB  is a column vector of size ( ,1)P . In this case, k k k k  A B B A . 

Assumption 2 can be easily satisfied by switching so that ( , ) ( ,1)k kp q P  when 

needed. 

Assumption 3. For any 0 ,k l K   such that ,k l kA A A  and lA  are g-orthogonal. 

For all k l  such that ,k l kA A A  and lA  are orthogonal, and kB  and lB  are 

orthogonal. 

Assumption 3’. For any 0 ,k l K   such that ,k l kB B B  and lB  are b-orthogonal. 

For all k l  such that ,k l kA A A  and lA  are orthogonal, and kB  and lB  are 

orthogonal. 

Remark 4. This condition is to address the following identifiability situations. Suppose 

1 2A A , then for any 2 1 2 1/ /p p q q  matrix C, it holds that 

1 1 1 2 2 2 2 1 1 2 1 1 1 2 2 2( ) ( ) .               A B C B A A C B A B A B  (5) 

Assumption 3 excludes this type of unidentifiability by requiring b-orthogonality 

between 1A  and 2A . Such a requirement can be achieved through an 

orthogonalization operation. For example, let the (i, j)-th element of C be 

2 1 2 1/ , /
, 2 1 ,[ ] tr ( ) .p p q q T
i j i j

  
 

C A A e  Let 

1 1 1 2 2 2 1 1 1 2 2 2 2 1 2

21 1 2 2

( ) ( )

: ,k

    

 

          

   

A B A B A B C B A A C B

A B A B
 

Acc
ep

ted
 M

an
us

cri
pt



with all the quantities in the last expression being rescaled to compile with 

Assumption 1. It is easy to show that 1A  and 2A  are b-orthogonal in this new 

representation. Algorithm in Appendix C performs such an orthogonalization for 

multiple terms iteratively. 

Remark 5. Assumptions 3 and 3’ are parallel conditions, one on iA  and another on 

iB . We refer to them as “Ortho-A” and “Ortho-B” conditions, respectively. Only one 

of them is needed. 

Assumption 4. Suppose 

(i) For all k l  such that kB  is a row vector and lB  is a column vector, lA  and 

kB  are b-orthogonal. 

(ii) For all k l  such that kA  is a row vector and lA  is a column vector, lA  and 

kB  are g-orthogonal. 

Remark 6. This condition is needed. Consider a two term representation of the form 

1 1 2 2 ,T
  A β A β  

where iβ  are column vectors. Now pick any matrix C such that 2C β  has the same 

dimension as 1A , then it holds that 1
T

C β  has the same dimension as 2A , and 

1 1 2 2 1 2 1 2 1 2( ) ( ) ,T T T
          A β A β A C β β A C β β  

due to the fact that 2 1 1 2
T T

  β β β β . Assumption 4 excludes this type of 

unidentifiability by requiring b-orthogonality between 2A  and 1
Tβ . Note that 1 2

Tβ A  

as 1
Tβ  is of *

11 q  and 2A  is of 2p Q , with *
1q  being a factor of Q. Such a 

requirement can be achieved through an orthogonalization operation in Algorithm. 

Remark 7. As seen in the example given in Remark 6, Assumption 4 could also have 

been made on the b-orthogonality of 1A  and 2β . We choose the current formulation. 

The following theorem states that, for any X that can be written in (4), then there is 

another representation such that the above conditions are satisfied. And the 

representation can be obtained through a sequence of orthogonalization operations. 
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Theorem 1. If 
1

K

k k k
k





 X A B  of configuration set  satisfies Assumptions 1 and 2, 

then after the generalized Gram-Schmidt procedure given in Algorithm in Appendix 

C, the resulting representation 

1

.
K

k kk
k





 X A B  (6) 

has a configuration set  , and satisfies Assumptions 1, 2, 4 and 3 (the Ortho-A 

representation). 

The proof of the theorem is in Appendix D. 

Remark 8. We can also obtain a representation satisfying Assumptions 1, 2, 4 and 3’ 

(the Ortho-B representation) by slightly modifying Algorithm. 

Remark 9. Algorithm outputs a representation which has a configuration set same as 

the original , but may have some zero k . Hence the configuration set  in (6) can 

be a subset of . 

We have not required any ordering of the terms k k k A B , because it is assumed 

that the ordered configuration set  is given, so the terms are ordered according to 

. However, when some configurations in  are the same, we need to fix their 

orders according to the next identifiability condition. This condition is also similar to 

the distinct singular values condition for the identifiability of the singular vectors in 

the SVD of a matrix. 

Assumption 5. If 1 k l K  and ( , ) ( , )k k l lp q p q , then k l  . 

Remark 10. The reason that the condition is needed can be seen from the following 

example. If k lA A  (and k lB B  as well) satisfy Assumptions 1 and 3, and 

1k l   , then 

: ,
2 2 2 2

k l k l k l k l
k k l lk k l l

   
          

A A B B A A B B
A B A B A B A B  
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but , , ,k k l lA B A B  also satisfy Assumptions 1 and 3. When k l  , such an ambiguity 

does not occur. 

So far we have given some necessary conditions for the identifiability. It is very 

challenging to verify whether they are sufficient due to the complexity of the hKoPA 

model, especially due to the fact that different configurations are present in (4). We 

shall leave the general sufficient conditions to the future work. In the next two 

sections, we give a nearly complete answer for a special case of (4) with two terms 

of configurations (p1, q1) and (p2, q2). We consider two scenarios depending on 

whether these two configurations are conformal or not. 

2.3 Identifiability of the Conformal Two-Term Model 

We first consider the conformal two-term representation 1 1 1 2 2 2    X A B A B , 

where 1 2A A . We need one more technical condition. 

Assumption 6. If 1 2A A , assume that 2A  cannot be decomposed as C D , where 

C has the same dimension as 1A . 

Theorem 2. If 1 2A A , and Assumptions 1, 3, 5 and 6 hold, then the representation 

1 1 1 2 2 2    X A B A B  

is identifiable up to sign changes. 

The proof of the theorem is given in Appendix D. The theorem says that for a 

conformal two-term model, the Ortho-A representation is unique. Similarly, under 

Assumptions 1, 3’, and 5, 6, we also have an unique Ortho-B representation. 

In the following we discuss the relationship between the Ortho-A and Ortho-B 

representations for the two-term model. Suppose that for the configurations (p1, q1) 

and (p2, q2), p1 is a factor of p2 and q1 is a factor of q2, and the matrix X is given by 

1 1 1 2 2 2 1 2 1 2 ,        X A B A B A C B  (7) 

where 1 1

1
p q

A , 
* *
1 1

1
p q

B , 2 2

2
p q

A , 
* *
2 2

2
p q

B  and 2 1 2 1/ /p p q q
C . Let’s 

assume that 1A  and 2A  are orthogonal, and so are 1B  and 2B . This representation 
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can always be obtained for any two-term model through an Ortho-A operation then 

an Ortho-B operation. The third term 1 2 A C B  is conformally equal to both the first 

configuration (p1, q1) (when written as 1 2( ) A C B ) and the second configuration 

(p2, q2) (when written as 1 2( ) A C B ). By an abuse of terminology, we refer to it as 

the interaction of the two configurations. One can distribute the interaction term over 

the first and second Kronecker products, resulting in different representations of X 

under configurations (p1, q1) and (p2, q2): 

1 1 2 21 2 .    X A B A B  (8) 

Two extreme cases are listed in (9) and (10). 

1 1 1 2 2 2 ,c c
    X A B A B  (9) 

1 1 1 2 2 2 ,c c
    A B A B  (10) 

where 

2 2 1 1 2
1 1 1 2 1 1 2

1 1

2 2 2 1 2
2 2 1 2 2 2 1

2 2

, ,

, .

c c

c c

c c

c c

 
  

 

 
  

 

    

    

B B C B

A A A C

 

In (9), the interaction term is merged into the first Kronecker product, so that 1A  and 

2A  are orthogonal but 1
cB  and 2B  are not. In other words, (9) satisfies Assumption 3 

and is the Ortho-A representation. Similarly, in (10), the interaction term is merged 

into the second Kronecker product, where 1B  and 2B  remains orthogonal but 1A  and 

1
cA  are not. Hence it satisfies Assumption 3’, and is the Ortho-B representation. Any 

other possible representation of X in the form (8) is an affine combination of (9) and 

(10). 

2.4 Identifiability of the Non-conformal Two-Term Model 

In this section we consider the identifiability of the non-conformal two-term model. 

Assume the configurations of 1 1 1 2 2 2    X A B A B  are not conformal, and satisfy 
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Assumptions 1 and 2. We divide the non-conformal two-term models into two types, 

and treat them accordingly. 

Type I non-conformal two-term model. One of 1 2,A A  is a column and the other is a 

row; or one of 1 2,B B  is a column and the other is a row. 

Type II non-conformal two-term model. All the non-conformal two-term models that 

are not of type I are classified as type II. 

We first point out that the type I model can be converted into a conformal model so 

that Theorem 2 applies for its identifiability. Without loss of generality, assume that 

1B  is a *
1 1p   column vector, 2B  is a *

21 q  row vector. To better illustrate the idea, 

we rewrite this two-term model as 1 1 2 2
T

   X A β A β . According to Assumption 2, 

1A  must not be a row/column vector. Write ( )i jX X  as a 1 2p q  block matrix, where 

all the blocks i jX  have the same size * *
1 2p q . We perform the block stacking 

operation on X to turn it into a *
2 2( )P q q  matrix as 

1 2 2 1 2, 1 1 1 2 1, 2 1 ,( ) : [ , , , , ] .T T T T T T
p q q p q X X X X X X X  

Now do a similar operation on iA : first write iA  as a 1 2p q  block matrix with equal 

size blocks, then rearrange its blocks by the 
1 2,p q  operation and denote the resulting 

matrix by 
1 2, ( )p q iA , i = 1, 2. Note that 

1 2, 2( )p q A  is a column vector. It follows that 

1 2 1 2 1 2 1 2 1 2, , 1 1 , 2 2 , 1 1 2 , 2( ) ( ) ( ) ( ) ( ).T T
p q p q p q p q p q       X A β A β A β β A  (11) 

The right hand side of the preceding equation gives a conformal two term 

representation, and the orthogonality of 1A  and 2
Tβ  is equivalent to the orthogonality 

of 
1 2, 1( )p q A  and 2

Tβ . Therefore, the identifiability of the original type I model 

becomes the identifiability of the conformal two-term model in (11). We therefore 

have the following corollary regarding the type I model. 

Corollary 1. Consider the type I non-conformal two-term model. Suppose 

Assumptions 1, 2 and 4 hold. The representation 1 1 1 2 2 2    X A B A B  is 

identifiable up to sign changes for each of the following scenarios. 
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(i) If 1B  is a column vector, 2B  is a row vector, assume 1A  cannot be 

decomposed as C D , where D is a row vector of the same length as 2B . 

(ii) If 1A  is a column vector, 2A  is a row vector, assume 2B  cannot be 

decomposed as C D , where C is a column vector of the same length as 1A . 

For the type II model, all of Assumptions 3, 4 and 5 are not relevant. On the other 

hand, it is very difficult to verify whether Assumptions 1 and 2 are sufficient for the 

identifiability. We provide an affirmative answer when the dimensions of X are 

powers of 2, and when kA  and kB  are in “generic positions”. It is also possible to 

give a set of sufficient conditions which guarantees the identifiability of any type II 

model. However, unlike the conformal case, these sufficient conditions are very 

tedious, so we choose not to spell the details out, and only discuss the identifiability 

for “generic” kA  and kB , under simplified conditions. 

Theorem 3. Suppose 1 1 1 2 2 2    X A B A B  is a type II model, where kA  are 

2 2k km n
  matrices (k = 1, 2), and kB  are 

* *

2 2k km n
  respectively. Suppose 

Assumptions 1 and 2 hold, and * *
1 1 1 2 4m n m m    . Then if the elements of kA  and 

kB  are in generic positions, the representation 1 1 1 2 2 2    X A B A B  is 

identifiable up to sign changes. 

Remark 11. By “generic positions”, we mean the following. If the elements of kA  and 

kB  are generated from some joint distribution which is absolutely continuous with 

respect to the Lebesgue measure, then the identifiability holds with probability one. 

In the proof (given in Appendix D), without loss of generality, we will assume that the 

elements of kA  and kB  are IID N(0, 1). 

Remark 12. Theorem 3 covers both the conformal and non-conformal two-term 

models. However, the conformal case has already been warranted by Theorem 2, so 

the main thrust of Theorem 3 is on the non-conformal model. 

Remark 13. The condition 
* *

1 1 1 2 4m n m m     is equivalent to requiring that X has at 

least 32 entries. We make this technical condition due to the following reasons. First, 

when 
* *

1 1 1 2 3m n m m    , all two-term models satisfying Assumption 1 and 

Assumption 2 are conformal or type I non-conformal. Second, when 
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* *
1 1 1 2 4m n m m    , the only possible configuration sets, denoted by 1 1 2 2{ ( , ), ( , )}p q p q

, of the type II non-conformal two-term model are { ( 2 , 2 ) , ( 4 ,1)}  when X is 4 × 4, 

{ ( 2 , 2 ) , ( 4 ,1)}  when X is 8 × 2, and { ( 2 , 2 ) , (1, 4 )}  when X is 2 × 8. We consider these 

cases in Examples 1 and 2 in Appendix D, and demonstrate why such non-

conformal two-term models are not identifiable, even when kA  and kB  are in generic 

positions. 

3 Hybrid Kronecker Product Model with Known 
Configurations 

When the configuration set { ( , ),1 }k kp q k K    is known, we consider the 

following least squares problem. 

2

1

m in .
K

k k k
k F





 Y A B  (12) 

When K = 1, such a problem can be solved by singular value decomposition of a 

rearranged version of matrix Y. Specifically, the rearrangement operation , [·]p q  

reshapes the P × Q matrix Y to a new * *pq p q  matrix such that 

* * * *, ,
, 1 ,1 ,[ ] [ vec ( ), , v ec ( )] ,p q p q T

p q p q Y Y Y  

where 
* *,

,
p q
i jY  stands for the (i, j)-th * *p q  block of matrix Y and v e c ( ·)  is the 

vectorization operation that flattens a matrix to a column vector. It was observed by 

Van Loan and Pitsianis (1993) that the rearrangement operation can transform a 

Kronecker product to a vector outer product such that 

, [ ] vec ( ) vec ( ) .T
p q  A B A B  

This can be seen from the fact that all the elements in the matrix A B  are in the 

form of , ,i j ka b , which is exactly the same as those in vec ( ) vec ( )TA B , where ,i ja  is the 

(i, j)-th element in A and ,kb  is the ( , )k -th element in B. The re-arrangement 

operation , [ ]p q Y  is also linear and preserves the Frobenius norm. 

Therefore, the least squares optimization problem 
2m in F Y A B , is equivalent to 

a rank-one matrix approximation problem since 
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2 2
, [ ] vec ( ) vec ( ) ,T

F p q F    Y A B Y A B  

whose solution is given by the leading component in the SVD of , [ ]m n Y  (Eckart and 

Young, 1936). If the multiple terms in (3) are of the same configuration, they can be 

retrieved from the singular components of , [ ]p q Y  as well. 

When there are multiple terms K > 1 in model (3), but of different configurations, we 

propose to solve the optimization problem (12) through a backfitting algorithm (or an 

alternating least squares algorithm) by iteratively estimating λk, kA  and kB  through 

2

, ,

ˆm in ,
k k k

i ii k k k
i k F



 



 
   

 
 


A B

Y A B A B  

using the rearrangement operator and SVD, with fixed ˆ , ii A  and iB  ( i k ) from the 

previous iteration. 

When all configurations 1{ ( , )} K
k k kp q


 are distinct, the backfitting procedure for hKoPA 

is depicted in Algorithm 1, where 1
,v e c p q

  is the inverse of the vectorization operation 

that convert a column vector back to a p × q matrix. When r terms indexed by 

1 , , rk k  in the hKoPA model have the same configuration, these terms are updated 

simultaneously in the backfitting algorithm by keeping the first r components from the 

SVD of the residual matrix 
1

( )

, ,

ˆ

r

k

i ii
i k k



 

  E Y A B . We also orthonormalize the 

components by the Gram-Schmidt procedure (Algorithm ) at the end of each 

backfitting round. Algorithm 1 is also referred as alternating least squares (ALS) 

algorithm in the subsequent context. 

Algorithm 1 Backfitting Least Squares Procedure 

1: Set 1 2
ˆ ˆ ˆ 0K       . 

2: repeat 

3: for k = 1 to K do 

4: 
( ) ˆk

i ii
i k





  E Y A B . 

5: Compute SVD of 
( )

, [ ]
k k

k

p q E : 

Acc
ep

ted
 M

an
us

cri
pt



( )

,
1

[ ] .
k k

Jk
T

p q j j j
j

s


 E u v  

6: Update 1
ˆ
k s  , 1

, 1v ec ( )
k k

k p q


A u  and * *

1
1,

v e c ( )
k k

k
p q


B v . 

7: end for 

8: until convergence 

9: Orthonormalize the components by Algorithm. 

10: Return 1
ˆ{ ( , , )} K

k kk k


A B . 

4 Hybrid KoPA with Unknown Configurations 

In this section, we consider the case when the model configuration 1{ ( , )} K
k k kp q


  is 

unknown. We use a greedy method similar to forward stepwise selection to obtain 

the approximation by iteratively adding one Kronecker product at a time, based on 

the residual matrix obtained from the previous iteration. Specifically, we start the 

algorithm with (1)
Y Y , and at iteration t, we obtain 

1
( )

1

ˆ ,
t

t
i ii

i







  Y Y A B  

where ˆ , ii A  and iB  are obtained in the previous iteration. Then we use the single-

term KoPA with unknown configuration proposed in Cai et al. (2019) to obtain 

( ) 2

, ,
m in .
t t t

t
t t t F



 
A B

Y A B  

The procedure is repeated until a stopping criterion is reached as detailed in 

Algorithm 2. The algorithm without step 10 is referred later as Algorithm 2  . 

Algorithm 2 Greedy Additive Algorithm for hKoPA Estimation 

1: Set (1 ) ˆ, m axK T Y Y . 

2: for t = 1 to Tmax do 

3: for all possible configuration (p, q) do 

4: Compute SVD for ( )
, [ ]t

p q Y : ( )
,

1

[ ] .
J

t T
p q j j j

j

s


 Y u v  

5: Set ( , )
1

ˆ p q
t s  , 

( , )
1
, 1v e c ( )

p q

t p q


A u  and * *

( , )
1

1,
v e c ( )

p q

t
p q


B v . 
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6: Compute 
( , ) ( , ) ( , )

( , )ˆp q p q p q
p q

t tt t S A B . 

7: end for 

8: Compute 

( , )
( ) 2

( , )
ˆ ˆ( , ) a rg m in lo g .

p q
t

t F
t t p qp q PQ

PQ



 

Y S  

9: Set 
ˆ ˆ( , )ˆ ˆ t tp q

t t  , 
ˆ ˆ( , )t tp q

t tA A  and 
ˆ ˆ( , )t tp q

t tB B . 

10: (ALS Refinement) Refine 1
ˆ{ ( , , )} t

i ii i


A B  with respect to configuration set 

1
ˆ ˆ{ ( , )} t
i i ip q


 using Algorithm 1. 

11: if a stopping criterion is met then 

12: Set K̂ t . 

13: break 

14: end if 

15: Set ( 1 )

1

ˆ
t

t
i ii

i






  Y Y A B . 

16: end for 

17: Return 
ˆ

1
ˆ{ ( , , )} K

t tt t


A B . 

Some implementation details are as follows: 

Overall Objective Function and The Greedy Search Algorithm: The formulation of the 

data generating mechanism (3) and (4) naturally suggests an overall objective 

function in the form of 

2

* *1

* * 1

1

ˆ

c IC ( , ( , ) , 1, , ) lo g ( ) ,

( )

K

i ii F K
i

i i i i i iK
i

i i i i
i

K p q i K PQ p q p q

P Q p q p q











 

    

 







Y A B

 (13) 

where ˆ , ,i ii A B  ( 1, , )i K   are the estimators obtained through Algorithm 1 in 

Section 3, given 
* *, ( , , , ) , 1, ,i i i iK p q p q i K  . Here * *

1

( )
K

i i i i
i

p q p q


  is the number of 

parameters in the model and κ is the penalty coefficient on model complexity. We 

refer to the criterion in (13) as the cumulative information criterion, denoted by cIC


. 

In particular, when κ = 2, cIC

 corresponds to AIC and when lo g , cICPQ


   
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corresponds to Bayes information criterion (BIC) (Schwarz, 1978). As shown in Cai 

et al. (2019), in a single-term Kronecker product case, when the signal-to-noise ratio 

is sufficiently large, minimizing such an information criterion produces a consistent 

estimate of the true configuration. 

Unfortunately it may not be practical to optimize such an objective function, since it 

would require an exhaustive search over all possible configurations. For 

computational efficiency, we use a greedy algorithm (with refinement) to obtain a 

solution. Specifically we propose the step-wise algorithm which, at t-th step, uses 

( , ) ( , )
( ) ( , ) 2

( ) ( 1 ) * *

( 1 )

ˆ
ˆ ˆIC ( , ( , ) ,1 1) lo g ( ) ,

p q p q
t p q

t tt tt F
i i t

p q p q i t P Q pq p q
PQ




 







 
      



Y A B
|

 (14) 

where 
1

( 1 ) * *

1

ˆ ˆ ˆ ˆ( )
t

t
i i i i

i

p q p q







  , to detemine the “best” configuration ˆ ˆ( , )t tp q  of a new 

term to be added to the model (given the existing ( 1)t   terms), and terminates the 

build-up according to the stopping rule 

 ˆ m in : c IC ( 1) cIC ( ) ,K t t t
 

   (15) 

Algorithm 2 amounts to a greedy algorithm for optimizing the overall objective 

function in (13). 

Refinement: Step 10 “ALS Refinement” in Algorithm 2 updates all the existing terms 

by Algorithm 1, with all the selected configurations fixed, at the end of each iteration. 

Without this step, Algorithm 2 is also of the boosting flavor, adding one term (a “weak

” learner) in each iteration without modifying the existing terms. To distinguish the 

two versions, we refer to Algorithm 2 without Step 10 as Algorithm 2  . Our simulation 

study in Section 5.1.4 suggests that Algorithm 2, with the refinement step, has the 

potential to achieve a better approximation of X, and select the number of 

terms/configurations more accurately, comparing with Algorithm 2  . On the other 

hand, the refinement at each iteration will increase the computational cost 

significantly. Therefore, if the computation is of primary concern, we recommend 

Algorithm 2   in practice, which does not involve any intermediate refinement, but can 
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have a final round of refinement using Algorithm 1 after the terms/configurations 

have been decided. 

Remark 14. 

Strictly speaking, the number of parameters in (13) and (14) should be calculated 

under the constraint that terms of conformal configurations are orthogonal (see 

Definition 1 and 2 of conformality and orthogonality in Section 2.2). We choose the 

present formulation for several reasons. First, if all terms have the same 

configuration, it is easy to count how many free parameters there are under the 

orthogonality constraints. However, if different configurations are present, it is difficult 

to express this number explicitly. Second, in this paper we intend to deal with 

matrices of large dimensions, hence the reduction of the number of free parameters 

due to orthogonality constraints is of a very small fraction of the total number of 

parameters used, and will have very minor impact on the information criterion. So we 

choose the present form for simplicity. 

Remark 15. Note that our current formulation of the problem and the algorithms rely 

on the factorization of P and Q. Such factorization provides a better and cleaner 

structure for model identifiability and other discussions and presentations. On the 

other hand, it does limit the choices of possible configurations, when P and Q do not 

have many factors. We briefly discuss how to alleviate this limitation in practice. In 

fact, for model building and estimation, any * *( , , , )p q p q  configuration such that 

*/p P p 
 

 and */q Q q 
 

 can be used, where x    denotes the smallest integer 

larger than or equal to x. In this case, the estimation step (the rearrangement and 

SVD given a configuration, presented in Section 3) can be done in two different 

ways. One is to expand the matrix Y with several rows and columns so that it 

becomes a * *( ) ( )pp qq  matrix. These extra rows and columns can be imputed with 

zeros or through an iterative EM type of procedures in the estimation step to obtain 

A  of size p × q and B  of size * *p q . A second approach is to truncate the matrix Y 

by several rows and columns so that it becomes a * *(( 1) ) (( 1) )p p q q    matrix. 

Using this reduced-size matrix, we can estimate 
*

A  of size ( 1) ( 1)p q    and B  of 

size * *p q . Each element of the missing column and row in A can be estimated by a 

least squares using the corresponding unused elements in Y and the estimated B . 
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Combining 
*

A  and the estimated missing row and column results in the estimated A  

of size p q . The evaluation of the corresponding IC criteria (13) and (14) for 

configuration determination need to be adjusted, so that only the observed entries of 

Y and the estimated matrix A B  truncated to size P × Q are involved in the 

evaluation. Such an approach expands the set of possible configurations 

significantly, creating extra flexibility and model robustness, though it also demands 

significantly higher computational cost for configuration selection. A compromise is to 

consider * *( , )p q  being powers of 2. If Y is an image, a common practice is to super-

sample or sub-sample the pixels and then apply the two aforementioned approaches 

respectively. Further investigation on more efficient model building procedures is 

needed. 

5 Empirical Examples 
5.1 Simulation 

Intuitively, the comparison of hKoPA with SVD and KoPA goes like follows: hKoPA 

performs similarly to SVD if the true signal has low rank, and similarly to KoPA if the 

true signal is of low rank under KPD. On the other hand, hKoPA performs much 

better if the true signal is generated with terms of different configurations. This 

intuition has been confirmed by empirical results based on a 3-term Kronecker 

product model, which we choose to report in Appendix A for the interest of space. 

In this section, we focus on the performance of the least squares backfitting 

algorithm in Algorithm 1 and the iterative algorithm in Algorithm 2 for a two-term 

Kronecker product model and determine the factors that affect the estimation 

accuracy and convergence speed of the algorithm. 

In particular we focus on Model (7), as it reveals the identification issue and allows 

the study of the impact of interaction strength. We repeat (7) here for easy reference. 

1 1 1 2 2 2 1 2 1 2 ,        X A B A B A C B  

where 1 2A A  and are orthogonal, and 2 1B B  and are orthogonal. Recall that 

strictly speaking, this is a two term model with two different configurations and the 
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third term 1 2 A C B  is called the interaction between the two configurations, and 

its strength is controlled by the coefficient λ12. We first generate ,k kA B  and C as 

normalized Gaussian random matrices with i.i.d. standard normal entries. We then 

perform the Gram-Schmidt orthogonalization so that 1A  and 2A  are orthogonal with 

each other in the sense of Assumption 3, and so are 1B  and 2B . Finally all these 

matrices are rescaled to have Frobenius one. 

In this example, we set 2 , 2M NP Q   such that any conformable configuration (p, q) 

can be written as 2 , 2m np q   for some integers 0 m N  and 0 n N . To ease the 

notation, we simply use (m, n) to denote the configuration ( , ) (2 , 2 )m np q  . 

The observed Y is a corrupted version of X with additive Gaussian noise such that 

( ) / 2
,

2 M N




 Y X E  

where E is a 2 2M N
  matrix with i.i.d. standard Gaussian entries. 

We express the fitted Y  as 

1 1 2 21 2
ˆ ˆ ,    Y A B A B  

where 1 1A B  and 2 2A B  are the two Kronecker products with configurations 

(m1, n1) and (m2, n2) correspondingly. Recall that either Ortho-A (9) or Ortho-B (10) 

can be adopted to represent Y  and either representation is unique. Most of the 

simulations are carried out under Ortho-A, which is also consistent with 

Assumption 3. In Section 5.1.2 we also study the impact of choosing different 

orthogonalizations on the estimation. 

We use the following notations of various estimation errors for easier reference. 

2

1 1 1 1

2 2 2 2

2 2 2
1 2 21 2 2

2 2 2
1 1 21 1 2

E Y ,

ˆ ˆE L 1 | / 1 |, E L 1 c | / 1 |,

ˆ ˆE L 2 | / 1 |, E L 2 c | / 1 |,

E A 1 , E A 2 , E A 2 c ,

E B 1 , E B 1 c , E B 2 .

F

c

c

c
F F F

c
F F F

   

   

 

   

   

     

     

Y Y

A A A A A A

B B B B B B
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where 2 1 1, ,c c c
A B  and 2

c
  are defined in (9) and (10). We also define the 

reconstruction error (RCE), 

2

2
R C E F

F




Y X

X
 (16) 

which will be used later to compare the performance of different models. 

5.1.1 The Benchmark Case 

In the benchmark case, we use 

1 1 2 2 1 2 1 29, ( , ) (4 , 4 ), ( , ) (5, 5), 1M N m n m n          , σ = 1 to generate the signal 

matrix X in (7) and the observed matrix Y. Algorithm 1 is applied to fit Y with the true 

configurations and the orthogonalization is done by Ortho-A. In other words, we are 

estimating the matrices in (9). The errors from the first 20 iterations are reported in 

Figure 1, where we compare 1B  to 1
cB  (instead of 1B ) under Ortho-A. The 

convergence of the estimators is observed at roughly the 10-th iteration. 

From the middle panel of Figure 1, it is seen that the smaller matrices 1A  and 2B  

usually have smaller estimation errors as EA1 and EB2 are smaller than EB1c and 

EA2 after convergence. Note that in the definitions of these estimation errors, all 

involved matrices are scaled to have Frobenius norm 1, so for example, EA1 

essentially corresponds to the angle between 1v ec ( )A  and 1vec ( )A . Similar 

phenomenon has been observed in estimating singular vectors of a low rank matrix 

(Cai et al., 2018). On the other hand, before convergence and especially in the first 

iteration, the errors EA1 and EA2 are much larger than EB1c and EB2. Here we 

provide two explanations. 

Suppose the full Kronecker product decomposition of 2A  is written as 

2 2 ,
1

K

k k k
k





 A A C  where 2 , kA  has the same dimension (m1, n1) as 1A . Then we 

have 

1 1 1 2 2 , 2 1 2 1 2
1

( ) ,
K

k k k
k

   



       X A B A C B A C B  
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where 1 2 ,1 2 ,{ v e c ( ) , v e c ( ) , , v e c ( )}KA A A  are orthogonal with each other. Then in the 

first iteration, 1A  and 1B  are obtained from the singular value decomposition of the 

re-arranged matrix (with configuration (m1, n1)) 

1 1, 1 1 1 2 2 , 2 1 2 1 2
1

[ ] vec ( ) vec ( ) v ec ( ) v ec ( ) vec ( ) vec ( ) .
K

T T T
m n k k k

k

   



    X A B A C B A C B  

Then 
1 1, 1 1[ ] vec ( ) vec ( )T c

m n X A B  but 
1 1, 1 1[ ]vec ( ) vec ( )c

m n X B A  since tr ( )T
kC C  (

1, ,k K  ) are usually not zero. Therefore, in power iterations, plugging in the true 

value of 1A  gives the true value of 1
cB , but the reverse is not true. 

Alternatively, one can show that the error EB1c is smaller than EA1 in the first 

iteration when 2 2 2
2 1 1 2    . Let 1 1 1v e c ( ) ( v e c ( ) v e c ( ))c  A A A  for some 

1 1vec ( ) vec ( ) A A . Then 

1 1 1 1
1 1, 1 2 1 , 2 2 1v ec ( ) [ ] vec ( ) ( v ec ( ) / [ ] vec ( )).T c c T

m n m nc      B X A B A B A  

It is easy to verify that 

1 1 1 1

2
2

2 22
2 1 , 2 2 1 2 , 2 2 12 2

1 1 2

2
22

12 2
1 1 2

/ [ ] v e c ( ) [ ] v e c ( )

v e c ( ) .

c T
m n m n S


 

 



 

   





A B A A B A

A

 

Hence, when 
2 2 2
2 1 1 2    , EB1c is smaller than EA1 in the first iteration. The 

absolute errors in the coefficients λi, | E L 1 c |  and | E L 2 | , decrease and converge as 

expected. 

5.1.2 Ortho-A and Ortho-B Representations 

In this part, we investigate the influence of the choice of representation: Ortho-A and 

Ortho-B. In the benchmark case above, we have obtained the errors for EB1c and 

EA2c under Ortho-A. We will compare them with the estimation obtained under 

Ortho-B, in which in each iteration of Algorithm 1 we perform orthogonalization under 

Ortho-B. The errors are plotted in Figure 2. From the figure, it is seen that, under 

Ortho-A, EA2 and EB1c are smaller compared with EA2c and EB1, while EA2c and 

EB1 are smaller under Ortho-B. We also note that a symmetry exists between the 
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two representations. The component 1A  and 1
cB  under Ortho-A are of the same 

position to 2
cA  and 2B  under Ortho-B. The error curves of EA2 and EB1c under 

Ortho-A should be similar to the ones of EB1 and EA2c under Ortho-B, 

correspondingly. This phenomenon is observed in Figure 2 by comparing the curves 

in the left plot with the ones in the right plot. 

5.1.3 Impact of Interaction Strength 

In this part, we compare the accuracies and convergence rates of different 

parameter estimates under different absolute interaction strengths under Model (7). 

We fix the signal-to-noise ratio in order to isolate the impact of the interaction 

strength. Specifically, we set the value of α in the range {0 .0 , 0 .5 ,1 .0 ,1 .5 , 2 .0}  , and 

2
1 21 / 1 , 1     , and 2

1 2 / 1    . The orthogonalization is done under 

Ortho-A, hence 1 1c
  . The value of α controls the “correlation” between the first 

Kronecker product and second one in (9). In particular, 2 2/ (1 )   represents the 

proportion of 2
1 1 1
c c

F A B  that is linearly dependent to 2 2A B . 

The fitting error EY under different relative interaction strength is reported in 

Figure 3. A similar accuracy after convergence is observed for all different relative 

interaction strength α. It is seen that Algorithm 1 converges slower when higher 

dependence exists between the two configurations. In the absence of interaction (α = 

0), Algorithm 1 converges in one iteration. 

Figure 4 plots the error curves of the six fitted components. It is seen that the errors 

of the components converge to a similar value for different relative interaction 

strength α’s. Again, the value of α only affects the convergence speed. We note that 

the intermediate errors of EA1 and EA2 are larger than the ones of EB1c and EB2 

but eventually they all converge to similar values. This phenomenon is due to the 

potentially large estimation error of EA1 in the first iteration as discussed in the 

benchmark section. 

5.1.4 Unknown Configurations 

In this part, we simulate the data in the same way as in Section 5.1.3 and use 

Algorithm 2 with the stopping rule in (15) to fit hKoPA model without assuming the 
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true figuration. Algorithm 2’ (without Step 10) is also considered. The results are 

reported in Table 1. 

From the table, it is clear that although the true configuration set contains only two 

configurations (5, 5) and (4, 4), Algorithm 2   requires a third or fourth term 

(configuration) except for the case without the interaction (α = 0). More terms are 

used as the interaction is strengthened. It is a direct consequence of the greediness 

of the iterative algorithm. On the other hand, Algorithm 2 stops after two iterations, 

selecting the two true configurations, for all levels of interaction strength. 

The reconstruction errors defined in (16) are also reported in Table 1, in the rows 

labelled by “RCE”. For Algorithm 2  , we also try an additional ALS as a post-

processing step after the algorithm stops. The corresponding RCEs are reported in 

the last row. The RCE reported in the second-to-last row are obtained using 

Algorithm 2   without the final ALS step. These larger RCEs (comparing to those 

reported in the last row of the “A-2” panel reveal that the redundant third and/or 

fourth configurations lead to an overfit. On the other hand, for Algorithm 2 (“A-2” 

panel), not only the correct number of Kronecker products is selected, but also the 

reconstruction error is much reduced, as seen in the last row of the upper panel “A-2

”. 

5.2 Real Image Example 

In this section, we demonstrate the performance of hKoPA on real image examples, 

and compare with the existing methods including SVD and KoPA. We present one 

example here, and leave the presentation of the other on the cameraman’s image to 

Appendix B. 

The left panel of Figure 5 is a 300×400 grayscaled image of column arcade from the 

Stoa of Attalos in Ancient Agora of Athens1. We denote this original image in 

grayscale by 0Y , whose elements are real numbers on [ 0 ,1]  with 0 standing for black 

and 1 for white. We observe that there exist three major patterns in the image: (a) a 

repeated patterns for the columns; (b) a repeated patterns for the beams and 

shadows and (c) repeated regions for the surface textures. Specifically, pattern (a) 

suggests that there is a component of 0Y  that can be written as a aA B , with aB  
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being the repeated vertical pattern (e.g. a matrix with a few (or one) columns and 

many rows for a vertical image) and aA  (a matrix with many columns and a few 

rows) represents its signal strength (mainly across all columns). A zero in aA  

indicates that the vertical image is not present at that location. 

Similarly, pattern (b) suggests a component b bA B , where bB  is the horizontal 

pattern to be repeated and bA  is the repeating strength. Pattern (c) gives a 

Kronecker product c cA B , where cB  is the repeated local texture and cA  is the 

repeating amplitude across the whole image. One can anticipate, from above 

observations, that hKoPA is more capable than SVD and KoPA in describing the 

hybrid patterns, where as the latter two methods can only utilize one configuration. 

We consider a denoising problem, in which the original grayscaled image is 

corrupted with an additive noise of size 0 .3  . Specifically, the image on the right 

panel of Figure 5, denoted by Y, is generated as 

0 , Y Y E  

where E is a matrix of i.i.d. standard Gaussian random variables with standard 

deviation σ. The goal of denoising of Y is to find a matrix Y  that can ideally reveal 

the unknown original matrix 0Y . A performance measure of Y  is the reconstruction 

error (similar to the one defined in (16)) 

2
0
2

0

R C E .F

F




Y Y

Y
 

In this example, we examine three methods: hKoPA, KoPA and SVD. All of them 

yield a Y  as a “low-rank” approximation of Y: SVD decomposes 0Y  through singular 

value decomposition, KoPA represents 0Y  with respect to the Kronecker product 

decomposition with identical configurations, and hKoPA further allows the 

configurations of terms in KoPA to be different. Specifically, in hKoPA method, we 

apply Algorithm 2   proposed in Section 4 with lo g (3 0 0 4 0 0 )    (BIC). For KoPA, 

1 1
ˆ ˆ( , )p q  is found in the same way as in Algorithm 2   and 1 1

ˆ ˆ ˆ ˆ( , ) ( , )k kp q p q  is forced for 

all further terms 2k  . The SVD approach can be viewed as a special case of KoPA, 

where ˆ ˆ( , )k kp q  are fixed at ( ,1)P  (or (1, )Q ) for all terms 1k  . 
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We report the configurations ˆ ˆ( , )k kp q , the cumulative percentage of variation (

2 2/F FY Y , denoted by c.p.v.) explained and the reconstruction error (RCE) for the 

first 10 terms in Table 2. From the cumulative percentage of variation explained, 

SVD is less capable of representing Y compared to KoPA and hKoPA given the 

same number of terms. In terms of reconstruction error, for each method, the 

smallest error (highlighted) is obtained when the model is about to overfit, i.e. when 

the . . .c p v  is close to 2 2
07 6 .9 9 /F F Y Y , the c.p.v. of the original image. Among all 

three methods, hKoPA achieves the smallest reconstruction error as it is capable of 

representing the hybrid structures of the original image. Figure 6 plots the 

reconstruction error against the number of parameters up to 20 terms for all three 

methods. It can be seen that hKoPA not only has the smallest reconstruction error 

but also uses the least number of parameters. Of course, due to its extra flexibility, 

when more-than-necessary number of terms are used, hKoPA is more likely to 

overfit compared to KoPA and SVD, as seen from Figure 6 when the number of 

parameters is greater than 6000. Such an over-fitting is prevented by the stopping 

rule (15). 

The first 6 components fitted by hKoPA are plotted in Figure 7. It is seen that each 

additional component adds more details to the reconstructed image. The first 

component constructs a thumbnail image with big pixels that recovers the local 

surfaces. The second component is a rank-one matrix that recovers the repeated 

vertical patterns observed on the columns. The third and forth components further 

supplement the details on the shaded floor. The sixth components recovers the 

repeated horizontal patterns that appears on the ceiling and in the shadows. It is 

obvious that KoPA cannot represent the patterns from the second and the sixth 

component and SVD cannot capture the patterns given by components 1, 3, 4 and 5. 

We plot the best images reconstructed by the three methods in Figure 8. It is quite 

evident that the hKoPA provides the best approximation to the original image. 

The computation time used for this example on a typical desktop2 is reported as 

follows. SVD takes 9.7 milliseconds. KoPA involves one iteration of configuration 

selection loop and takes 0.53 seconds in total. hKoPA involves 20 iterations of 
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configuration selection loops and spends 9.63 seconds, about 0.48 seconds per 

iteration on average. 

The implementation of hKoPA for this example uses lo g (3 0 0 4 0 0 )    for both IC


 

and c IC

, corresponding to the BIC. To compare the performance of AIC (i.e. κ = 2) 

and BIC, we report the selected number of terms ˆ( )K , the RCE without back-fitting 

and the RCE with back-fitting in Table 3. In the top panel of Table 3, the number of 

terms K̂  is determined by the stopping criterion (13). In the bottom panel, we report 

the “optimal number of terms” selected by an oracle who knows the true image 0Y  

and hence is able to calculate the RCE for the calculation of cIC


 by replacing the 

observed Y with the true 0Y  in (13). We see that the stopping criterion BIC gives the 

same performance as the oracle for hKoPA. On the other hand, the performance of 

AIC and BIC can be different for both KoPA and hKoPA, although they have been 

proven to have the same asymptotic performance for KoPA, as shown by Cai 

et al. (2019). We would recommend the use of BIC in practice, which gives a model 

with less complexity. We note that although it seems that BIC selects more terms 

than AIC for both KoPA and hKoPA in Table 3, the selected configurations involve 

less number of parameters, resulting in a smaller total number of parameters (as 

reported in the row ”Selected # parameters”). A theoretical study and comparison of 

different information criteria is important but also very challenging. It is also 

interesting to develop a data-driven procedure for the selection of κ. More detailed 

investigation is needed. 

6 Conclusion and Discussion 

In this paper, we extend the single-term KoPA model proposed in Cai et al. (2019) to 

a more flexible setting, which allows multiple terms with different configurations and 

allows the configurations to be unknown. Identifiability conditions are introduced to 

ensure unique representation of the model. And we propose two iterative estimation 

algorithms. 

With a given set of configurations, we propose a least squares backfitting algorithm 

that updates the Kronecker product component iteratively. The simulation study 
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shows the performance of the algorithm and the impact of the linear dependency 

between the component matrices. 

When the configurations are unknown, the extra flexibility of hKoPA allows for more 

parsimonious representation of the underlying matrix, though it brings the challenge 

of configuration determination. An iterative greedy algorithm is proposed to jointly 

determine the configurations and estimate each Kronecker product component. The 

algorithm adds one Kronecker product term to the model at a time by finding the best 

one term KoPA to the residual matrix obtained from the previous iteration, using the 

procedure proposed in Cai et al. (2019). By analyzing a benchmark image example, 

we demonstrate that the proposed algorithm is able to obtain reasonable hKoPA and 

the results are significantly superior over the direct low rank matrix approximation. 

The matrix X is of dimension P × Q. The more factors P and Q have, the more 

possible configurations there are, giving more leeway to find a better approximation. 

On the other hand, when P and Q do not have many factors, the hKoPA loses much 

of its flexibility. We have discussed some possible approaches (Remark 15) to 

allowing more choices of the configurations. A comprehensive investigation of a 

more efficient model building process is still needed. It is also of interest to provide 

theoretical guarantees of the model selection and estimation procedure. 

As discussed in Section 3, the greedy algorithm for configuration determination is 

similar to the forward stepwise selection. The theoretical properties of the proposed 

methods need to be further investigated. For the stopping criterion of the greedy 

algorithm, existing methods on the rank determination (Minka, 2001; Lam and 

Yao, 2012; Bai et al., 2018) may be extended for the hKoPA model as well. 
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Notes 
1 The original image in color and in higher resolution is credited to Ian Kershaw on 

Flicker https://www.flickr.com/photos/moonboots/10927753/ 

2 System: Windows Subsystem for Linux version 2, CPU: 12900KF (16 cores/ 24 

threads), RAM: 32GB@6000MHz, interpreter: Intel distribution for Python 3.9. 
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Fig. 1 Errors for benchmark setting 

 

 

Fig. 2 Errors for benchmark setting with different orthogonalizations. 

 

 

Fig. 3 Errors of Y with different relative interaction strength α’s. 
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Fig. 4 Errors for components under different relative interaction strength αs. 
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Fig. 5 The grayscaled image of Stoa of Attalos and a noisy image with additive 

Gaussian noise ( 0 .3  ). 

 

 

Fig. 6 Reconstruction error against number of parameters for the three methods. 

The optimal hKoPA model selected by stopping rule (15) is marked by . 

 

  

Acc
ep

ted
 M

an
us

cri
pt



Fig. 7 Components of hKoPA for the first 6 iterations. (Column 1) component kA . 

(Column 2) component kB . (Column 3) component k kA B . (Column 4) cumulative 

components 
1

k

j j

j 

 A B . Certain components are rescaled in dimensions for better 

presentation. 
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Fig. 8 The reconstructed image obtained from SVD (left), KoPA (middle), and 

hKoPA (right). Number of terms are selected to minimize the RCE. 

 

Table 1 The selected configurations ˆ ˆ( , )t tm n  and the coefficients ˆ
t  at each 

iteration for different values of α. The “A-2” and “A- 2  ” panels correspond to 

Algorithm 2 and Algorithm 2   respectively. 

 

t  0 .0   0 .5   1 .0   1 .5   2 .0   

  
ˆ ˆ( , )m n  ̂  ˆ ˆ( , )m n  ̂  ˆ ˆ( , )m n  ̂  ˆ ˆ( , )m n  ̂  ˆ ˆ( , )m n  ̂  

A-2  1  (4, 4)  1.003  (5, 5)  1.125  (5, 5)  1.251  (5, 5)  1.319  (5, 5)  1.354  

 

2  (5, 5)  1.002  (4, 4)  0.900  (4, 4)  0.713  (4, 4)  0.561  (4, 4)  0.455  

 

RCE  0.00475  0.00475  0.00475  0.00475  0.00476  

A-

2   1  (4, 4)  1.003  (5, 5)  1.113  (5, 5)  1.243  (5, 5)  1.314  (5, 5)  1.351  

 

2  (5, 5)  1.002  (4, 4)  0.860  (4, 4)  0.662  (4, 4)  0.515  (4, 4)  0.415  

 

3  -  -  (5, 5)  0.186  (5, 5)  0.176  (4, 5)  0.117  -  -  

 

4  -  -  -  -  -  -  (4, 5)  0.110  -  -  

 

RCE  0.00475  0.00737  0.00725  0.00982  0.01049  

 

RCE (Post-

ALS) 0.00475  0.00905  0.00891  0.01242  0.00476  
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Table 2 The configurations, the cumulative percentage of variation (c.p.v.) 

explained, and the reconstruction error by the first 10 iterations for hKoPA, KoPA 

and SVD approaches. The smallest reconstruction error for each methods is 

highlighted. 

k  hKoPA  KoPA  SVD  

 
ˆ ˆ( , )k kp q  c.p.v. RCE(%) ˆ ˆ( , )k kp q  c.p.v. RCE(%) ˆ ˆ( , )k kp q  c.p.v. RCE(%) 

1  (25, 25)  73.66 5.21  (25, 25)  73.66 5.21  (300, 1)  70.82 8.73  

2  (1, 400)  74.92 3.86  (25, 25)  74.76 4.20  (300, 1)  73.48 5.75  

3  (25, 16)  75.72 3.23  (25, 25)  75.49 3.74  (300, 1)  74.42 4.88  

4  (25, 16)  76.30 2.90  (25, 25)  76.10 3.42  (300, 1)  75.22 4.23  

5  (15, 25)  76.67 2.91  (25, 25)  76.66 3.15  (300, 1)  75.84 3.80  

6  (3, 100)  76.97 2.94  (25, 25)  77.03 3.19  (300, 1)  76.37 3.55  

7  (25, 16)  77.28 3.06  (25, 25)  77.39 3.23  (300, 1)  76.78 3.50  

8  (4, 80)  77.95 3.35  (25, 25)  77.72 3.34  (300, 1)  77.14 3.50  

9  (15, 25)  78.20 3.65  (25, 25)  78.03 3.53  (300, 1)  77.44 3.71  

10 (20, 16)  78.45 3.91  (25, 25)  78.32 3.38  (300, 1)  77.74 3.88  

 

  

Acc
ep

ted
 M

an
us

cri
pt



Table 3 Comparison of AIC and BIC. 

Model  KoPA hKoPA 

Criterion  AIC  BIC  AIC  BIC 

Selected # terms  1  4  2  4  

Selected # parameters  3782  3268  4482  2917  

RCE (w/o bf)  3.75 % 3.42 % 2.92 % 2.90% 

RCE (w/ bf)  3.75 % 3.42 % 2.83 % 2.81% 

Optimal # terms  2  5  3  4  

Optimal # parameters  7564  4085  6062  2917  

Optimal RCE (w/o bf) 3.69% 3.15% 2.88%  2.90% 

Optimal RCE (w/ bf)  3.69% 3.15% 2.90%  2.81% 
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