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Abstract

Discovering underlying low dimensional structure of a high dimensional matrix is
traditionally done through low rank matrix approximations in the form of a sum of
rank-one matrices. In this paper, we propose a new approach. We assume a high
dimensional matrix/can be approximated by a sum of a small number of Kronecker
products of matrices with potentially different configurations, named as a Aybrid
Kronecker outer. Product Approximation (AKoPA). It provides an extremely flexible
way of dimension reduction compared to the low-rank matrix approximation.
Challenges arise in estimating a AKoPA when the configurations of component
Kronecker products are different or unknown. We propose an estimation procedure
when the set of configurations are given, and a joint configuration determination and
component estimation procedure when the configurations are unknown. Specifically,

a least squares backfitting algorithm is used when the configurations are given.


http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2022.2134873&domain=pdf

When the configurations are unknown, an iterative greedy algorithm is developed.
Both simulation and real image examples show that the proposed algorithms have
promising performances. Some identifiability conditions are also provided. The

hybrid Kronecker product approximation may have potentially wider applications in

low dimensional representation of high dimensional data.

Keywords: Dimension reduction, Identifiability, Information criterion, Kronecker

product, Low dimensional structure in high dimensional data, Matrix decomposition

1 Introduction

High dimensional data often has a low dimensional structure that allows significant
dimension reduction and compression. In applications such as data compression,

image denoising and processing, matrix completion, high dimensional matrices of

interest are often assumed to be of low ranks and can be represented as a sum of
several rank-one matrices (vector outer products) in the form of the singular value

decomposition (SVD),

K

X=ru0v,, (1)

where Xis a Px @Qmatrix, », and v, @re'Pand Qdimensional vectors, and ®
denotes the outer product. Eckart‘and_Young (1936) reveals the connection between
singular value decomposition and low-rank matrix approximation. Recent studies
include image low-rank approximation (Freund et al., 1999), principle component
analysis (Wold et al., 1987;Zouw et al., 2006), factorization in high dimensional time
series (Lam and Yao, 2012; Yu et al., 2016), non-negative matrix factorization
(Hoyer, 2004; Cai et al., 2009), matrix factorization for community detection (Zhang
and Yeung, 2012; Yang and Leskovec, 2013; Le et al., 2016), matrix completion
problems (Candés and Recht, 2009; Candes and Plan, 2010; Yuan and

Zhang, 2016), low rank tensor approximation (Grasedyck et al., 2013), machine
learning applications (Guillamet and Vitria, 2002; Pauca et al., 2004; Zhang

et al., 2008; Sainath et al., 2013), among many others.



As an alternative to vector outer product, the Kronecker product can also be used to
represent a high dimensional matrix with a potentially smaller number of elements.
For any two matrices 4 <« R and B < ®” ", the Kronecker product 4 ® B is a

(pp ) x (gq ) matrix defined by

;—aHB a,, al’{’B—I
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where «, , is the (/ ))-th element of A. The dimensions (p.q.p".¢") is called the

configuration of the Kronecker product.

The decomposition of a high dimensional matrix into the sum of several Kronecker
products of identical configuration is known as Kronecker product.decomposition

(Van Loan and Pitsianis, 1993), in the form of

K

X=Y 2,4,08, A, R g R (2)

k
k=1

where Xis a Px Qmatrix with p = pp" and'@ =vg¢", and 4, and B, are of
dimensions px gand p x4 respectively. In fact, any P x @Q matrix can be
decomposed in the form (2) with attmost.& = min{pq,p ¢ } terms (Van Loan and
Pitsianis, 1993). The formal definition.of the Kronecker product decomposition can
be found in Appendix D. Note thatthe SVD in (1) is a special case of (2) with g =1
and »" =1. The form of Kronecker product appears in many fields including signal
processing, image processing and quantum physics (Werner et al., 2008; Duarte and
Baraniuk, 2012; Kaye et al., 2007), where the data has an intrinsic Kronecker

product structure.

For a given configuration, the approximation using a sum of several Kronecker
products can be turned into an approximation using a low rank matrix after a
rearrangement operation of the matrix elements (Van Loan and Pitsianis, 1993). Cai
et al. (2019) considers to model a high dimensional matrix with a sum of several
Kronecker products of the same but unknown configuration, and uses an information

criterion to determine the unknown configuration.



However, it is often the case that the Kronecker outer Product Approximation (KoPA)
using a single configuration requires a large number of terms to make the
approximation accurate. By allowing the use of a sum of Kronecker products of
different configurations, an observed high dimensional matrix can be approximated
more effectively using a much smaller number of parameters (elements). We note
that often the observed matrix can have much more complex structure than what a
single Kronecker product can handle. For example, representing an image in a
matrix form with Kronecker products of the same configuration is often not
satisfactory since the configuration dimensions determine the block structure of the
recovered image, similar to the pixel size of the image. A single configuration is‘often
not possible to provide as much details as needed. Due to these limitations, we
propose to extend the KoPA approach to allow for multiple configurations. Itiis more
flexible and may provide more accurate representation with a smaller number of

parameters.

In this paper, we generalize the KoPA method in Cai et al.y(2019) to a multi-term
setting, where the observed high dimensional matrix is.assumed to be generated
from a sum of several Kronecker products of different«Configurations — we name the
model hybrid KoPA (hAKoPA). As a special caseywhen all the Kronecker products are

vector outer products, AKoPA is equivalent to the low rank matrix approximation.

We consider two problems in this'paper. We first propose a procedure to estimate a
HKoPA with a set of known configurations. The procedure is based on an iterative
backfitting algorithm. Each, step‘involves finding the best one-term Kronecker product
approximation to a given.matrix, under a known configuration. This operation is
obtained through a SVD of a rearranged matrix. Next, we consider the problem of
determining.the configurations in the AKoPA for the observed matrix. As exploiting
the space of all possible configuration combinations is computationally expensive,
we propose an iterative greedy algorithm similar to the forward stepwise selection. In
each iteration, a single Kronecker product term is added to the model by fitting the
residual matrix from the previous iteration. The configuration of the added Kronecker
product is determined similar to the procedure proposed in Cai et al. (2019). This
algorithm efficiently fits a AKoPA model with a potentially sub-optimal solution as a

compromise between computation and accuracy.



The rest of the paper is organized as follows. The AKoPA model is introduced and
discussed in Section 2, with a set of identifiability assumptions. In Sections 3 and 4,
we provide the details of the iterative backfitting estimation procedure for the model
with known configurations and the greed algorithm to fit a AKoPA with unknown
configurations. Section 5 demonstrates the performance of the proposed procedures

with a simulation study and a real image example. Section 6 concludes.

Notations: For a matrix M, | m | .= \/tr(Mm ") stands for its Frobenius norm and
| m HS its spectral norm, which is the largest singular value of M. For a positive
integer n, [»] denotes the set of positive integers up to nsuch that [»]= {1,... ,n}.. We

denote by ¢"" the mx nmatrix with 1 at the (4 ))-th entry and 0 elsewhere:

2 Hybrid Kronecker Product Model
2.1 The Model

In this paper we consider the A~term hybrid KoPA (AKoPA) model, in the form
y=x+E, (3)

where the observed matrix Y'is the sum of a signal matrix X'and a noise matrix £
with i.i.d. standard Gaussian entries. We assume that the signal matrix X'has the

same form of (2)

K

X:Z/lkAk®Bk’ A GR”W,B,( GR”;”’;’ (4)

k
k=1

but here the matrices (4,,8,) are allowed to have different configurations.
Specifically, we assume that Yand Xare of the dimension P x @, and the matrices
4, and B in‘'the Ath componentare p, x ¢, and p, x q, , respectively. We call the
dimensions of 4, and B,.(p,.q,.p,.4,) , the configuration of the Kronecker product
4, ® B, . Since Pand Q are fixed and given by the observed matrix ¥, in the sequel
we will simply use the pair (o« g«) to denote the configuration of 4, ® B, . We also
assume that 1< p ¢, < Po forall 1<k <k sothatnone of 4, and B, are scalars.

Comparing (2), we refer to (4) as a hybrid Kronecker representation of X.



It is helpful to understand (4) as a “multi-resolution” representation of X. More
specifically, if X'is an image, then the term 4, ® B, corresponds to a partition of the
image into non-overlap p, x 4, blocks. By allowing different configurations, i.e.
different sizes of B, ’s, (4) is able to extract the local patterns at different resolution
(or pixel size), offering the flexibility to capture different texture of the image. This “
multi-resolution” interpretation also suggests that AKoPA are useful for many other

applications, e.g. spatial-temporal data, multi-dimensional signals analysis etc.

Define the configuration set of the AKoPA model (3) as the collection of individual
configurations € := {(p,,q,).,1 < k < k} . When the configuration set ¢ is known,we
need to estimate the component matrices 4, and B, for x =1,... .k inimadel (3).
When € is unknown, the estimation of model (3) requires the determination of the

configuration set ¢ in advance.
2.2 Identifiability Conditions

The primary goal is to estimate A, 4, and B, in (3). However, there are some
obvious unidentifiability regarding them. We discuss the identifiability conditions in
this section. Due to the complexity of the hKoPA models, we use a specific definition
of identifiability as follows. First of all, we assume that the configuration set € is an
ordered set, that is, the order of the configurations {(p.,q¢,).....(p,.q,)} is fixed. With
this assumption, the following definition automatically excludes the unidentifiability
due to different orderings of the'terms (1 4, ® B .1 < k < Kk} when their configurations

are all distinct.

Definition 1 (Identifiability):” We say that the representation (4) is identifiable up to
sign changes with respect to the ordered configuration set € if there are no other

matrices {4, Bu} Of the same configurations {p,.q,} , and coefficients {/{k} such that

K K

> 2,A4,09B, =Y /{kAk®Bk,

k=1 k=1

unless A, =+4,, B, =+B, and 1, A, ® B, = 1,4, ® B, .

In the sequel we shall often refer to the identifiability defined above as “identifiable

up to sign changes”, but omit “with respect to the ordered configuration set ¢ ” for



simplicity. Nevertheless, it should be understood that once the representation (4) is
given, the associated ordered configuration set ¢ is also determined, and the

discussion of the identifiability will be based on this given ¢ .
Two more definitions are needed for the discussion of identifiability of AKoPA model.

Definition 2 (Conformality). Let A be a matrix of dimension (pa, ga) and B of (ps, gs).
If pa is a factor of ps and qa is a factor of gs, A is said fo be conformally smaller than
B, denoted by 4 < B or B> 4 . This includes the special case that pa = ps and ga =

gs, which we also say that A and B are conformally equal, denofed by 4 = B |

Remark 1. Conformality is of interests because if A of dimension (pa, ga).is strictly
conformally smaller than B of (ps, gs), then for any matrix C of dimension
(p,/p,.q9,/4q, (Cisnotascalar), 4® ¢ and ¢ ® 4 have the same dimension as

Boraoc=B andc® 4=B.

Definition 3 (Orthogonality). Let 4 < X7+**+ and B < R 72" “be two matrices such that

4 € B . We say A and B are block-wise orthogonal/(b-erthogonal) if

argmin ”B—C@A”Fzﬂ,
CE\R(/’E Pa)xlaglay)
or equivalently, u[B" (/2" """ ® ay1=0 forall i=1,....(p,/p).j=1...(qa,/q).

Similarly, we say A and B are/grid-wise orthogonal (g-orthogonal) if

argmin HB—A@CHF=0,
c eR(Pa/Pa*Caglaq)
or equivalently, u[B' (4® e/ "'")1=0,forall i=1,...(p,/p,).j=1.....(¢, /q,). In
particular,.if 4 =B , then b-orthogonality and g-orthogonality are equivalent, and both

require t[B'A4]="0 . In this case we say A and B are orthogonal.

Remark 2. If 4 € B and write B = (B,) as a block matrix such that each block 8,
has the same dimension as 4 . Then the b-orthogonality of 4 and B implies
tr(4" B ) =0 forall the blocks 8, of B . Similarly, if 4 € 8 and B*' is the (/ ))-th

sub-grid of B (consisting of all grid elements with stride size (p, / p,.q,/4,),i.€.



fors =o0,..,p,-1,5,=0,..,9,-1),thenthat 4 and B are g-

i+s (p[,/p‘4 ).,j+sz(q[i/qA)

orthogonal implies tr(4" B *’) = o for all the sub-grids 5’ of B .
We first list the following two conditions on the signal matrix X'in (4).
Assumption 1. Forall k =1,... .k , JAkF = |[Bkllr = 1, and Ax > 0.
Assumption 2. Assume (p,.q,) = (1,0) forall k =1,... .k .

Remark 3. Assumption 1 is standard and can be satisfied by re-scaling 4 and B .
For Assumption 2, note that when (p,.q,) = (1,0), 4, is a row vector and the
corresponding B, is a column vector of size (p.1). Inthis case, 4, ® By=8,® 4, .
Assumption 2 can be easily satisfied by switching so that (p,.q,) = (P1) when

needed.

Assumption 3. Forany o < k,7< k suchthat 4, € 4,, 4, and 4, are g-orthogonal.
Forall x =1 suchthat 4, = 4,, 4, and 4, are orthogonal,’and“8, and B, are

orthogonal.

Assumption 3'. Forany o< k,i< k such that.s, € B,, B, and B, are b-orthogonal.
Forall k =1 suchthat 4, = 4,, A, and“a, are orthogonal, and B, and B, are

orthogonal.

Remark 4. This condition is to ‘address the following identifiability situations. Suppose

A € 4,,thenforany p,/ p xq,/q, matrix C, it holds that
2,A,® (B, +1,C®B,)+ 4,4, -21,A®C)®B,=1A4,®B +1,4,® B,.(5)

Assumption.3 excludes this type of unidentifiability by requiring b-orthogonality
between 4 @nd 4, . Such a requirement can be achieved through an
orthogonalization operation. For example, let the (/ ))-th element of Cbe

[C1,, = t[A4,(4,®e""") ] Let

2,A®B +2,A,®B, =A0 (1B +2,C®B,)+1,(A,-4,®C)® B,

‘A, A ®B.+1,4.® B,



with all the quantities in the last expression being rescaled to compile with
Assumption 1. It is easy to show that 4, and 4. are b-orthogonal in this new
representation. Algorithm in Appendix C performs such an orthogonalization for

multiple terms iteratively.

Remark 5. Assumptions 3 and 3’ are parallel conditions, one on 4, and another on
B, . We refer to them as “Ortho-A” and “Ortho-B” conditions, respectively. Only one

of them is needed.
Assumption 4. Suppose

() Forall k =1 such that B, is a row vector and B, is a column vector, 4, and
B, are b-orthogonal.
() Forall k = 1 such that 4, is a row vector and 4, is a column,vector, 4, and

B, are g-orthogonal.
Remark 6. This condition is needed. Consider a two term representation of the form
A® B +4,®p,,

where g are column vectors. Now pick any matrix Csuch that ¢ ® g, has the same

dimension as 4, then it holds that ¢ ® g, yhas the same dimension as 4, , and
AP + A4, =(A,+C® BIQ Bk (A, -C® B H® f,,

due to the fact that g, @8 ="8" ® g,. Assumption 4 excludes this type of
unidentifiability by requiring b-orthogonality between 4, and g/ . Note that g € 4,
as p/ isof 1x g and*4, is of p, x 0, with 4, being a factor of Q. Such a

requirement'can be achieved through an orthogonalization operation in Algorithm.

Remark 7. As seen in the example given in Remark 6, Assumption 4 could also have

been made on the b-orthogonality of 4, and g, . We choose the current formulation.

The following theorem states that, for any X'that can be written in (4), then there is
another representation such that the above conditions are satisfied. And the

representation can be obtained through a sequence of orthogonalization operations.



Theorem 1. /f x =" 1,4, ® B, of configuration set ¢ satisfies Assumptions 1 and 2,

k=1

then after the generalized Gram-Schmidt procedure given in Algorithm in Appendix
C, the resulting representation

X=3 i,{m@ B.. (6)

has a configuration set ¢ < €, and satisfies Assumptions 1, 2, 4 and 3 (the Ortho-A

representation).
The proof of the theorem is in Appendix D.

Remark 8. We can also obtain a representation satisfying Assumptions.1, 2,4 and 3’

(the Ortho-B representation) by slightly modifying Algorithm.

Remark 9. Algorithm outputs a representation which has a,configuration set same as
the original ¢ , but may have some zero ik . Hence the configuration set € in (6) can

be a subset of € .

We have not required any ordering of the terms_4, 4, ® B, , because it is assumed
that the ordered configuration set € is given, so the terms are ordered according to
¢ . However, when some configurations in ¢ are the same, we need to fix their
orders according to the next identifiability condition. This condition is also similar to
the distinct singular values condition for the identifiability of the singular vectors in
the SVD of a matrix.

Assumption 5. /fiSk< Sk and (p,.q,)= (p,.q,), then 2, > 2,.

Remark 10. Theireason that the condition is needed can be seen from the following
example. If 4, = 4, (and B, = B, as well) satisfy Assumptions 1 and 3, and

A, =4,=1,then

_ZAk®Bk+A/®B1,



but 4..B:. 4, B, also satisfy Assumptions 1 and 3. When 2, = 4,, such an ambiguity

does not occur.

So far we have given some necessary conditions for the identifiability. It is very
challenging to verify whether they are sufficient due to the complexity of the hKoPA
model, especially due to the fact that different configurations are present in (4). We
shall leave the general sufficient conditions to the future work. In the next two
sections, we give a nearly complete answer for a special case of (4) with two terms
of configurations (p1, ¢1) and (p2, ¢2). We consider two scenarios depending on

whether these two configurations are conformal or not.
2.3 Identifiability of the Conformal Two-Term Model

We first consider the conformal two-term representation x = 2,4, ® B, 4,4, ® B,

where 4, € 4,. We need one more technical condition.

Assumption 6. /f 4, € 4,, assume that 4, cannot be decomposed as ¢ ® p , where

C has the same dimension as 4, .

Theorem 2. If 4, € 4,, and Assumptions 1, 8,.5'and 6 hold, then the representation
X=21,A4®B +1,4,®B,

/s identifiable up to sign changes.

The proof of the theoremsis given in Appendix D. The theorem says that for a
conformal two-term model,.the Ortho-A representation is unique. Similarly, under

Assumptions 1, 3% and.5, 6, we also have an unique Ortho-B representation.

In the following we discuss the relationship between the Ortho-A and Ortho-B
representations for the two-term model. Suppose that for the configurations (o1, ¢1)

and (o2, @), p1 is a factor of pp and ¢ is a factor of ¢, and the matrix Xis given by
X=1A4®B +1,4,®B,+1,4,®C®B,, (7)

where 4, e Rrn g eRovo oy gRrxee g (R gnd ¢ e R/re/n | et's

assume that 4, and 4, are orthogonal, and so are B, and B, . This representation



can always be obtained for any two-term model through an Ortho-A operation then
an Ortho-B operation. The third term 4, ® ¢ ® B, is conformally equal to both the first
configuration (p1, g1) (when written as 4, ® (¢ ® B,) ) and the second configuration
(02, @) (when written as (4, ® ¢)® B, ). By an abuse of terminology, we refer to it as
the interaction of the two configurations. One can distribute the interaction term over
the first and second Kronecker products, resulting in different representations of X

under configurations (p1, g1) and (02, g):
X = 2~,|A1® B+ /{ZA2 ® B.. (8)
Two extreme cases are listed in (9) and (10).

X=140®B +2,4,®B,, (9)

=1, A®B +1,4,9 B,, (10)
where
. . 2 2
/11( :\//112"_2’122’ B; :_131+ lzC@B”
Al Al :
2 2

;= AA AL, Ay =

ZA,+—=4,8C.

1

N
~

2 2

In (9), the interaction term is merged‘into the first Kronecker product, so that 4, and
4, are orthogonal but B and, 8}, are not. In other words, (9) satisfies Assumption 3
and is the Ortho-A representation. Similarly, in (10), the interaction term is merged
into the second Kronecker product, where B, and B, remains orthogonal but 4, and
A° are not. Hence it,satisfies Assumption 3’, and is the Ortho-B representation. Any
other possible representation of X'in the form (8) is an affine combination of (9) and
(10).

2.4 ldentifiability of the Non-conformal Two-Term Model

In this section we consider the identifiability of the non-conformal two-term model.

Assume the configurations of X = 1 4, ® B, + 1,4, ® B, are not conformal, and satisfy



Assumptions 1 and 2. We divide the non-conformal two-term models into two types,

and treat them accordingly.

Type | non-conformal two-term model. One of 4,, 4, is a column and the other is a

row; or one of B, B, is a column and the other is a row.

Type Il non-conformal two-term model. All the non-conformal two-term models that

are not of type | are classified as type II.

We first point out that the type | model can be converted into a conformal model so
that Theorem 2 applies for its identifiability. Without loss of generality, assume that
B isa p, x1 column vector, B, isa 1xgq, row vector. To better illustrate the idea,
we rewrite this two-term model as x = 4, ® g, + 4, ® g, . According to Assumption 2,
4, must not be a row/column vector. Write x = (x,) as a p, x ¢, _block matrix, where
all the blocks x, have the same size p, x q,. We perform the block stacking

operation on X'to turnitinto a (Pq,) x ¢, matrix as

Xx->2 (xy=1x .x,;-x" xI;-x" 7.

P-4, 12 Lg, 21° P14,

Now do a similar operation on 4 : first write,4~as a p, x ¢, block matrix with equal
size blocks, then rearrange its blocks by.the sz operation and denote the resulting
matrix by szz (4,), F=1, 2. Note that QMZ (4,) is a column vector. It follows that

Q (X)=2 (4)®p+2Fda® g =2 (4)@p,+5,®2 (4. (1)

P-4, B 1:92 1292

The right hand side of the preceding equation gives a conformal two term
representation, and the orthogonality of 4, and g, is equivalent to the orthogonality
of sz (4. andyg . . Therefore, the identifiability of the original type | model
becomes the‘identifiability of the conformal two-term model in (11). We therefore

have the following corollary regarding the type | model.

Corollary 1. Consider the type | non-conformal two-term model. Suppose
Assumptions 1, 2 and 4 hold. The representation X = »,. 4, ® B, + 1,4, ® B, IS

identifiable up to sign changes for each of the following scenarios.



(1) If B, is a column vector, B, Is a row vector, assume 4, cannot be
decomposed as ¢ ® b , where D is a row vector of the same length as B, .
(i)  /f 4, is a column vector, 4, is a row vector, assume B, cannot be

decomposed as ¢ ® p , where C is a column vector of the same length as 4, .

For the type Il model, all of Assumptions 3, 4 and 5 are not relevant. On the other
hand, it is very difficult to verify whether Assumptions 1 and 2 are sufficient for the
identifiability. We provide an affirmative answer when the dimensions of Xare
powers of 2, and when 4, and B, are in “generic positions”. It is also possible to
give a set of sufficient conditions which guarantees the identifiability of any type.ll
model. However, unlike the conformal case, these sufficient conditionsare very.
tedious, so we choose not to spell the details out, and only discuss the'identifiability

for “generic” 4, and B, , under simplified conditions.

Theorem 3. Suppose x = 1,4, ® B + 1,4, ® B, IS a lype [l modelxwhere 4, are

2™ x 2" matrices (k = 1, 2), and B, are 2" x 2" respectively=Suppose
Assumptions 1 and 2 hold, and m, + n, + m, + m, > 44°Then if the elements of 4, and
B, are in generic positions, the representatiorn x,=i, A ® B + 1,4, ® B, IS

identifiable up to sign changes.

Remark 11. By “generic positions”, weé mean the following. If the elements of 4, and
B, are generated from some joint distribution which is absolutely continuous with
respect to the Lebesgue measure, then the identifiability holds with probability one.
In the proof (given in Appendix D), without loss of generality, we will assume that the

elements of 4, and_g, “arellD MO, 1).

Remark 12. Theorem 3 covers both the conformal and non-conformal two-term
models. However, the conformal case has already been warranted by Theorem 2, so

the main thrust of Theorem 3 is on the non-conformal model.

Remark 13. The condition m +n + m +m, > 4 is equivalent to requiring that X has at
least 32 entries. We make this technical condition due to the following reasons. First,
when m, +n, +m, +m, <3, all two-term models satisfying Assumption 1 and

Assumption 2 are conformal or type | non-conformal. Second, when



m, +n, +m +m,=4,the only possible configuration sets, denoted by {(p,,4,).(p,.4,)}
, of the type Il non-conformal two-term model are {(2,2),(4,1)} when Xis 4 x 4,
{(2,2),(4,1) when Xis 8 x 2, and {(2,2).(1,4)} when Xis 2 x 8. We consider these
cases in Examples 1 and 2 in Appendix D, and demonstrate why such non-
conformal two-term models are not identifiable, even when 4, and B, are in generic

positions.

3 Hybrid Kronecker Product Model with Known
Configurations

When the configuration set € = {(p,,q,).1< k < K} is known, we consider the

following least squares problem.

X 2

Y—z A,4,® B,

k=1

(12)

min

F

When K= 1, such a problem can be solved by singulan’value decomposition of a

rearranged version of matrix Y. Specifically, the rearrangement operation R,,,q[']

reshapes the P x Q@ matrix Yto a new pq x p ¢ matrix such that

R ¥]=[vec(¥,, " ), vec(¥, ',

p.q

where Y[_”j*"" stands for the (/ j))-th' 7 x4 block of matrix Yand vec(-) is the
vectorization operation that flattens a matrix to a column vector. It was observed by
Van Loan and Pitsianis (1993) that the rearrangement operation can transform a

Kronecker product to.a vector outer product such that
R,,,q[A ® B]= véc(A)ec(B) .

This can be seen from the fact that all the elements in the matrix 4 ® B are in the
form of «, », ., which is exactly the same as those in vec(4)vec(B)" , Where «, , is the
(4, )-th elementin Aand », , is the (x.) -th element in B. The re-arrangement

operation ® [r] is also linear and preserves the Frobenius norm.

Therefore, the least squares optimization problem min l¥ - 14 ® B I* | is equivalent to

a rank-one matrix approximation problem since



”Y -14Q® B ”izHR,,,q[Y]* lvec(A)vec(B)T HZF,

whose solution is given by the leading component in the SVD of ® [y (Eckart and
Young, 1936). If the multiple terms in (3) are of the same configuration, they can be

retrieved from the singular components of RN[Y] as well.

When there are multiple terms A> 1 in model (3), but of different configurations, we
propose to solve the optimization problem (12) through a backfitting algorithm (or an

alternating least squares algorithm) by iteratively estimating A«, 4, and B, through

2

min
Ayp.A, B,

[Y -3 i,4,® B,j - 1,4, ® B,

i#k F

using the rearrangement operator and SVD, with fixed i, 4, and B, (i% & ) from the

previous iteration.

When all configurations {(p,.q,)}; , are distinct, the backfitting'procedure for AKoPA
is depicted in Algorithm 1, where vec ' is the inverseof the vectorization operation
that convert a column vector back to a p x g matrix."When rterms indexed by

k,,... .k, in the AKoPA model have the same,configuration, these terms are updated

simultaneously in the backfitting algorithm by keeping the first rcomponents from the

SVD of the residual matrix £ = y-= Y. 2,4,® B.. We also orthonormalize the

itk ...k,

components by the Gram-Schmidt procedure (Algorithm ) at the end of each
backfitting round. Algorithm™1. is'also referred as alternating least squares (ALS)

algorithm in the subsequent context.
Algorithm 1 Backiitting Least Squares Procedure

1:Set 4, =4,=...= 4, =0.

2: repeat

3:for k=1toKdo
(k) ~
4 E =Y - 1,4,© B,.

5: Compute SVD of ®

P



(k)

Py ANVARY AN

j=1

6: Update 4, = s, 4, = vee,'  (u) @and B =vec! (v).

P-4y

7: end for
8: until convergence
9: Orthonormalize the components by Algorithm.

10: Return (1, 4.,B)}" .

4 Hybrid KoPA with Unknown Configurations

In this section, we consider the case when the model configuration € =% (5 ,¢ )} is
unknown. We use a greedy method similar to forward stepwise selection to'obtain
the approximation by iteratively adding one Kronecker product at a time, based on
the residual matrix obtained from the previous iteration. Specifically, we start the
algorithm with v = v , and at iteration £, we obtain

vy =y —2 1,4, B,
where 1, 4, and B, are obtained in the previeus iteration. Then we use the single-
term KoPA with unknown configuration preposed in Cai et al. (2019) to obtain

min [¥"-2.4 ®8, .
The procedure is repeated,until a stopping criterion is reached as detailed in

Algorithm 2. The algorithm-without step 10 is referred later as Algorithm 2.
Algorithm 2 Greedy Additive Algorithm for #KoPA Estimation

1:Setvy" =%,Kk=71_ .
2:for t=11to Tmaxdo

3: for all possible configuration (p, g) do

()4 _ T
[y 1= sy

4: Compute SVD for ® v 1: R

Pq
Jj=1

~ (p.q) (p.q) _
5:Set 4" =5, 4, =vec, (u) and B, =vec. (v).
’ P

g



(r.q) (p.q)

(p.q) ~
6: Compute s, =21""4, © B,

7: end for
8: Compute
(p.q)
lyo sk
(p,.4,) =argmin  ~ PQOlog—————+«7.
. PO

(P,+4,)

9:Set i =i 4,-4"" and B, - B,
10: (ALS Refinement) Refine (4, 4.,B.)}'_, with respect to configuration set
{(p..4,)}_, using Algorithm 1.

11: if a stopping criterion is met then

12:Set k = ¢.

13: break

14: end if

15:Sety"" =¥ -Y 1,4.® B,.

16: end for

17: Return ((1,.4..B.)}" .
Some implementation details are as follows:

Overall Objective Function and The Greedy Search Algorithm: The formulation of the
data generating mechanism (3).and (4) naturally suggests an overall objective

function in the form of

.
ly-> 1,408,

cIC _(K,(p,,q,).i =sb, e, K) = PO log = +x3 (pa,+pia). (13)
PO - (paq,+pq)

i=1

where 1.,4.)B, (i=1,..,k) are the estimators obtained through Algorithm 1 in
Section 3, given K .(p,.q,.p,.q,).i=1,....K . Here 3" (p.q,+ p,q,) is the number of

i=1

parameters in the model and «is the penalty coefficient on model complexity. We
refer to the criterion in (13) as the cumulative information criterion, denoted by cic .

In particular, when « =2, cic_ corresponds to AIC and when « = log PQ, cIC,



corresponds to Bayes information criterion (BIC) (Schwarz, 1978). As shown in Cai
et al. (2019), in a single-term Kronecker product case, when the signal-to-noise ratio
is sufficiently large, minimizing such an information criterion produces a consistent

estimate of the true configuration.

Unfortunately it may not be practical to optimize such an objective function, since it
would require an exhaustive search over all possible configurations. For
computational efficiency, we use a greedy algorithm (with refinement) to obtain a

solution. Specifically we propose the step-wise algorithm which, at £th step, uses

"Y(’) /{(p’Q)A(pTw ® B(p,q)

ic” b G)1<i<i—1)= POl _ ‘ '
L (p.ogl(p,,4),1<i<t-1)= PQlog

PO -1

|2
Exkn' ™ v (pg + plg ),

(t=1)

(14)

where """ =3 (5,4, + p,4,), to detemine the “best” configuration (5,.4,) of a new

i=1

term to be added to the model (given the existing (: - 1)/terms), and terminates the

build-up according to the stopping rule
K =min {t:cIC _(t+1)ZcIC (0}, (15)

Algorithm 2 amounts to a greedy algorithm for optimizing the overall objective

function in (13).

Refinement: Step 10 “ALS Refinement” in Algorithm 2 updates all the existing terms
by Algorithm 1, with all the selected configurations fixed, at the end of each iteration.
Without this step, Algorithm 2 is also of the boosting flavor, adding one term (a “weak
” learner) in each iteration without modifying the existing terms. To distinguish the
two versions;we refer to Algorithm 2 without Step 10 as Algorithm 2. Our simulation
study in Section 5.1.4 suggests that Algorithm 2, with the refinement step, has the
potential to achieve a better approximation of X, and select the number of
terms/configurations more accurately, comparing with Algorithm 2. On the other
hand, the refinement at each iteration will increase the computational cost
significantly. Therefore, if the computation is of primary concern, we recommend

Algorithm 2’ in practice, which does not involve any intermediate refinement, but can



have a final round of refinement using Algorithm 1 after the terms/configurations

have been decided.
Remark 14.

Strictly speaking, the number of parameters in (13) and (14) should be calculated
under the constraint that terms of conformal configurations are orthogonal (see
Definition 1 and 2 of conformality and orthogonality in Section 2.2). We choose the
present formulation for several reasons. First, if all terms have the same
configuration, it is easy to count how many free parameters there are under the
orthogonality constraints. However, if different configurations are present, itisdiffieult
to express this number explicitly. Second, in this paper we intend to deal'with
matrices of large dimensions, hence the reduction of the number of free parameters
due to orthogonality constraints is of a very small fraction of thetotaknumber of
parameters used, and will have very minor impact on the information criterion. So we

choose the present form for simplicity.

Remark 15. Note that our current formulation of the problem and the algorithms rely
on the factorization of Pand Q. Such factarization provides a better and cleaner
structure for model identifiability and other diseussions and presentations. On the
other hand, it does limit the choices of possible configurations, when Pand Q do not
have many factors. We briefly discuss_how to alleviate this limitation in practice. In
fact, for model building and estimation, any (p.q,p .4 ) configuration such that

p = [P / p*—‘ and 4 = (Q /q*—‘ can be used, where [x] denotes the smallest integer

larger than or equal to x¢In this'case, the estimation step (the rearrangement and
SVD given a configuration, presented in Section 3) can be done in two different
ways. One.is to'expand the matrix Y with several rows and columns so that it
becomes a ¢pp ) x (¢ ) matrix. These extra rows and columns can be imputed with
zeros or through an iterative EM type of procedures in the estimation step to obtain

4 of size px gand B of size p" x 4" . A second approach is to truncate the matrix Y
by several rows and columns so that it becomes a ((p -1)p ") x ((¢ -1)¢ ) matrix.
Using this reduced-size matrix, we can estimate A* of size (p -1)x(¢-1) and B of
size p x4 . Each element of the missing column and row in A can be estimated by a

least squares using the corresponding unused elements in Yand the estimated B .



Combining 4 and the estimated missing row and column results in the estimated 4
of size p x ¢ . The evaluation of the corresponding IC criteria (13) and (14) for
configuration determination need to be adjusted, so that only the observed entries of
Y and the estimated matrix 4 ® B truncated to size P x Q are involved in the
evaluation. Such an approach expands the set of possible configurations
significantly, creating extra flexibility and model robustness, though it also demands
significantly higher computational cost for configuration selection. A compromise is to
consider (p .4 ) being powers of 2. If Yis an image, a common practice is to super-
sample or sub-sample the pixels and then apply the two aforementioned approaches
respectively. Further investigation on more efficient model building procedures is

needed.

5 Empirical Examples
5.1 Simulation

Intuitively, the comparison of AKoPA with SVD and KoPA gees like follows: AKoPA
performs similarly to SVD if the true signal has.low rank, and similarly to KoPA if the
true signal is of low rank under KPD. On the otherthand, AKoPA performs much
better if the true signal is generated with terms of different configurations. This
intuition has been confirmed by empirical'results based on a 3-term Kronecker

product model, which we choose t0 report in Appendix A for the interest of space.

In this section, we focus on/the'performance of the least squares backfitting
algorithm in Algorithm 17and the iterative algorithm in Algorithm 2 for a two-term
Kronecker product modeland determine the factors that affect the estimation

accuracy and convergence speed of the algorithm.

In particularwe focus on Model (7), as it reveals the identification issue and allows

the study of the impact of interaction strength. We repeat (7) here for easy reference.
X=2A4A®B +1,4,®B,+1,4,®CQ®B,,

where 4, € 4, and are orthogonal, and B, € B, and are orthogonal. Recall that

strictly speaking, this is a two term model with two different configurations and the



third term 4, ® ¢ ® B, is called the interaction between the two configurations, and
its strength is controlled by the coefficient A12. We first generate 4,, B, and Cas
normalized Gaussian random matrices with i.i.d. standard normal entries. We then
perform the Gram-Schmidt orthogonalization so that 4, and 4, are orthogonal with
each other in the sense of Assumption 3, and so are B, and B, . Finally all these

matrices are rescaled to have Frobenius one.

In this example, we set p = 2" 0 = 2" such that any conformable configuration (p, g)
can be written as p = 2",4 = 2" for some integers 0S» <~ and oS»Sn . To ease the

notation, we simply use (m, n) to denote the configuration (p.,q) = (2".2").

The observed Y'is a corrupted version of X'with additive Gaussian noise such-that

o
Yy =X +

(M +N)/2

2

where Eis a 2" x 2" matrix with i.i.d. standard Gaussian.entries.
We express the fitted ¥ as
Y=2,4®B +1,4,® B>,

where 4, ® B, and 4, ® B, are the two Kronecker products with configurations
(m, m) and (e, ) correspondingly. Recall that either Ortho-A (9) or Ortho-B (10)
can be adopted to represent-¥, and either representation is unique. Most of the
simulations are carried out under Ortho-A, which is also consistent with
Assumption 3. In Segction 5.1.2 we also study the impact of choosing different

orthogonalizations on the estimation.

We use the following notations of various estimation errors for easier reference.

2
By =ly-v [,
EL1 =|2,/4,-1], ELlc =2, /i -1],
EL2 =|4,/4,-1|, EL2c =|4,/Ail~-1],
Al =lai—a P Ea2 =lan-a P Ba2e =lan-afl,

Bl =lB,-B >, EBIc =B -B, EB2 =lB.-B I



where 4;, B, 2" and 2; are defined in (9) and (10). We also define the
reconstruction error (RCE),

ly-x P

RCE = (16)

X

which will be used later to compare the performance of different models.
5.1.1 The Benchmark Case

In the benchmark case, we use

M =N=9,(m,n)=(4,4),(m,,n)=(55),4=4,=4,=1, 0=1to generate the signal
matrix X'in (7) and the observed matrix Y. Algorithm 1 is applied to fit Y withithe true
configurations and the orthogonalization is done by Ortho-A. In otherwords, we are
estimating the matrices in (9). The errors from the first 20 iterations are reported in
Figure 1, where we compare B, to B, (instead of B ) under@Q©rtho-A. The

convergence of the estimators is observed at roughly the, 10-th/iteration.

From the middle panel of Figure 1, it is seen that the/smaller matrices 4, and B,
usually have smaller estimation errors as EA1 and\EB2 are smaller than EB1c and
EAZ2 after convergence. Note that in the definitions of these estimation errors, all
involved matrices are scaled to have Frobenius norm 1, so for example, EA1
essentially corresponds to the angle between vec(4,) and vec(4,) . Similar
phenomenon has been observed in“estimating singular vectors of a low rank matrix
(Cai et al., 2018). On the other hand, before convergence and especially in the first
iteration, the errors EA1 and EA2 are much larger than EB1c and EB2. Here we

provide two explanations.

Suppose the full Kronecker product decomposition of 4, is written as
A,=Y u.Aa,,® c,_Wwhere 4, hasthe same dimension (/7, m) as 4,. Then we

k=1

have

K
X=2A40B+1,5 uA ®(C,®B)+1,40C®B,

k=1



where {vec(4,),vec(4,,),...,vec(4, )} are orthogonal with each other. Then in the
first iteration, 4, and B, are obtained from the singular value decomposition of the
re-arranged matrix (with configuration (/m, m))

[X]= ilvec(Al)Vec(Bl)T + izz Hovee(d, Jvec(C, ® BZ)T + A,,vec(A4,)vec(C ® BZ)T.

k=1

R

Then R (X1 vec(d4,) « vec(B) but ® = [X]vec(B/) # vec(4,) since tr(c'c,) (

k =1,...,Kk ) are usually not zero. Therefore, in power iterations, plugging in the true

value of 4, gives the true value of B/, but the reverse is not true.

Alternatively, one can show that the error EB1c is smaller than EA1 in thefirst
iteration when 4; < 47 + 2/ . Let vec(4:) = c¢(vec(4,) + vec(a4,)) for some
vee(AA4,) L vec(4,). Then

vec(B1) = Rm [X 1" vec(A1) = c(vec(B )+ A,/ }LI"T"M”I[A2 ® B,] vec(A4)).

1>

It is easy to verify that

. Al 2
(2, 12R | 14,@ B vee(an)l? S —4IR Wiay o 8| lvec(an)l
P s
2’2
< y 2 p Hvec(AAl)Hz.
A+ A

1 12

2
127

Hence, when 2; < 2] + 2;,, EB1e,is Smaller than EA1 in the first iteration. The
absolute errors in the coefficients A, |[EL1c| and |EL2 |, decrease and converge as

expected.
5.1.2 Ortho-A'and"Ortho-B Representations

In this part, we investigate the influence of the choice of representation: Ortho-A and
Ortho-B. In the benchmark case above, we have obtained the errors for EB1c and
EA2c under Ortho-A. We will compare them with the estimation obtained under
Ortho-B, in which in each iteration of Algorithm 1 we perform orthogonalization under
Ortho-B. The errors are plotted in Figure 2. From the figure, it is seen that, under
Ortho-A, EA2 and EB1c are smaller compared with EA2c and EB1, while EA2c¢ and

EB1 are smaller under Ortho-B. We also note that a symmetry exists between the



two representations. The component 4, and B under Ortho-A are of the same
position to 4, and B, under Ortho-B. The error curves of EA2 and EB1c under
Ortho-A should be similar to the ones of EB1 and EA2c under Ortho-B,
correspondingly. This phenomenon is observed in Figure 2 by comparing the curves

in the left plot with the ones in the right plot.
5.1.3 Impact of Interaction Strength

In this part, we compare the accuracies and convergence rates of different
parameter estimates under different absolute interaction strengths under Model (7).
We fix the signal-to-noise ratio in order to isolate the impact of the interaction
strength. Specifically, we set the value of ain the range « {0.0,0.5,1.0,145,2.0} , and
2, =1 /m, A,=1,and 1, =« /\/1+7. The orthogonalization is.done under
Ortho-A, hence 4’ = 1. The value of acontrols the “correlation” between the first
Kronecker product and second one in (9). In particular, «’ / (+ ) /represents the

proportion of | 274, ® B I* that is linearly dependent to 4, ®.5..

The fitting error EY under different relative interaction strength is reported in

Figure 3. A similar accuracy after convergence is ebserved for all different relative
interaction strength a. It is seen that Algorithm 1°converges slower when higher
dependence exists between the two configurations. In the absence of interaction (a =

0), Algorithm 1 converges in one iteration:

Figure 4 plots the error curves of the six fitted components. It is seen that the errors
of the components conyverge to a similar value for different relative interaction
strength d’s. Again the value of a only affects the convergence speed. We note that
the intermediate errors’of EA1 and EAZ2 are larger than the ones of EB1c and EB2
but eventually,theyall converge to similar values. This phenomenon is due to the
potentially large estimation error of EA1 in the first iteration as discussed in the

benchmark section.
5.1.4 Unknown Configurations

In this part, we simulate the data in the same way as in Section 5.1.3 and use

Algorithm 2 with the stopping rule in (15) to fit AKoPA model without assuming the



true figuration. Algorithm 2’ (without Step 10) is also considered. The results are

reported in Table 1.

From the table, it is clear that although the true configuration set contains only two
configurations (5, 5) and (4, 4), Algorithm 2’ requires a third or fourth term
(configuration) except for the case without the interaction (a = 0). More terms are
used as the interaction is strengthened. It is a direct consequence of the greediness
of the iterative algorithm. On the other hand, Algorithm 2 stops after two iterations,

selecting the two true configurations, for all levels of interaction strength.

The reconstruction errors defined in (16) are also reported in Table 1, in therows
labelled by “RCE”. For Algorithm 2’ , we also try an additional ALS as a.pest=
processing step after the algorithm stops. The corresponding RCEs-are reported in
the last row. The RCE reported in the second-to-last row are obtained.using
Algorithm 2+ without the final ALS step. These larger RCEs (comparing to those
reported in the last row of the “A-2” panel reveal that thesredundant third and/or
fourth configurations lead to an overfit. On the other-hand, for Algorithm 2 (“A-2”
panel), not only the correct number of Kronecker. products is selected, but also the

reconstruction error is much reduced, as seen.in the last row of the upper panel “A-2

5.2 Real Image Example

In this section, we demonstrate,the performance of AKoPA on real image examples,
and compare with the existingimethods including SVD and KoPA. We present one
example here, and leave:the presentation of the other on the cameraman’s image to

Appendix B.

The left panel of Figure 5 is a 300x400 grayscaled image of column arcade from the
Stoa of Attalos in Ancient Agora of Athens!. We denote this original image in
grayscale by v, , whose elements are real numbers on [0,1] with O standing for black
and 1 for white. We observe that there exist three major patterns in the image: (a) a
repeated patterns for the columns; (b) a repeated patterns for the beams and
shadows and (c) repeated regions for the surface textures. Specifically, pattern (a)

suggests that there is a component of v, that can be written as 4, ® B, with B,



being the repeated vertical pattern (e.g. a matrix with a few (or one) columns and
many rows for a vertical image) and 4, (a matrix with many columns and a few
rows) represents its signal strength (mainly across all columns). A zeroin 4,

indicates that the vertical image is not present at that location.

Similarly, pattern (b) suggests a component 4, ® B, , where B, is the horizontal
pattern to be repeated and 4, is the repeating strength. Pattern (c) gives a
Kronecker product 4. ® B_, where B_ is the repeated local texture and 4_ is the
repeating amplitude across the whole image. One can anticipate, from above
observations, that AKoPA is more capable than SVD and KoPA in describing the

hybrid patterns, where as the latter two methods can only utilize one configuration.

We consider a denoising problem, in which the original grayscaled image.is
corrupted with an additive noise of size + = 0.3 . Specifically, theimage‘on the right

panel of Figure 5, denoted by Y, is generated as
Y=Y,+0E,

where E'is a matrix of i.i.d. standard Gaussian random variables with standard
deviation g. The goal of denoising of Yis to find'a matrix ¥ that can ideally reveal
the unknown original matrix v, . A perfermance measure of v is the reconstruction
error (similar to the one defined in«(16))
. ly -y, I

v,
In this example, we examine three methods: AKoPA, KoPA and SVD. All of them
yield a ¥y as a “low-rank” approximation of ¥: SVD decomposes v, through singular
value decomposition, KoPA represents v, with respect to the Kronecker product
decomposition with identical configurations, and AKoPA further allows the
configurations of terms in KoPA to be different. Specifically, in AKoPA method, we
apply Algorithm 2' proposed in Section 4 with « = log(300 x 400) (BIC). For KoPA,
(p,.4,) is found in the same way as in Algorithm 2 and (5,.4,) = (p,.4,) is forced for
all further terms « > 2. The SVD approach can be viewed as a special case of KoPA,

where (p,,4,) are fixed at (».1) (or (1,0)) forall terms x> 1.



We report the configurations (5, ,4,) , the cumulative percentage of variation (

'y /1y I, denoted by c.p.v.) explained and the reconstruction error (RCE) for the
first 10 terms in Table 2. From the cumulative percentage of variation explained,
SVD is less capable of representing Y compared to KoPA and AKoPA given the
same number of terms. In terms of reconstruction error, for each method, the
smallest error (highlighted) is obtained when the model is about to overfit, i.e. when
the c.p.v. is close to 76.99 =lv, I> /| ¥ I* | the c.p.v. of the original image. Among all
three methods, AKoPA achieves the smallest reconstruction error as it is capable of
representing the hybrid structures of the original image. Figure 6 plots the
reconstruction error against the number of parameters up to 20 terms for all three
methods. It can be seen that AKoPA not only has the smallest reconstruction error
but also uses the least number of parameters. Of course, due to its extra flexibility,
when more-than-necessary number of terms are used, AKoPA is more likely to
overfit compared to KoPA and SVD, as seen from Figure 6 whenthe number of
parameters is greater than 6000. Such an over-fitting is prevented by the stopping
rule (15).

The first 6 components fitted by AKoPA are plotied in-Figure 7. It is seen that each
additional component adds more details to the reconstructed image. The first
component constructs a thumbnail image, with big pixels that recovers the local
surfaces. The second component is-a rank-one matrix that recovers the repeated
vertical patterns observed on the columns. The third and forth components further
supplement the details on the shaded floor. The sixth components recovers the
repeated horizontal patterns that appears on the ceiling and in the shadows. It is
obvious that KoPA cannot represent the patterns from the second and the sixth
component and SVD cannot capture the patterns given by components 1, 3, 4 and 5.
We plot the best.images reconstructed by the three methods in Figure 8. It is quite

evident that'the AKoPA provides the best approximation to the original image.

The computation time used for this example on a typical desktop? is reported as
follows. SVD takes 9.7 milliseconds. KoPA involves one iteration of configuration

selection loop and takes 0.53 seconds in total. AKoPA involves 20 iterations of



configuration selection loops and spends 9.63 seconds, about 0.48 seconds per

iteration on average.

The implementation of AKoPA for this example uses « = log(300 x 400) for both 1C_
and cic_, corresponding to the BIC. To compare the performance of AIC (i.e. k= 2)
and BIC, we report the selected number of terms (k) , the RCE without back-fitting
and the RCE with back-fitting in Table 3. In the top panel of Table 3, the number of
terms K is determined by the stopping criterion (13). In the bottom panel, we report
the “optimal number of terms” selected by an oracle who knows the true image v,
and hence is able to calculate the RCE for the calculation of cic by replacing the
observed Ywith the true v, in (13). We see that the stopping criterion BIC«gives the
same performance as the oracle for AKoPA. On the other hand, the performance of
AIC and BIC can be different for both KoPA and AKoPA, although they have been
proven to have the same asymptotic performance for KoPA, as shown by Cai

et al. (2019). We would recommend the use of BIC in practice, which gives a model
with less complexity. We note that although it seems that BIC selects more terms
than AIC for both KoPA and AKoPA in Table 3, the'selected configurations involve
less number of parameters, resulting in a smallertotal' number of parameters (as
reported in the row "Selected # parameters™). A'theoretical study and comparison of
different information criteria is important but also very challenging. It is also
interesting to develop a data-driven‘procedure for the selection of x. More detailed

investigation is needed.

6 Conclusion and ' Discussion

In this paper, we_extend the single-term KoPA model proposed in Cai et al. (2019) to
a more flexible setting, which allows multiple terms with different configurations and
allows the configurations to be unknown. Identifiability conditions are introduced to
ensure unique representation of the model. And we propose two iterative estimation

algorithms.

With a given set of configurations, we propose a least squares backfitting algorithm

that updates the Kronecker product component iteratively. The simulation study



shows the performance of the algorithm and the impact of the linear dependency

between the component matrices.

When the configurations are unknown, the extra flexibility of AKoPA allows for more
parsimonious representation of the underlying matrix, though it brings the challenge
of configuration determination. An iterative greedy algorithm is proposed to jointly
determine the configurations and estimate each Kronecker product component. The
algorithm adds one Kronecker product term to the model at a time by finding the best
one term KoPA to the residual matrix obtained from the previous iteration, using the
procedure proposed in Cai et al. (2019). By analyzing a benchmark image example,
we demonstrate that the proposed algorithm is able to obtain reasonable AKoPA and

the results are significantly superior over the direct low rank matrix approximation.

The matrix X'is of dimension P x Q. The more factors P and Q have;.the more
possible configurations there are, giving more leeway to find‘a better approximation.
On the other hand, when Pand Q@ do not have many facters; the AKoPA loses much
of its flexibility. We have discussed some possible approaches (Remark 15) to
allowing more choices of the configurations. A'cemprehensive investigation of a
more efficient model building process is stillneeded. It is also of interest to provide

theoretical guarantees of the model selection and estimation procedure.

As discussed in Section 3, the greedy .algorithm for configuration determination is
similar to the forward stepwise selection. The theoretical properties of the proposed
methods need to be furtherinvestigated. For the stopping criterion of the greedy
algorithm, existing methods on the rank determination (Minka, 2001; Lam and

Yao, 2012; Bai et al., 2018) may be extended for the AKoPA model as well.
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Notes

1The original image in color and in higher resolution is credited to lan Kershaw on

Flicker https://www.flickr.com/photos/moonboots/10927753/

2 System: Windows Subsystem for Linux version 2, CPU: 12900KF (16 cores/ 24
threads), RAM: 32GB@6000MHz, interpreter: Intel distribution for Python 3.9.
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Fig. 4 Errors for components under different relative interaction strength as.
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Fig. 5 The grayscaled image of Stoa of Attalos and a noisy image with additive

Gaussian noise (o = 0.3).
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Fig. 6 Reconstruction error against number of parameters f Qe methods.
The optimal AKoPA model selected by stopping rule (15) i@ by *.

RCELin %)




Fig. 7 Components of AKoPA for the first 6 iterations. (Column 1) component 4, .

(Column 2) component B, . (Column 3) component 4, ® B, . (Column 4) cumulative

k

components Y 4, ® B ;. Certain components are rescaled in dimensions for better

j=1

presentation.
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Fig. 8 The reconstructed image obtained from SVD (left), KoPA (middle), and

HKoPA (right). Number of terms are selected to minimize the RCE.

Table 1 The selected configurations (m .7 ) and the coefficients 2, at each

iteration for different values of a. The “A-2” and “A-2'” panels correspond:to

Algorithm 2 and Algorithm 2’ respectively.

a=20.0 a=0.5 a=1.0 a=4.5 a=2.0
(i) || 2 (i) | 2 (i, i) || 2 (i, ) || 7 (i) || 2
A-2 (1 (4, 4) [1.003|((5, 5) |1.125|((5, 5Y11.251|/(5, 5) |1.319|/(5, 5) |1.354
2 (5, 5) (|11.002/((4, 4) |0.900|/(4,4)110.713|/(4, 4) ||0.561(4, 4) ||0.455
RCE 0.00475  [0.00475 4||0.00475  |0.00475  [0.00476
A-
o |l (4, 4) [1.003(((5¢ 5) [1.113(/(5, 5) 1.243|/(5, 5) |1.314|(5, 5) |1.351
2 (5, 5) [1:002}|(4, 4) |0.860|/(4, 4) 0.662/(4, 4) ||0.515|(4, 4) |0.415
3 - - (5, 5)|0.186((5, 5)|0.176]/(4, 5) [0.117||- -
4 - - - - - - (4, 5) 0.110] - -
RCE 0.00475  |0.00737  |0.00725  (0.00982  [0.01049
RCE (Post-
ALS) 0.00475  |0.00905  [0.00891  (0.01242  [0.00476




Table 2 The configurations, the cumulative percentage of variation (c.p.v.)
explained, and the reconstruction error by the first 10 iterations for AKoPA, KoPA
and SVD approaches. The smallest reconstruction error for each methods is
highlighted.

k AKoPA KoPA SVD

(p,.4,) |lc.p-V.|RCE(%)|(5,.4,) |c-p.V.|RCE(%)||(5,.4,) |[c-p.V.||RCE(%)

(25, 25)73.66(5.21  [(25, 25)(73.66||5.21  ||(300, 1)||70.82|8.73

(1, 400)(74.923.86 (25, 25)(|74.76|4.20 (300, 1)(|73.48|5.75

(25, 16)(75.72||3.23 (25, 25)(75.493.74 (300, 1)(|74.42|4.88

(25, 16)(76.30(2.90 [ (25, 25)(76.10|3.42  ||(300, 1)||75.22|4.23

(15, 25)(76.67[2.91  [(25, 25)(76.66/13.15  ||(300, 1)|[75.84/3.80

(3, 100)(|76.97|12.94 (25, 25)|77.033.19  ((300, 1)76.37|3.55

(25, 16)(77.28|3.06 (25, 25)(|77.39|3.23 (300441)((76:78|3.50

(4, 80) 77.95(13.35  [(25, 25)(77.72/|3.34  JI(30001)|77.14/3.50

(15, 25)(78.20(3.65  [(25, 25)(78.03||3.53", %.|(300, 1)|77.44/3.71

(20, 16)78.45(3.91 [ (25, 25)(78.32||3.38 " ||(300, 1)||77.74|3.88

IEN Il Il Il Il I el




Table 3 Comparison of AIC and BIC.

Model KoPA HAKoPA
Criterion AIC BIC AIC BIC
Selected # terms 1 4 2 4

Selected # parameters||3782 ||3268 |4482 (2917

RCE (w/o bf) 3.75 %|[3.42 %|[2.92 %|[2.90%
RCE (w/ bf) 3.75 %|[3.42 %|[2.83 %|[2.81%
Optimal # terms 2 5 3 4

Optimal # parameters ||7564 |4085 |6062 (2917

Optimal RCE (w/o bf) ||3.69% |13.15% [2.88% ||2.90%

Optimal RCE (w/ bf)  ||3.69% |13.15% [2.90% ||2.81%






