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Abstract—Deep neural networks (DNNs) are being increas-
ingly used to achieve signal awareness. Usually, DNNs have
been entirely executed at the mobile device. However, as DNNs
become more complex, edge computing techniques will become
necessary for DNN deployment. Notably, it has been shown that
the original DNN architectures can be modified by introducing
a “bottleneck” producing a compressed representation of the
input. The DNN split computation is then orchestrated between
the mobile device and the edge, which respectively execute the
layers before and after the bottleneck. As yet, the concept of split
computing has not been applied for signal awareness. Moreover,
in existing work, the dynamic nature of the wireless channel is
not considered in the bottleneck design. In this paper, we propose
Split Computing Enhancing Signal Awareness (SpliCES), a new
approach where the bottleneck is adapted at inference time
according to ongoing channel conditions. Moreover, we present
a novel training strategy which optimizes the bottleneck-injected
ensemble parameters to generalize to all channel conditions in
its first stage, and then specializes each bottleneck separately
to a certain level of channel impairment in the second stage.
We evaluate SpliCES on the well-known RadioML dataset for
modulation recognition, and show that on average, our proposed
method transmits 12x less data while experiencing only about
3% accuracy drop in high signal-to-noise ratio (SNR) regimes.
With low SNR, SpliCES achieves 5% better accuracy thanks to
its dynamic structure.

I. INTRODUCTION

Mobile wireless devices are increasingly being used to
achieve spectrum awareness across time, space and frequency.
Among others, DNNs have been shown to be extremely
effective to solve a wide variety of signal awareness problems,
for example, detecting spectrum holes and thus achieve better
spectrum efficiency [1], radio fingerprinting to identify unau-
thorized spectrum access [2–4], or modulation classification
to decode dynamic waveforms [5–7].

As DNNs increase in size and complexity, so does the
computational burden required at the mobile device. There-
fore, fog and edge computing techniques [8] will become a
compelling necessity to offload DNN-based signal awareness
tasks [9]. Traditional edge computing, however, requires fre-
quent spectrum access and bandwidth utilization, which can
reveal the presence of mobile devices and exhaust the already
limited, congested and contested RF spectrum. The compu-
tational and spectrum constraints of mobile wireless sys-
tems require non-traditional and adaptive computational
paradigms that can dynamically achieve the right trade-
off between effectiveness and efficiency.
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Among others, split computing (SC) has been proposed
as a valid alternative to traditional edge computing [10]. SC
is an emerging computational paradigm where the DNN is
divided into a head network and tail network, respectively
executed at the mobile device and edge server [11]. To further
decrease the communication burden, the head model produces
an output that is (much) smaller than the input tensor, with a
procedure called synthetic bottleneck injection [12–15]. The
key intuition is that the representation size decreases only in
the late layers of the DNN, providing limited number of split-
ting point candidates, also known as natural bottlenecks [16].
Overall, SC is an extremely suitable candidate to perform
signal awareness tasks in urban scenarios.

The main limitation of existing bottleneck injection
techniques is that they completely neglect the dynamic na-
ture of communication environments. Specifically, a fixed-
size bottleneck is introduced into the original DNN regardless
of the wireless channel condition [17, 18]. However, this
is definitely not true in contested and congested spectrum
environments, where experiencing a rapidly-changing com-
munication channel is the norm. Such erratic changes may
adversely affect the overall signal awareness performance.
Moreover, varying communication environments can result in
inconsistent task performance. Therefore, we believe taking
the dynamic nature of channel into consideration is a neces-
sity. We argue that in a generic SC scenario, one can exploit
the signal used for reporting the task result back to mobile
device to estimate the channel condition and use an appropri-
ate bottleneck accordingly. To the best of our knowledge,
this is the first work that makes the intermediate feature
size in SC adaptive with respect to the channel condition.

We summarize below the core contributions of this paper:

• We propose a novel two-stage training strategy for
dynamic bottleneck design. In the first stage, all the param-
eters of the bottleneck-injected model ensemble are jointly
optimized using the whole dataset in order for the head model
to generalize to different channel conditions. In the second
stage, the head model is frozen, while different bottleneck-
injected models are fine-tuned using channel-conditional data
allowing them to specialize to their corresponding channel
quality, thus reducing memory footprint on the mobile device;

• We evaluate SpliCES on an Auto Modulation Classi-
fication (AMC) task by using the RadioML 2018.a dataset
[19]. We were able to achieve high feature compression ratios



while equalizing the performance across different channel
conditions, and show that on average, our proposed approach
transmits 12x less data while experiencing only about 3% ac-
curacy drop with high SNR. Thanks to its dynamic structure,
SpliCES achieves 5% better accuracy than a static approach
with low SNR.

II. RELATED WORK

Early work on local computing follows two different ap-
proaches: (i) some investigate the design of small models
meeting the limitations of portable devices [20, 21]; or (ii)
adapt state-of-the-art architectures to low-end devices by
making them more efficient, using for example, compression
techniques [22, 23]. However, local computing suffers from
significant performance loss.

At the other end of the spectrum, mobile devices may
completely offload the computation to edge computers [24],
also called edge computing, so as to achieve better task results
while relieving the computation burden on mobile devices.
However, mobile devices still need to transfer each and every
input to the edge, which incurs in excessive communication
burden. In addition, these methods fail to strike a balance
between exploiting the computational and communication
power of mobile devices. As an intermediate option, recent
work has proposed to distribute the processing load between
the mobile device and the edge server in a way that they
can collaboratively execute the model, also known as split
computing [11]. However, early studies do not alter the
original model architecture disregarding communication delay
as a design principle. Therefore, such designs depend on
the natural bottlenecks as splitting point candidates [25] to
reduce the communication cost. Early SC work is typically
impractical since representation tensor size often reduces
only close to the final output layer [13] which results in an
inappropriate distribution of computational burden. Therefore,
others suggest methods to compress the intermediate features
calculated within the model [26] to reduce the amount of
transferred data.

Compression methods include feature compression and
supervised compression. Traditional feature compression such
as Zip and JPEG [13] or transformations such as quanti-
zation and entropy coding may be applied to the output
of the head model [27, 28]. The compression gain of such
approaches is limited, as aggressive compression will degrade
performance significantly [29]. Lightweight autoencoders and
generative models for feature compression incur in additional
computation and/or performance loss [16, 30]. Task-oriented
compression techniques mostly use a procedure called bot-
tleneck injection [12]. [14, 31] use naive training process
from scratch, while [13] use Knowledge Distillation (KD)
to train the bottleneck-injected model. Building on this idea,
very recent work [18] proposes a new training method to
improve the performance. However, the work in [18] does
not consider signal awareness and does not propose
dynamic bottleneck injection, which is the target of this
paper. In the literature, many algorithms are able to perform

signal awareness tasks with large DNN models, for example
[19, 32]. Although they proposed various models capable of
achieving satisfactory accuracy in performing AMC, most of
them cannot be deployed on low-end embedded devices.

III. OVERVIEW OF DYNAMIC BOTTLENECK INJECTION

A. General Split Computing Scenario
Our intuition is that we can leverage channel estimation to

drive the reconfiguration of the bottleneck size. As illustrated
in Fig. 1, when the edge server communicates the task result
(such as classification label and segmentation mask) back to
the mobile device, the mobile device can exploit the received
signal to assess the channel condition by finding proper
channel impairment factors.

Fig. 1: Channel condition-adaptive bottleneck injection in
general split computing scenario.

Estimating the channel condition can be done using ma-
chine learning techniques or traditional approaches such as
measuring metrics like Error Vector Magnitude (EVM) and
Modulation Error Ratio (MER). In the former case, one can
use a dedicated simple neural network to compute metrics
such as Signal to Interference plus Noise Ratio (SINR) or
utilize the already-available primary model’s head as a feature
extractor and add a separate classifier on top of that to find
the desired metrics with a negligible overhead. The problem
of channel estimation has been well reported and therefore,
we consider it beyond the scope of this paper.

The proposed channel-driven approach provides the
mobile device with an opportunity to change the repre-
sentation size associated with the bottleneck according
to the communication environment. For example, when
functioning in an environment with a reliable high-data-rate
link between the mobile device and edge, the device, being
aware of the satisfactory channel condition with negligible
performance drop due to its effects, might decide on saving
some bandwidth by transferring less data to the edge. In addi-
tion to leaving more space for the device to use the available
bandwidth for other communication purposes, this reduction
in communication burden can save significant energy.



B. Split Computing for Signal Awareness
Signal awareness can be viewed as a special case of the

general scenario with an arbitrary task, and it is particularly
interesting for us to investigate since there are public datasets
available for this task. By comparing our approach across pre-
vious studies, we will be able to demonstrate the effectiveness
of SpliCES.

In this scenario, we assume that the desired task is a
simple signal analysis task, for example AMC. As shown
in Figure 2, the mobile device, which could be a strictly
hardware-constrained device such as a micro-processor, aims
to receive data from the primary flexible transmitter. The
flexible transmitter is capable of changing its modulation
scheme according to the real-time requirements based on an
adaptive algorithm, as practically shown in [5]. Therefore,
the mobile device has to find the modulation scheme being
used in real time to decode the waveform appropriately.
Considering the fact that the demodulation process itself
consumes significant amounts of computational power, this
does not leave much space for the mobile device to execute a
large model just as to find the modulation scheme. Utilizing
split computing, mobile devices can offload the execution of
the major part of the model to compute-capable edge devices
to perform the AMC task with high confidence.

Fig. 2: Automatic modulation classification in resource-
constrained devices using state-of-the-art models enabled by
split computing with SNR-based dynamic intermediate repre-
sentation size extraction.

IV. PROBLEM FORMULATION AND TRAINING APPROACH

We assume a pre-trained DNN N t consisting of L layers.
We first split this model into two parts, where the split point
should be chosen according to the maximum task performance
degradation due to channel distortions and the maximum
tolerable computational load of the head model on the mobile
device. There is a trade-off between the aforementioned
objectives, but since our target is resource-constrained
devices, we mostly prefer placing the breaking point in
the very first layers.

The original DNN model defines a mapping f(x; ⇥t) :
Rnin ! Rnout as subsequent transformations:
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and the set of all parameters of the DNN. The superscript
t denotes teacher since later we will use this model as the
teacher to transfer its knowledge to the adaptively bottleneck-
injected models.

We create new models by injecting bottlenecks at the layer
`B. To do so, we prune a subset of kernels in that layer.
Since we are using convolutional neural networks (CNNs),
the tensor shape of the output of all layers from `B + 1 to
the last layer L remain intact even though we have removed
some filters from the bottleneck layer. In order to have an
adaptive bottleneck, we choose K candidate bottleneck
sizes, each intended to be used for a certain level of
channel impairment. We perform the training of the new
adaptive bottleneck-injected models in two stages. In the first
stage, our goal is to train a general head which can work
properly for all possible channel conditions. In the second
stage, however, we focus on specializing the bottleneck layer
parameters to specific channel states.

A. Stage 1: Generalized Merged Ensemble Training

Since we have different bottlenecks, the parameters of the
layers immediately before and after the bottleneck layer are
going to be different forming an ensemble of sub-models near
the bottleneck, each tailored for a given channel condition.
Our training algorithm has to train all of their parameters
jointly, while keeping the number of parameters in the head
model to a minimum. To achieve minimum head parameters,
we assume that all the bottleneck-injected models use the
same parameters for all the layers preceding the bottleneck
layer. Then, we have an ensemble of networks, each
corresponding to a certain candidate bottleneck size. Each
of the resulting bottleneck-injected models can be formulated
as follows:
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where k is the index of the bottleneck-injected model (1 
k  K), and superscript s is added to denote student. We
need to emphasize that the parameters of the layers before
`B does not depend on k which means that we do not need
to store different heads in the mobile device other than the
parameters of the very last head layer, reducing the memory
footprint. Notice that we want to train a head which can
extract useful features for all channel conditions. We know
that most embedded devices have more stringent constraints
when it comes to computational power compared to memory.
Moreover, in cases when they do not have specialized DNN
accelerators, loading different parameters for the very last
layer only does not noticeably change the head execution



time, still being able to meet real-time constraints faced in
most time-sensitive signal awareness problems.

In this stage, we merge the bottleneck-injected model
ensemble and use the weighted summation of their output
tensors of the layer `B + 1 as the merged model output.
Then, we feed all the training dataset regardless of the channel
condition to the merged model. We want the merged model
to mimic the behavior of the original model to reconstruct
the representations of the corresponding layers in the original
model. To this end, we use the reconstruction loss for all the
succeeding layers to `B +1 apart from the final KD loss. The
resulting loss function has the following form:

Lmerged = Lreconst + LKD
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where ⇤ = [�1, ..., �K ] is a balancing weight vector which is
set reciprocally proportional to the bottleneck size. This is to
penalize larger bottlenecks which correspond to worse chan-
nel conditions less than low channel distortion levels which
can already attain satisfactory task performance. Therefore,
since smaller bottlenecks often have less confident outputs,
we need to scale them by multiplying their contribution in
the merged ensemble result. ↵ is a balancing factor between
hard and soft target losses. Ltask is a task-specific loss (hard
target), e.g., a standard cross entropy loss for classification.
KL is the Kullback-Leibler divergence function (soft target),
and we are assuming the last layer outputs of the teacher
and student model represent the probability distributions,
meaning that the last layer incorporates the softmax layer. ⌧
is a ”temperature” hyper-parameter for knowledge distillation
normally set to 1.

Bottleneck 
Ensemble

𝓛reconst 𝓛KD

Fig. 3: Jointly training of bottleneck-injected model ensemble.
We initialize the parameters of all layers except for those

neighboring the bottleneck with their pretrained values from
the original model. Since learning of parameters of earlier
layers is slower than that of later layers due to their distance
from the final output (i.e., vanishing gradient problem), we
first train by freezing all the layers after `B + 1, and then
we start unfreezing the next layers one by one, reducing the
learning rate in each step to achieve the fine-tuning goal.
Hence, through iteration, the system manages to preserve

accuracy and get better convergence time (shorter training
time).

B. Stage 2: Specialized Split Ensemble Training
In the second training stage, the objective is to specialize

each bottleneck-injected model to a certain channel condition.
Thus, we break the training dataset into multiple subsets
based on channel condition metrics. Then, we split the sub-
model ensemble around the bottleneck and train them using
the channel state-conditional data. While doing so, training
freezes the layers before `B since this is the part of the head
model that should stay fixed. Through fixing such parameters,
the only part of the head model whose parameters will diverge
is the very last layer of the head model (`B itself). Hence,
there is only a need to save different parameters associated
with different bottleneck sizes for this layer only. The loss
that is used in second stage for each bottleneck candidate is:
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After this stage of training, the parameters except for
the layers before the bottleneck will diverge and become
specialized to extract representations which are specifically
immune to certain levels of severity in channel condition.
That is to say that for more harsh channel states they tend to
extract features which are not only larger in size but also more
resistant to distortions when passing through the wireless
channel. Since we are training the bottleneck-injected models
using task-oriented loss, becoming resistant is in the sense
that their task result are less prone to change even though the
transferred representations get distorted severely.

If we want to reduce the tail model memory footprint on
the edge device as well, we may use the same parameters
for all the successive layers after `B + 1, train them in
the first stage using the full training set, and freeze them
in the second stage of training. This way, the bottleneck-
injected models can adapt to varying environments through
learning the parameters of layers surrounding the bottleneck
only which can significantly decrease the number of total
parameters which need to be stored. However, we do not
consider any hardware constraints at the edge. Consequently,
we prefer using different parameters for the second part of
the model which is to be executed on the edge server.

V. PERFORMANCE EVALUATION

We evaluated SpliCES on the RadioML RML2018.01a
dataset [19] since it is one of the largest publicly-available
datasets for AMC tasks and has been used in most research
works as a benchmark dataset. All the existing AMC works
use lightweight models either designed from scratch or a
watered-down version of the state-of-the-art models. Since SC
enables us to use larger models, as for the model, we used the
unmodified ResNet model. Since ResNet is designed to work
with 2D image data, the only change we have made to ResNet
is to swap all layers with their equivalent 1D version without



changing any parameters. To be more specific, we have
used ResNet-18 since based on our experiments, its capacity
is enough with regard to RML2018.01a dataset to achieve
satisfactory classification accuracy. The dataset is randomly
split into training, validation and test sets with a ratio of
8:1:2, respectively. We first train the network on training set
for 100 epochs using Adam optimizer with a learning rate of
0.001, reducing the learning rate by a factor of 0.5 when the
validation loss stops improving after 5 consecutive epochs.
We have also used early stopping after 20 epochs to prevent
overfitting. The trained model and its parameters are then used
as the teacher model to train the bottleneck-injected student
models.

As discussed, we injected K different bottleneck candidate
sizes for different channel conditions. We used SNR as a
measure of channel quality, and since the dataset consists of
data collected using various SNR values ranging from -20
to 30 dB, we split the dataset to K equal-sized SNR ranges
within this interval representing different levels of channel
impairment. In our experiments, we used K = 5 and 8,
and trained each bottleneck injected model to specialize in
a certain SNR range. In testing phase, we calculated MER
as an estimate of SNR, and used the appropriate bottleneck
accordingly.

As shown in Figure 4, injecting SNR-adaptive bottleneck
reduces the accuracy only marginally in some cases, and
even improves the performance for some SNRs. Specializing
the parameters for different SNR ranges allows SpliCES
to find a better local minimum. On the other hand, as
illustrated in Figure 5, while adaptive bottleneck does not
compromise the accuracy, it will reduce the intermediate
representation size significantly. As evident in the results, the
effect of dynamic bottleneck injection can be interpreted as
equalizing the task performance to gain a noticeable compres-
sion ratio. For high SNR values, SpliCES saves tremendous
bandwidth by significantly reducing the amount of wirelessly
transmitted data over the wireless link to the edge server at the
cost of a negligible drop in accuracy. On the other hand, when
experiencing poor conditions of the communication channel,
the algorithm chooses to transfer more data to maintain a
better performance. Overall, on average, SpliCES transmits
12x less data while experiencing only about 3% accuracy
drop with high SNR. With low SNR, our approach
achieves 5% better accuracy thanks to its dynamic struc-
ture. Finally, Figure 6 shows the computational complexity of
head models expressed in floating point (multiply-accumulate)
operations (FLOP). We notice that the FLOPs for naive SC
is an order of magnitude larger than methods with bottleneck
injection.

VI. CONCLUSIONS

DNNs will become more and more important for sig-
nal awareness in the near future, while edge computing
techniques will become necessary to handle the complexity.
In this paper, we have improved the state of the art by
proposing a new approach for dynamic bottleneck design in

split computing. This paper presented a novel training strategy
which optimizes the bottleneck-injected ensemble parameters
to generalize to all channel conditions in its first stage, and
then specializes each bottleneck separately to a certain level
of channel impairment in the second stage. We have evaluated
SpliCES on the well-known RadioML dataset for modulation
recognition, and shown that on average, SpliCES transmits
much less data while experiencing limited performance de-
crease.

�20 �10 0 10 20 30

SNR (dB)

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Naive

Static BN

K = 5

K = 8

Fig. 4: Classification accuracy comparison of adaptive bot-
tleneck injection using different number of candidate sizes
with static case and naive split computing (without bottleneck
injection).
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Fig. 5: Compression gain in intermediate representation size
which should be transmitted over the wireless channel to edge.
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estimated as the number of floating point operations.
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