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Abstract—Models based on deep neural networks have at-
tracted interest in a myriad of applications in the wireless land-
scape, including spectrum intelligence, modulation recognition,
and radio fingerprinting, among others. One key challenge that is
currently inhibiting the application of such models in real-world
tactical scenarios is that their performance radically changes
with continuously changing dynamic wireless channel conditions.
Existing work tackle this by performing efficient fine-tuning or
adaptation using as few samples as possible. However, some prior
knowledge about the new conditions is involved in the process. In
this paper, we propose for the first time zero-shot dynamic neural
network adaptation (zDNA) (i.e., without any additional training
samples) of wireless classification models after deployment in un-
seen conditions. Specifically, we show that by changing only the
affine transformation parameters and normalizing the learned
features in different layers of the neural network in an online
manner without any labeled samples, we can achieve superior
performance in dynamic conditions. Our proposed approach is
evaluated on the publicly available RadioML 2018.01A dataset,
to test its adaptability to dynamically changing signal-to-noise
ratio (SNR) conditions. Performance improvement consistency
in all unseen test scenarios (up to 24% in low SNR regime)
demonstrates the applicability of our framework in real-world
contexts.

I. INTRODUCTION

Although the interest in application of neural networks
in the physical layer traces back to the 90’s [1], it has
been mostly grounded upon mathematical modeling and in-
formation theory. Over the past few years, the significant
success of Deep Neural Networks (DNNs) in fields such as
computer vision and natural language processing, joint with
the stringent Quality of Service (QOS) requirements of Fifth
Generation (5G) and beyond cellular systems and the release
of Radio Frequency Machine Learning Systems (RFMLS) [2]
program by DARPA, have spurred researcher to apply data-
driven models in the wireless domain.

Although the advantages of using DNNs in the wireless
domain have been widely demonstrated, existing work has
shown that the non-stationary, dynamic and unpredictable
effect of the wireless channel, as well as hardware-
level transceiver impairments, may cause the classification
accuracy to plummet [3]. Among other factors, the perfor-
mance loss is mainly due to transceiver-related impairments
(e.g., phase noise, I/Q imbalance), which are highly dependent
from time-varying temperature and voltage oscillations [4],
as well as channel-related impairments, which are strongly
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tied to the ongoing propagation environment and can hardly
be predicted in advance [5]. For example, radio fingerprint-
ing accuracy may decrease by 30% when tested with data
collected days after it was trained [6], while beam detection
accuracy may decrease by up to 65% when a different antenna
and/or receiver orientation are considered [7]. The key issue
is that Deep Learning (DL) models are trained using
labeled data collected in specific channel conditions and
noise. To address the problem, data augmentation and few-
shot learning based approaches have been proposed. Data
Augmentation based approaches try to increase the model’s
robustness during training by showing the modes synthetically
perturbed data so that the model is not confused when similar
samples are processed during inference time [8, 9]. Few-shot
learning in wireless refers to the ability of a model to learn
from a small number of labeled examples and generalize
to new, unseen channel conditions, usually done through
leveraging transfer learning, meta learning or self-supervised
losses [10, 11]. Although such approaches are demonstrated
to work in some conditions, performance of them was
not tested without any prior knowledge in completely
unseen channel conditions where no labelled data could
be collected. Our proposed framework aims to take a step
toward that unexplored territory by introducing zDNAs in
wireless DNNs. Zero-shot adaptation refers to the ability of a
DNN to adapt and perform in a new environment without any
prior knowledge and supervised retraining. Our approach is
to modulate the activations of different layers of our trained
model with the estimated statistics in the newly-encountered
channel through the Batch Normalization (BN) layer, and shift
and scale those activations with entropy statistics. The idea
of feature modulation through BN statistics is an approach
that has been successfully applied in a range of tasks from
unsupervised domain adaptation [12], robotic kitting [13] and
adaptation against image corruption [14]. However, to the
best of our knowledge, has not been applied and tested in
wireless classification task for adapting models in unseen
channel condition. Our key finding is that by changing only
the affine transformation parameters and normalizing the
learned features in different layers of the neural network
in an online manner without any labeled samples, we can
achieve superior performance in dynamically changing
conditions. We tested our approach on the publicly available
RadioML 2018.01A dataset [15], to test its adaptability to
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Fig. 1: Overview of our zero-shot dynamic neural network adaptation process.

dynamically changing SNR conditions. Performance improve-
ment consistency in all unseen test scenarios (up to 24%
in low SNR regime) demonstrates the applicability of the
framework in real-world contexts.

The rest of the paper is structured as follows. Section
II discusses earlier attempts to improve the performance of
DNN-based wireless classification networks. In Section III,
we describe the common assumptions in channel-adaptive
DNN models, their flaws, and the mathematical rationale for
our assumptions. Section IV explains in detail approach. In
Section V, we describe our experimental setup and the related
results. This is followed by a summary of the paper and
concluding remarks in Section VI.

II. RELATED WORK

Over the last few years, deep neural networks (DNN)
have enjoyed tremendous success in the networking and
wireless research communities [16, 17]. DNNs have the
unique capability of addressing classification and/or opti-
mization problems that have intractable complexity and/or
closed-form solutions are difficult to obtain. Convolutional
neural networks, in particular, can operate on unprocessed
I/Q samples without using feature extraction and/or selection
algorithms [18]. Although the effectiveness of DNNs is
proven, a plethora of prior work has exposed the vul-
nerability of data-driven approaches to changing and/or
dynamic environmental conditions, both related to the
hardware circuitry of the wireless platform and the different
propagation environments that the DNNs need to operate on
at test time. Among other application scenarios, the issue
has been unveiled for problems such as radio fingerprinting
[3, 6], and beam fingerprinting [7]. Indeed, it is inevitable that
tactical systems will be subjected to environment dynamics
(i.e., noise/interference) and performance metrics (e.g., link

or network throughput) that will drastically change over time.
We can also expect that the objective function of DNNs will
also change over time – for example, a tactical platform
may prefer wireless performance at the beginning of its
lifetime and then prefer energy consumption reduction when
its batteries are exhausted.

As far as possible solutions are concerned, to make DNNs
perform well in an environment with impulsive noise authors
in [19] have proposed an auto correlation function based
on hyperbolic tangent cyclic spectrum. To make DNN clas-
sification model robust against noise, in [20] the authors
proposed to project the raw I/Q samples into a grid like
image with polar transformation and assign color to them
based on temporal accumulation probability. The work in [8]
has shown the application of different techniques of imaging
time series data to transform I/Q samples with images and
reported superior performance with ResNet-18 architectures
for images. Although working on the transformed input space
of wireless signals have been agreed upon to boost the
performance, none of them have reported results on how such
transformation performs in unseen conditions, which is the
main technical target of this paper.

Shang et al. [21] proposed a knowledge transfer mechanism
to transfer the knowledge from a trained DNN classifier to
a U-Net based signal reconstruction module to use latent
embeddings learned by the network for mapping low SNR
signal to a proper format. A dynamic distribution adaptation
process was proposed in [22], which learns a shared latent
subspace of signals across source and target domain and trans-
fers knowledge to target domain signal efficiently by using
fewer samples. In such transfer learning-based approaches,
some labeled samples from target domain are available.
But in our proposed setting, target domain is considered



completely unseen which resembles closely with practical
scenarios. Recent work [23] leverages an autoencoder for end
to end communication that adapts itself with the change in
wireless channel by learning only from a few labeled samples
(few-shot). Such an approach is feasible in scenarios where
collecting a few labeled samples in a changed environment
is inexpensive in terms of time and effort, which is not the
setting we are considering in this paper.

III. PROBLEM STATEMENT AND MOTIVATION

We mathematically model the wireless channel (i.e.,
medium of propagation, imperfection of transceivers) as a
transfer function that transform an input x ✏ Rd into an
output z ✏ Rd. We assume that there exists a transfer function
that represents the channel which is stochastic and non-linear
in nature and can be written as z = h✓c(x, r), where ✓c

denotes the parameters of the channel models and all the
random aspects (e.g., frequency and phase offset, hardware
imperfections,noise) are being captured by r. In a traditional
wireless classification problem, a dataset is provided, i.e.,
D = {Z, Y}, where y ✏ Y := {1, ..., k} are the class labels
of k-classes of z ✏ Z , which are actually associated with the
unaltered input data x ✏ X to train a DNN model f✓(.) that
gives us the probability distribution P✓(y | x).

The overall objective can be modeled as follows:

ŷ(z) = argmax
y ✏ Y

P✓(y | z) = f✓ (h✓c(x , r))

s.t.
(1)

max
✓

E(x,y)[1(ŷ == y)] (2)

In Equation 2, 1(c) is an indicator function that takes value
1 or 0 conditioned on c being true or false. In a real-world
communication scenario, both the channel parameters ✓c and
the random factor r are non-stationary and changes over
time according to hardware imperfections and the mobility of
users. In other words, ht

✓c
(x, r) 6= ht

0

✓c
(x, r). From a machine

learning perspective, this scenario can be defined as the stan-
dard covariate shift assumption [24], i.e., P t(z|x) 6= P t

0
(z|x)

and P t(y |x) = P t
0
(y |x) where P t(.) denotes the distribution

of data at time t. Some of the previous works address this
issue by transforming the input to some different mode (e.g.
image, grid constellation) [20, 25] so that the distribution
shift is slightly less in that transformed domain. Another
popular line of approach in the literature [21, 26] is to learn
some transformation function T✓p(.) that is typically another
Neural Network (NN) that transforms z in such a way that
effect in the change of channel parameters is compensated
P t
�
T✓p(z) |x)

�
⇠ P t

0 �
T✓p(z) |x)

�
. However, to learn such

a transformation function that performs well across changing
wireless condition, T✓p(.) needs to be trained on a huge
number of scenarios in a supervised manner. This approach
ultimately needs the collection of labelled data set in all
possible channel conditions, which is not feasible in real-
world highly-dynamic settings.

Due to such limitations, we postulate that the DNN f✓(.)
should dynamically update itself without any supervision to
facilitate the utilization of such DNN classifier in actual
real-world scenarios. Our proposed zDNA approach does not
assume any prior knowledge about new channel condition and
update itself only from the statistics and inference results of
a few unlabelled samples Dt = {Zt} without the associated
labels Yt.

IV. PROPOSED ZERO-SHOT ADAPTATION APPROACH

We describe below our zDNA, which is also summarized
in Figure 1.
A. Batch Normalization

Batch normalization (BN) is one of the most important
tools for training a DNN [27]. As data is passed through
the layers of a DNN, activation values in a number of
layers becomes large. Thus, BN helps stabilizing the training
by making the optimization landscape smoother [28]. Let
A

l
✏RB⇥Cl⇥Nl is a batch of activation tensors of lth convolu-

tional layer, where B corresponds to the batch size, Cl denotes
the number of channels in l

th layer and Nl is the dimension of
activations in each channel. A BN layer first calculates µc =

1
|B||Nl|

P
b✏B, n✏Nl

Al and �c =
q

1
|B|
P

b✏B(Al � µc)2 and
subtracts µc from all input activation’s in channel c. Subse-
quently, BN divides the centered activation by the standard
deviation �c. The following normalization is applied for each
channel for all batches:

BN
�
A

l
b,c,n l

�
 �c ⇥

A
l
b,c,n l

� µcp
�2
c + ✏

+ �c 8 b, c, nl (3)

Here, �c and �c are the affine scaling and shifting parameters
followed by normalization, while (✏ > 0) is a small constant
added for numerical stability. The normalized and affine
transformed outputs are passed to the next (l + 1)th layer
while the normalized output is kept to the l

th layer. BN also
keeps track of the estimate of running mean and variance
to use during the inference phase as a global estimate of
normalization statistics, and �c and �c are optimized with
other model parameters through back propagation.

B. Entropy as a Proxy to Sense Dynamic Change
When there is a change in channel condition, which would

be viewed as distribution shift in data, the model will be less
confident on its prediction. Specifically, during inference time,
we can measure the entropy using the following equation.

H(ŷ) = �
X

c

p(ŷc) log p(ŷc) (4)

where, ŷc is the logit of the prediction of the model.
Optimizing over a single sample prediction would assign all
probability to the most probable class even if the prediction is
incorrect. To prevent such a problem, we propose to consider
both the mean and variance of entropy over a batch of pre-
dictions to optimize our desired parameters. The unsupervised



zero shot loss across last s samples can be calculated using
the following equation:

Lh =
1

|s|
X

s

H (ŷ) +

 
H (ŷ)�

 
1

|s|
X

s

H (ŷ)

!!2

(5)

From Figure 2, it can be observed that, for a randomly
sampled batch of data, the mean of entropy is higher when
the DNN model is tested in unseen noise conditions although
there are some inconsistencies (e.g., SNR = 2 dB). The
rationale behind such inconsistencies can be attributed to the
randomness of incoming data samples as the model may
predict erroneously with high confidence for some samples
in unseen scenario. So, Unlike [14], taking also the variance
of entropy over the samples, such inconsistencies can be pre-
vented, as in unseen noise conditions the model’s predictions
should be more erratic. It should also be noticed that our
objective is unsupervised as it does not need any annotations
but only predictions.

Fig. 2: Entropy of two randomly sampled batches for different
SNR when model is trained for SNR=10 dB.
C. Dynamic Update of the DNN

Although updating every DNN parameter in response to a
dynamic change would give the best performance in specific
scenario, altering ✓ would inhibit us to reset our model
to ideal operating conditions (desirable SNR and channel
conditions). Furthermore, f✓(.) is highly non-linear and ✓

is high dimensional for a typical DNN. Trying to optimize
all the parameters of the DNN in new channel condition
would make the adaptation very sensitive to changes. Such
an unstable setting can easily make our inference task in new
scenario degrade rather than improving. To improve stability
and efficiency, and in line with previous work on domain
adaptation [14, 29], we instead only update features that are
linear (scales and shifts), and low-dimensional (channel-wise).

Specifically, only the affine transformation parameters
{�l,c, �l,c} of each channel c of each normalization layer
l of the model f✓(.) are kept in the computational graph that
are to be optimized. All other parameters ✓ \ {�l,c, �l,c} are
discarded from the computational graph. The global estimate
of normalization statistics {µ̄l,c , �̄l,c} are also discarded and

stored in a buffer for resetting the model to its initial state.
With each incoming sample x

t during inference we update
and store the running mean and variance of each BN layer of
the model in a buffer using ⇠l,c

new = (1�m)⇠̃l,c+m ⇠
t
l,c for

last s samples, where m is the momentum, ⇠tl,c =
n
µ
t
l,c ,�

t
l,c

o

and ⇠̃l,c are the statistics of current sample and previously
stored statistics respectively. We also calculate H(ŷ) and Lh

of the incoming samples using equation 4 and equation 5
respectively and store them in a buffer.

We update the affine parameters (�l,c, �l,c) of all BN layers
by a single backward pass using Lh and replace the previously
stored statistics with ⇠

new
l,c =

n
µ
new
l,c ,�

new
l,c

o
stored in the

statistics buffer.
V. PERFORMANCE EVALUATION

A. Description of Dataset

We use the widely popular RadioML 2018.01A dataset
[15] of wireless domain classification task and use it to
study the performance of our zero-shot adaptation framework.
RadioML 2018.01A is a synthetic data set using GNU Radio
that includes radio signals of different modulations at varying
SNR levels. The dataset consists of 24 commonly used
modulations.

B. Experimental Setup

We first split the dataset of each SNR into training and
testing dataset with 80% data in the training set and 20% as
the testing set. We use three different seeds for generating
the random split and all the performance reported are the
average across three different runs. Furthermore, we discard
data with very low SNR (< �10dB) as the information
present in such are not representative of our actual task and
also with very high SNR (> 20dB) as the performance
increase get saturated around this range. We use the original
Residual Network (ResNet) structure proposed in [30] with 18
convolution layers (ResNet-18) as the base model for adaption
although this method would work with any Convolutional
Neural Network (CNN) that is equipped with BN layer.
The number of channels, kernel sizes and strides were kept
same as the original ResNet-18 architecture except of two
modifications. As we pass the raw I/Q samples directly to the
network as a two-channel sequence, the layers in the original
ResNet-18 structure intended for processing images were
replaced by their one dimensional alternatives (e.g. Conv1D,
BatchNorm1D). We also had to add an extra Fully Connected
(FC) layer after the Global Average Pooling (GAP) layer
to stabilize the information passing from the convolutional
backbone to the dense classifier. We train our model for 100
epochs with Adam Optimizer (learning rate =0.01 and weight
decay =0.01) and cosine annealing learning rate scheduler. In
the adaptation phase, we set the learning rate to 0.001.

C. Performance Across Different Unseen Noise Condition

For the classification of different modulation types, the
random noise and interference do not provide any necessary



(a) Model Trained on only SNR = 10 dB (b) Model Trained on only SNR = 20 dB

Fig. 3: Performance of the Adaptation Framework across different unseen SNR data

(a) ResNet18 Backbone Model (b) VGG Backbone Model in [15]

Fig. 4: Performance of the proposed approach with different sample size; model trained on SNR = 10 dB

information to the DNN, since it has to learn the meaningful
original modulation features for generalization. If we trained
a DNN with data consisting of high noise and interference, a
DNN with sufficient capability would just overfit to some
irrelevant features that is not representative of the actual
modulation class. From Figure ??, we can observe that a DNN
trained with data at (SNR = 0 dB) performs much worse
than when tested with data from high SNR, which means it
did not learn the features of actual modulation class. Thus,
adapting the model with a few samples from the high SNR
range cannot restore the performance.

Our approach gives significant performance improve-
ment (up to 24%) when the model is trained on high SNR
condition [10dB, 20dB] but tested in completely unseen
SNR condition. From Figure 3a and 3b, it can be seen
that performance in SNR range [-6,6] has been improved
by significant amount while slight performance increase can
also be observed in higher SNRs. This demonstrates our
framework’s ability to retrieve performance in low SNR range
without any extra SNR prediction and compensation network,
that are trained on labeled samples as opposed to previous
approaches [21, 26].

One desired capability of the zero-shot framework is that it

should adapt with as few unlabeled samples as possible. Also,
the adaptation should be agnostic to the DNN architecture.
To understand such capabilities of the proposed framework,
we have trained the two DNN architectures proposed in [15]
and make inference on all other SNR scenarios with our
adaptation scheme with sample size, s = 32, 64, 128, 256.
From Figure 4, we can observe that for both ResNet-18 and
VGG backbones, there is consistent performance improve-
ment for SNR �2dB to 10dB. For ResNet-18 backbone
model, accuracy starts to degrade from SNR � 6 dB for
sample size of 32 as it can not capture the ideal estimation
of normalization parameters with this amount of samples.
For the VGG backbone model in Figure 4b, the accuracy
improvement is significant (up to 22%) for low SNR range
but it starts to degrade after that point even with sample size
of 256 with adaptation. We postulate that such behaviour is
observed when the model does not have enough representative
power for the task (test accuracy ⇠ 60%), replacing the trans-
formation statistics calculated during training with estimated
ones only confuses the already under-fitted model.

VI. CONCLUSION

In this paper, we propose for the first time zero-shot adapta-
tion (i.e., without any additional training samples) of wireless



classification models after deployment in unseen conditions.
Conversely from existing work which performs fine-tuning or
adaptation using as few samples, we show that by changing
only the affine transformation parameters and normalizing the
learned features in different layers, we can achieve superior
performance in dynamically changing conditions. Experimen-
tal results on the RadioML 2018.01A dataset with different
SNR conditions show performance improvement up to 24%
in low SNR regimes, which demonstrates the applicability of
our framework in real-world contexts.
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