A Scalable Deep Learning Framework for Dynamic
CSI Feedback with Variable Antenna Port Numbers

Yu-Chien Lin, Ta-Sung Lee, and Zhi Ding

Abstract—Transmitter-side channel state information (CSI)
is vital for large MIMO downlink systems to achieve high
spectrum and energy efficiency. Existing deep learning architec-
tures for downlink CSI feedback and recovery show promising
improvement of UE feedback efficiency and eNB/gNB CSI
recovery accuracy. One notable weakness of current deep learn-
ing architectures lies in their rigidity when customized and
trained according to a preset number of antenna ports for a
given compression ratio. To develop flexible learning models
for different antenna port numbers and compression levels, this
work proposes a novel scalable deep learning framework that
accommodates different numbers of antenna ports and achieves
dynamic feedback compression. It further reduces computation
and memory complexity by allowing UEs to feedback segmented
DL CSI. We showcase a multi-rate successive convolution encoder
with under 500 parameters. Furthermore, based on the multi-
rate architecture, we propose to optimize feedback efficiency
by selecting segment-dependent compression levels. Test results
demonstrate superior performance, good scalability, and high
efficiency for both indoor and outdoor channels.

Index Terms—CSI feedback, scalability, dynamic architecture,
massive MIMO, deep learning

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) technolo-
gies play an important role in improving spectrum and energy
efficiency of 5G and future generation wireless networks.
The power of massive MIMO hinges on the accurate down-
link channel state information (CSI) at the base station or
gNodeB (gNB). Without uplink/downlink (UL/DL) channel
reciprocity assumed in time-division duplxing (TDD) systems,
a frequency-division duplexing (FDD) base station typically
relies on user equipment (UE) feedbacks for DL CSI ac-
quisition. Yet, the increasing number of transmit antennas
envisioned in millimeter wave bands or higher frequencies [1]
requires a vast amount of uplink bandwidth and power for
CSI feedback. To conserve bandwidth and UE battery, efficient
compression of CSI feedback is vital to broad deployment of
massive MIMO FDD communications systems.

The 3rd Generation Partnership Project (3GPP) recently re-
leased the features of Release 18 [2] which embraces artificial
intelligence (AI) and machine learning (ML). In particular, Al
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and ML are expected for enhancement of CSI feedback (e.g.,
overhead reduction and improved estimation accuracy). From
radio physics, cellular CSI exhibits a limited multipath delay
spread (sparsity), making efficient CSI feedback possible. A
deep autoencoder framework [3] was proposed with encoders
at UEs and a matching decoder at serving station (e.g., gNB in
5G) for CSI compression and recovery, respectively. This and
other related works [4]-[7] have demonstrated the potential
for efficient CSI feedback and accurate CSI recovery enabled
by deep learning technologies. Physical insights with respect
to temporal variation of CSI, similar propagation conditions of
nearby UEs, and UL/DL radio path reciprocity motivated more
recent progresses that leverage various additional knowledge
such as CSI time coherence [4], [8], CSI of nearby UEs [9],
and UL/DL CSI reciprocity [10]-[14] to aid and improve DL
CSI recovery.

Existing deep learning methods attempt to extract under-
lying mutual dependency among gNB antennas in massive
MIMO configuration by simultaneously feeding CSI of all
DL antennas into learning machine for joint compression.
Such large input size makes it harder to develop a low-
complexity and light-weight deep learning models. There have
been attempts to directly reduce encoder’s model complexity
[15]-[18], achieving only limited success. In this work, we
utilize the physical insight that only nearby massive MIMO
antennas exhibit non-negligible CSI correlation since gNB
antenna array geometrically spans multiple wavelengths. Ac-
cordingly, our light-weight autoencoder should harness the
CSI correlation of neighboring antennas (or antenna ports) to
compresses large-array CSI via a divide-and-conquer principle
(DCP). The proposed DCP substantially decreases input size
and, consequently, the deep learning model size. Moreover,
since a DCP based learning model only needs CSI from
adjacent antennas, the model is scalable to various sizes of
massive MIMO antenna arrays.

Channel dissimilarity and inflexible model output size ne-
cessitate retraining of learning models for different channel
scenarios and compression levels, respectively. To avoid train-
ing burdens for different channel scenarios, online training
strategies have been suggested with aid of knowledge distilla-
tion [19] and transfer-learning [20], [21]. The authors in [22]
applied transfer-learning to reduce training cost for multiple
compression levels. A related work [23] designed a multi-
rate CSI feedback framework and a matching classification
model for selecting a target compression ratio according to
the number of channel clusters. However, to the best of our
knowledge, physical connection between compressibility and



channel cluster number remains unconfirmed. In this work,
we design a novel dynamic-rate CSI feedback framework.
We propose a matching classifier to determine the optimal
compression level for maximizing codeword efficiency.

Our primary goal is to reduce the deployment cost of deep
learning models at the UE for CSI feedback. We systematically
simplify deep learning architecture and make it reusable for
different array geometries and compression ratios. We develop
a scalable dynamic-rate CSI feedback framework along with
a lightweight convolutional encoder for deployment at cost-
sensitive UEs. Our contributions are summarized below.

o We develop a subarray based (SAB) CSI feedback frame-
work as a new learning-based compression and recovery
mechanism that systematically reduces learning model
size by exploiting both strong and weak CSI correlations
among adjacent and non-adjacent antennas, respectively.

e The SAB framework is scalable to accommodate large
antenna sizes and applicable to most existing compres-
sion/recovery methods.

o This work provides a light-weighted encoder design for
multi-rate CSI feedback framework which only requires
hundreds of parameters for low cost UEs.

o Uplink feedback overhead can be further saved by a
proposed feedback pruning mechanism with the aid of
the sparsity in antenna port domain.

o To optimize codeword efficiency, we develop a dynamic
CR for CSI feedback which adjusts codeword lengths to
compress and recover segmented DL CSI according to
their significance.

II. SYSTEM MODEL

A. CSI Estimation via Pilots and Truncation

We consider a single-cell MIMO FDD link in which a
gNB activates N, antenna ports in communication with single-
antenna UEs. Following 3GPP technical specifications, sparse
pilot symbols (CSI-RS and DMRS) are distributed in fre-
quency domain for downlink transmission. Assuming each
subband contains N subcarriers with spacing of Af and
a downsampling rate DRy, the frequency interval between
consecutive pilots is DRy-Af. We denote h; € CMrx1 as
DL CSI of the i-th AP at M/ pilot positions. Let superscript
()" denote conjugate transpose. By collecting CSI of each
AP, a pilot sampled DL CSI matrix H relates to the full DL
CSI matrix H via

H= HQpg, = [h1 hy - hNn,]H e CNexMr (1)

where Qpg, is a downsampling matrix with pilot rate DRy.
To reduce feedback overhead, we exploit the physical mul-
tipath delay sparsity of CSI by transforming full DL CSI into
delay domain through discrete Fourier transform (DFT) or
discrete cosine transform (DCT). We truncate the insignificant
near-zero elements in trailing (large) delay indices as follows:
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where F € CMs*Ms denotes a DFT/DCT matrix and
My x N, matrix T performs delay domain truncation. Note
that the design of matrix T may varies according to transfor-
mation F and the CSI properties. Matrix T in Eq. (2) is an
example for DCT transformation that drops the last My — N;
columns of H - F corresponding to large multipath delays.

B. Deep Learning Compression

Autoencoder has shown successes in several deep learning
frameworks. An encoder at UE compresses its estimated DL
CSI for uplink feedback and a decoder at gNB recovers the
estimated CSI according to the feedback from UE. Assuming
negligible CSI elements at large delays, many have exploited
convolutional layers to compress and recover the truncated DL
pilot CSI via

Encoder:

q = fen(H), 3)
Decoder: H = fae(Q)- 4)

The decoder should replace the truncated DL CSI H via zero-
padding to transform CSI back from delay domain to estimate
DL CSI matrix H in the subcarrier domain as follows:

~

H= { H ON,xM;—N, }FH (%)
The CSI recovery accuracy can be measured by the normal-
ized mean square error (NMSE) of the full DL CSI:
= o~ D = ~
NMSE(H,H) = > ||H, — Hy
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where subscript d denotes the d-th test. When training the
autoencoder, the CSI error due to truncation is unavailable.
Hence, autoencoder loss function can simply rely on the
truncated DL CSI error

NMSE(H, H Dﬁ | ) 7
(H, >—;H o~ Ha| JHE O

III. MULTI-RATE CSI FEEDBACK FRAMEWORK WITH
FLEXIBLE NUMBER OF ANTENNAS

There have been notable progresses in terms of recovery per-
formance among the recent autoencoder-based CSI feedback
frameworks [9], [12], [24], [25]. Since UEs often have limited
resources [25], an important consideration is the computation
complexity and storage needed by the CSI encoder at the
UE. Unfortunately, naive use of autoencoders from image
compression for CSI compression requires direct input of full
CSI matrix H as a 2D “image” to deep learning networks for
feature extraction. The inevitably large input size necessitates
large autoencoder learning models at both UE and gNB,
thereby making it highly challenging to effectively reduce
model complexity and storage need.

This raises an question: is it necessary to simultaneously
feed full DL CSI matrix into the model for encoding CSI
features across all ports? The answer may vary. In application
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Fig. 1. (a) Cross-correlation between different beams (we consider a 8 X 4
orthogonal beam set), and (b) correlation versus various delay tap difference
(we consider CSIs of 32 antennas denoted by curves with different colors).
The low cross-correlation between beams and the high similarity of these
curves in delay domain imply the possibility to compress and recovery CSI
antenna-by-antenna.

when antenna configuration avoids spatial aliasing ' (e.g.,
half-wavelength antenna spacings), CSI correlation across the
multiple antenna ports tends to be weak and negligible. Thus,
it may be unnecessary to import CSIs across many antennas
of the same MIMO configuration to the UE encoder for
compression and feedback.

We can gain some insights from the following test results.
Figs. 1 (a) and (b) show the correlation between different
antennas and the statistics at different delay taps for different
antennas. It is apparent that correlation between antennas is
weak and, in fact, CSI statistics at different delay taps even
for different antennas appears similar. This recognition motives
us to propose to apply a common and smaller deep-learning
model to encode and decode the DL CSI across large number
of antenna ports when distinct antennas serve as multiple
activated ports.

A. Subarray Based (SAB) Framework

Previous works such as [3], [11], [12], [26] send full CSI
matrix like an image as encoder input for compression. Such
2-D CSI structure in antenna and delay domains is akin to
a natural 2-D image. However, from the preliminary results
of Figs. 1 (a) and (b), the inter-antenna independence and
similar statistics of delay profile of different antennas motivate
a simpler subarray based (SAB) CSI encoding and decoding
framework. In this section, we propose an SAB framework
which divides a full DL CSI into non-overlapping several
subarray pieces before their individual compression and gNB
recovery.

We first define a new quantity, subarray width, as the
spatial domain width of the new framework input. Let
subarray width be K to capture K consecutive antenna
ports among the N, rows of the CSI matrix that ex-
hibit correlation [25]. We concatenate real and imagi-
nary parts of the full DL CSI matrix in an interleaving
manner as an augmented real-value full DL CSI matrix

'As a rule of thumb, CSI of antennas spaced more than one wavelength
apart are nearly independent.

H,; = [Real(h;) Imag(h;) Real(hg)...Imag(hNa))]T of
size 2N, x N; before partitioning the 2N, rows to form
2N, /K matrices of size K x N; as follows:

H, = Hy(Ki+1: Ki+K,:), i=0,1,... N, /K — 1. (8)

We train a common autoencoder for each of the K subarray
CSIs. Each subarray matrix H; enters the common encoder
q; = fea(H;) at UE for compression and feedback. At the
gNB, the decoder H; = f4.(q;) recovers the subarray CSI
before stacking them back into the full DL CSI matrix

ﬁaug: I/_\IhﬁZvvﬁNQ/K} (9)

By extracting rows at the odd and even indexes, we can obtain
the estimate of the full DL CSI matrix H.

B. Multi-rate CSI Feedback Framework

In practical applications, physical environment affects the
MIMO CSI characteristics including its sparsity and entropy.
Therefore, the degree to which an MIMO CSI can be com-
pressed in a deep learning framework would vary with physical
environment. Without knowing the actual CSI a priori, multi-
ple encoder-decoder pairs may have to be deployed at UEs and
gNB to achieve the required accuracy and feedback compres-
sion. Training multiple encoders would lead to higher memory
use to store the models and possibly higher complexity to test
the outcomes of different compression models (i.e., ratios).

To this problem, the authors of [15] proposed a multi-rate
CSI framework as illustrated in Fig. 2. Its encoder of [15] can
generate 4 different output arrays of 4 distinct compression
ratios. The parameters of all layers in its encoder are common
except for a final fully-connected (FC) layer. This framework
of [15] reduces the total number of encoder parameters by
enforcing convolutional layers for different compression ratios
to remain the same so as to generate similar features. Only the
final layer decides the encoder output for feedback at different
compression ratios.

In this paper, we consider a similar architecture but propos-
ing a new encoder design with fully convolutional layers and
the proposed SAB framework. We name the new architecture
“successive convolutional encoding network (SCEnet)” whose
model complexity can be significantly tamed while preserv-
ing good recovery performance. To achieve a good tradeoff
between performance and model complexity, we focus on
complexity reduction at the encoder for low cost UEs. For the
UE encoder, we introduce a fully-convolutional down-sizing
block (FCDS) to lower the input size by half. The FCDS block
consists of 1 x 7, 1 x 5 and 1 x 3 convolutional layers with
2 channels, respectively. Note that the stride lengths are all 1
except for the final horizontal stride in the last convolutional
layer which is of length 2 to drop the input size by half. Fig.
3 shows an example of a CSI feedback framework using S
FCDS blocks for dealing with 4 compression ratios (S= 4
throughout this paper). Specifically, the output of i-th block
with size of K - N; /2! represents codewords with compression
ratio=24,i=1,.., 5.
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Fig. 2. Illustration of previous multi-rate CSI feedback frameworks, CsiNet-
SM and CsiNet-PM. The encoders share model parameters at different
compression ratios except for FC layers, which contribute the majority of
model complexity.

Since gNBs are less resource constrained, individual CSI
decoder is designed for each compression ratio. For the i-th
decoder, the codeword is first fed to a K - N, FC layer, a 1 x
3 convolutional layer and activation function after reshaping
for initial estimation. An ensuing RefineBlock [15] provides
refinement. RefineBlock uses a residual structure and consists
of three 1 x 3 convolutional layers with 16, 8 and 1 channels,
respectively. The RefineBlock is followed by a K - N, FC
layer for generating real/imaginary CSI estimates. To further
improve recovery accuracy, we provide another SCNnet, called
SCEnet+ by adding an additional FC layer at the end of each
FCDS block which provides extra non-linearity at the same
output size.

The parameters of the SCEnet are optimized according

D S=4

Qen, Qe = arg minz Z W, -

i=1 s=1

ﬁz’,h ﬁi,27 ﬁz’,?n ﬁi,4 = fae(fen(H;)),

2
;310
F

‘Hz - ﬁi,s

(1)

where subscript s denotes the outcome from the s-th com-
pression ratio and {2.,, {24 denote the trainable parameters
of encoder f., and decoder f4.. D is the training data size.
In [15], hyper-parameters {W7, Wy, W3, Wy} were chosen as
{30/39,6/39,2/39,1/39}.

IV. MULTI-RATE CSI FEEDBACK FRAMEWORK WITH
FLEXIBLE NUMBER OF ANTENNA PORTS

The proposed SAB framework can effectively reduce the
model size and computational complexity. However, the uplink
feedback overhead is not lower with this framework. To reduce
feedback information, we observe that CSI in beam domain
(i.e., angular domain) appears to be sparse. For instance,
outdoor propagation channels usually characterized with its
low angular spread [?]. If we transform CSI matrices from
antenna (i.e. spatial) domain to beam domain before compres-
sion and recovery with the proposed SAB framework, we may
require fewer or even no codewords for those subarray CSIs
with negligibly low energy. With this motivation, we propose
a DCP feedback pruning mechanism to further reduce the

uplink information for CSI feedback and the computational
complexity of encoding/decoding at UE and gNB, respectively.

A. SAB framework in beam-delay (BD) domain
We reprsent the full CSI matrix in antenna-delay domain as

0 12)

T

where M € CNa*Na s an orthogonal transformation matrix
transforming from antenna to antenna port (AP) domain.
Without loss of generality, we can have a DL beam domain
(BD) CSI matrix Hp by designing an orthogonal beam
matrix M = B which be found via the mechanism in [27].
Following the same preprocessing in the previous section,
we first concatenate real and imaginary parts of CSIs as an
augmented DL BD matrix Hp ., and divide the augmented
DL BD matrix into 2N, /K subarray CSI matrices of the same
size K x N, given below

Hp; =PHpag Vi=1,2,...,N,/K. (13)

Thus, the parameters of the SCEnet are optimized according
to criterion:
D S=4

Qen, Qge = arg minz Z W, -

Hp;1,Hp 2 Hp;3,Hpis= fic(fen(Hp)).

B. DCP Feedback Pruning

Due to small angular spread, outdoor CSIs in beam domain
are usually sparse in angular domain. To take advantage of this
physical property, we propose a DCP feedback pruning method
to exploit the beam sparsity to further reduce the uplink
feedback overhead and encoding/decoding computations by
skipping feedback of those insignificant subarray CSI matrices
of negligibly low Frobenius norm.

To evaluate whether a subarray CSI matrix is insignificant,
we measure its relative energy ratio

Rg;= HHB1||i" /HHB@ugH?‘

Subarray CSI matrices with energy ratio below a predefined
threshold 1" are regarded as insignificant and are ignored
at the UE encoder. Importantly, UEs need to transmit extra
information bits to indicate insignificant subarray to the gNB
during feedback.

To minimize the information bits, as illustrated in Fig. 4, we
suggest that UE could utilize a prefix bit indicating whether
to send a zero-skipping request to base station. As depicted
in Fig. 5, the additional bit is appended before the bit stream
of each subarray CSI matrix as a prefix which is decoded
first at gNB to avoid the subsequent CSI recovery for the
insignificant subarray CSI matrix. For subarray CSI matrix
with energy ratio Rg > T, UE encodes the CSI matrix and
the codeword feedback on uplink to gNB with the indicator
bit = 1. Otherwise, UE sends zero uplink feedback with
indicator bit = 0. Alternatively, a 2N, /K bitmap can lead or

2
, (14)
F

‘Hi - BHﬁB,i,s

15)

(16)
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are fed to the SCE network and recovered in parallel. Note that, at encoder, after each FCDS block, the total size of input is reduced by half. The fully
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the corresponding region of the DL BD subarray CSI matrix. Otherwise, UE
operates SAB framework normally.

trail the CSI codeword feedback as indicators to the decoder.
The gNB examines these indicator bits to decide whether
to decode the corresponding subarray CSI codeword or to
zeropad the corresponding subarray CSI before moving onto
the next subarray CSI.

By doing so, a larger threshold 7' tends to skip more
encoding/decoding process, use less uplink bandwidth for
feedback, but possibly cause performance degradation due to
the zero-skipping process. Thus, the selection of threshold T°
becomes a trade-off between the amount of uplink feedback
overhead and recovery performance. Fortunately, due to the
sparsity in angular domain, we can effectively reduce uplink
feedback bandwidth and computations while not sacrificing
too much recovery performance in general, especially for
channels with low angular spreads.

C. Local Normalization

Recall that one assumption for SAB framework is the
similar statistics of delay profile of different antennas. After
transforming CSI from antenna to beam domain, although the
relative delay profile is still similar for different beams, CSI
energy concentrates in a few specific angles (directions) for
in most propagation with low angular multipath spreads. As a
result, CSI recovery may degrade because of training bias in
which deep learning model endeavor to recover those stronger
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subarray CSI matrices better. This may lead to very poor
recovery performance for subarray CSI matrices of modest
energy. To tackle this problem, as depicted in Fig. 6(b), we let
UE normalize each encoded subarray CSI matrix individually
and encode the normalization factor as a feedback to gNB.

D. 2D Lightweight Encoder

In this section, we proposed a SAB framework in BD
domain along with subarray row feedback and pruning to
further reduce uplink feedback overhead by taking advantages
of its beam domain sparsity. In fact, sparsity is also observed
in the delay domain. A natural extension is develop a two-
dimensional (2D) SAB framework as illustrated in Fig. 7 along
with feedback pruning method to skip near-zero CSI matrix
blocks for reducing uplink feedback bandwidth.

However, overly aggressive model reduction as such re-
quires the CSI energy to be not only similarly distributed
in the delay domain across antenna ports but also similarly
distributed in spatial domain for each delay. Such property
has not been experimentally verified. Therefore, although a
2D lightweight encoder admits a low complexity autoencoder
structure, we must carefully weigh the complexity-accuracy
tradeoff of such efforts.

V. SAB FRAMEWORK WITH DYNAMIC CR

The proposed SAB feedback switches on/off the encoding
of CSI subarrays for achieving a higher effective compression
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ratio. We can utilize more feedback resource on high-energy
subarray CSI matrices especially for channels with sparse
distribution in beam or angular domain such as outdoor
channels. Yet, instead of using a hard decision to determine
whether to feedback or skip the encoding/recovery process, the
multi-rate architecture motivates a softer decision approach.
Here, we propose a dynamic CR CSI feedback framework
which compresses subarray CSI matrices in a full DL CSI
using dynamic CR by a energy-based CR selector according
to their significance (i.e., normalized subarray CSI energy) to
maximize the codeword efficiency (CE) of CSI feedback.

To define the efficiency of codeword, we measure the
expected capacity provided by each codeword. With orthog-

onal multiple access, when using estimated full CSI H =

[Hy; H,;...; ﬁQNa/K] as a maximum-ratio combining (MRC)
precoder for DL transmission at gNB, the expected capacity

for the i-th subarray CSI matrix in DL transmission can be
reasonably set as

C; = log,(1 + SNR;) (17)

| B B/ | B 5
K-N;-Py

SNR; = (18)

where ]‘(ﬁl)*ﬁz/"ﬁZ’]F]‘i/(KNf) and Py denote the aver-
age signal and noise power, respectively, over Ny subcarriers
and K antenna ports. H; denotes true subarray CSI matrix.

Let the sum length of uplink feedback codeword q =
[d1;92; .92, /k] from UE to gNB be L = Z?ivf/K L;.
We can define the average CE as

2N, /K c K
CE = ; L—Zim(bits/s/Hz/codeword). (19)

This metric measures the contribution of each codeword to the
eventual end-to-end CSI feedback performance.

Take the multi-rate CSI feedback framework, DCnet, as
an example, it provides four distinct lengths of codewords
(corresponding to four compression ratios) for different com-
pressing/recovery quality. To achieve the best performance, we
should compress CSI with the least compressive codewords
and vice versa. There always exists a trade-off between uplink
feedback cost and recovery performance. Yet, although there
is no best choice of compression ratio, the most efficient one
exists.

By dividing a full-size CSI matrix into several subarray CSI
matrices, we discover that only a fraction of subarray CSI
matrices dominate in terms of energy. That is, if we could
recover those subarray CSI matrices well, we will have a
high-quality CSI recovery even if other subarray CSI matrices
are recovered with large errors. Hence, to improve feedback
efficiency, we should utilize more resources (i.e., CR = 2)
on subarray CSI matrices with larger significance (i.e., higher
energy) and less resources (CR = 16) on those with less
significance. We first evaluate the significance of the i-th
subarray CSI matrix for each data sample according to its
normalized CSI energy Rp ; defined in (16).

We design a energy-based CR selector which selects CR
according to the normalized energy of subarray CSI matrices.
The CR determined by the CR selector for the ¢-th subarray
CSI matrix is given by

2 a<Rp;<a
4 a1 < Rp;<az
8 ax < Rg,;<as
16 a3 < Rp; <ay4

CR; = (20)

As illustrated in the Fig. 8, there are five anchor points a =
[ao = l,al,ag,ag,a4 = 0} where 1 Z aiy Z a9 2 as Z 0 and
a1, as,ag are trainable. If we optimize the three anchor points
by maximizing CE in Eq. 21, since the nominator does not
grow proportionally as the denominator increases, we will have
a trivial CR selector which always suggest to adopt the largest
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Fig. 8. Five anchor points of normalized energy of subarray CSI matrix for
CR decision. Note that we only need to train the three anchor points a1,a2,a3
for separating the operating regions of four CRs.

CR to achieve the highest codeword efficiency. Unfortunately,
this induces a fairness problem since the CR selector tends to
secure CE and ignore those CSI estimates with extremely poor
performance. Those cases should be considered as recovery
failure. Thus, using a standard step function u(.), we define
the mean outage capacity as

2N. /K,
> L—Z_-u(NMSEi—Tom)

i=1 v

CE=F (21

We define an outage threshold T to reject cases when gNB
totally fails to estimate DL CSI. In the training stage, as a rule
of thumb, a typical value of T, is set as —10 dB.

In this paper, we provide a heuristic training strategy for
searching optimal points by following Alg. 1. Note that,
since we consider four possible CRs, we need extra two-
bit information for each subarray CSI matrix in the uplink
feedback to gNB for correctly identifying the correct decoder
of the corresponding CR as shown in Fig. 9.

VI. EXPERIMENTAL EVALUATIONS

A. Experiment Setup

In our experiments, we consider both indoor and outdoor
cases. Using channel model software [28], we place a gNB
of height equal to 20 m at the center of a circular cell
with a radius of 30 m for indoor and 200 m for outdoor
environment. The gNB equipped with a 8 x 4(Ngy x Ny ) UPA
for communicates with single-antenna UEs. UPA elements
have half-wavelength uniform spacing.

For our proposed model and other competing models, we
set the number of epochs to 1000. We use batch size of 200.
For our model, we start with learning rate of 0.001 before
switching to 5 x 10~* after 300 epochs. Using the channel
simulator, we generate several indoor and outdoor datasets,
each containing 100,000 random channels. One seventh of
these channels is test data for performance evaluation. Two and
one thirds of the remaining are for training and validation. For
both indoor and outdoor, we use the QuaDRiGa simulator [28]
using the scenario features given in 3GPP TR 38.901 Indoor
and 3GPP TR 38.901 UMa at 5.1-GHz and 5.3-GHz, and 300
and 330 MHz of UL and DL with LOS paths, respectively.
To accurately assess recovery accuracy, we assume UEs are
capable of exact CSI estimation. For each data channel, we
consider Ny = 1024 subcarriers with 15K-Hz spacing and

Algorithm 1 Multi-point linear searching algorithm
Require: a =[1,0,0,0,0], Ny, N, CE; =0, Q= {1,2,3}
Ensure: a = [1, a1, a2,as3,0],CE;
for i=1:1: Ny do
j < mod(i,length(Q)) + 1

Vi lay = gyt e — (N/2) gyt
v < [0 + G i 0 + (N/2) ]
vV [V v
Apld < A
flag <+ False
for k=1:1:N do

ag,; < V[k]

Evaluate CE according to a
if CE > CE; then

CEf +— CE
flag < True
end if
end for
if |(12 — a1| < 0.005 then
Q= {[17 2]7 3}
else if a3 — az| < 0.005 then
Q= {[1],[2,3]}
else if |as — a1| < 0.005 and |az — az| < 0.005 then
Q= {[1,2,3)}
end if
if flag = False then
a < aold
end if

end for

place My = 86 pilots with downsampling ratio DRy = 12 as
illustrated in the Fig. 10. We set antenna type to omni. We use
NMSE Egq. 6 as the performance metric.

B. SCEnet vs. SCEnet+

Figs. 11 (a) and (b) summarize NMSE performance for
the two proposed models at different compression ratios in
indoor and outdoor scenarios, respectively. We observe the
benefits of the extra FC layer at encoder for low compression
ratios. Considering the negligible error improvement in linear
scale, SCEnet and SCEnet+ achieve similar performance. Yet,
SCEnet+ has more flexible coding rate owing to the use of FC
layers. For brevity, we use SCEnet+ as our benchmark in the
rest of this section.

C. Performance, Complexity and Storage Comparison

For comparison, besides the proposed models SCEnet and
SCEnet+, we also include two recent multi-rate CSI feedback
alternatives which take full DL CSI as model input and are
listed below:

o CsiNet-SM [15]: Fig. 2 (a) shows its general architec-
ture. Note that we accommodate the model for desired
compression ratios by adjusting the size of FC layers.

¢ CsiNet-PM [15]: Fig. 2 (b) shows the general architec-
ture. Note that CsiNet-PM is a more compact model than
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Fig. 11. NMSE performance at different compression ratios for SCEnet and
SCEnet+ in indoor and outdoor scenarios.

CsiNet-SM but suffers slight performance degradation in
general.

Note that the proposed models adopt a similar decoder as
the alternatives in comparison with required accommodations
such as reduced sizes of FC layers and one dimensional
convolutional filter size (i.e., (1,3), (1,5) and (1,7)).

TABLE I
FLOATING-POINT OPERATION OF ALTERNATIVES IN COMPARISON.
COMPRESSION RATIO IS 8 FOR CALCULATING DECDOER’S FLOP

NUMBERS.
SCEnet | SCEnet+ | CsiNet-SM | CsiNet-PM

Encoder FLOPs 1.16M 1.4M 4.3M 2.2M
Decoder FLOPs 10.7M

(K=2) 49.4M
Decoder FLOPs 1M :

(K=4)
Decoder FLOPs

(K=8) 14.75M

Most UEs have strict memory, computation and power
constraints, thereby favoring light-weight and simpler encoders
for deployment. Figs. 12 (a) and (b) model size of encoder
and decoder, respectively, for SCEnet, SCEnet+, CsiNet-SM,
and CsiNet-PM. Table I reveals computation complexity of
encoder and decoder for alternatives in comparison. Table II
shows the NMSE performance at different compression ratios
and subarray width (/) for SCEnet+, CsiNet-SM and CsiNet-
PM including both indoor and outdoor scenarios. We observe
that SCEnet+ with K = 64 generally outperforms CsiNet-SM
and CsiNet-PM and requires less FLOP number and storage at
UE side. Leveraging the SAB framework of smaller subarray
width K, we enjoy much lower complexity and storage with
slight performance degradation. The selection of K = 2 yields
an acceptable recovery performance and delivers several orders
of encoder and decoder size reduction as well2. Moreover,
SCEnet+ becomes scalable and can be a universal CSI feed-
back framework which can be applied to CSI feedback with
various numbers of antenna ports (according to the 3GPP
specification, 2, 4, 8, 16, 32 are possible antenna port number).

2The major model size reduction is attributed to smaller input size.
However, smaller input size does not simplify the computation complexity
by the same order. Although FLOP number grows proportionally with input
size, the encoder is applied to multiple subarray CSI matrices.
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TABLE II
NMSE PERFORMANCE OF THE CSINET-SM AND SCENET FOR DIFFERENT
SELECTIONS OF SUBARRAY WIDTH (K).

CR | Scen. SCEnet+ CsiNet | CsiNet
K=2 K=4 K=8 | K=64 -SM -PM
5 Ind. -39.2 | -38.8 | -36.7 | -39.6 -29.7 -29.8
Out. -17.8 | -16.3 | -16.1 | -19.8 -18.9 -18.8
4 Ind. -31.7 | -32.0 | -319 | -31.5 -26.0 -25.9
Out. -13.6 | -13.3 | -12.6 | -14.7 -15.3 -14.5
3 Ind. 207 | -21.8 | -22.2 | -24.3 -20.3 -19.1
Out. -11.5 | -11.0 | -10.6 | -12.7 -12.3 -11.2
16 Ind. -12.8 | -12.3 | -11.9 | -154 -13.0 -12.0
Out. -10.3 9.7 9.5 -11.5 -10.2 9.2

D. Testing Different Encoder/Decoder Pairs

To show the efficacy of SAB framework, Fig. 13 shows the
NMSE performance at different compression ratios and three
encoder/decoder pairs: 1) SAB encoder plus SAB decoder
2) SAB encoder plus pooling decoder 3) full-size encoder
and decoder. We consider a subarray width of 2 for SAB
encoder and decoder. Pooling decoder consists of 32 copies
of SAB decoder and is followed by 2 residual blocks with
3 x 3 convolutional layers with 16, 8, 1 channels for pooling
purpose. A full-size encoder and decoder are the SAB ones
with K = 64. With respect to limited correlation between
antennas, we can observe that the SAB encoder/decoder pair
only causes slight performance degradation while requiring
much less storage and computational burdens for UEs and
base stations.

E. Testing Different Array Geometries

To show the scalibility of SCEnet+, Fig. 14 shows the
NMSE performance at different compression ratios and ar-
ray geometries (8-element ULA, 16, 32-element UPAs) in
indoor and outdoor scenarios. The results show no obvious
performance difference for arrays of different sizes. This
demonstrates the scalibility of the proposed SAB framework.

F. BD SAB Framework in GN and LN approaches

The sparsity of CSI matrix in beam domain allows DCP
feedback pruning for further uplink feedback reduction. On
the other hand, it may cause power imbalance across antenna
ports and performance degradation. Fortunately, this problem
could be mitigated by LN.

Fig. 15 shows the NMSE performance by applying GN
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Fig. 13. NMSE performance versus compression ratios with different en-
coder/decoder pairs in (a) indoor and (b) outdoor scenarios.
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and LN to SCEnet+ when K 2 and 4 in indoor and
outdoor channels. We observe better performance by selecting
a smaller subarray width K because of limited correlation
between adjacent beams. Additionally, we also see that per-
formance improvement, especially for outdoor scenario, is
achieved by utilizing LN approach. Since outdoor channels
characterize with its low angular spread, this causes severe
power imbalance problem over different subarray BD CSI
matrices when using GN approach. The experiment results
show that LN can effective alleviate power imbalance problem.
Note that LN is adopted in the following results.

G. DCP feedback pruning

In DCP feedback pruning, only subarray CSI matrices with
energy ratio larger than 7" are encoded and fed back. The
remaining are fed back to gNB with a bit ”zero” as illustrated
in Fig. 5. For a better understanding, we define a metric,
called pruning ratio, to be the ratio of the number of encoded
subarray CSIs to all. Note that a larger 7" can increase pruning
ratio but cause performance degradation.

Figs. 16 and 17 show the NMSE performance under dif-
ferent pruning ratios in indoor and outdoor scenarios, re-
spectively. The results suggest that the degradation of 20%
pruning (pruning ratio = 0.2) is acceptable. Although low
compression ratios appear to exhibit more severe performance
loss in logarithm-scale, the actual discrepancy in MSE is quite
small. From Fig. 17, we can observe that pruning exhibits
more advantages in outdoor case. It is because its high sparsity
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Fig. 16. NMSE performance versus pruning ratio for different selections of
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subarray width K in outdoor scenario

in beam domain gives rise to many near-zero subarray CSI
matrices which can be skipped with little CSI distortion.

H. 2D SAB Framework

Fig. 18 shows the NMSE performance versus compression
ratios for different settings of N under subarray width K = 2.
We find that 2D SAB framework with a small N degrades
less when increasing pruning ratio. However, due to the low
sparsity for each subarray CSI matrix, the 2D SAB framework
with a small N performs worse than that with a large N.
Note that the 2D SAB framework with N = 32 is equivalent
to the original SAB framework operating in BD domain.
Performance degradation due to a small N can be attributed
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to the aforementioned two factors: 1) incompatibility with the
requirement of similar delay profile and 2) trade-off between
sparsity and recovery performance. Yet, since the number of
model parameters are nearly proportional to the input size
squared, a smaller size of inputs in 2D SAB framework
could further significantly reduce the model size of both
encoder and decoder. However, the current model size using
K = 2 is already under 1000 parameters, an extraordinarily
small number for deep learning models. Further reduction of
encoder model size appears to be less critical. However, since
SAB framework can compress and recover in parallel, if the
designer has strict computation time constraint, a 2D SAB
framework may be a viable choice.

1. CSI feedback with dynamic CR

To show the benefits of the dynamic CR CSI feedback, we
compare the recovery performance and codeword efficiency
of the SAB CSI feedback frameworks with fixed and dynamic
CRs. Since compression ratio cannot be perfectly controlled in
dynamic CR CSI feedback, we define an effective CR below
for fair comparison

D

>

d=1

1
CReff = D

2N, N,
Z?N“/K(Ld,i + Lcr)

Lcr denotes the prefix codeword length to indicate adopted CR
(i.e., 2 bits), which is equivalent to 2/ B codeword elements. B
denotes the quantization bits used for each codeword element.
The beam-domain sparsity in outdoor channels reduces the

(22)
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TABLE III
THE RESULTING FIVE ANCHOR POINTS.

Noise Power 4 CRs ao ai az as a4
P —001 | &I600] [ 1 [ 008 (008 [ 0 [0
: [248,16] | T | 0.018 [ 0.018 [ 0.018 | 0
[24.1600] | T [ 0014 [00ia 1 0 0

Py =0.0001 =5 e e T [ 0.014 | 0.014 | 0014 | 0
P —1e_7 [2Al60ol | T [0012 [ 0012 0 | 0
[2.4816] | T [ 0012 [ 0012 [ 0012 0

cost of uplink feedback with minor performance loss via DCP
feedback pruning. Furthermore, by properly assigning CRs to
subarray CSIs, we can achieve performance improvement and
codeword efficiency.

We consider four possible CRs (= 2,4,16,00), where
CR = oo denotes the case of DCP feedback pruning. We
define an outage CSI estimate when its NMSE is higher
than a predetermined 7o, = —5 dB, rending the CSI re-
covery unusable. We use an outage threshold Ty, = —10
dB and Py 0.01 for training anchor points. Fig. 19
shows the average outage probability and codeword efficiency
in outdoor scenario. The optimal anchor points are located
at a = [1,0.018,0.018,0,0]. This result reveals that two
CRs (i.e., CR = 2,16) is sufficient to maximize codeword
efficiency. This further suggests that DCP feedback pruning is
relatively inefficient owing to over-simplifying the low-energy
subarray CSIs. Moreover, the SAB framework via dynamic CR
feedback (effective CR is 5.9) can achieve comparable outage
probability against a fixed low CR = 2 (requiring the most
resources and achieving the best recovery).

J. Different Noise Powers and CR Selections

From the previous results, we know that CR = oo is unused
in dynamic CR. Therefore, we attempt an additional combi-
nation of CRs [2,4,8, 16]. Table III shows the optimal points
trained with different choices of Py = [0.01,0.0001, le — 7]
and CR sets (i.e., [2,4,8,16] and [2,4, 16, o0]) to maximize
codeword efficiency. The results show that the optimal anchor
points are insensitive to Py and continue to suggest that we
only need two CRs (CR = 2 and 16) for maximizing codeword
efficiency. We conclude that the most efficient strategy is to
use the lowest CR to secure those subarray CSIs with high
significance and keep the codeword stream as compact as
possible for subarray CSIs with low energy. Also, we only
need 1-bit information for acknowledging the adopted CR to
gNB.

Fig. 20 shows the NMSE performance and outage probabil-
ity via fixed CR and dynamic CR feedback. The anchor points
shown in Table III are trained with different noise powers. The
results show that dynamic CR manner not only improves the
outage probability but also leads to better recovery perfor-
mance than fixed CR for outdoor channels.

VII. CONCLUSIONS

This work proposes a lightweight deep-learning architecture
for encoding and feeding back downlink CSI in massive
MIMO wireless sytems. This new CSI feedback framework
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flexibly accommodates different numbers of antenna ports in
use and also requires lower computational and storage hard-
ware at resource constrained UEs. By developing a subarray
based (SAB) CSI feedback framework, a common encoder
allows encoding of subarray CSI matrices separately. We
further develop a dynamic encoding principle to flexibly com-
press subarray CSI matrices by applying dynamic compression
ratios according to their significance. The new framework in-
cludes a channel-based CR selector at UE for determining CRs
to achieve the maximum of codeword efficiency. Numerical
results show the proposed framework generally outperforms
the SOTAs, CsiNet-SM and CsiNet-PM. In summary, the
proposed SAB framework heralds a simple and systematic CSI
feedback manner with higher flexibility, and scalibility while
requiring lower storage and computational complexity.
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