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AbstractÐTransmitter-side channel state information (CSI)
is vital for large MIMO downlink systems to achieve high
spectrum and energy efficiency. Existing deep learning architec-
tures for downlink CSI feedback and recovery show promising
improvement of UE feedback efficiency and eNB/gNB CSI
recovery accuracy. One notable weakness of current deep learn-
ing architectures lies in their rigidity when customized and
trained according to a preset number of antenna ports for a
given compression ratio. To develop flexible learning models
for different antenna port numbers and compression levels, this
work proposes a novel scalable deep learning framework that
accommodates different numbers of antenna ports and achieves
dynamic feedback compression. It further reduces computation
and memory complexity by allowing UEs to feedback segmented
DL CSI. We showcase a multi-rate successive convolution encoder
with under 500 parameters. Furthermore, based on the multi-
rate architecture, we propose to optimize feedback efficiency
by selecting segment-dependent compression levels. Test results
demonstrate superior performance, good scalability, and high
efficiency for both indoor and outdoor channels.

Index TermsÐCSI feedback, scalability, dynamic architecture,
massive MIMO, deep learning

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) technolo-

gies play an important role in improving spectrum and energy

efficiency of 5G and future generation wireless networks.

The power of massive MIMO hinges on the accurate down-

link channel state information (CSI) at the base station or

gNodeB (gNB). Without uplink/downlink (UL/DL) channel

reciprocity assumed in time-division duplxing (TDD) systems,

a frequency-division duplexing (FDD) base station typically

relies on user equipment (UE) feedbacks for DL CSI ac-

quisition. Yet, the increasing number of transmit antennas

envisioned in millimeter wave bands or higher frequencies [1]

requires a vast amount of uplink bandwidth and power for

CSI feedback. To conserve bandwidth and UE battery, efficient

compression of CSI feedback is vital to broad deployment of

massive MIMO FDD communications systems.

The 3rd Generation Partnership Project (3GPP) recently re-

leased the features of Release 18 [2] which embraces artificial

intelligence (AI) and machine learning (ML). In particular, AI
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and ML are expected for enhancement of CSI feedback (e.g.,

overhead reduction and improved estimation accuracy). From

radio physics, cellular CSI exhibits a limited multipath delay

spread (sparsity), making efficient CSI feedback possible. A

deep autoencoder framework [3] was proposed with encoders

at UEs and a matching decoder at serving station (e.g., gNB in

5G) for CSI compression and recovery, respectively. This and

other related works [4]±[7] have demonstrated the potential

for efficient CSI feedback and accurate CSI recovery enabled

by deep learning technologies. Physical insights with respect

to temporal variation of CSI, similar propagation conditions of

nearby UEs, and UL/DL radio path reciprocity motivated more

recent progresses that leverage various additional knowledge

such as CSI time coherence [4], [8], CSI of nearby UEs [9],

and UL/DL CSI reciprocity [10]±[14] to aid and improve DL

CSI recovery.

Existing deep learning methods attempt to extract under-

lying mutual dependency among gNB antennas in massive

MIMO configuration by simultaneously feeding CSI of all

DL antennas into learning machine for joint compression.

Such large input size makes it harder to develop a low-

complexity and light-weight deep learning models. There have

been attempts to directly reduce encoder’s model complexity

[15]±[18], achieving only limited success. In this work, we

utilize the physical insight that only nearby massive MIMO

antennas exhibit non-negligible CSI correlation since gNB

antenna array geometrically spans multiple wavelengths. Ac-

cordingly, our light-weight autoencoder should harness the

CSI correlation of neighboring antennas (or antenna ports) to

compresses large-array CSI via a divide-and-conquer principle

(DCP). The proposed DCP substantially decreases input size

and, consequently, the deep learning model size. Moreover,

since a DCP based learning model only needs CSI from

adjacent antennas, the model is scalable to various sizes of

massive MIMO antenna arrays.

Channel dissimilarity and inflexible model output size ne-

cessitate retraining of learning models for different channel

scenarios and compression levels, respectively. To avoid train-

ing burdens for different channel scenarios, online training

strategies have been suggested with aid of knowledge distilla-

tion [19] and transfer-learning [20], [21]. The authors in [22]

applied transfer-learning to reduce training cost for multiple

compression levels. A related work [23] designed a multi-

rate CSI feedback framework and a matching classification

model for selecting a target compression ratio according to

the number of channel clusters. However, to the best of our

knowledge, physical connection between compressibility and
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channel cluster number remains unconfirmed. In this work,

we design a novel dynamic-rate CSI feedback framework.

We propose a matching classifier to determine the optimal

compression level for maximizing codeword efficiency.

Our primary goal is to reduce the deployment cost of deep

learning models at the UE for CSI feedback. We systematically

simplify deep learning architecture and make it reusable for

different array geometries and compression ratios. We develop

a scalable dynamic-rate CSI feedback framework along with

a lightweight convolutional encoder for deployment at cost-

sensitive UEs. Our contributions are summarized below.

• We develop a subarray based (SAB) CSI feedback frame-

work as a new learning-based compression and recovery

mechanism that systematically reduces learning model

size by exploiting both strong and weak CSI correlations

among adjacent and non-adjacent antennas, respectively.

• The SAB framework is scalable to accommodate large

antenna sizes and applicable to most existing compres-

sion/recovery methods.

• This work provides a light-weighted encoder design for

multi-rate CSI feedback framework which only requires

hundreds of parameters for low cost UEs.

• Uplink feedback overhead can be further saved by a

proposed feedback pruning mechanism with the aid of

the sparsity in antenna port domain.

• To optimize codeword efficiency, we develop a dynamic

CR for CSI feedback which adjusts codeword lengths to

compress and recover segmented DL CSI according to

their significance.

II. SYSTEM MODEL

A. CSI Estimation via Pilots and Truncation

We consider a single-cell MIMO FDD link in which a

gNB activates Na antenna ports in communication with single-

antenna UEs. Following 3GPP technical specifications, sparse

pilot symbols (CSI-RS and DMRS) are distributed in fre-

quency domain for downlink transmission. Assuming each

subband contains Nf subcarriers with spacing of ∆f and

a downsampling rate DRf , the frequency interval between

consecutive pilots is DRf ·∆f . We denote hi ∈ C
Mf×1 as

DL CSI of the i-th AP at Mf pilot positions. Let superscript

(·)H denote conjugate transpose. By collecting CSI of each

AP, a pilot sampled DL CSI matrix H̃ relates to the full DL

CSI matrix H̄ via

H̃ = H̄QDRf
=

[
h1 h2 · · · hNa

]H
∈ C

Na×Mf , (1)

where QDRf
is a downsampling matrix with pilot rate DRf .

To reduce feedback overhead, we exploit the physical mul-

tipath delay sparsity of CSI by transforming full DL CSI into

delay domain through discrete Fourier transform (DFT) or

discrete cosine transform (DCT). We truncate the insignificant

near-zero elements in trailing (large) delay indices as follows:

H = H̃ · F ·

[
INt×Nt

0

]

︸ ︷︷ ︸
T

, (2)

where F ∈ C
Mf×Mf denotes a DFT/DCT matrix and

Mf ×Nt matrix T performs delay domain truncation. Note

that the design of matrix T may varies according to transfor-

mation F and the CSI properties. Matrix T in Eq. (2) is an

example for DCT transformation that drops the last Mf −Nt

columns of H̃ · F corresponding to large multipath delays.

B. Deep Learning Compression

Autoencoder has shown successes in several deep learning

frameworks. An encoder at UE compresses its estimated DL

CSI for uplink feedback and a decoder at gNB recovers the

estimated CSI according to the feedback from UE. Assuming

negligible CSI elements at large delays, many have exploited

convolutional layers to compress and recover the truncated DL

pilot CSI via

Encoder: q = fen(H), (3)

Decoder: Ĥ = fde(q). (4)

The decoder should replace the truncated DL CSI Ĥ via zero-

padding to transform CSI back from delay domain to estimate

DL CSI matrix H̃ in the subcarrier domain as follows:

̂̃
H =

[
Ĥ 0Na×Mf−Nt

]
FH . (5)

The CSI recovery accuracy can be measured by the normal-

ized mean square error (NMSE) of the full DL CSI:

NMSE(
̂̃
H, H̃) =

D∑

d=1

∥∥∥∥
̂̃
Hd − H̃d

∥∥∥∥
2

F

/
∥∥∥H̃d

∥∥∥
2

F
, (6)

where subscript d denotes the d-th test. When training the

autoencoder, the CSI error due to truncation is unavailable.

Hence, autoencoder loss function can simply rely on the

truncated DL CSI error

NMSE(Ĥ,H) =

D∑

d=1

∥∥∥Ĥd −Hd

∥∥∥
2

F
/∥Hd∥

2
F . (7)

III. MULTI-RATE CSI FEEDBACK FRAMEWORK WITH

FLEXIBLE NUMBER OF ANTENNAS

There have been notable progresses in terms of recovery per-

formance among the recent autoencoder-based CSI feedback

frameworks [9], [12], [24], [25]. Since UEs often have limited

resources [25], an important consideration is the computation

complexity and storage needed by the CSI encoder at the

UE. Unfortunately, naÈıve use of autoencoders from image

compression for CSI compression requires direct input of full

CSI matrix H as a 2D ªimageº to deep learning networks for

feature extraction. The inevitably large input size necessitates

large autoencoder learning models at both UE and gNB,

thereby making it highly challenging to effectively reduce

model complexity and storage need.

This raises an question: is it necessary to simultaneously

feed full DL CSI matrix into the model for encoding CSI

features across all ports? The answer may vary. In application
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Fig. 1. (a) Cross-correlation between different beams (we consider a 8 × 4

orthogonal beam set), and (b) correlation versus various delay tap difference
(we consider CSIs of 32 antennas denoted by curves with different colors).
The low cross-correlation between beams and the high similarity of these
curves in delay domain imply the possibility to compress and recovery CSI
antenna-by-antenna.

when antenna configuration avoids spatial aliasing 1 (e.g.,

half-wavelength antenna spacings), CSI correlation across the

multiple antenna ports tends to be weak and negligible. Thus,

it may be unnecessary to import CSIs across many antennas

of the same MIMO configuration to the UE encoder for

compression and feedback.

We can gain some insights from the following test results.

Figs. 1 (a) and (b) show the correlation between different

antennas and the statistics at different delay taps for different

antennas. It is apparent that correlation between antennas is

weak and, in fact, CSI statistics at different delay taps even

for different antennas appears similar. This recognition motives

us to propose to apply a common and smaller deep-learning

model to encode and decode the DL CSI across large number

of antenna ports when distinct antennas serve as multiple

activated ports.

A. Subarray Based (SAB) Framework

Previous works such as [3], [11], [12], [26] send full CSI

matrix like an image as encoder input for compression. Such

2-D CSI structure in antenna and delay domains is akin to

a natural 2-D image. However, from the preliminary results

of Figs. 1 (a) and (b), the inter-antenna independence and

similar statistics of delay profile of different antennas motivate

a simpler subarray based (SAB) CSI encoding and decoding

framework. In this section, we propose an SAB framework

which divides a full DL CSI into non-overlapping several

subarray pieces before their individual compression and gNB

recovery.

We first define a new quantity, subarray width, as the

spatial domain width of the new framework input. Let

subarray width be K to capture K consecutive antenna

ports among the Na rows of the CSI matrix that ex-

hibit correlation [25]. We concatenate real and imagi-

nary parts of the full DL CSI matrix in an interleaving

manner as an augmented real-value full DL CSI matrix

1As a rule of thumb, CSI of antennas spaced more than one wavelength
apart are nearly independent.

Haug =
[
Real(h1) Imag(h1) Real(h2) . . . Imag(hNa

))
]T

of

size 2Na × Nt before partitioning the 2Na rows to form

2Na/K matrices of size K ×Nt as follows:

Hi = Haug(Ki+1 : Ki+K, :), i = 0, 1, ..., Na/K − 1. (8)

We train a common autoencoder for each of the K subarray

CSIs. Each subarray matrix Hi enters the common encoder

qi = fen(Hi) at UE for compression and feedback. At the

gNB, the decoder Ĥi = fde(qi) recovers the subarray CSI

before stacking them back into the full DL CSI matrix

Ĥaug =
[
Ĥ1; Ĥ2; ...; ĤNa/K

]
(9)

By extracting rows at the odd and even indexes, we can obtain

the estimate of the full DL CSI matrix Ĥ.

B. Multi-rate CSI Feedback Framework

In practical applications, physical environment affects the

MIMO CSI characteristics including its sparsity and entropy.

Therefore, the degree to which an MIMO CSI can be com-

pressed in a deep learning framework would vary with physical

environment. Without knowing the actual CSI a priori, multi-

ple encoder-decoder pairs may have to be deployed at UEs and

gNB to achieve the required accuracy and feedback compres-

sion. Training multiple encoders would lead to higher memory

use to store the models and possibly higher complexity to test

the outcomes of different compression models (i.e., ratios).

To this problem, the authors of [15] proposed a multi-rate

CSI framework as illustrated in Fig. 2. Its encoder of [15] can

generate 4 different output arrays of 4 distinct compression

ratios. The parameters of all layers in its encoder are common

except for a final fully-connected (FC) layer. This framework

of [15] reduces the total number of encoder parameters by

enforcing convolutional layers for different compression ratios

to remain the same so as to generate similar features. Only the

final layer decides the encoder output for feedback at different

compression ratios.

In this paper, we consider a similar architecture but propos-

ing a new encoder design with fully convolutional layers and

the proposed SAB framework. We name the new architecture

ªsuccessive convolutional encoding network (SCEnet)º whose

model complexity can be significantly tamed while preserv-

ing good recovery performance. To achieve a good tradeoff

between performance and model complexity, we focus on

complexity reduction at the encoder for low cost UEs. For the

UE encoder, we introduce a fully-convolutional down-sizing

block (FCDS) to lower the input size by half. The FCDS block

consists of 1 × 7, 1 × 5 and 1 × 3 convolutional layers with

2 channels, respectively. Note that the stride lengths are all 1
except for the final horizontal stride in the last convolutional

layer which is of length 2 to drop the input size by half. Fig.

3 shows an example of a CSI feedback framework using S
FCDS blocks for dealing with 4 compression ratios (S= 4

throughout this paper). Specifically, the output of i-th block

with size of K ·Nt/2
i represents codewords with compression

ratio = 2i, i = 1, ..., S.
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Fig. 2. Illustration of previous multi-rate CSI feedback frameworks, CsiNet-
SM and CsiNet-PM. The encoders share model parameters at different
compression ratios except for FC layers, which contribute the majority of
model complexity.

Since gNBs are less resource constrained, individual CSI

decoder is designed for each compression ratio. For the i-th
decoder, the codeword is first fed to a K ·Nt FC layer, a 1×
3 convolutional layer and activation function after reshaping

for initial estimation. An ensuing RefineBlock [15] provides

refinement. RefineBlock uses a residual structure and consists

of three 1× 3 convolutional layers with 16, 8 and 1 channels,

respectively. The RefineBlock is followed by a K · Nt FC

layer for generating real/imaginary CSI estimates. To further

improve recovery accuracy, we provide another SCNnet, called

SCEnet+ by adding an additional FC layer at the end of each

FCDS block which provides extra non-linearity at the same

output size.

The parameters of the SCEnet are optimized according

Ωen,Ωde = argmin

D∑

i=1

S=4∑

s=1

Ws ·
∥∥∥Hi − Ĥi,s

∥∥∥
2

F
, (10)

Ĥi,1, Ĥi,2, Ĥi,3, Ĥi,4 = fde(fen(Hi)), (11)

where subscript s denotes the outcome from the s-th com-

pression ratio and Ωen, Ωde denote the trainable parameters

of encoder fen and decoder fde. D is the training data size.

In [15], hyper-parameters {W1,W2,W3,W4} were chosen as

{30/39, 6/39, 2/39, 1/39}.

IV. MULTI-RATE CSI FEEDBACK FRAMEWORK WITH

FLEXIBLE NUMBER OF ANTENNA PORTS

The proposed SAB framework can effectively reduce the

model size and computational complexity. However, the uplink

feedback overhead is not lower with this framework. To reduce

feedback information, we observe that CSI in beam domain

(i.e., angular domain) appears to be sparse. For instance,

outdoor propagation channels usually characterized with its

low angular spread [?]. If we transform CSI matrices from

antenna (i.e. spatial) domain to beam domain before compres-

sion and recovery with the proposed SAB framework, we may

require fewer or even no codewords for those subarray CSIs

with negligibly low energy. With this motivation, we propose

a DCP feedback pruning mechanism to further reduce the

uplink information for CSI feedback and the computational

complexity of encoding/decoding at UE and gNB, respectively.

A. SAB framework in beam-delay (BD) domain

We reprsent the full CSI matrix in antenna-delay domain as

HAP = M · H̄ · F ·

[
INt×Nt

0

]

︸ ︷︷ ︸
T

, (12)

where M ∈ C
Na×Na is an orthogonal transformation matrix

transforming from antenna to antenna port (AP) domain.

Without loss of generality, we can have a DL beam domain

(BD) CSI matrix HB by designing an orthogonal beam

matrix M = B which be found via the mechanism in [27].

Following the same preprocessing in the previous section,

we first concatenate real and imaginary parts of CSIs as an

augmented DL BD matrix HB,aug and divide the augmented

DL BD matrix into 2Na/K subarray CSI matrices of the same

size K ×Nt given below

HB,i = PiHB,aug, ∀i = 1, 2, ..., Na/K. (13)

Thus, the parameters of the SCEnet are optimized according

to criterion:

Ωen,Ωde = argmin

D∑

i

S=4∑

s

Ws ·
∥∥∥Hi −BHĤB,i,s

∥∥∥
2

F
, (14)

ĤB,i,1, ĤB,i,2, ĤB,i,3, ĤB,i,4 = fde(fen(HB,i)). (15)

B. DCP Feedback Pruning

Due to small angular spread, outdoor CSIs in beam domain

are usually sparse in angular domain. To take advantage of this

physical property, we propose a DCP feedback pruning method

to exploit the beam sparsity to further reduce the uplink

feedback overhead and encoding/decoding computations by

skipping feedback of those insignificant subarray CSI matrices

of negligibly low Frobenius norm.

To evaluate whether a subarray CSI matrix is insignificant,

we measure its relative energy ratio

RE,i =
∥∥HB,i

∥∥2
F
/
∥∥HB,aug

∥∥2
F
. (16)

Subarray CSI matrices with energy ratio below a predefined

threshold T are regarded as insignificant and are ignored

at the UE encoder. Importantly, UEs need to transmit extra

information bits to indicate insignificant subarray to the gNB

during feedback.

To minimize the information bits, as illustrated in Fig. 4, we

suggest that UE could utilize a prefix bit indicating whether

to send a zero-skipping request to base station. As depicted

in Fig. 5, the additional bit is appended before the bit stream

of each subarray CSI matrix as a prefix which is decoded

first at gNB to avoid the subsequent CSI recovery for the

insignificant subarray CSI matrix. For subarray CSI matrix

with energy ratio RE ≥ T , UE encodes the CSI matrix and

the codeword feedback on uplink to gNB with the indicator

bit = 1. Otherwise, UE sends zero uplink feedback with

indicator bit = 0. Alternatively, a 2Na/K bitmap can lead or
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Fig. 3. SAB Framework and SCE Network Architecture. Input data are first split into real and imaginary and separated into subarray matrices. These matrices
are fed to the SCE network and recovered in parallel. Note that, at encoder, after each FCDS block, the total size of input is reduced by half. The fully
convoluted FCDS blocks share parameters. We also provide another alternative encoder (SCEnet+ encoder) where a FC layer is attached at the end of each
FCDS block for enhancing performance.

Fig. 4. Illustration of DCP Feedback Pruning. If the energy ratio of the i-
th DL BD subarray CSI matrix is less than the predetermined threshold T ,
UE skips encoding and send only one bit to tell base station to fill zeros in
the corresponding region of the DL BD subarray CSI matrix. Otherwise, UE
operates SAB framework normally.

trail the CSI codeword feedback as indicators to the decoder.

The gNB examines these indicator bits to decide whether

to decode the corresponding subarray CSI codeword or to

zeropad the corresponding subarray CSI before moving onto

the next subarray CSI.

By doing so, a larger threshold T tends to skip more

encoding/decoding process, use less uplink bandwidth for

feedback, but possibly cause performance degradation due to

the zero-skipping process. Thus, the selection of threshold T
becomes a trade-off between the amount of uplink feedback

overhead and recovery performance. Fortunately, due to the

sparsity in angular domain, we can effectively reduce uplink

feedback bandwidth and computations while not sacrificing

too much recovery performance in general, especially for

channels with low angular spreads.

C. Local Normalization

Recall that one assumption for SAB framework is the

similar statistics of delay profile of different antennas. After

transforming CSI from antenna to beam domain, although the

relative delay profile is still similar for different beams, CSI

energy concentrates in a few specific angles (directions) for

in most propagation with low angular multipath spreads. As a

result, CSI recovery may degrade because of training bias in

which deep learning model endeavor to recover those stronger

Fig. 5. DCP feedback pruning block diagram and ordered feedback bit
sequence.

subarray CSI matrices better. This may lead to very poor

recovery performance for subarray CSI matrices of modest

energy. To tackle this problem, as depicted in Fig. 6(b), we let

UE normalize each encoded subarray CSI matrix individually

and encode the normalization factor as a feedback to gNB.

D. 2D Lightweight Encoder

In this section, we proposed a SAB framework in BD

domain along with subarray row feedback and pruning to

further reduce uplink feedback overhead by taking advantages

of its beam domain sparsity. In fact, sparsity is also observed

in the delay domain. A natural extension is develop a two-

dimensional (2D) SAB framework as illustrated in Fig. 7 along

with feedback pruning method to skip near-zero CSI matrix

blocks for reducing uplink feedback bandwidth.

However, overly aggressive model reduction as such re-

quires the CSI energy to be not only similarly distributed

in the delay domain across antenna ports but also similarly

distributed in spatial domain for each delay. Such property

has not been experimentally verified. Therefore, although a

2D lightweight encoder admits a low complexity autoencoder

structure, we must carefully weigh the complexity-accuracy

tradeoff of such efforts.

V. SAB FRAMEWORK WITH DYNAMIC CR

The proposed SAB feedback switches on/off the encoding

of CSI subarrays for achieving a higher effective compression
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Fig. 6. Illustrations of (a) global normalization and (b) local normalization.

Fig. 7. Illustrations of 2D SAB framework (N and K are the numbers
of delay taps and beams being considered in a single subarray CSI matrix,
respectively).

ratio. We can utilize more feedback resource on high-energy

subarray CSI matrices especially for channels with sparse

distribution in beam or angular domain such as outdoor

channels. Yet, instead of using a hard decision to determine

whether to feedback or skip the encoding/recovery process, the

multi-rate architecture motivates a softer decision approach.

Here, we propose a dynamic CR CSI feedback framework

which compresses subarray CSI matrices in a full DL CSI

using dynamic CR by a energy-based CR selector according

to their significance (i.e., normalized subarray CSI energy) to

maximize the codeword efficiency (CE) of CSI feedback.

To define the efficiency of codeword, we measure the

expected capacity provided by each codeword. With orthog-

onal multiple access, when using estimated full CSI
̂̃
H =

[
̂̃
H1;

̂̃
H2; ...;

̂̃
H2Na/K ] as a maximum-ratio combining (MRC)

precoder for DL transmission at gNB, the expected capacity

for the i-th subarray CSI matrix in DL transmission can be

reasonably set as

Ci = log2(1 + SNRi) (17)

SNRi =

∥∥( ̂̃Hi)
∗H̃i/

∥∥ ̂̃Hi

∥∥
F

∥∥2
F

K·Nf ·PN

(18)

where
∥∥( ̂̃Hi)

∗H̃i/
∥∥ ̂̃Hi

∥∥
F

∥∥2
F
/(K·Nf ) and PN denote the aver-

age signal and noise power, respectively, over Nf subcarriers

and K antenna ports. H̃i denotes true subarray CSI matrix.

Let the sum length of uplink feedback codeword q =
[q1;q2; ...;q2Na/K ] from UE to gNB be L =

∑2Na/K
i=1 Li.

We can define the average CE as

CE =

2Na/K∑

i=1

Ci
Li

K

2Na
(bits/s/Hz/codeword). (19)

This metric measures the contribution of each codeword to the

eventual end-to-end CSI feedback performance.

Take the multi-rate CSI feedback framework, DCnet, as

an example, it provides four distinct lengths of codewords

(corresponding to four compression ratios) for different com-

pressing/recovery quality. To achieve the best performance, we

should compress CSI with the least compressive codewords

and vice versa. There always exists a trade-off between uplink

feedback cost and recovery performance. Yet, although there

is no best choice of compression ratio, the most efficient one

exists.

By dividing a full-size CSI matrix into several subarray CSI

matrices, we discover that only a fraction of subarray CSI

matrices dominate in terms of energy. That is, if we could

recover those subarray CSI matrices well, we will have a

high-quality CSI recovery even if other subarray CSI matrices

are recovered with large errors. Hence, to improve feedback

efficiency, we should utilize more resources (i.e., CR = 2)

on subarray CSI matrices with larger significance (i.e., higher

energy) and less resources (CR = 16) on those with less

significance. We first evaluate the significance of the i-th
subarray CSI matrix for each data sample according to its

normalized CSI energy RE,i defined in (16).

We design a energy-based CR selector which selects CR

according to the normalized energy of subarray CSI matrices.

The CR determined by the CR selector for the i-th subarray

CSI matrix is given by

CRi =





2 a0 ≤ RE,i < a1

4 a1 ≤ RE,i < a2

8 a2 ≤ RE,i < a3

16 a3 ≤ RE,i ≤ a4

(20)

As illustrated in the Fig. 8, there are five anchor points a =
[a0 = 1, a1, a2, a3, a4 = 0] where 1 ≥ a1 ≥ a2 ≥ a3 ≥ 0 and

a1, a2, a3 are trainable. If we optimize the three anchor points

by maximizing CE in Eq. 21, since the nominator does not

grow proportionally as the denominator increases, we will have

a trivial CR selector which always suggest to adopt the largest
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Fig. 8. Five anchor points of normalized energy of subarray CSI matrix for
CR decision. Note that we only need to train the three anchor points a1,a2,a3
for separating the operating regions of four CRs.

CR to achieve the highest codeword efficiency. Unfortunately,

this induces a fairness problem since the CR selector tends to

secure CE and ignore those CSI estimates with extremely poor

performance. Those cases should be considered as recovery

failure. Thus, using a standard step function u(.), we define

the mean outage capacity as

CE = E





2Na/K∑

i=1

Ci
Li
· u(NMSEi − Tout)



 (21)

We define an outage threshold Tout to reject cases when gNB

totally fails to estimate DL CSI. In the training stage, as a rule

of thumb, a typical value of Tout is set as −10 dB.

In this paper, we provide a heuristic training strategy for

searching optimal points by following Alg. 1. Note that,

since we consider four possible CRs, we need extra two-

bit information for each subarray CSI matrix in the uplink

feedback to gNB for correctly identifying the correct decoder

of the corresponding CR as shown in Fig. 9.

VI. EXPERIMENTAL EVALUATIONS

A. Experiment Setup

In our experiments, we consider both indoor and outdoor

cases. Using channel model software [28], we place a gNB

of height equal to 20 m at the center of a circular cell

with a radius of 30 m for indoor and 200 m for outdoor

environment. The gNB equipped with a 8×4(NH×NV ) UPA

for communicates with single-antenna UEs. UPA elements

have half-wavelength uniform spacing.

For our proposed model and other competing models, we

set the number of epochs to 1000. We use batch size of 200.

For our model, we start with learning rate of 0.001 before

switching to 5 × 10−4 after 300 epochs. Using the channel

simulator, we generate several indoor and outdoor datasets,

each containing 100,000 random channels. One seventh of

these channels is test data for performance evaluation. Two and

one thirds of the remaining are for training and validation. For

both indoor and outdoor, we use the QuaDRiGa simulator [28]

using the scenario features given in 3GPP TR 38.901 Indoor

and 3GPP TR 38.901 UMa at 5.1-GHz and 5.3-GHz, and 300

and 330 MHz of UL and DL with LOS paths, respectively.

To accurately assess recovery accuracy, we assume UEs are

capable of exact CSI estimation. For each data channel, we

consider Nf = 1024 subcarriers with 15K-Hz spacing and

Algorithm 1 Multi-point linear searching algorithm

Require: a = [1, 0, 0, 0, 0], Nter, N , CEf = 0, Ω = {1, 2, 3}
Ensure: a = [1, a1, a2, a3, 0],CEf

for i = 1 : 1 : Nter do

j ← mod(i, length(Ω)) + 1
vf ← [aj −

aj−1−aj

(N/2)+1 ; ...; aj − (N/2)
aj−1−aj

(N/2)+1 ]

vb ← [aj +
aj−aj+1

(N/2)+1 ; ...; aj + (N/2)
aj−aj+1

(N/2)+1 ]

v← [vf ;vb]
aold ← a

flag← False

for k = 1 : 1 : N do

aΩj
← v[k]

Evaluate CE according to a

if CE > CEf then

CEf ← CE

flag← True

end if

end for

if |a2 − a1| < 0.005 then

Ω = {[1, 2], 3}
else if |a3 − a2| < 0.005 then

Ω = {[1], [2, 3]}
else if |a2 − a1| < 0.005 and |a3 − a2| < 0.005 then

Ω = {[1, 2, 3]}
end if

if flag = False then

a← aold

end if

end for

place Mf = 86 pilots with downsampling ratio DRf = 12 as

illustrated in the Fig. 10. We set antenna type to omni. We use

NMSE Eq. 6 as the performance metric.

B. SCEnet vs. SCEnet+

Figs. 11 (a) and (b) summarize NMSE performance for

the two proposed models at different compression ratios in

indoor and outdoor scenarios, respectively. We observe the

benefits of the extra FC layer at encoder for low compression

ratios. Considering the negligible error improvement in linear

scale, SCEnet and SCEnet+ achieve similar performance. Yet,

SCEnet+ has more flexible coding rate owing to the use of FC

layers. For brevity, we use SCEnet+ as our benchmark in the

rest of this section.

C. Performance, Complexity and Storage Comparison

For comparison, besides the proposed models SCEnet and

SCEnet+, we also include two recent multi-rate CSI feedback

alternatives which take full DL CSI as model input and are

listed below:

• CsiNet-SM [15]: Fig. 2 (a) shows its general architec-

ture. Note that we accommodate the model for desired

compression ratios by adjusting the size of FC layers.

• CsiNet-PM [15]: Fig. 2 (b) shows the general architec-

ture. Note that CsiNet-PM is a more compact model than
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Fig. 9. UE sends extra two bits for each subarray CSI matrix to indicate the adopted CR. gNB selects the corresponding decoder according to the extra
information.

Fig. 10. Pilot placement illustration (Note that the red lines indicate the
time-frequency resources to be placed pilot symbols. AF and AD stand for
antenna-frequency and antenna-delay domains, respectively).

Fig. 11. NMSE performance at different compression ratios for SCEnet and
SCEnet+ in indoor and outdoor scenarios.

CsiNet-SM but suffers slight performance degradation in

general.

Note that the proposed models adopt a similar decoder as

the alternatives in comparison with required accommodations

such as reduced sizes of FC layers and one dimensional

convolutional filter size (i.e., (1,3), (1,5) and (1,7)).

TABLE I
FLOATING-POINT OPERATION OF ALTERNATIVES IN COMPARISON.
COMPRESSION RATIO IS 8 FOR CALCULATING DECDOER’S FLOP

NUMBERS.

SCEnet SCEnet+ CsiNet-SM CsiNet-PM

Encoder FLOPs 1.16M 1.4M 4.3M 2.2M

Decoder FLOPs
(K=2)

10.7M
49.4M

Decoder FLOPs
(K=4)

12M

Decoder FLOPs
(K=8)

14.75M

Most UEs have strict memory, computation and power

constraints, thereby favoring light-weight and simpler encoders

for deployment. Figs. 12 (a) and (b) model size of encoder

and decoder, respectively, for SCEnet, SCEnet+, CsiNet-SM,

and CsiNet-PM. Table I reveals computation complexity of

encoder and decoder for alternatives in comparison. Table II

shows the NMSE performance at different compression ratios

and subarray width (K) for SCEnet+, CsiNet-SM and CsiNet-

PM including both indoor and outdoor scenarios. We observe

that SCEnet+ with K = 64 generally outperforms CsiNet-SM

and CsiNet-PM and requires less FLOP number and storage at

UE side. Leveraging the SAB framework of smaller subarray

width K, we enjoy much lower complexity and storage with

slight performance degradation. The selection of K = 2 yields

an acceptable recovery performance and delivers several orders

of encoder and decoder size reduction as well2. Moreover,

SCEnet+ becomes scalable and can be a universal CSI feed-

back framework which can be applied to CSI feedback with

various numbers of antenna ports (according to the 3GPP

specification, 2, 4, 8, 16, 32 are possible antenna port number).

2The major model size reduction is attributed to smaller input size.
However, smaller input size does not simplify the computation complexity
by the same order. Although FLOP number grows proportionally with input
size, the encoder is applied to multiple subarray CSI matrices.
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Fig. 12. (a) Encoder and (b) decoder model size comparison of SCEnet,
SCEnet+, CsiNet-SM and CsiNet-PM.

TABLE II
NMSE PERFORMANCE OF THE CSINET-SM AND SCENET FOR DIFFERENT

SELECTIONS OF SUBARRAY WIDTH (K).

CR Scen.
SCEnet+ CsiNet

-SM
CsiNet

-PMK=2 K=4 K=8 K=64

2
Ind. -39.2 -38.8 -36.7 -39.6 -29.7 -29.8
Out. -17.8 -16.3 -16.1 -19.8 -18.9 -18.8

4
Ind. -31.7 -32.0 -31.9 -31.5 -26.0 -25.9
Out. -13.6 -13.3 -12.6 -14.7 -15.3 -14.5

8
Ind. -20.7 -21.8 -22.2 -24.3 -20.3 -19.1
Out. -11.5 -11.0 -10.6 -12.7 -12.3 -11.2

16
Ind. -12.8 -12.3 -11.9 -15.4 -13.0 -12.0
Out. -10.3 -9.7 -9.5 -11.5 -10.2 -9.2

D. Testing Different Encoder/Decoder Pairs

To show the efficacy of SAB framework, Fig. 13 shows the

NMSE performance at different compression ratios and three

encoder/decoder pairs: 1) SAB encoder plus SAB decoder

2) SAB encoder plus pooling decoder 3) full-size encoder

and decoder. We consider a subarray width of 2 for SAB

encoder and decoder. Pooling decoder consists of 32 copies

of SAB decoder and is followed by 2 residual blocks with

3× 3 convolutional layers with 16, 8, 1 channels for pooling

purpose. A full-size encoder and decoder are the SAB ones

with K = 64. With respect to limited correlation between

antennas, we can observe that the SAB encoder/decoder pair

only causes slight performance degradation while requiring

much less storage and computational burdens for UEs and

base stations.

E. Testing Different Array Geometries

To show the scalibility of SCEnet+, Fig. 14 shows the

NMSE performance at different compression ratios and ar-

ray geometries (8-element ULA, 16, 32-element UPAs) in

indoor and outdoor scenarios. The results show no obvious

performance difference for arrays of different sizes. This

demonstrates the scalibility of the proposed SAB framework.

F. BD SAB Framework in GN and LN approaches

The sparsity of CSI matrix in beam domain allows DCP

feedback pruning for further uplink feedback reduction. On

the other hand, it may cause power imbalance across antenna

ports and performance degradation. Fortunately, this problem

could be mitigated by LN.

Fig. 15 shows the NMSE performance by applying GN

Fig. 13. NMSE performance versus compression ratios with different en-
coder/decoder pairs in (a) indoor and (b) outdoor scenarios.

Fig. 14. NMSE performance of SCEnet+ for arrays with different array
geometries. We consider 8-element ULA and 16- and 32-element UPAs.
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Fig. 15. NMSE performance versus compression ratios with or without local
normalization (LN) in (a) indoor and (b) outdoor scenarios.

and LN to SCEnet+ when K = 2 and 4 in indoor and

outdoor channels. We observe better performance by selecting

a smaller subarray width K because of limited correlation

between adjacent beams. Additionally, we also see that per-

formance improvement, especially for outdoor scenario, is

achieved by utilizing LN approach. Since outdoor channels

characterize with its low angular spread, this causes severe

power imbalance problem over different subarray BD CSI

matrices when using GN approach. The experiment results

show that LN can effective alleviate power imbalance problem.

Note that LN is adopted in the following results.

G. DCP feedback pruning

In DCP feedback pruning, only subarray CSI matrices with

energy ratio larger than T are encoded and fed back. The

remaining are fed back to gNB with a bit ºzeroº as illustrated

in Fig. 5. For a better understanding, we define a metric,

called pruning ratio, to be the ratio of the number of encoded

subarray CSIs to all. Note that a larger T can increase pruning

ratio but cause performance degradation.

Figs. 16 and 17 show the NMSE performance under dif-

ferent pruning ratios in indoor and outdoor scenarios, re-

spectively. The results suggest that the degradation of 20%
pruning (pruning ratio = 0.2) is acceptable. Although low

compression ratios appear to exhibit more severe performance

loss in logarithm-scale, the actual discrepancy in MSE is quite

small. From Fig. 17, we can observe that pruning exhibits

more advantages in outdoor case. It is because its high sparsity

Fig. 16. NMSE performance versus pruning ratio for different selections of
subarray width K in indoor scenario.

Fig. 17. NMSE performance versus pruning ratio for different selections of
subarray width K in outdoor scenario

in beam domain gives rise to many near-zero subarray CSI

matrices which can be skipped with little CSI distortion.

H. 2D SAB Framework

Fig. 18 shows the NMSE performance versus compression

ratios for different settings of N under subarray width K = 2.

We find that 2D SAB framework with a small N degrades

less when increasing pruning ratio. However, due to the low

sparsity for each subarray CSI matrix, the 2D SAB framework

with a small N performs worse than that with a large N .

Note that the 2D SAB framework with N = 32 is equivalent

to the original SAB framework operating in BD domain.

Performance degradation due to a small N can be attributed
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Fig. 18. NMSE performance versus pruning ratio for different N in (a) indoor
and (b) outdoor scenarios.

to the aforementioned two factors: 1) incompatibility with the

requirement of similar delay profile and 2) trade-off between

sparsity and recovery performance. Yet, since the number of

model parameters are nearly proportional to the input size

squared, a smaller size of inputs in 2D SAB framework

could further significantly reduce the model size of both

encoder and decoder. However, the current model size using

K = 2 is already under 1000 parameters, an extraordinarily

small number for deep learning models. Further reduction of

encoder model size appears to be less critical. However, since

SAB framework can compress and recover in parallel, if the

designer has strict computation time constraint, a 2D SAB

framework may be a viable choice.

I. CSI feedback with dynamic CR

To show the benefits of the dynamic CR CSI feedback, we

compare the recovery performance and codeword efficiency

of the SAB CSI feedback frameworks with fixed and dynamic

CRs. Since compression ratio cannot be perfectly controlled in

dynamic CR CSI feedback, we define an effective CR below

for fair comparison

CReff =
1

D

D∑

d=1

2NtNa∑2Na/K
i (Ld,i + LCR)

. (22)

LCR denotes the prefix codeword length to indicate adopted CR

(i.e., 2 bits), which is equivalent to 2/B codeword elements. B
denotes the quantization bits used for each codeword element.

The beam-domain sparsity in outdoor channels reduces the

TABLE III
THE RESULTING FIVE ANCHOR POINTS.

Noise Power 4 CRs a0 a1 a2 a3 a4

PN = 0.01
[2,4,16,∞] 1 0.018 0.018 0 0
[2,4,8,16] 1 0.018 0.018 0.018 0

PN = 0.0001
[2,4,16,∞] 1 0.014 0.014 0 0
[2,4,8,16] 1 0.014 0.014 0.014 0

PN = 1e− 7
[2,4,16,∞] 1 0.012 0.012 0 0
[2,4,8,16] 1 0.012 0.012 0.012 0

cost of uplink feedback with minor performance loss via DCP

feedback pruning. Furthermore, by properly assigning CRs to

subarray CSIs, we can achieve performance improvement and

codeword efficiency.

We consider four possible CRs (= 2, 4, 16,∞), where

CR = ∞ denotes the case of DCP feedback pruning. We

define an outage CSI estimate when its NMSE is higher

than a predetermined Tout = −5 dB, rending the CSI re-

covery unusable. We use an outage threshold Tout = −10
dB and PN = 0.01 for training anchor points. Fig. 19

shows the average outage probability and codeword efficiency

in outdoor scenario. The optimal anchor points are located

at a = [1, 0.018, 0.018, 0, 0]. This result reveals that two

CRs (i.e., CR = 2, 16) is sufficient to maximize codeword

efficiency. This further suggests that DCP feedback pruning is

relatively inefficient owing to over-simplifying the low-energy

subarray CSIs. Moreover, the SAB framework via dynamic CR

feedback (effective CR is 5.9) can achieve comparable outage

probability against a fixed low CR = 2 (requiring the most

resources and achieving the best recovery).

J. Different Noise Powers and CR Selections

From the previous results, we know that CR =∞ is unused

in dynamic CR. Therefore, we attempt an additional combi-

nation of CRs [2, 4, 8, 16]. Table III shows the optimal points

trained with different choices of PN = [0.01, 0.0001, 1e − 7]
and CR sets (i.e., [2, 4, 8, 16] and [2, 4, 16,∞]) to maximize

codeword efficiency. The results show that the optimal anchor

points are insensitive to PN and continue to suggest that we

only need two CRs (CR = 2 and 16) for maximizing codeword

efficiency. We conclude that the most efficient strategy is to

use the lowest CR to secure those subarray CSIs with high

significance and keep the codeword stream as compact as

possible for subarray CSIs with low energy. Also, we only

need 1-bit information for acknowledging the adopted CR to

gNB.

Fig. 20 shows the NMSE performance and outage probabil-

ity via fixed CR and dynamic CR feedback. The anchor points

shown in Table III are trained with different noise powers. The

results show that dynamic CR manner not only improves the

outage probability but also leads to better recovery perfor-

mance than fixed CR for outdoor channels.

VII. CONCLUSIONS

This work proposes a lightweight deep-learning architecture

for encoding and feeding back downlink CSI in massive

MIMO wireless sytems. This new CSI feedback framework
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Fig. 19. Average CE and outage probability for dynamic CR and fixed CR
CSI feedback framework in outdoor scenario.

Fig. 20. NMSE performance and outage probability for dynamic CR and
fixed CR CSI feedback framework in outdoor scenario.

flexibly accommodates different numbers of antenna ports in

use and also requires lower computational and storage hard-

ware at resource constrained UEs. By developing a subarray

based (SAB) CSI feedback framework, a common encoder

allows encoding of subarray CSI matrices separately. We

further develop a dynamic encoding principle to flexibly com-

press subarray CSI matrices by applying dynamic compression

ratios according to their significance. The new framework in-

cludes a channel-based CR selector at UE for determining CRs

to achieve the maximum of codeword efficiency. Numerical

results show the proposed framework generally outperforms

the SOTAs, CsiNet-SM and CsiNet-PM. In summary, the

proposed SAB framework heralds a simple and systematic CSI

feedback manner with higher flexibility, and scalibility while

requiring lower storage and computational complexity.
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