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Abstract—We develop a resource-efficient framework for col-
laborative decision-making over distributed sensor networks by
proposing a novel over-the-air soft information aggregation. We
exploit the natural superposition of wireless transmissions to
enable sensors to utilize over-the-air computation to approximate
the sufficient statistic for optimum detection over a shared chan-
nel. By designing practical transmission and receiver processing
in over-the-air computation, the decision-making fusion center
can wirelessly obtain a good approximation of the aggregate
log-likelihood ratio computed over all observed data with low
distortion. Focusing on Neyman-Pearson tests for detection in
this new framework, we develop efficient tests and analyze their
performance bounds in several common joint detection scenarios.
Our results show significant over-the-air collaboration gain even
with a few participating sensors. The novel framework exhibits
very little performance loss of detection accuracy against tradi-
tional multiple access transmission from sensing nodes despite
substantial resource savings via over-the-air computation.

Index Terms—Internet of Things, decision-making, collabora-
tive learning, soft information.

I. INTRODUCTION

Internet of Things (IoT) comprises several technologies,
protocols, and applications that enable advanced event mon-
itoring, enhance productive processes, and a broad range of
diverse solutions [1]. An important class of such applications
consists of the detection of distributed phenomena using ob-
servations from several sensing nodes (also denoted sensors),
which share local data with a fusion center node (also denoted
server). Of course, with an increasing number of sensing
nodes, the available resources must be optimized to allow all
nodes to collaborate. On the other hand, many IoT applications
are only feasible when they are able to operate for long periods
of time with no battery replacement, making energy con-
sumption a critical design criterion. However, tackling these
challenges should not diminish the importance of guaranteeing
the satisfactory performance of the network.

This work aims to develop a practical and simple framework
for distributed sensing and integrated decision-making with
high resource efficiency and strong performance in terms of
decision accuracy. This framework is based on the concept
of over-the-air computation for distributed agents/sensors in a
network. Given S sensing nodes, the resource efficiency over
traditional multiple access protocols for sensor transmission
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grows by S-fold. Equally important is the fact that our
proposed over-the-air computation allows active sensors to
transmit individual local log-likelihood ratio (LLR), which
forms a natural and near-optimum approximation of the suffi-
cient statistic (SS) for joint detection and decision-making.

Several works have analyzed detection performance in dis-
tributed sensor networks with traditional centralized grant-
based multiple access. For example, the authors of [2] studied
the detection problem in an IoT network where sensors send
decentralized local decisions via a multiple access channel
(MAC) to a fusion center, and propose optimal decision-
making (in the sense of achievable detection performance) by
aggregating as many sensors as the channel rate admits. [2]
assumes perfect delivery of local decisions and provides an
analytical framework for distributed detection in IoT. Other
studies have presented generalizations of this IoT detection
framework, including unequal data rates for each sensor [3],
Gaussian channel noise effect in sensor decision transmissions
[4], coherent channel fading [5], [6] in sensor transmis-
sions, sequential testing [7], correlated sensor observations
[8], censoring nodes [9], sparsity of sensor signals [10], [11],
and optimality of local decisions [12], among several other
extensions and works. In particular, [5] illustrates that under
coherent channel fading, equal gain combining (EGC) of local
decisions performs well for a wide range of signal-to-noise-
ratio (SNR). Furthermore, the authors in [6] proposed a near-
optimum aggregation of local sensor decisions based on known
Rayleigh fading channel statistics.

However, these works favor traditional sensor transmission
of local decision variables over a MAC. This approach, though
effective and widely studied, requires high bandwidth use,
particularly with increasing number of sensors. The server
needs to coordinate network access via scheduling and solicit
local signals one sensor at a time. It is thus vital to design
efficient protocols that can significantly reduce resource usage
in distributed detection without significant performance loss.

As an alternative to traditional polling, grant-free access
techniques can improve spectral efficiency. One such technique
is blind signal separation [13]-[16], which exploits spatial
diversity and high-order statistics to recover simultaneous sig-
nals without using pilot sequences. However, these techniques
are usually computationally costly, require a large number of
samples to identify statistics accurately, and are constrained
by the number of antennas of the server node. Thus, these
techniques are not appealing for general IoT deployments.

We note that for collaborative decision-making in sys-
tems including IoT, data fusion techniques such as over-
the-air computation (AirComp) [17], [18] provide a low-



cost alternative in saving resources. AirComp has recently
been considered for communication-heavy applications such
as cooperative spectrum sensing [19] and Federated Learning
[20], [21]. Simply put, AirComp exploits the natural aggrega-
tion of analog signals simultaneously transmitted by multiple
collaborative nodes onto a shared wireless channel. Hence,
AirComp improves resource efficiency by utilizing the same
channel resource for all participating nodes regardless of their
total population size. Based on minimal network coordination
and pre- and post-compensation of signals, AirComp pro-
vides significant resource savings and relies on very simple
access protocol control, which is well suited for collaborative
IoT networks. In fact, a simpler aggregation of signals for
collaborative estimation in sensor networks was proposed in
[22]. As a predecessor of AirComp, the formulation of [22]
assumes ideal channels with no fading, which is an important
limitation for practical implementation and thus, does not
require compensation mechanisms.

In our previous work [23], we developed over-the-air
computation to aggregate local measurements from sensors.
Thanks to AirComp, sensor data sent in analog signals are
naturally superimposed over the MAC. To receive data, the
server broadcasts a request, and all sensors respond under
synchronization, to simultaneously transmit respective local
decision variables. Using different compensation schemes to
account for the effect of channel phase and channel noise,
we showed that over-the-air sensor collaboration effectively
saves resources with mild loss of performance in comparison
with scheduled orthogonal sensor transmissions. We further
extended such AirComp sensor fusion in [24], where sen-
sors simultaneously transmit locally acquired log-likelihood
ratios. At the fusion center, the received signal is a noisy-
and-channel weighted sufficient statistic (NCWS) that serves
as an approximation of the ideal cumulative LLR over all
sensor data. Within the Bayesian paradigm, we showed that
under mild conditions and properly designed pre- and post-
processing functions, the proposed over-the-air collaboration
achieves near-optimum performance and significant resource
savings. However, a Bayesian detection is a special case that
requires knowledge of some key parameters. For broader real-
world applications, we often need to account for possibly
unknown decision variables and channel parameters.

In this work, we study over-the-air aggregation for IoT
decision-making in more practical scenarios where some
parameters might be unknown. To this avail, we adopt a
general Neyman-Pearson (NP) framework with the objective of
approximating optimum NP performance while achieving sub-
stantial resource saving through AirComp, which we denote
AirComp-based Federated Decision Making (AirCompFDM).
We design several different NP detection tests depending
on the knowledge of system and channel parameters. We
determine whether or not these NP tests are universally most
powerful (UMP), or whether or not we may devise UMP in-
variant (UMPI) tests without UMP. For performance analysis,
we derive analytical approximations of the relative entropy
of these tests with respect to the number of participating
nodes. This entropy corresponds to the error exponent of
both probability of missed detection and false alarm. Our
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Fig. 1: Illustration of a sensor network using our proposed over-the-air
decision-making paradigm. Sensors observe the event H and transmit log-
likelihood ratios via analog signals for over-the-air aggregation at the server.

results show that detection performance has significant gains
even with only a modest number of sensors. Additionally,
our simple over-the-air protocols and minimal resource usage
make our proposed AirCompFDM both feasible and enticing.
This paper is structured as follows. Section II details the
system model with over-the-air computation and the use of
soft information. Section III presents a classical NP test for
AirCompFDM and compares its performance to ideal and
traditional schemes. In Section IV we further derive detection
tests for means of Gaussian sensor observations depending on
the knowledge (or not) of key parameters. Section V studies
performance gains thanks to sensor aggregation for all these
tests. We corroborate our findings with numerical experiments
on Section VI, and Section VII concludes the work.
Notations: In the following, vectors will be denoted with
small boldface letters, such as z, with transpose denoted
by 2. Sets are denoted with calligraphic capital letters. z
represents the complex conjugate of z, and the imaginary unit
is denoted as 2. 1 and I represent a vector of ones and the
identity matrix of appropriate size. Probability, expectation and
variance are denoted as P(-), E{-} and Var{-}, respectively.

II. SYSTEM MODEL

Consider a wireless system of single-antenna nodes, where
a server node hosts S sensors, as depicted in Fig. 1. The
sensors collect data about a particular event H belonging to
a discrete set {Hy, H1}, which correspond to the two un-
derlying hypotheses. Each sensor 7 generates N observations
v; = [vin vin]T, fori € S = {1,...,S}, under Hy
or H;. The observations of the i-th sensor follow conditional
probability distribution function (PDF)
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conditional on parameter vector 8; under hypothesis H;. The
task of the server is to decide on a hypothesis, using a test §
over signal z that aggregates information sent from the sensor
nodes, subject to system design and channel characteristics
in different scenarios (to be specified in Sections II.A through
I1.C). We then define the parameter vector ®;, which contains
all relevant system and channel parameters after aggregation.

Now, the technical challenge is to achieve satisfactory de-
tection performance with high efficiency and minimal resource
usage. We propose the use of i) over-the-air computation to
drastically reduce resource requirements and network coordi-
nation; ii) letting nodes transmit local soft scores, maximizing
the amount of shared information; and iii) composite testing
to account for practical scenarios where the server may not
know all the parameters in ©;.

Throughout this section, we will describe the key aspects of
our framework, namely, over-the-air computation, transmission
of soft information, and channel compensation techniques. In
Section III we formulate an NP framework for over-the-air
decision-making, and further extend it in Section IV where we
address composite test design in different practical scenarios.

A. Over-the-Air Aggregation

We follow the model and formulation of [24]. In each trans-
mission slot, sensors simultaneously transmit analog signals
to the server over a MAC. We assume that all sensors have
acquired network timing and are synchronized at the server,
e.g., via round-trip delay information, such that their trans-
mitted signals would aggregate synchronously at the receiving
server. Furthermore, we assume that each burst duration is
below the coherence time of the wireless channel such that
channel gains remain constant within each transmission slot.

AirComp aims to compute an estimation or decision from
a nomographic function of distributed data collected locally
by participating sensors [17]. At discrete resource (e.g. time
slot) k, each sensor ¢ computes a message u;(k) = u;(v;; k)
and transmits a signal z;(k), ¢ € S, corresponding to a local
pre-processing of message u;(k), i.e.

zi(k) = Yix(ui(k)), i€S. (2)

When all sensors simultaneously transmit individual signals
over a shared multiple access channel, AirComp allows the
server (fusion) node to receive the cumulative signal

= gilk)ai(k) + n(k), 3)
i€S

where g;(k) € C/{0} represents the channel state information
(CSI) from the ¢—th node to the server and we assume channel
noise n(k) to be circularly symmetric complex additive white
Gaussian noise (AWGN) with power density w? (i.e. variance),
independent of channels and signals. From (3), AirComp
improves resource efficiency by a factor of S, since a single
time slot is required for sensor access instead of S time slots
required for sequential sensor polling. Moreover, the AirComp
access protocol remains the same regardless of how many
sensors may decide to collaborate in a communication round.
The server collects K > 1 samples of the received signal
(3) and makes a decision on a hypothesis using post-processed

samples z(k) = Wy (y(k)). Note that if the K samples are
obtained within a transmission slot, they all experience the
same channel gains. Conversely, if samples are taken in dif-
ferent transmission slots, we assume that channel realizations
are independent over slots, yielding independent samples y(k).

B. Sufficient Statistic and Over-the-Air Approximation

In any detection problem, the LLR computed over all
observed data corresponds to the optimal sufficient statistic
for hypothesis testing [25], [26]. If the server had access to
all observations v; from S independent sensors, the LLR is

-3l <fz ’"z‘Zl > S tw), @
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where /(v;) = In [%] is the LLR computed only with
local observations of sensor i. Classical approaches consider
sensors that share local decisions using their own ¢(v;) [12].
Given (4), if sensors instead transmit their local LLRs by

defining w;(k) = £(v;), the server only needs to sum them
to form a SS A for optimal decision-making with the test

s) = ui(k) Zm<n 5)
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Note that using AirComp in ideal noiseless scenarios, the
received signal at the server is exactly A: AirComp yields
SS (5) with minimal resource usage. However, in practical
scenarios AirComp exhibits amplitude and phase distortions
gi(k) for each sensor signal, plus the effect of channel noise
n(k), as depicted in (3). In other words, the received signal
y(k) is a sample of a noisy and channel-weighted statistic
(NCWS), and the technical challenge is to design pre- and
post-processing functions ;  and ¥y, to obtain an NCWS A
that approximates the SS, i.e.

S\(Z) ~ X where z=[z(1)
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C. Channel Compensation in Over-the-Air SS Approximation

Depending on network deployment and practicality of de-
sign and implementation, we can devise different compensa-
tion schemes for AirCompFDM. In particular, we realize that
channel phase compensation is critical for correct decision-
making, and although interesting for analysis, the overall
impact of channel magnitude compensation is small once the
channel phase has been dealt with, as demonstrated by the
robustness of the EGC fusion rule [5], [6]. Hence, we focus
on channel phase compensation schemes only in this work.

1) Exact Phase Pre-compensation at Sensors: If there
exists channel reciprocity such as in a time-division duplex
(TDD) link between server and sensors, the server broadcast
used to acquire timing can also be used to estimate channel
phase. If we assume that the estimation is perfect, the sensors
can use the pre-processing functions

i(k)
|9i(k)|

<

zi(k) = ui(k), )



and denoting a; (k) = |g;(k)| > 0, the received signal is

y(k) = Zai(k)ui(k> +n(k), (®)
i€S
and as the compensated channels are real, the server uses
post-processing functions zp(k) = Re{y(k)}. We call this
protocol AirCompFDM-P. Note that this setting is similar to
the proposed EGC combining of [5], [6], although here the
sum of samples is performed over-the-air.

2) Exact Phase Post-compensation at Server: In the oppo-
site scenario where there is no channel reciprocity, sensors can-
not estimate channels beforehand and are unable to precom-
pensate their local LLR signals. Thus, sensors do not perform
any pre-processing and we simply let z;(k) = u;(k) € R,
resulting in an improper (complex) received signal

y(k) = gi(k)ui(k) + n(k) € C. ©)
i€S
Regardless, we assume that the server is able to estimate the
aggregated channel at each sample, Gy = ;.5 9i(k) € C,
and compensates for its resulting phase. Under this protocol,
denoted AirCompFDM-U, we define post-compensated signal
samples as

Gk
2u(k) Re{ |Gk|y(k)}.
3) Quantized Phase Pre- and Post-compensation: Finally,
we can consider non-ideal channel phase estimation and we
apply discretely quantized phase corrections on both ends. We
call AirCompFDM-M when sensors and server perform quan-
tized phase compensation with M uniform angle partitions
of 2w /M radians, with offset of /M. In particular, M = 4
quantizes channel phase into 4 quadrants before compensation.
Formally, and assuming TDD channel reciprocity, the i-th
sensor estimates channel phase Zg;(k) and computes the
corresponding ¢;-th angle partition, with ¢; € {1,...,M}. In
particular, ¢; is such that

(10)

Zgi(k)—i—% (mod 27) € [%_D,2Ei>, (11)

and the sensor then uses the quantized phase precompensation

ri=exp (—io)u, o= 2l

Denoting b; (k) = g;(k) exp(—1¢;), the received signal is

i€S

(12)

13)

We apply a similar approach of phase post-compensation with

zm (k) = Re{ exp(—z@k)y(k)}, (14)

where ®;, discretely compensates the aggregated channel gain
> ics bi(k) similarly to the quantized precompensation above.
We note that this model can be further generalized to consider
either only pre-compensation or only post-compensation, ac-
cording to practical network constraints.

Furthermore, quantized phase precompensation is also pos-
sible when there is no TDD channel reciprocity. In this setting,
the server would estimate channel phase of each sensor based

on traditional pilots, and then send the quantized angle back to
the sensor or user equipment (UE) by using only log, (M) bits.
Though this step requires additional resource consumption, it
only needs to be performed once for the coherence time period
of the channel. As wireless sensor networks are typically static,
this is still an attractive option in practical deployments.

III. NEYMAN-PEARSON DETECTION OF SENSOR MEANS

Here we design different tests for collaborative decision
making under a NP framework. In the following, we assume
that local measurements are independent between sensors and
that they all follow the same multivariate Gaussian distribution
parametrized by 6; = (m;,o?) conditioned on hypothesis
Hj, ie., the hypotheses differ only in sensor mean, i.e.
v; ~ N(m;1,02I), and we further assume that m; > my.
Hence, the sensor LLRs correspond to

1

Letting d = (m1—mo)v'N /o > 0 denote sensor hypothesis

distance, we have

(o = moL) = Jlo: = mi1)2). )

d

A2
(o)l Hy ~ N (1) 5 ), (16)

which means that the distribution of local LLRs is simply

(17)
Note that if we instead assume mg > mg, the signs of the
means would be inverted, i.e. g = 1 and ¢; = —1. Hence, we

focus only on the case mo < m; without loss of generality.
Note that the test Hy : m = mg vs. H; : m = mq > myg is
equivalent to the test Hy: g =qo =—1vs. Hy :q=q1 = 1.

We have assumed that sensors have equal sensing quality,
related to d, whereas in real-world scenarios this would be
unlikely. However, this assumption is not impractical: as d
increases with the number of local observations, a bad sensor
only needs to consolidate more observations into its local
LLR for quality improvement, which applies to any underlying
distribution. Alternatively, a practical design approach would
be to presume a worst-case scenario where all sensors have
quality equal to the sensor with the worst quality, which corre-
sponds to our model above. Such design would eventually lead
to more robust decision-making by e.g. careful selection of
system parameters. Moreover, there is evidence of satisfactory
detection performance with simple fusion rules like EGC for
sensors with different quality [6, Fig. 6]. These reasons should
validate our model with equal sensing quality for all nodes.

Without loss of generality and for ease of exposition, in the
rest of this work we shall consider only static channels, as
the extension to dynamic channels is straightforward. Hence,
for the different compensation schemes of AirCompFDM, the
resulting conditional distributions of the samples of the post-
processed signal z(k) are

zp(k)|H; ~ N (0.5¢;Ad*, Pd® + 0.5w%) (18a)
zm (k)| Hj ~ N (0.5¢; Bd®, Pd® + 0.5w%) , (18b)
zy(k)|Hj ~ N (0.5¢;|G|d?, Pd* + 0.5w%) , (18¢)
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Fig. 2: Performance of the test §; for different means for known mg and m, known channel parameters, and with channel SNR —10dB, d = 2, S = 2,
and K = N = 1. We average 1000 realizations over 1000 independent sensor deployments.

where the sum of channel powers P =3, _¢]g;|* > 0 and

A=>"a; =) |g| >0, (19a)
€S €S
B= Re{ exp(—1@) Y bi} >0, (19b)
€S
G=>Y gieC, (19¢)

=
are the sum of channel gains under each compensation scheme.
Note that these aggregated gains are not independent of P.
We assume that M is large enough to ensure B > 0. Then,
parameter vector ©; is

O,p=[4 P w & ¢, (20)

under perfect channel precompensation, and we obtain ©; s
and ©; y by replacing A by B and |G|, respectively.

We now derive a clairvoyant NP test where all parame-
ter values are known exactly when implementing the test.
Moreover, as the derivation of NP tests is similar for dif-
ferent AirCompFDM compensation schemes, we only show
the detailed derivation of tests using AirCompFDM-P, and
summarize results for all other schemes. We assume first that
all relevant parameters are known. Hence the likelihood ratio
test (LRT) at the server is directly computed as

_ l=+ 471" = - A" &
Lz =oxp | Spp e~ 2P@ + w2 =n @b

reducing to the test

5 1Tz 2 [oPa? +w? | Ad?
AN =— Z\/————Q~ -—, (22
(51(2) A1 K ; 2K Q (Oé) 9 ( )
0
which has size o and power
Pp(a)=1-Q(Dp — Q (). (23)

Here we denote the server hypothesis distance under perfect
channel phase precompensation as

Ad®VK
VP + 052

We obtain similar tests for AirCompFDM-M and -U, with
respective thresholds and server hypothesis distances.

As a proof-of-concept demonstration, in Fig. 2, we compare
the performance of the NP test d;(z) using all compensation
schemes, with S = 2 sensors. We assume sensor hypothesis
distance d = 2 for K =1 and N = 1 per sensor, at channel
SNR of -10dB and Rayleigh fading, i.e. g; ~ CN(0,1).
Moreover, we compare with the performance bound obtained
by assuming a perfect SS in centralized LLR testing, and
under a noisy case without channel fading (equivalent to full
channel pre-compensation, akin to the method of [22], denoted
NSS). To properly capture average performance, we generate
random variables in two steps. First, we generate 1000 “sensor
deployments”, each consisting of a set of .S channels. Then,
for each deployment, we generate 1000 realizations of NK
observations per sensor, computing K local LLRs per sensor
with N observations each. Our results include i) average
empirical curves (“empirical’’), analytical curves using average
D over deployments (“deployment average”), ii) theoretical
curves using the approximate expectation of D in (23), i.e.
Pp (E{D}), for both AirCompFDM-P and -U [24]. We rele-
gate more detailed discussions on testing to Section VI.

The empirical receiver operating characteristic (ROC) is
depicted in Fig. 2a. Interestingly, for low channel SNR, low
number of sensors, and low d, AirCompFDM-P is close to the
performance of fully precompensated channels NSS, and more
importantly, achieves comparable performance to a traditional
MAC polling scheme of local decisions where channel fading
and noise have been perfectly mitigated [2], using a maximum
a posteriori detector. This detector is equivalent to a majority
rule [27] over local decisions uf”'(7) € {0,1}, computed

i

Dp = (24)
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Fig. 3: Empirical ROC of test §; with known mg and m, known channel parameters, and with K = N = 1. We average 1000 realizations over 1000
independent sensor deployments. (a) to (c): Varying sensor hypothesis distance d, with SNR -10dB. (d) to (e): varying SNR with d = 1.

using a common threshold 7 across sensors. Hence, this
detector has theoretical ROC curves

P pon (1) = ]P’( > ul(r) > g‘Ho) . (259)
=

PD,poll(T) = P(ZUI;OH(T) Z g‘Hl) ) (25b)
€S

We also note that quantized phase pre-compensation of
AirCompFDM-M achieves surprisingly good performance
with just M = 4 angle regions, being only slightly worse
than AirCompFDM-P in all cases. On the other hand,
AirCompFDM-U shows worse performance, expected due to
the detrimental effect of noncoherent channel aggregation.
Furthermore, theoretical approximations are close and slightly
overestimate their corresponding empirical performance.

In Fig. 2b we show probability of detection with respect
to channel SNR, for equal parameters and a fixed probability
of false alarm of 10%. Probability of detection for SS and
traditional MAC polling do not depend on channel SNR but are
shown across the range for readability. As expected, increasing
SNR improves performance regardless of the compensation
scheme. For high SNR, AirCompFDM-P only has a small
gap with respect to the optimal SS. Moreover, AirCompFDM-
M with discrete precompensation of channel phase achieves
very similar performance to exact phase precompensation.
AirCompFDM-U suffers in performance in comparison, but
still achieves performance close to that of traditional MAC
polling for higher channel SNR.

In Fig. 3 we show the empirical ROC of test d;(z) un-
der different compensation methods, for different number of

participating sensors S, varying sensor hypothesis distance d
(3a-3c) and varying SNR (3d-3f). Overall, the test exhibits
performance gains with increasing S in all cases, which are
significant for AirCompFDM-P and AirCompFDM-M that use
phase precompensation. On the other hand, AirCompFDM-U
stagnates and suffers in comparison to either phase precom-
pensation scheme, due to noncoherent channel aggregation.
In particular, Figs. 3a to 3c show the ROC for different
values of sensor hypothesis distance d for a fixed channel
SNR of —10dB. As expected, test performance improves with
increasing d across compensation methods. More interestingly,
Figs. 3d to 3f depict performance for different SNR values and
fixed d = 1. In all cases, increasing the number of participant
sensors improves test performance beyond the gains obtained
by increasing SNR with a lower number of sensors. This fact
illustrates the impact of sensor aggregation, overcoming the
traditional trade-off between detection performance and energy
consumption due to increased transmission power.

Furthermore, we want to highlight that AirCompFDM pro-
vides aggregation gains for different distributions of sensor
observations. Regrettably, the LLRs of most distributions are
usually challenging to derive, except in special cases. Thus,
the distribution of the received signal (itself a post-processed
version of a weighted sum of LLRs plus Gaussian noise)
is usually extremely hard or impossible to obtain, and we
are unable to analytically find an appropriate NCWS and
its conditional distributions, or even design a test beyond
numerical simulations. Thus, in Fig. 4 we offer numerical
evidence of the applicability of AirCompFDM in more general
scenarios, for all our proposed compensation methods with
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Fig. 4: Empirical ROCs for different distributions of sensor observations and channel SNR, with K = N = 1. We average 1000 realizations over 1000

independent sensor deployments.

K = N =1, i.e. the least amount of observations and samples,
and compare with the perfect SS in centralized LLR testing.
We first test Hy : ¢ = og vs. Hy : 0 = 01 > o¢ for zero-
mean Gaussian observations, i.e. vi|H; ~ N(0,0%1) iid.
Vi € S, with 03 =1 and a% = 2. Figs. 4a and 4b show
the ROCs of this test under channel SNR of —10 and 0dB,
respectively. In this test, local LLRs follow biased Gamma
distributions, and the distribution of samples z(k) has no
closed form. However, the LLR of post-processed signals can
be obtained using numerical inversion of the characteristic
function under each hypothesis. Comparing Figs. 4a and 4b
show the impact of channel noise on detection performance,
but AirCompFDM-P and -M still perform adequately for low
channel SNR, with performance comparable to ideal SS under
0dB of channel SNR. Similarly, Fig. 4c depicts the empirical
ROCs of test Hy : m = mg vs. Hy : m = my; > mg when
sensor observations are contaminated by Laplacian noise, i.e.
v;n|H; ~ Laplace(m;,3) iid. Yn € {1,...,N},Vi € S,
with antipodal locations my = —m; = —0.3 and 8 = 1, and
channel SNR of 0dB. Here, the distribution of a local LLR is
known [28], but the NCWS still is unobtainable in analytical
form and its conditional distributions are computed via numer-
ical inversion. In all the cases above, AirCompFDM-P and -M
show significant aggregation gains, whereas AirCompFDM-U
struggles but still improves performance slightly by mitigating
the effect of channel noise. Nevertheless, these results show
that AirCompFDM provides collaborative detection regardless
of the underlying distribution of sensor measurements, illus-
trating the generality of our proposed framework.

IV. COMPOSITE NEYMAN-PEARSON TESTING

In this section, we derive further NP tests for more practical
scenarios where some parameters in 8; are unknown, i.e., the
server has no access to the exact value of the parameter(s)
when implementing the test. Moreover, in these scenarios,
it is of great interest to determine whether we can obtain
a universally most powerful (UMP) test, and if not, if it
is possible to obtain a UMP invariant (UMPI) test instead.
When an UMP(]) test is derived, it will exhibit this property
regardless of compensation scheme, although these tests are
not necessarily optimal performance-wise.

In case of practical deployments, the channel parameters A
(corresp. B or |G|), P and w? are not known a priori, and
the server needs to estimate them. In this work, whenever we
assume knowledge of a parameter, we mean that a parameter
has been estimated perfectly. For completion purposes, we
present some simple estimation procedures for each parameter:

o To estimate receiver AWGN noise intensity w?, the
server node uses samples of the received signal before
broadcasting the transmission request to sensors.

o To estimate P, the receiver node can request that sensor
transmissions use some known pilot signals and estimate
the power of the incoming signal. By knowing the pilot
signals and w?, P can be accurately estimated.

o Finally, an estimation of aggregated channel gain A
(corresp. B or |G|) is also obtained using pilot signals.
We can further refine the estimate of sum-gain or sum-
power using the other estimate, or a joint estimation
procedure, or an iterative process.

To derive analytical insights, we assume again that sensor
observations are normally distributed with different means as
in the previous section, and that sensor variances are known
and equal under both hypotheses. Hence, the distributions of
the samples of the post-processed signal correspond to (18)
depending on the compensation scheme. We first assume that
both sensor means mg and m; are known. Afterwards, we
determine tests for the case when m; is unknown and only
mg is known.

A. Known sensor means

With both my and m; known, the following tests are
designed for testing Hy : m = mg vs. H; : m = m; > myg.
Furthermore, the sensor hypothesis distance d is also known.

1) Unknown aggregated gain: We first assume that P and
w? are known, but the aggregated gain parameter A (corresp.
B or |G]) is unknown. Any test design with transmitted signals
(17) would not yield UMP tests, as the distributions of the
server samples (18) result in a probability of false alarm that
depends on the unknown gain parameter. However, as d is
known, we can obtain a UMP test if instead the sensors
transmit biased LLRs u; = £(v;) + d*/2. Thus, we have that

w;|Hy ~ N (jd?, d?) (26)



and

zp|Hj ~ N (jAd®, Pd* + 0.5w%), (27a)
zym|Hj ~ N (jBd?, Pd* 4 0.5w%), (27b)
zu|Hj ~ N (j|G|d?, Pd® + 0.5w?). (27¢c)

Transmitting biased LLRs, the mean of the server samples
under Hj is zero in all compensation schemes, and hence
the unknown gain parameter is not part of Hy. This allows
obtaining a threshold for a given probability of false alarm .
The server LRT yields

[Ell |z — Ad*1|”
Lz)=exp | 5ppm 2 = opd 1 o2

1;1
=T (28)
Hy

reducing to the test

17z 1 2Pd? +w?
62(z) 1 Ag = Na ;772 w9 (a), (29
0
which is UMP with power
Ad*VEK
Ppla)=1-— — QY. 30
() = 1-Q( 2 07 w). o)

We have a similar result with other compensation schemes.

2) Unknown channel parameters: We assume now that A
(corresp. B or |G]) unknown, and either P or w? are unknown
as well. Hence, there is no UMP test as test threshold and P
would depend on P and w?2. However, we can obtain an UMPI
test with a generalized LRT (GLRT). Using biased LLRs as
in (26), knowing that the aggregated gain A (corresp. B or
|G|) are positive, and using the maximum likelihood estimate
(MLE) of the mean under H;, and the MLE of variance (which
requires K > 2) under both hypotheses, we obtain the GLRT

T

l=F e e
L = = 31
= “anluu> PEEET A

that reduces to the test

B 1TZ H1

03(2): A3 = VEl 3 < N3,

which is UMPI under positive scale transformations and
symmetries w.r.t. the hyperplane orthogonal to 1 [26, Chapter
5]. To verify this claim, we use a variable transformation fro~m
[26, Equation (5.49)], and obtain the PDF of the NCWS A3

under H; as
jD?
2

fa(z|H;) C’\/l—ar2 eXp<—
00 7,2
. /0 r =1 exp < 21/2> exp (jErx) dr,

for z € [-1,1], j € {0,1}, (33)

(32)

where 12 = Pd*+0.5w?, D = Ad*VK /v, E = D/v, and C}
is a normalization constant under H ;. For other compensation
schemes, we only need to replace A by the corresponding

gain parameter in D and E. In particular, under H, the PDF
reduces to

['(K/2)
VAT ((K —1)/2)
AV (34)

which is independent of channel parameters and d, and allows
us to obtain a threshold 73 that guarantees a bounded proba-
bility of false alarm «, regardless of compensation scheme.
Observe that Cy # Cp, as it also contains the result of
integrating over r with j = 0 in (33). Additionally, for
K = 2 the above PDFs are defined for 2 € (—1,1). In
the following, we shall also refer to NCWS A3 as a cosine
NCWS, as it corresponds to the cosine of the angle between
the (normalized) mean vector d?1 and the sample vector z.

for z € [-1,1],

fs(x[Ho) =

B. Known sensor mean mq and unknown m-

Now, we consider m; unknown such that m; > mg, and
test Hy : m = mg vs. Hy : m = my > mg. Hence, the local
LLRs have conditional distributions

0(v;)|Hj ~ N(0.5q;d*,d*), q; =(-1)""7. (35)

With m unknown, d is unknown and it is not possible to
add a bias d?/2 on signals u; as in (26). However, note that the
distinguishing factor between conditional distributions (35) is
only the sign of the mean, conveyed in the parameters g;.

1) Known channel parameters: If A, P and w? are known,
the LRT at the server is straightforwardly computed as

_ |2+ 281" |z — 48"\ &
L(z) —exp< 2Pd2 + w2  2Pd? + w2 2 T

Ho
1Tz 4 2Pd* + w?
= 64(Z) N )\4 = 7 E Ny = m ln(7)7 (36)
Ho

but, different to the test d1(z), here the distribution of A\
under H; depends on the unknown d, and we cannot compute
a general threshold for bounded probability of false alarm «.
Hence, there is no UMP test, and similarly, there are no UMP
tests using AirCompFDM-M and -U.

However, we know that the hypothesis information is carried
in the sign of the mean ¢;. Hence, we now obtain an estimator
of d? based on the ML estimator of the mean of the received
samples, and replace it in the LRT formulation. Thanks to the
knowledge of A, we have

~ 2
d? = 17 37
ot @
and the LRT is
172|412 17z412\ H
Y U U
%|1Tz| + w? %|1Tz| + w? I§o

sgn(172))17z|>
=0(z)==>——"""_ = In(7). (38)
Note that as A, P, w? > 0, the LLR is monotonically
increasing in A = 172 /K, because the function
h(a) =

alal
bla| + ¢

(39)



TABLE I: Summary of proposed tests and its principal characteristics, using exact phase precompensation of AirCopmFDM-P.

Test ‘ Description Unknown parameter Conditional Distributions UMPI)? Power
51(2) Clairvoyant All known N(0.5¢; A’ K=, (Pd? + 0.5w?) /K —?) UMP (23)
d2(2z) | Average NCWS, biased LLRs A N (AP K=, (Pd? + 0.5w?)/K~2) UMP (30)
03(2) Cosine NCWS, biased LLRs AN (PVw?) (33) and (34) UMPI Numerical
34(2) Average NCWS my N(0.5¢; Ad>K—1, (Pd? + 0.5w?)/K~2) No -
55(2) Cosine NCWS m1 A (AV PV w?) (45) No -

is monotonically increasing Va # 0 when b, ¢ > 0, and hence
we can reduce (38) to

(40)

i.e. we obtain the same test d,4(z), and there are no UMP tests
for unknown d and known channel parameters.

We note that the estimator of d? could be improved.
However, this complicates the computation with no additional
insight in test design. For example, computing the MLE of d?
for the case where w? = 0 yields an involved expression, but
the test still reduces to d4(2).

2) Unknown channel parameters: If A (corresp. B or |G|)
is unknown, we cannot estimate d? using (37). As the means
under Hy and H; have equal magnitude, we can use the MLE
of the mean magnitude |17 z|/K. However, with d> unknown,
we resort to using MLE of the variance under both hypotheses.
Equivalently, we would use the same procedure when either
P or w? are unknown. Hence, the GLRT reduces to

4Sgn(1T )‘lT |2 Hy
K|z[? -1z ;3

((z) = Z In(r), @1)

We can rewrite the LLR in (41) as a function of the cosine
statistic A5 = 172/(vV K||z]|). A little algebra yields

4sgn(5\5)5\§
Uz) = ———==—, 42
() ==1"% (42)
which is monotonically increasing in A5 because the function
4alal
h(a) = T—a ©F (-1,1) (43)

is monotonically increasing in its domain, where the statistic
A5 resides. Hence, we can further reduce (41) to

~ 172 H1

55(Z)2 )\5 \/7H || < 5.

The PDF of the NCWS )5 under [, can be obtained as
[26, Chapter 5]
D2
8)

K3
fs(z|H;) = ¢j /1 — a2 exp(—

[e’e) 2 E
/0 rKlexp<2ry2) exp (q] 27’:0) dr,

for z € [-1,1], j € {0,1}, (45)

(44)

where 12, D, E are the same as in (33), c¢; are the corre-
sponding normalization constants under each hypothesis, and
¢; = (=1)'77. Even when the PDF has no general closed
form, it is clear then that under Hj it depends at least on
the unknown d, and hence the test 05(z) cannot be UMP(I).

Note that the cosine NCWS A5 is computed equivalently to
the cosine NCWS )3, but it follows different distributions due
to the unknown mean mj.

C. Summary

Table I organizes our proposed tests and summarizes their
properties, referring to the particular equations for each case.
We use logical operators “AND” A and “OR” V to denote
combinations of unknown parameters. All equations apply for
exact phase precompensation of AirCompFDM-P. To obtain
expressions for AirCompFDM-M and -U, the aggregated gain
parameter A needs to be replaced with B and |G|, respectively.

V. PERFORMANCE BOUNDS

Under an NP framework, the relative entropy or Kullback-
Leiebler (KL) divergence governs the decay of probability of
error of type I or II. Specifically, the probability of missed
detection and false alarm will have exponential decay rate of

/f z|Hy) 1n( E goi)dx (46)
KLH:/f(:c|H1)1n (f(iHO;)dw, (47)

respectively. Note that the UMP and UMPI tests derived in the
previous section are of type I, setting a bounded probability of
false alarm, but can be reformulated into type II straightfor-
wardly. In the following, we study the KL divergence of the
tests derived in Section IV, according to the corresponding
NCWS and its distributions under each hypothesis.

A. Average NCWS

For Gaussian observations with equal variance under both
hypotheses, the local LLRs and the post-processed samples of
the received signal are also Gaussian under both hypotheses,
as shown in (18). Hence, the NCWS \; also follows Gaussian
distributions. In the particular case of exact phase precompen-
sation, the hypothesis distance of the NCWS is

Ad*VK
Dp= —n— | (48)
V' Pd? + 0.5w?
and the corresponding KL divergence of test &1 is
D3 A2d*K
KLl =KLI'= £ = ———— 49
1 1 2 2Pd2 + (.d2 ) ( )

and the KL divergence for AirCompFDM-M and -U are
obtained similarly. Additionally, note that the NCWS Ao and
A4 also follow Gaussian distributions with the same hypothesis
distance D, and therefore, the tests d2(z) and d4(z) have the
same KL divergence (49).



Of course, D is a random variable that depends on channel
realizations, channel noise and compensation scheme. To
facilitate the analysis of the behavior of D with respect to
the number of participating sensors .S, we can approximate its
mean value for moderate to large values of S as shown in [24]
and obtain a direct relationship between D and S. In the case
of phase pre-compensated channels,

Var{a;} + SE*{a;}

E{D}} ~ *K 50
{De} E{a?} + 0.5w?/(d?S) ’ 0)
and with no precompensation,
Var{g;} + S(E*{Re(g;)} + E*{Im(g;
B0 w Yorlod  S(ERelg)) + B (In(g:)
E{lgi[*} + 0.5w?/(d?S5)
(51

In [24] we argued that these approximations are informative
enough for designing detection strategies under a Bayesian
formulation using the corresponding best error exponent, i.e.
the Chernoff information D? /8. For large S, the Chernoff
information increases linearly with S, and thus the optimal
strategy (in terms of detection performance) is to have as many
participating sensors as possible. In particular, the Chernoff
information of AirCompFDM-P is approximately affine with
respect to S as dictated by (50) for any channel fading model
because E?{a;} > 0. On the other hand, AirCompFDM-U
imposes noncoherent aggregation, and hence its Chernoff in-
formation related to (51) suffers with zero-mean channels such
as Rayleigh fading, because E{Re(g;)} = E{Im(g;)} = 0 and
there is no expected aggregation gains, besides the reduction
of effective channel noise [24].

As the KL divergence is only a multiple of the Chernoff
information for the average NCWS A1 as shown in 49), we
expect the same collaboration gains as in the Bayesian case for
each compensation scheme. Moreover, in this work, we also
demonstrate the quality of these approximations with respect
to S, in particular for low SNR scenarios.

B. Cosine NCWS

When both sensor means are known, the cosine NCWS 5\3
has conditional PDFs (33) under each hypothesis. Hence, the
KL divergences for test d3(z) cannot be obtained in closed
form, and furthermore, it is not straightforward to study the
effect of S in the KL divergence. As an alternative analysis,
we can approximate the KL divergences. We first replace
D? by its approximate mean above, and furthermore, derive
corresponding approximations of the mean of E and /2. Then,
the KL divergence will be a complex expression that explicitly
depends on S. In the following, we derive the approximations
using exact phase precompensation, and approximates for
other compensation schemes can be obtained similarly. It is
straightforward to see that

A 2

__APVE A/S JE
Pd? +0.5w2  P/S+0.5w?/(Sd?)
Invoking the Strong Law of Large Numbers (SLLN) [25],

P/S “% E{a®} as S — oo, and since w? is constant,

E+05“—2ﬂ>1E{ 2} when S —
S Sd2 a whne Q.

Ep (52)

(53)

On the other hand, the SLLN also states that A/S “* E{a}
as S — oo. Hence, since the ratio of almost surely converging
sequences converges almost surely to the ratio of their limits

Ep &5 HI':E:{{;Q}}\/E when S — oo.

If we assume that the SLLN holds for moderate values of
S, we obtain the approximation'

(54)

E{a}

Ep ~E{Fp} = K. 55
P~ E{Er} E{a?} + 0.5w2/(Sd2)\/> (53)
For the reciprocal of 12, we observe that
2 2 /(Sd2
2v2  2P/S +w?/(Sd?)

and using the same procedure as above, where r2 is a constant
for the purposes of expectation,
r? a.s,
— — 0 when § — oo.
212
Assuming again that the SLLN holds for moderate values
of S, we obtain the approximation

(57

L E{i} -
w2 " T w2 T 2E{a?}d?S 4+ w?’
Replacing in the PDFs and after some algebra, the approx-

imate KL divergence of type I and type II for NCWS A3
become

2
(58)

—Cy [1 V1-— a:2K_3 In (R3(x)) dz,

KLY ~ In (g%) = %Dz}

1 _
+C / V1-— £C2K SRg(ac) In (R3(x)) dz, (60)
-1

respectively, where

(59)

Rs(z) = /000 rE~Lexp < - E{%} + @) dr.
(61)

Even with the above approximations, it is not clear how
the KL divergence depends on S. Hence, we obtain numerical
computations of the approximate KL divergence and compare
them with the average KL divergence of empirical channel
realizations. Nevertheless, similarly to the case of average
NCWS, we expect that KL diverngence increases with S for
AirCompFDM-P, and that it stagnates for AirCompFDM-U.

Finally, when m; is unknown, the cosine NCWS A5 has
conditional PDFs f5(x|H,) as shown in (45). Again, the KL
divergences cannot be obtained in closed form, even for given
d?2, A, P and w?, and moreover, the PDF under the null
hypothesis depends on all these parameters as well. However,

'We note that for AirCompFDM-U, |G| is the magnitude of a complex
number. Thus, instead of invoking SLLN, we would need to invoke the
Central Limit Theorem and the Continuous Mapping Theorem [25] to obtain
an approximation, akin to our derivation in [24].
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Fig. 5: Empirical ROC of test d2(z) for different number of sensors S and SNR values, with d = K = N = 1. We average 1000 realizations over 1000

independent sensor deployments.
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Fig. 6: KL divergence of type I for test d2(z) with respect to the number of sensors S, for different values of channel SNR, and d = N = K = 1. We
average 1000 independent sensor deployments for empirical results, and use approximations (50) and (51) for AirCompFDM-P and -U, respectively.

a simple variable transformation shows that f5(x|Hp)
fs(—z|Hy) for x € (—1,1), and hence ¢ = ¢; =
Moreover, KL divergences of type I and II are equal as
well. Therefore, using the approximate means of D?, E and
2 /12, the KL divergences of type I and II for NCWS A5 are
approximately

12

. /11 VIi—22 Rs(—2)n (R"’(x)) da,

R5 (LE)
(62)

KL, = KLY ~ cexp (-

respectively, where

Rs(z) = /OoorKleXp<—IE{

’I”2

E{E}rx
52 7) dr.

2

b+

(63)

VI. NUMERICAL EXPERIMENTS

To illustrate the performance gains of AirCompFDM, we
set up several different network settings. Unless otherwise
stated, we simulate S sensors and one server, all equipped

with a single antenna. We assume each sensor obtains N = 1
observation, independent among sensors, and contaminated
with i.i.d. Gaussian measurement noise, parameterized by the
sensor hypothesis distance d = |m; — mg|/o. Without loss of
generality, we assume antipodal means, i.e. mg = —m; < 0,
and hence for each value of d, we fix ¢ = 1 and obtain
my = —mg = 0.50/d. We simulate i.i.d. Rayleigh channels,
ie. g; ~ N(0,1/2) +iN(0,1/2). Channel noise is AWGN
with intensity w? corresponding to a given average SNR for a
single sensor. The server makes a decision using K samples of
the received analog signal, and we focus on the lowest amount
of samples possible for any given test, i.e. K =1 or K = 2.
As stated in Section III, we generate 1000 independent sensor
deployments, i.e., static channel realizations for K samples
and S sensors, and perform 1000 independent Monte Carlo
simulations with different sensor observations, allowing us to
faithfully reproduce average behavior of our tests.

A. Average NCWS

Fig. 5 shows the ROC for test d3(z) for sensors sending
biased LLRs as in (26), for different compensation schemes,
and d = N = K = 1. Note that this performance is equal to
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Fig. 7: Empirical ROC of test 3(z) for different number of sensors S and SNR values, with K = 2 and d = N = 1. We average 1000 realizations over

1000 independent sensor deployments.
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Fig. 8: KL divergence of type I for test d3(z) with respect to the number of sensors S, for different values of channel SNR, d = N =1 and K = 2. We
average 1000 independent sensor deployments for empirical results, and use (59) with corresponding approximate parameters for AirCompFDM-P or -U.

the one of the clairvoyant test d1(z), as the hypothesis distance
D is equivalent for equal parameter realizations.

Fig. 6 depicts the KL divergence of test d2(z), obtained
by averaging empirical simulations and compares with our
proposed approximation, for Rayleigh channels and d =
N = K = 1. For AirCompFDM-P, collaboration gains are
significant with increasing S. Moreover, our approximation is
sharp and only slightly underestimates the average empirical
KL divergence in all cases. On the other hand, AirCompFDM-
U does not exhibit such collaboration gains. Regardless, our
approximation is close to the empirical average, presenting a
small overestimation for larger values of S, even accounting
for the larger variability of the compensation of noncoherent
channel aggregation. Nevertheless, our approximation helps to
devise detection strategies. Moreover, our results indicate that
detection performance is maximized when all active sensors
collaborate, regardless of channel SNR.

Of course, the system designer can always improve perfor-
mance by increasing transmission power, but as we can see, the
KL divergence only increases by about 6% in AirCompFDM-
P and 7.7% in the worst case of AirCompFDM-U. The
alternative is to increase d by increasing the number of local

observations N, which has no impact on resource usage and
requires marginal additional energy consumption. Resource
usage does not increase because all observations are consol-
idated in a single LLR wu;, i.e., using a single transmission
slot over the air. Naturally, collecting more data consumes
some energy. However, energy used in sensing is in practice
significantly lower than the energy use in communication
signaling by a typical IoT node.

B. Cosine NCWS

Fig. 7 depicts the empirical ROCs of test d3(z), using
cosine NCWS 5\3 with known sensor means, under different
compensation schemes, KX = 2 and d = N = 1. In all
compensation schemes, we can see that sensor aggregation
improves performance significantly even for a modest number
of sensors. In particular, phase precompensation outperforms
AirCompFDM-U in terms of probability of detection for lower
values of probabilities of false alarm.

Fig. 8 shows the average empirical and approximate KL
divergence of type I of test d3(z) with respect to the
number of users S, under equal simulation parameters. For
AirCompFDM-P, our approximation barely underestimates the



Pp
Pp

Sensors [SNR (dB) )
S§=1—-10 02
——8=4—-0 0.1 i
_ S=8§_a_10

0.9

Sensors [SNR (dB) Sensors |SNR (dB)
§=1|—-10 02 §=1—-10
——S8=4—-0 011 ——S=4_—-0
_ S=8§_a 10 _ S=8_4a 10
0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4
Py

(a) Exact phase pre-compensation (AirCompFDM-P).

Py

(b) Quantized phase pre-compensation (AirCompFDM-4).

0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Py

(c) Exact phase post-compensation (AirCompFDM-U).

Fig. 9: Empirical ROC of test d5(z) for different number of sensors S and SNR values, with K = 2 and d = N = 1. We average 1000 realizations over

1000 independent sensor deployments.

30

SNR (dB) Type
——— —10 | —— Empirical (average)
95 | —— 0 - © - Approximation

& — 10

*»‘an}

5 20+

RS

=

%

I

=z

o 151

8

5 10

=

=

-

=

0 L ! I I )
0 20 40 60 80 100

Number of participating sensors S

(a) Exact phase pre-compensation (AirCompFDM-P).

59==69==090=-=00-=0-0-=9-

0.6

b
P

@

KL divergence of type I for test d;5

0.2 SNR (dB)
Type — 10
01 Empirical (average)| —— 0
. ‘ - © - Approximation — 10
0 20 40 60 80 100

Number of participating sensors S

(b) Exact phase post-compensation (AirCompFDM-U).
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average 1000 independent sensor deployments for empirical results, and use (62) with corresponding approximate parameters for AirCompFDM-P or -U.

average empirical KL divergence for all SNR values, providing
a sharp lower bound for performance gains. Thus, using these
approximations as design criteria would lead, on average, to
slightly higher performance than expected. Regardless, it is
clear that the KL divergence increases with .S, showing the
gains of over-the-air aggregation. Moreover, increasing SNR
improves the KL divergence by about 6.2%, which further
demonstrates the gains obtained by sensor collaboration. In
the case of AirCompFDM-U, there is a larger variance in
empirical results. However, our approximation is again close,
with a small overestimation over the empirical KL divergence
with increasing S. In particular, the worst overestimation is
about 7.5% over the empirical KL divergence. Nevertheless,
our approximation behaves similarly to the empirical KL
divergence for increasing S, and hence it is helpful when
designing a decision-making strategy or choosing deployment
parameters.

Fig. 9 shows the empirical ROCs of test d5(z), where
my 1s unknown and we use the cosine NCWS 5\5, for all
compensation schemes, with K = 2 and d = N = 1.
Although this test shares similarities with d5(z), they shall

not be confused as the conditional PDFs under each hypothesis

are different. Hence, given that in this case the samples have
antipodal means under each hypothesis instead of zero vs. non-
zero mean as in d3(z), performance is better compared to the
ROC:s of test 03(z) across compensation schemes and channel
realizations. Conversely, d3(z) is an UMPI test, whereas J5(z)
is not. Again, phase precompensation provides considerable
performance gains, and are much greater than those of post-
compensation.

Fig. 10 depicts the KL divergence of type I for test d5(z)
with respect to the number of sensors S, for different SNR val-
ues, K =2 and d = N = 1. Our approximate KL divergence
with AirCompFDM-P is, again, very close to the empirical
average for all .S, slightly underestimating the empirical KL
divergence. KL divergences for high SNR values are only
4.9% larger than the KL divergence with SNR of —10dB, on
average. Using AirCompFDM-U, our approximation is close
in all cases. It is particularly sharp for S < 18 and low SNR,
and it overestimates the empirical KL divergence by less than
10% for S > 20 for all SNR values. Again, channel noise is
mitigated with increasing .S, and higher SNR leads to a lower
number of participating sensors required to achieve maximum
detection performance.
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C. Privacy against eavesdroppers

Our results above show that phase pre-compensation (either
perfect or quantized) yields significant performance gains
across system parameters, compared with the aggregated phase
post-compensation of AirCompFDM-U. We want to empha-
size that, from a practical perspective, this performance gap
also corresponds to a privacy gap when a third-party node
attempts to perform the same decision.

Consider a network using phase pre-compensation, and an
eavesdropper node that aims to emulate the decision-making
of the legitimate server. The sensors have precompensated the
phase of their channels g; to the legitimate server, which are
different that those from sensors to eavesdropper g;. Hence,
the best that the eavesdropper can hope to achieve (without the
help from sensor precoding) is exact phase post-compensation
of its received signal

ye = ng‘g—flui(k) +n=> ghu(k)+n,  (64)
€S ¢ i€s

with performance equal to that of AirCompFDM-U over

channels g¢.

Fig. 11 compares the performance of a legitimate server
using AirCompFDM-P and AirCompFDM-M to the perfor-
mance of an eavesdropper using AirCompFDM-U, for varying
number of sensors, channel SNR of —10dB, and d = N =
K = 1. For S = 1, the performance is the same in all compen-
sation methods, as pre- and post-compensation is equivalent.
Nevertheless, as S increases, detection performance of the
legitimate server using phase pre-compensation improves at
a much faster rate than the performance of the eavesdropper
using its best-case strategy. This is particularly interesting for
lower values of Pr, which correspond to practical test designs,
where the gap is quite significant.

VII. CONCLUSIONS

In this work, we proposed a resource-efficient framework for
collaborative decision-making in sensor networks using over-

the-air aggregation of soft information. Thanks to over-the-
air computation, we exploit the natural mixing of signals in
wireless systems to reduce network coordination and resource
usage. We propose different pre- and post-compensation to
account for the detrimental effect of channel phases, and
design hypothesis testing under these conditions

By exploiting the natural mixture of signals in the multiple-
access channel, sensors share locally computed log-likelihood
ratios and the server observes the resulting aggregated sig-
nal. With careful design of pre- and post-processing, the
received signal corresponds to a good approximation of the
log-likelihood ratio computed over all observed data under
ideal communication conditions, as shown in Section III.

Furthermore, in Section IV we designed composite tests
for over-the-air collaborative detection, depending on the
knowledge of relevant system and channel parameters. Our
results show significant performance increase due to over-the-
air aggregation with simple protocol and minimal resource
requirements and coordination.

Our proposed framework has important applicability in low-
cost low-power wireless sensor networks. We will investigate,
in future work, over-the-air decision-making schemes that con-
sider self-censoring devices to further reduce energy consump-
tion, while still providing satisfactory detection performance.
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