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AbstractÐWe develop a resource-efficient framework for col-
laborative decision-making over distributed sensor networks by
proposing a novel over-the-air soft information aggregation. We
exploit the natural superposition of wireless transmissions to
enable sensors to utilize over-the-air computation to approximate
the sufficient statistic for optimum detection over a shared chan-
nel. By designing practical transmission and receiver processing
in over-the-air computation, the decision-making fusion center
can wirelessly obtain a good approximation of the aggregate
log-likelihood ratio computed over all observed data with low
distortion. Focusing on Neyman-Pearson tests for detection in
this new framework, we develop efficient tests and analyze their
performance bounds in several common joint detection scenarios.
Our results show significant over-the-air collaboration gain even
with a few participating sensors. The novel framework exhibits
very little performance loss of detection accuracy against tradi-
tional multiple access transmission from sensing nodes despite
substantial resource savings via over-the-air computation.

Index TermsÐInternet of Things, decision-making, collabora-
tive learning, soft information.

I. INTRODUCTION

Internet of Things (IoT) comprises several technologies,

protocols, and applications that enable advanced event mon-

itoring, enhance productive processes, and a broad range of

diverse solutions [1]. An important class of such applications

consists of the detection of distributed phenomena using ob-

servations from several sensing nodes (also denoted sensors),

which share local data with a fusion center node (also denoted

server). Of course, with an increasing number of sensing

nodes, the available resources must be optimized to allow all

nodes to collaborate. On the other hand, many IoT applications

are only feasible when they are able to operate for long periods

of time with no battery replacement, making energy con-

sumption a critical design criterion. However, tackling these

challenges should not diminish the importance of guaranteeing

the satisfactory performance of the network.

This work aims to develop a practical and simple framework

for distributed sensing and integrated decision-making with

high resource efficiency and strong performance in terms of

decision accuracy. This framework is based on the concept

of over-the-air computation for distributed agents/sensors in a

network. Given S sensing nodes, the resource efficiency over

traditional multiple access protocols for sensor transmission
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grows by S-fold. Equally important is the fact that our

proposed over-the-air computation allows active sensors to

transmit individual local log-likelihood ratio (LLR), which

forms a natural and near-optimum approximation of the suffi-

cient statistic (SS) for joint detection and decision-making.

Several works have analyzed detection performance in dis-

tributed sensor networks with traditional centralized grant-

based multiple access. For example, the authors of [2] studied

the detection problem in an IoT network where sensors send

decentralized local decisions via a multiple access channel

(MAC) to a fusion center, and propose optimal decision-

making (in the sense of achievable detection performance) by

aggregating as many sensors as the channel rate admits. [2]

assumes perfect delivery of local decisions and provides an

analytical framework for distributed detection in IoT. Other

studies have presented generalizations of this IoT detection

framework, including unequal data rates for each sensor [3],

Gaussian channel noise effect in sensor decision transmissions

[4], coherent channel fading [5], [6] in sensor transmis-

sions, sequential testing [7], correlated sensor observations

[8], censoring nodes [9], sparsity of sensor signals [10], [11],

and optimality of local decisions [12], among several other

extensions and works. In particular, [5] illustrates that under

coherent channel fading, equal gain combining (EGC) of local

decisions performs well for a wide range of signal-to-noise-

ratio (SNR). Furthermore, the authors in [6] proposed a near-

optimum aggregation of local sensor decisions based on known

Rayleigh fading channel statistics.

However, these works favor traditional sensor transmission

of local decision variables over a MAC. This approach, though

effective and widely studied, requires high bandwidth use,

particularly with increasing number of sensors. The server

needs to coordinate network access via scheduling and solicit

local signals one sensor at a time. It is thus vital to design

efficient protocols that can significantly reduce resource usage

in distributed detection without significant performance loss.

As an alternative to traditional polling, grant-free access

techniques can improve spectral efficiency. One such technique

is blind signal separation [13]±[16], which exploits spatial

diversity and high-order statistics to recover simultaneous sig-

nals without using pilot sequences. However, these techniques

are usually computationally costly, require a large number of

samples to identify statistics accurately, and are constrained

by the number of antennas of the server node. Thus, these

techniques are not appealing for general IoT deployments.

We note that for collaborative decision-making in sys-

tems including IoT, data fusion techniques such as over-

the-air computation (AirComp) [17], [18] provide a low-
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cost alternative in saving resources. AirComp has recently

been considered for communication-heavy applications such

as cooperative spectrum sensing [19] and Federated Learning

[20], [21]. Simply put, AirComp exploits the natural aggrega-

tion of analog signals simultaneously transmitted by multiple

collaborative nodes onto a shared wireless channel. Hence,

AirComp improves resource efficiency by utilizing the same

channel resource for all participating nodes regardless of their

total population size. Based on minimal network coordination

and pre- and post-compensation of signals, AirComp pro-

vides significant resource savings and relies on very simple

access protocol control, which is well suited for collaborative

IoT networks. In fact, a simpler aggregation of signals for

collaborative estimation in sensor networks was proposed in

[22]. As a predecessor of AirComp, the formulation of [22]

assumes ideal channels with no fading, which is an important

limitation for practical implementation and thus, does not

require compensation mechanisms.

In our previous work [23], we developed over-the-air

computation to aggregate local measurements from sensors.

Thanks to AirComp, sensor data sent in analog signals are

naturally superimposed over the MAC. To receive data, the

server broadcasts a request, and all sensors respond under

synchronization, to simultaneously transmit respective local

decision variables. Using different compensation schemes to

account for the effect of channel phase and channel noise,

we showed that over-the-air sensor collaboration effectively

saves resources with mild loss of performance in comparison

with scheduled orthogonal sensor transmissions. We further

extended such AirComp sensor fusion in [24], where sen-

sors simultaneously transmit locally acquired log-likelihood

ratios. At the fusion center, the received signal is a noisy-

and-channel weighted sufficient statistic (NCWS) that serves

as an approximation of the ideal cumulative LLR over all

sensor data. Within the Bayesian paradigm, we showed that

under mild conditions and properly designed pre- and post-

processing functions, the proposed over-the-air collaboration

achieves near-optimum performance and significant resource

savings. However, a Bayesian detection is a special case that

requires knowledge of some key parameters. For broader real-

world applications, we often need to account for possibly

unknown decision variables and channel parameters.

In this work, we study over-the-air aggregation for IoT

decision-making in more practical scenarios where some

parameters might be unknown. To this avail, we adopt a

general Neyman-Pearson (NP) framework with the objective of

approximating optimum NP performance while achieving sub-

stantial resource saving through AirComp, which we denote

AirComp-based Federated Decision Making (AirCompFDM).

We design several different NP detection tests depending

on the knowledge of system and channel parameters. We

determine whether or not these NP tests are universally most

powerful (UMP), or whether or not we may devise UMP in-

variant (UMPI) tests without UMP. For performance analysis,

we derive analytical approximations of the relative entropy

of these tests with respect to the number of participating

nodes. This entropy corresponds to the error exponent of

both probability of missed detection and false alarm. Our

Fig. 1: Illustration of a sensor network using our proposed over-the-air
decision-making paradigm. Sensors observe the event H and transmit log-
likelihood ratios via analog signals for over-the-air aggregation at the server.

results show that detection performance has significant gains

even with only a modest number of sensors. Additionally,

our simple over-the-air protocols and minimal resource usage

make our proposed AirCompFDM both feasible and enticing.

This paper is structured as follows. Section II details the

system model with over-the-air computation and the use of

soft information. Section III presents a classical NP test for

AirCompFDM and compares its performance to ideal and

traditional schemes. In Section IV we further derive detection

tests for means of Gaussian sensor observations depending on

the knowledge (or not) of key parameters. Section V studies

performance gains thanks to sensor aggregation for all these

tests. We corroborate our findings with numerical experiments

on Section VI, and Section VII concludes the work.

Notations: In the following, vectors will be denoted with

small boldface letters, such as z, with transpose denoted

by z
T. Sets are denoted with calligraphic capital letters. z

represents the complex conjugate of z, and the imaginary unit

is denoted as ı. 1 and I represent a vector of ones and the

identity matrix of appropriate size. Probability, expectation and

variance are denoted as P(·), E{·} and Var{·}, respectively.

II. SYSTEM MODEL

Consider a wireless system of single-antenna nodes, where

a server node hosts S sensors, as depicted in Fig. 1. The

sensors collect data about a particular event H belonging to

a discrete set {H0, H1}, which correspond to the two un-

derlying hypotheses. Each sensor i generates N observations

vi =
[
vi,1 · · · vi,N

]T
, for i ∈ S = {1, . . . , S}, under H0

or H1. The observations of the i-th sensor follow conditional

probability distribution function (PDF)

fi(vi|θj , Hj), j ∈ {0, 1}, i ∈ S, (1)
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conditional on parameter vector θj under hypothesis Hj . The

task of the server is to decide on a hypothesis, using a test δ
over signal z that aggregates information sent from the sensor

nodes, subject to system design and channel characteristics

in different scenarios (to be specified in Sections II.A through

II.C). We then define the parameter vector Θj , which contains

all relevant system and channel parameters after aggregation.

Now, the technical challenge is to achieve satisfactory de-

tection performance with high efficiency and minimal resource

usage. We propose the use of i) over-the-air computation to

drastically reduce resource requirements and network coordi-

nation; ii) letting nodes transmit local soft scores, maximizing

the amount of shared information; and iii) composite testing

to account for practical scenarios where the server may not

know all the parameters in Θj .

Throughout this section, we will describe the key aspects of

our framework, namely, over-the-air computation, transmission

of soft information, and channel compensation techniques. In

Section III we formulate an NP framework for over-the-air

decision-making, and further extend it in Section IV where we

address composite test design in different practical scenarios.

A. Over-the-Air Aggregation

We follow the model and formulation of [24]. In each trans-

mission slot, sensors simultaneously transmit analog signals

to the server over a MAC. We assume that all sensors have

acquired network timing and are synchronized at the server,

e.g., via round-trip delay information, such that their trans-

mitted signals would aggregate synchronously at the receiving

server. Furthermore, we assume that each burst duration is

below the coherence time of the wireless channel such that

channel gains remain constant within each transmission slot.

AirComp aims to compute an estimation or decision from

a nomographic function of distributed data collected locally

by participating sensors [17]. At discrete resource (e.g. time

slot) k, each sensor i computes a message ui(k) = ui(vi; k)
and transmits a signal xi(k), i ∈ S , corresponding to a local

pre-processing of message ui(k), i.e.

xi(k) = ψi,k

(
ui(k)

)
, i ∈ S. (2)

When all sensors simultaneously transmit individual signals

over a shared multiple access channel, AirComp allows the

server (fusion) node to receive the cumulative signal

y(k) =
∑

i∈S

gi(k)xi(k) + n(k), (3)

where gi(k) ∈ C/{0} represents the channel state information

(CSI) from the i−th node to the server and we assume channel

noise n(k) to be circularly symmetric complex additive white

Gaussian noise (AWGN) with power density ω2 (i.e. variance),

independent of channels and signals. From (3), AirComp

improves resource efficiency by a factor of S, since a single

time slot is required for sensor access instead of S time slots

required for sequential sensor polling. Moreover, the AirComp

access protocol remains the same regardless of how many

sensors may decide to collaborate in a communication round.

The server collects K ≥ 1 samples of the received signal

(3) and makes a decision on a hypothesis using post-processed

samples z(k) = Ψk

(
y(k)

)
. Note that if the K samples are

obtained within a transmission slot, they all experience the

same channel gains. Conversely, if samples are taken in dif-

ferent transmission slots, we assume that channel realizations

are independent over slots, yielding independent samples y(k).

B. Sufficient Statistic and Over-the-Air Approximation

In any detection problem, the LLR computed over all

observed data corresponds to the optimal sufficient statistic

for hypothesis testing [25], [26]. If the server had access to

all observations vi from S independent sensors, the LLR is

ℓ(v1, · · · ,vS) =
∑

i∈S

ln

(
fi(vi|θ1)
fi(vi|θ0)

)
=
∑

i∈S

ℓ(vi), (4)

where ℓ(vi) = ln
[
fi(vi|θ1)
fi(vi|θ0)

]
is the LLR computed only with

local observations of sensor i. Classical approaches consider

sensors that share local decisions using their own ℓ(vi) [12].

Given (4), if sensors instead transmit their local LLRs by

defining ui(k) = ℓ(vi), the server only needs to sum them

to form a SS λ for optimal decision-making with the test

λ(v1, · · · , vS) =
∑

i∈S

ui(k) =
∑

i∈S

ℓ(vi)
H1

⋛
H0

η. (5)

Note that using AirComp in ideal noiseless scenarios, the

received signal at the server is exactly λ: AirComp yields

SS (5) with minimal resource usage. However, in practical

scenarios AirComp exhibits amplitude and phase distortions

gi(k) for each sensor signal, plus the effect of channel noise

n(k), as depicted in (3). In other words, the received signal

y(k) is a sample of a noisy and channel-weighted statistic

(NCWS), and the technical challenge is to design pre- and

post-processing functions ψi,k and Ψk to obtain an NCWS λ̃
that approximates the SS, i.e.

λ̃(z) ≈ λ where z =
[
z(1) · · · z(K)

]T

and z(k) = Ψk

(∑

i∈S

gi(k)ψi,k

(
ui(k)

)
+ n(k)

)
. (6)

C. Channel Compensation in Over-the-Air SS Approximation

Depending on network deployment and practicality of de-

sign and implementation, we can devise different compensa-

tion schemes for AirCompFDM. In particular, we realize that

channel phase compensation is critical for correct decision-

making, and although interesting for analysis, the overall

impact of channel magnitude compensation is small once the

channel phase has been dealt with, as demonstrated by the

robustness of the EGC fusion rule [5], [6]. Hence, we focus

on channel phase compensation schemes only in this work.

1) Exact Phase Pre-compensation at Sensors: If there

exists channel reciprocity such as in a time-division duplex

(TDD) link between server and sensors, the server broadcast

used to acquire timing can also be used to estimate channel

phase. If we assume that the estimation is perfect, the sensors

can use the pre-processing functions

xi(k) =
gi(k)

|gi(k)|
ui(k), (7)
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and denoting ai(k) = |gi(k)| > 0, the received signal is

y(k) =
∑

i∈S

ai(k)ui(k) + n(k), (8)

and as the compensated channels are real, the server uses

post-processing functions zP(k) = Re{y(k)}. We call this

protocol AirCompFDM-P. Note that this setting is similar to

the proposed EGC combining of [5], [6], although here the

sum of samples is performed over-the-air.

2) Exact Phase Post-compensation at Server: In the oppo-

site scenario where there is no channel reciprocity, sensors can-

not estimate channels beforehand and are unable to precom-

pensate their local LLR signals. Thus, sensors do not perform

any pre-processing and we simply let xi(k) = ui(k) ∈ R,

resulting in an improper (complex) received signal

y(k) =
∑

i∈S

gi(k)ui(k) + n(k) ∈ C. (9)

Regardless, we assume that the server is able to estimate the

aggregated channel at each sample, Gk =
∑

i∈S gi(k) ∈ C,

and compensates for its resulting phase. Under this protocol,

denoted AirCompFDM-U, we define post-compensated signal

samples as

zU(k) = Re
{ Gk

|Gk|
y(k)

}
. (10)

3) Quantized Phase Pre- and Post-compensation: Finally,

we can consider non-ideal channel phase estimation and we

apply discretely quantized phase corrections on both ends. We

call AirCompFDM-M when sensors and server perform quan-

tized phase compensation with M uniform angle partitions

of 2π/M radians, with offset of π/M . In particular, M = 4
quantizes channel phase into 4 quadrants before compensation.

Formally, and assuming TDD channel reciprocity, the i-th
sensor estimates channel phase ∠gi(k) and computes the

corresponding ti-th angle partition, with ti ∈ {1, . . . ,M}. In

particular, ti is such that

∠gi(k) +
π

M
(mod 2π) ∈

[
2π(ti − 1)

M
,
2πti
M

)
, (11)

and the sensor then uses the quantized phase precompensation

xi = exp
(
− ıϕi

)
ui, ϕi =

2π(ti − 1)

M
. (12)

Denoting bi(k) = gi(k) exp(−ıϕi), the received signal is

y(k) =
∑

i∈S

bi(k)ui(k) + n(k). (13)

We apply a similar approach of phase post-compensation with

zM (k) = Re
{
exp(−ıΦk)y(k)

}
, (14)

where Φk discretely compensates the aggregated channel gain∑
i∈S bi(k) similarly to the quantized precompensation above.

We note that this model can be further generalized to consider

either only pre-compensation or only post-compensation, ac-

cording to practical network constraints.

Furthermore, quantized phase precompensation is also pos-

sible when there is no TDD channel reciprocity. In this setting,

the server would estimate channel phase of each sensor based

on traditional pilots, and then send the quantized angle back to

the sensor or user equipment (UE) by using only log2(M) bits.

Though this step requires additional resource consumption, it

only needs to be performed once for the coherence time period

of the channel. As wireless sensor networks are typically static,

this is still an attractive option in practical deployments.

III. NEYMAN-PEARSON DETECTION OF SENSOR MEANS

Here we design different tests for collaborative decision

making under a NP framework. In the following, we assume

that local measurements are independent between sensors and

that they all follow the same multivariate Gaussian distribution

parametrized by θj = (mj , σ
2) conditioned on hypothesis

Hj , i.e., the hypotheses differ only in sensor mean, i.e.

vi ∼ N (mj1, σ
2
I), and we further assume that m1 > m0.

Hence, the sensor LLRs correspond to

ℓ(vi) =
1

2σ2

(
∥vi −m01∥2 − ∥vi −m11∥2

)
. (15)

Letting d = (m1−m0)
√
N/σ > 0 denote sensor hypothesis

distance, we have

ℓ(vi)|Hj ∼ N
(
(−1)1−j d

2

2
, d2
)
, (16)

which means that the distribution of local LLRs is simply

ui|θj ∼ N
(
0.5qjd

2, d2
)
, θj = (qj , d) , qj = (−1)1−j .

(17)

Note that if we instead assume m0 > m1, the signs of the

means would be inverted, i.e. q0 = 1 and q1 = −1. Hence, we

focus only on the case m0 < m1 without loss of generality.

Note that the test H0 : m = m0 vs. H1 : m = m1 > m0 is

equivalent to the test H0 : q = q0 = −1 vs. H1 : q = q1 = 1.

We have assumed that sensors have equal sensing quality,

related to d, whereas in real-world scenarios this would be

unlikely. However, this assumption is not impractical: as d
increases with the number of local observations, a bad sensor

only needs to consolidate more observations into its local

LLR for quality improvement, which applies to any underlying

distribution. Alternatively, a practical design approach would

be to presume a worst-case scenario where all sensors have

quality equal to the sensor with the worst quality, which corre-

sponds to our model above. Such design would eventually lead

to more robust decision-making by e.g. careful selection of

system parameters. Moreover, there is evidence of satisfactory

detection performance with simple fusion rules like EGC for

sensors with different quality [6, Fig. 6]. These reasons should

validate our model with equal sensing quality for all nodes.

Without loss of generality and for ease of exposition, in the

rest of this work we shall consider only static channels, as

the extension to dynamic channels is straightforward. Hence,

for the different compensation schemes of AirCompFDM, the

resulting conditional distributions of the samples of the post-

processed signal z(k) are

zP(k)|Hj ∼ N
(
0.5qjAd

2, Pd2 + 0.5ω2
)
, (18a)

zM (k)|Hj ∼ N
(
0.5qjBd

2, Pd2 + 0.5ω2
)
, (18b)

zU(k)|Hj ∼ N
(
0.5qj |G|d2, Pd2 + 0.5ω2

)
, (18c)



5

(a) ROC of the tests, with SNR −10dB. (b) Probability of detection vs. channel SNR, with PF = 0.1.

Fig. 2: Performance of the test δ1 for different means for known m0 and m1, known channel parameters, and with channel SNR −10 dB, d = 2, S = 2,
and K = N = 1. We average 1000 realizations over 1000 independent sensor deployments.

where the sum of channel powers P =
∑

i∈S |gi|2 > 0 and

A =
∑

i∈S

ai =
∑

i∈S

|gi| > 0 , (19a)

B = Re
{
exp(−ıΦ)

∑

i∈S

bi

}
≥ 0 , (19b)

G =
∑

i∈S

gi ∈ C , (19c)

are the sum of channel gains under each compensation scheme.

Note that these aggregated gains are not independent of P .

We assume that M is large enough to ensure B ≥ 0. Then,

parameter vector Θj is

Θj,P =
[
A P ω2 d2 qj

]T
, (20)

under perfect channel precompensation, and we obtain Θj,M

and Θj,U by replacing A by B and |G|, respectively.

We now derive a clairvoyant NP test where all parame-

ter values are known exactly when implementing the test.

Moreover, as the derivation of NP tests is similar for dif-

ferent AirCompFDM compensation schemes, we only show

the detailed derivation of tests using AirCompFDM-P, and

summarize results for all other schemes. We assume first that

all relevant parameters are known. Hence the likelihood ratio

test (LRT) at the server is directly computed as

L(z) = exp

(∥∥z + Ad2

2 1
∥∥2

2Pd2 + ω2
−
∥∥z − Ad2

2 1
∥∥2

2Pd2 + ω2

)
H1

⋛
H0

τ, (21)

reducing to the test

δ1(z) : λ̃1 =
1
T
z

K

H1

⋛
H0

√
2Pd2 + ω2

2K
Q−1(α)− Ad2

2
, (22)

which has size α and power

PD(α) = 1−Q
(
DP −Q−1(α)

)
. (23)

Here we denote the server hypothesis distance under perfect

channel phase precompensation as

DP =
Ad2

√
K√

Pd2 + 0.5ω2
. (24)

We obtain similar tests for AirCompFDM-M and -U, with

respective thresholds and server hypothesis distances.

As a proof-of-concept demonstration, in Fig. 2, we compare

the performance of the NP test δ1(z) using all compensation

schemes, with S = 2 sensors. We assume sensor hypothesis

distance d = 2 for K = 1 and N = 1 per sensor, at channel

SNR of -10dB and Rayleigh fading, i.e. gi ∼ CN (0, 1).
Moreover, we compare with the performance bound obtained

by assuming a perfect SS in centralized LLR testing, and

under a noisy case without channel fading (equivalent to full

channel pre-compensation, akin to the method of [22], denoted

NSS). To properly capture average performance, we generate

random variables in two steps. First, we generate 1000 ªsensor

deploymentsº, each consisting of a set of S channels. Then,

for each deployment, we generate 1000 realizations of NK
observations per sensor, computing K local LLRs per sensor

with N observations each. Our results include i) average

empirical curves (ªempiricalº), analytical curves using average

D over deployments (ªdeployment averageº), ii) theoretical

curves using the approximate expectation of D in (23), i.e.

PD

(
E{D}

)
, for both AirCompFDM-P and -U [24]. We rele-

gate more detailed discussions on testing to Section VI.

The empirical receiver operating characteristic (ROC) is

depicted in Fig. 2a. Interestingly, for low channel SNR, low

number of sensors, and low d, AirCompFDM-P is close to the

performance of fully precompensated channels NSS, and more

importantly, achieves comparable performance to a traditional

MAC polling scheme of local decisions where channel fading

and noise have been perfectly mitigated [2], using a maximum

a posteriori detector. This detector is equivalent to a majority

rule [27] over local decisions upoll
i (τ) ∈ {0, 1}, computed
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(a) Exact phase pre-compensation (AirCompFDM-P). (b) Quantized phase precompensation with M = 4. (c) Exact phase post-compensation (AirCompFDM-U).

(d) Exact phase pre-compensation (AirCompFDM-P). (e) Quantized phase precompensation with M = 4. (f) Exact phase post-compensation (AirCompFDM-U).

Fig. 3: Empirical ROC of test δ1 with known m0 and m1, known channel parameters, and with K = N = 1. We average 1000 realizations over 1000
independent sensor deployments. (a) to (c): Varying sensor hypothesis distance d, with SNR -10dB. (d) to (e): varying SNR with d = 1.

using a common threshold τ across sensors. Hence, this

detector has theoretical ROC curves

PF,poll(τ) = P

(∑

i∈S

upoll
i (τ) ≥ S

2

∣∣∣H0

)
, (25a)

PD,poll(τ) = P

(∑

i∈S

upoll
i (τ) ≥ S

2

∣∣∣H1

)
. (25b)

We also note that quantized phase pre-compensation of

AirCompFDM-M achieves surprisingly good performance

with just M = 4 angle regions, being only slightly worse

than AirCompFDM-P in all cases. On the other hand,

AirCompFDM-U shows worse performance, expected due to

the detrimental effect of noncoherent channel aggregation.

Furthermore, theoretical approximations are close and slightly

overestimate their corresponding empirical performance.

In Fig. 2b we show probability of detection with respect

to channel SNR, for equal parameters and a fixed probability

of false alarm of 10%. Probability of detection for SS and

traditional MAC polling do not depend on channel SNR but are

shown across the range for readability. As expected, increasing

SNR improves performance regardless of the compensation

scheme. For high SNR, AirCompFDM-P only has a small

gap with respect to the optimal SS. Moreover, AirCompFDM-

M with discrete precompensation of channel phase achieves

very similar performance to exact phase precompensation.

AirCompFDM-U suffers in performance in comparison, but

still achieves performance close to that of traditional MAC

polling for higher channel SNR.

In Fig. 3 we show the empirical ROC of test δ1(z) un-

der different compensation methods, for different number of

participating sensors S, varying sensor hypothesis distance d
(3a-3c) and varying SNR (3d-3f). Overall, the test exhibits

performance gains with increasing S in all cases, which are

significant for AirCompFDM-P and AirCompFDM-M that use

phase precompensation. On the other hand, AirCompFDM-U

stagnates and suffers in comparison to either phase precom-

pensation scheme, due to noncoherent channel aggregation.

In particular, Figs. 3a to 3c show the ROC for different

values of sensor hypothesis distance d for a fixed channel

SNR of −10dB. As expected, test performance improves with

increasing d across compensation methods. More interestingly,

Figs. 3d to 3f depict performance for different SNR values and

fixed d = 1. In all cases, increasing the number of participant

sensors improves test performance beyond the gains obtained

by increasing SNR with a lower number of sensors. This fact

illustrates the impact of sensor aggregation, overcoming the

traditional trade-off between detection performance and energy

consumption due to increased transmission power.

Furthermore, we want to highlight that AirCompFDM pro-

vides aggregation gains for different distributions of sensor

observations. Regrettably, the LLRs of most distributions are

usually challenging to derive, except in special cases. Thus,

the distribution of the received signal (itself a post-processed

version of a weighted sum of LLRs plus Gaussian noise)

is usually extremely hard or impossible to obtain, and we

are unable to analytically find an appropriate NCWS and

its conditional distributions, or even design a test beyond

numerical simulations. Thus, in Fig. 4 we offer numerical

evidence of the applicability of AirCompFDM in more general

scenarios, for all our proposed compensation methods with
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(a) N (0, σ2

j ) with channel SNR −10dB. (b) N (0, σ2

j ) with channel SNR 0dB. (c) Laplace(mj , 1) with channel SNR 0dB.

Fig. 4: Empirical ROCs for different distributions of sensor observations and channel SNR, with K = N = 1. We average 1000 realizations over 1000
independent sensor deployments.

K = N = 1, i.e. the least amount of observations and samples,

and compare with the perfect SS in centralized LLR testing.

We first test H0 : σ = σ0 vs. H1 : σ = σ1 > σ0 for zero-

mean Gaussian observations, i.e. vi|Hj ∼ N (0, σ2
j I) i.i.d.

∀i ∈ S , with σ2
0 = 1 and σ2

1 = 2. Figs. 4a and 4b show

the ROCs of this test under channel SNR of −10 and 0dB,

respectively. In this test, local LLRs follow biased Gamma

distributions, and the distribution of samples z(k) has no

closed form. However, the LLR of post-processed signals can

be obtained using numerical inversion of the characteristic

function under each hypothesis. Comparing Figs. 4a and 4b

show the impact of channel noise on detection performance,

but AirCompFDM-P and -M still perform adequately for low

channel SNR, with performance comparable to ideal SS under

0dB of channel SNR. Similarly, Fig. 4c depicts the empirical

ROCs of test H0 : m = m0 vs. H1 : m = m1 > m0 when

sensor observations are contaminated by Laplacian noise, i.e.

vi,n|Hj ∼ Laplace(mj , β) i.i.d. ∀n ∈ {1, . . . , N}, ∀i ∈ S ,

with antipodal locations m0 = −m1 = −0.3 and β = 1, and

channel SNR of 0dB. Here, the distribution of a local LLR is

known [28], but the NCWS still is unobtainable in analytical

form and its conditional distributions are computed via numer-

ical inversion. In all the cases above, AirCompFDM-P and -M
show significant aggregation gains, whereas AirCompFDM-U

struggles but still improves performance slightly by mitigating

the effect of channel noise. Nevertheless, these results show

that AirCompFDM provides collaborative detection regardless

of the underlying distribution of sensor measurements, illus-

trating the generality of our proposed framework.

IV. COMPOSITE NEYMAN-PEARSON TESTING

In this section, we derive further NP tests for more practical

scenarios where some parameters in θj are unknown, i.e., the

server has no access to the exact value of the parameter(s)

when implementing the test. Moreover, in these scenarios,

it is of great interest to determine whether we can obtain

a universally most powerful (UMP) test, and if not, if it

is possible to obtain a UMP invariant (UMPI) test instead.

When an UMP(I) test is derived, it will exhibit this property

regardless of compensation scheme, although these tests are

not necessarily optimal performance-wise.

In case of practical deployments, the channel parameters A
(corresp. B or |G|), P and ω2 are not known a priori, and

the server needs to estimate them. In this work, whenever we

assume knowledge of a parameter, we mean that a parameter

has been estimated perfectly. For completion purposes, we

present some simple estimation procedures for each parameter:

• To estimate receiver AWGN noise intensity ω2, the

server node uses samples of the received signal before

broadcasting the transmission request to sensors.

• To estimate P , the receiver node can request that sensor

transmissions use some known pilot signals and estimate

the power of the incoming signal. By knowing the pilot

signals and ω2, P can be accurately estimated.

• Finally, an estimation of aggregated channel gain A
(corresp. B or |G|) is also obtained using pilot signals.

We can further refine the estimate of sum-gain or sum-

power using the other estimate, or a joint estimation

procedure, or an iterative process.

To derive analytical insights, we assume again that sensor

observations are normally distributed with different means as

in the previous section, and that sensor variances are known

and equal under both hypotheses. Hence, the distributions of

the samples of the post-processed signal correspond to (18)

depending on the compensation scheme. We first assume that

both sensor means m0 and m1 are known. Afterwards, we

determine tests for the case when m1 is unknown and only

m0 is known.

A. Known sensor means

With both m0 and m1 known, the following tests are

designed for testing H0 : m = m0 vs. H1 : m = m1 > m0.

Furthermore, the sensor hypothesis distance d is also known.
1) Unknown aggregated gain: We first assume that P and

ω2 are known, but the aggregated gain parameter A (corresp.

B or |G|) is unknown. Any test design with transmitted signals

(17) would not yield UMP tests, as the distributions of the

server samples (18) result in a probability of false alarm that

depends on the unknown gain parameter. However, as d is

known, we can obtain a UMP test if instead the sensors

transmit biased LLRs ui = ℓ(vi) + d2/2. Thus, we have that

ui|Hj ∼ N
(
jd2, d2

)
(26)
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and

zP|Hj ∼ N
(
jAd2, Pd2 + 0.5ω2

)
, (27a)

zM |Hj ∼ N
(
jBd2, Pd2 + 0.5ω2

)
, (27b)

zU|Hj ∼ N
(
j|G|d2, Pd2 + 0.5ω2

)
. (27c)

Transmitting biased LLRs, the mean of the server samples

under H0 is zero in all compensation schemes, and hence

the unknown gain parameter is not part of H0. This allows

obtaining a threshold for a given probability of false alarm α.

The server LRT yields

L(z) = exp

( ∥∥z
∥∥2

2Pd2 + ω2
−
∥∥z −Ad21

∥∥2

2Pd2 + ω2

)
H1

⋛
H0

τ, (28)

reducing to the test

δ2(z) : λ̃2 =
1
T
z

K

H1

⋛
H0

η2 =

√
2Pd2 + ω2

2K
Q−1(α), (29)

which is UMP with power

PD(α) = 1−Q

(
Ad2

√
K√

Pd2 + 0.5ω2
−Q−1(α)

)
. (30)

We have a similar result with other compensation schemes.

2) Unknown channel parameters: We assume now that A
(corresp. B or |G|) unknown, and either P or ω2 are unknown

as well. Hence, there is no UMP test as test threshold and PF

would depend on P and ω2. However, we can obtain an UMPI

test with a generalized LRT (GLRT). Using biased LLRs as

in (26), knowing that the aggregated gain A (corresp. B or

|G|) are positive, and using the maximum likelihood estimate

(MLE) of the mean under H1, and the MLE of variance (which

requires K ≥ 2) under both hypotheses, we obtain the GLRT

L(z) = exp

( ∥∥z
∥∥2

∥∥z − 1Tz

K
1
∥∥2 −

∥∥z − 1
T
z

K
1
∥∥2

∥∥z − 1Tz

K
1
∥∥2

)
H1

⋛
H0

τ (31)

that reduces to the test

δ3(z) : λ̃3 =
1
T
z√

K∥z∥
H1

⋛
H0

η3, (32)

which is UMPI under positive scale transformations and

symmetries w.r.t. the hyperplane orthogonal to 1 [26, Chapter

5]. To verify this claim, we use a variable transformation from

[26, Equation (5.49)], and obtain the PDF of the NCWS λ̃3
under Hj as

f3(x|Hj) =Cj

√
1− x2

K−3
exp

(
− jD2

2

)

·
∫ ∞

0

rK−1 exp

(
− r2

2ν2

)
exp

(
jErx

)
dr ,

for x ∈ [−1, 1], j ∈ {0, 1}, (33)

where ν2 = Pd2+0.5ω2, D = Ad2
√
K/ν, E = D/ν, and Cj

is a normalization constant under Hj . For other compensation

schemes, we only need to replace A by the corresponding

gain parameter in D and E. In particular, under H0 the PDF

reduces to

f3(x|H0) =
Γ(K/2)√

πΓ
(
(K − 1)/2

)
√
1− x2

K−3

= C̃0

√
1− x2

K−3
, for x ∈ [−1, 1], (34)

which is independent of channel parameters and d, and allows

us to obtain a threshold η3 that guarantees a bounded proba-

bility of false alarm α, regardless of compensation scheme.

Observe that C̃0 ̸= C0, as it also contains the result of

integrating over r with j = 0 in (33). Additionally, for

K = 2 the above PDFs are defined for x ∈ (−1, 1). In

the following, we shall also refer to NCWS λ̃3 as a cosine

NCWS, as it corresponds to the cosine of the angle between

the (normalized) mean vector d21 and the sample vector z.

B. Known sensor mean m0 and unknown m1

Now, we consider m1 unknown such that m1 > m0, and

test H0 : m = m0 vs. H1 : m = m1 > m0. Hence, the local

LLRs have conditional distributions

ℓ(vi)|Hj ∼ N
(
0.5qjd

2, d2
)
, qj = (−1)1−j . (35)

With m1 unknown, d is unknown and it is not possible to

add a bias d2/2 on signals ui as in (26). However, note that the

distinguishing factor between conditional distributions (35) is

only the sign of the mean, conveyed in the parameters qj .

1) Known channel parameters: If A, P and ω2 are known,

the LRT at the server is straightforwardly computed as

L(z) = exp

(∥∥z + Ad2

2 1
∥∥2

2Pd2 + ω2
−
∥∥z − Ad2

2 1
∥∥2

2Pd2 + ω2

)
H1

⋛
H0

τ

⇒ δ4(z) : λ̃4 =
1
T
z

K

H1

⋛
H0

η4 =
2Pd2 + ω2

2Ad2K
ln(τ), (36)

but, different to the test δ1(z), here the distribution of λ̃4
under H0 depends on the unknown d, and we cannot compute

a general threshold for bounded probability of false alarm α.

Hence, there is no UMP test, and similarly, there are no UMP

tests using AirCompFDM-M and -U.

However, we know that the hypothesis information is carried

in the sign of the mean qj . Hence, we now obtain an estimator

of d2 based on the ML estimator of the mean of the received

samples, and replace it in the LRT formulation. Thanks to the

knowledge of A, we have

d̂2 =
2

AK
|1T

z| (37)

and the LRT is

L(z) = exp

( ∥∥z + |1T
z|

K
1
∥∥2

4P
AK

|1Tz|+ ω2
−
∥∥z − |1T

z|
K

1
∥∥2

4P
AK

|1Tz|+ ω2

)
H1

⋛
H0

τ

⇒ ℓ(z) =
sgn(1T

z)|1T
z|2

P
A
|1Tz|+ K

4 ω
2

H1

⋛
H0

ln(τ). (38)

Note that as A,P, ω2 > 0, the LLR is monotonically

increasing in λ̃ = 1
T
z/K, because the function

h(a) =
a|a|

b|a|+ c
(39)
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TABLE I: Summary of proposed tests and its principal characteristics, using exact phase precompensation of AirCopmFDM-P.

Test Description Unknown parameter Conditional Distributions UMP(I)? Power

δ1(z) Clairvoyant All known N
(

0.5qjAd2K−1, (Pd2 + 0.5ω2)/K−2
)

UMP (23)

δ2(z) Average NCWS, biased LLRs A N
(

jAd2K−1, (Pd2 + 0.5ω2)/K−2
)

UMP (30)

δ3(z) Cosine NCWS, biased LLRs A ∧ (P ∨ ω2) (33) and (34) UMPI Numerical

δ4(z) Average NCWS m1 N
(

0.5qjAd2K−1, (Pd2 + 0.5ω2)/K−2
)

No -

δ5(z) Cosine NCWS m1 ∧ (A ∨ P ∨ ω2) (45) No -

is monotonically increasing ∀a ̸= 0 when b, c > 0, and hence

we can reduce (38) to

λ̃ =
1
T
z

K

H1

⋛
H0

η, (40)

i.e. we obtain the same test δ4(z), and there are no UMP tests

for unknown d and known channel parameters.

We note that the estimator of d2 could be improved.

However, this complicates the computation with no additional

insight in test design. For example, computing the MLE of d2

for the case where ω2 = 0 yields an involved expression, but

the test still reduces to δ4(z).
2) Unknown channel parameters: If A (corresp. B or |G|)

is unknown, we cannot estimate d2 using (37). As the means

under H0 and H1 have equal magnitude, we can use the MLE

of the mean magnitude |1T
z|/K. However, with d2 unknown,

we resort to using MLE of the variance under both hypotheses.

Equivalently, we would use the same procedure when either

P or ω2 are unknown. Hence, the GLRT reduces to

ℓ(z) =
4sgn(1T

z)|1T
z|2

K∥z∥2 − |1Tz|2
H1

⋛
H0

ln(τ). (41)

We can rewrite the LLR in (41) as a function of the cosine

statistic λ̃5 = 1
T
z/(

√
K∥z∥). A little algebra yields

ℓ(z) =
4sgn

(
λ̃5
)
λ̃25

1− λ̃25
, (42)

which is monotonically increasing in λ̃5 because the function

h(a) =
4a|a|
1− a2

, a ∈ (−1, 1) (43)

is monotonically increasing in its domain, where the statistic

λ̃5 resides. Hence, we can further reduce (41) to

δ5(z) : λ̃5 =
1
T
z√

K∥z∥
H1

⋛
H0

η5. (44)

The PDF of the NCWS λ̃5 under Hj can be obtained as

[26, Chapter 5]

f5(x|Hj) = cj
√
1− x2

K−3
exp

(
− D2

8

)

·
∫ ∞

0

rK−1 exp

(
− r2

2ν2

)
exp

(
qjErx

2

)
dr ,

for x ∈ [−1, 1], j ∈ {0, 1} , (45)

where ν2, D, E are the same as in (33), cj are the corre-

sponding normalization constants under each hypothesis, and

qj = (−1)1−j . Even when the PDF has no general closed

form, it is clear then that under H0 it depends at least on

the unknown d, and hence the test δ5(z) cannot be UMP(I).

Note that the cosine NCWS λ̃5 is computed equivalently to

the cosine NCWS λ̃3, but it follows different distributions due

to the unknown mean m1.

C. Summary

Table I organizes our proposed tests and summarizes their

properties, referring to the particular equations for each case.

We use logical operators ªANDº ∧ and ªORº ∨ to denote

combinations of unknown parameters. All equations apply for

exact phase precompensation of AirCompFDM-P. To obtain

expressions for AirCompFDM-M and -U, the aggregated gain

parameter A needs to be replaced with B and |G|, respectively.

V. PERFORMANCE BOUNDS

Under an NP framework, the relative entropy or Kullback-

Leiebler (KL) divergence governs the decay of probability of

error of type I or II. Specifically, the probability of missed

detection and false alarm will have exponential decay rate of

KLI =

∫
f(x|H0) ln

(
f(x|H0)

f(x|H1)

)
dx, (46)

KLII =

∫
f(x|H1) ln

(
f(x|H1)

f(x|H0)

)
dx, (47)

respectively. Note that the UMP and UMPI tests derived in the

previous section are of type I, setting a bounded probability of

false alarm, but can be reformulated into type II straightfor-

wardly. In the following, we study the KL divergence of the

tests derived in Section IV, according to the corresponding

NCWS and its distributions under each hypothesis.

A. Average NCWS

For Gaussian observations with equal variance under both

hypotheses, the local LLRs and the post-processed samples of

the received signal are also Gaussian under both hypotheses,

as shown in (18). Hence, the NCWS λ̃1 also follows Gaussian

distributions. In the particular case of exact phase precompen-

sation, the hypothesis distance of the NCWS is

DP =
Ad2

√
K√

Pd2 + 0.5ω2
, (48)

and the corresponding KL divergence of test δ1 is

KLI
1 = KLII

1 =
D2

P

2
=

A2d4K

2Pd2 + ω2
, (49)

and the KL divergence for AirCompFDM-M and -U are

obtained similarly. Additionally, note that the NCWS λ̃2 and

λ̃4 also follow Gaussian distributions with the same hypothesis

distance D, and therefore, the tests δ2(z) and δ4(z) have the

same KL divergence (49).
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Of course, D is a random variable that depends on channel

realizations, channel noise and compensation scheme. To

facilitate the analysis of the behavior of D with respect to

the number of participating sensors S, we can approximate its

mean value for moderate to large values of S as shown in [24]

and obtain a direct relationship between D and S. In the case

of phase pre-compensated channels,

E{D2
P} ≈ Var{ai}+ SE2{ai}

E{a2i }+ 0.5ω2/(d2S)
d2K, (50)

and with no precompensation,

E{D2
U} ≈ Var{gi}+ S

(
E
2{Re(gi)}+ E

2{Im(gi)}
)

E{|gi|2}+ 0.5ω2/(d2S)
d2K.

(51)

In [24] we argued that these approximations are informative

enough for designing detection strategies under a Bayesian

formulation using the corresponding best error exponent, i.e.

the Chernoff information D2/8. For large S, the Chernoff

information increases linearly with S, and thus the optimal

strategy (in terms of detection performance) is to have as many

participating sensors as possible. In particular, the Chernoff

information of AirCompFDM-P is approximately affine with

respect to S as dictated by (50) for any channel fading model

because E
2{ai} > 0. On the other hand, AirCompFDM-U

imposes noncoherent aggregation, and hence its Chernoff in-

formation related to (51) suffers with zero-mean channels such

as Rayleigh fading, because E{Re(gi)} = E{Im(gi)} = 0 and

there is no expected aggregation gains, besides the reduction

of effective channel noise [24].

As the KL divergence is only a multiple of the Chernoff

information for the average NCWS λ̃1 as shown in (49), we

expect the same collaboration gains as in the Bayesian case for

each compensation scheme. Moreover, in this work, we also

demonstrate the quality of these approximations with respect

to S, in particular for low SNR scenarios.

B. Cosine NCWS

When both sensor means are known, the cosine NCWS λ̃3
has conditional PDFs (33) under each hypothesis. Hence, the

KL divergences for test δ3(z) cannot be obtained in closed

form, and furthermore, it is not straightforward to study the

effect of S in the KL divergence. As an alternative analysis,

we can approximate the KL divergences. We first replace

D2 by its approximate mean above, and furthermore, derive

corresponding approximations of the mean of E and ν2. Then,

the KL divergence will be a complex expression that explicitly

depends on S. In the following, we derive the approximations

using exact phase precompensation, and approximates for

other compensation schemes can be obtained similarly. It is

straightforward to see that

EP =
Ad2

√
K

Pd2 + 0.5ω2
=

A/S

P/S + 0.5ω2/(Sd2)

√
K (52)

Invoking the Strong Law of Large Numbers (SLLN) [25],

P/S
a.s.−→ E{a2} as S → ∞, and since ω2 is constant,

P

S
+ 0.5

ω2

Sd2
a.s.−→ E{a2} when S → ∞. (53)

On the other hand, the SLLN also states that A/S
a.s.−→ E{a}

as S → ∞. Hence, since the ratio of almost surely converging

sequences converges almost surely to the ratio of their limits

EP
a.s.−→ E{a}

E{a2}
√
K when S → ∞. (54)

If we assume that the SLLN holds for moderate values of

S, we obtain the approximation1

EP ≈ E{EP} =
E{a}

E{a2}+ 0.5ω2/(Sd2)

√
K. (55)

For the reciprocal of ν2, we observe that

r2

2ν2
=

r2/(Sd2)

2P/S + ω2/(Sd2)
(56)

and using the same procedure as above, where r2 is a constant

for the purposes of expectation,

r2

2ν2
a.s.−→ 0 when S → ∞. (57)

Assuming again that the SLLN holds for moderate values

of S, we obtain the approximation

r2

2ν2
≈ E

{ r2

2ν2

}
=

r2

2E{a2}d2S + ω2
. (58)

Replacing in the PDFs and after some algebra, the approx-

imate KL divergence of type I and type II for NCWS λ̃3
become

KLI
3 ≈ E{D2}

2
− ln

(C1

C̃0

)

− C̃0

∫ 1

−1

√
1− x2

K−3
ln
(
R3(x)

)
dx , (59)

KLII
3 ≈ ln

(C1

C̃0

)
− E{D2}

2

+ C1

∫ 1

−1

√
1− x2

K−3
R3(x) ln

(
R3(x)

)
dx , (60)

respectively, where

R3(x) =

∫ ∞

0

rK−1 exp
(
− E

{ r2

2ν2

}
+

E{E}rx
2

)
dr.

(61)

Even with the above approximations, it is not clear how

the KL divergence depends on S. Hence, we obtain numerical

computations of the approximate KL divergence and compare

them with the average KL divergence of empirical channel

realizations. Nevertheless, similarly to the case of average

NCWS, we expect that KL diverngence increases with S for

AirCompFDM-P, and that it stagnates for AirCompFDM-U.

Finally, when m1 is unknown, the cosine NCWS λ̃5 has

conditional PDFs f5(x|Hj) as shown in (45). Again, the KL

divergences cannot be obtained in closed form, even for given

d2, A, P and ω2, and moreover, the PDF under the null

hypothesis depends on all these parameters as well. However,

1We note that for AirCompFDM-U, |G| is the magnitude of a complex
number. Thus, instead of invoking SLLN, we would need to invoke the
Central Limit Theorem and the Continuous Mapping Theorem [25] to obtain
an approximation, akin to our derivation in [24].



11

(a) Exact phase pre-compensation (AirCompFDM-P). (b) Quantized phase pre-compensation (AirCompFDM-4). (c) Exact phase post-compensation (AirCompFDM-U).

Fig. 5: Empirical ROC of test δ2(z) for different number of sensors S and SNR values, with d = K = N = 1. We average 1000 realizations over 1000
independent sensor deployments.

(a) Exact phase pre-compensation (AirCompFDM-P). (b) Exact phase post-compensation (AirCompFDM-U).

Fig. 6: KL divergence of type I for test δ2(z) with respect to the number of sensors S, for different values of channel SNR, and d = N = K = 1. We
average 1000 independent sensor deployments for empirical results, and use approximations (50) and (51) for AirCompFDM-P and -U, respectively.

a simple variable transformation shows that f5(x|H0) =
f5(−x|H1) for x ∈ (−1, 1), and hence c0 = c1 = c.
Moreover, KL divergences of type I and II are equal as

well. Therefore, using the approximate means of D2, E and

r2/ν2, the KL divergences of type I and II for NCWS λ̃5 are

approximately

KLI
5 = KLII

5 ≈ c exp
(
− E{D2}

8

)

·
∫ 1

−1

√
1− x2

K−3
R5(−x) ln

(
R5(−x)
R5(x)

)
dx ,

(62)

respectively, where

R5(x) =

∫ ∞

0

rK−1 exp
(
− E

{ r2

2ν2

}
+

E{E}rx
2

)
dr.

(63)

VI. NUMERICAL EXPERIMENTS

To illustrate the performance gains of AirCompFDM, we

set up several different network settings. Unless otherwise

stated, we simulate S sensors and one server, all equipped

with a single antenna. We assume each sensor obtains N = 1
observation, independent among sensors, and contaminated

with i.i.d. Gaussian measurement noise, parameterized by the

sensor hypothesis distance d = |m1 −m0|/σ. Without loss of

generality, we assume antipodal means, i.e. m0 = −m1 < 0,

and hence for each value of d, we fix σ = 1 and obtain

m1 = −m0 = 0.5σ/d. We simulate i.i.d. Rayleigh channels,

i.e. gi ∼ N (0, 1/2) + iN (0, 1/2). Channel noise is AWGN

with intensity ω2 corresponding to a given average SNR for a

single sensor. The server makes a decision using K samples of

the received analog signal, and we focus on the lowest amount

of samples possible for any given test, i.e. K = 1 or K = 2.

As stated in Section III, we generate 1000 independent sensor

deployments, i.e., static channel realizations for K samples

and S sensors, and perform 1000 independent Monte Carlo

simulations with different sensor observations, allowing us to

faithfully reproduce average behavior of our tests.

A. Average NCWS

Fig. 5 shows the ROC for test δ2(z) for sensors sending

biased LLRs as in (26), for different compensation schemes,

and d = N = K = 1. Note that this performance is equal to
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(a) Exact phase pre-compensation (AirCompFDM-P). (b) Quantized phase pre-compensation (AirCompFDM-4). (c) Exact phase post-compensation (AirCompFDM-U).

Fig. 7: Empirical ROC of test δ3(z) for different number of sensors S and SNR values, with K = 2 and d = N = 1. We average 1000 realizations over
1000 independent sensor deployments.

(a) Exact phase pre-compensation (AirCompFDM-P). (b) Exact phase post-compensation (AirCompFDM-U).

Fig. 8: KL divergence of type I for test δ3(z) with respect to the number of sensors S, for different values of channel SNR, d = N = 1 and K = 2. We
average 1000 independent sensor deployments for empirical results, and use (59) with corresponding approximate parameters for AirCompFDM-P or -U.

the one of the clairvoyant test δ1(z), as the hypothesis distance

D is equivalent for equal parameter realizations.

Fig. 6 depicts the KL divergence of test δ2(z), obtained

by averaging empirical simulations and compares with our

proposed approximation, for Rayleigh channels and d =
N = K = 1. For AirCompFDM-P, collaboration gains are

significant with increasing S. Moreover, our approximation is

sharp and only slightly underestimates the average empirical

KL divergence in all cases. On the other hand, AirCompFDM-

U does not exhibit such collaboration gains. Regardless, our

approximation is close to the empirical average, presenting a

small overestimation for larger values of S, even accounting

for the larger variability of the compensation of noncoherent

channel aggregation. Nevertheless, our approximation helps to

devise detection strategies. Moreover, our results indicate that

detection performance is maximized when all active sensors

collaborate, regardless of channel SNR.

Of course, the system designer can always improve perfor-

mance by increasing transmission power, but as we can see, the

KL divergence only increases by about 6% in AirCompFDM-

P and 7.7% in the worst case of AirCompFDM-U. The

alternative is to increase d by increasing the number of local

observations N , which has no impact on resource usage and

requires marginal additional energy consumption. Resource

usage does not increase because all observations are consol-

idated in a single LLR ui, i.e., using a single transmission

slot over the air. Naturally, collecting more data consumes

some energy. However, energy used in sensing is in practice

significantly lower than the energy use in communication

signaling by a typical IoT node.

B. Cosine NCWS

Fig. 7 depicts the empirical ROCs of test δ3(z), using

cosine NCWS λ̃3 with known sensor means, under different

compensation schemes, K = 2 and d = N = 1. In all

compensation schemes, we can see that sensor aggregation

improves performance significantly even for a modest number

of sensors. In particular, phase precompensation outperforms

AirCompFDM-U in terms of probability of detection for lower

values of probabilities of false alarm.

Fig. 8 shows the average empirical and approximate KL

divergence of type I of test δ3(z) with respect to the

number of users S, under equal simulation parameters. For

AirCompFDM-P, our approximation barely underestimates the
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(a) Exact phase pre-compensation (AirCompFDM-P). (b) Quantized phase pre-compensation (AirCompFDM-4). (c) Exact phase post-compensation (AirCompFDM-U).

Fig. 9: Empirical ROC of test δ5(z) for different number of sensors S and SNR values, with K = 2 and d = N = 1. We average 1000 realizations over
1000 independent sensor deployments.

(a) Exact phase pre-compensation (AirCompFDM-P). (b) Exact phase post-compensation (AirCompFDM-U).

Fig. 10: KL divergence of type I for test δ5(z) with respect to the number of sensors S, for different values of channel SNR, d = N = 1 and K = 2. We
average 1000 independent sensor deployments for empirical results, and use (62) with corresponding approximate parameters for AirCompFDM-P or -U.

average empirical KL divergence for all SNR values, providing

a sharp lower bound for performance gains. Thus, using these

approximations as design criteria would lead, on average, to

slightly higher performance than expected. Regardless, it is

clear that the KL divergence increases with S, showing the

gains of over-the-air aggregation. Moreover, increasing SNR

improves the KL divergence by about 6.2%, which further

demonstrates the gains obtained by sensor collaboration. In

the case of AirCompFDM-U, there is a larger variance in

empirical results. However, our approximation is again close,

with a small overestimation over the empirical KL divergence

with increasing S. In particular, the worst overestimation is

about 7.5% over the empirical KL divergence. Nevertheless,

our approximation behaves similarly to the empirical KL

divergence for increasing S, and hence it is helpful when

designing a decision-making strategy or choosing deployment

parameters.

Fig. 9 shows the empirical ROCs of test δ5(z), where

m1 is unknown and we use the cosine NCWS λ̃5, for all

compensation schemes, with K = 2 and d = N = 1.

Although this test shares similarities with δ3(z), they shall

not be confused as the conditional PDFs under each hypothesis

are different. Hence, given that in this case the samples have

antipodal means under each hypothesis instead of zero vs. non-

zero mean as in δ3(z), performance is better compared to the

ROCs of test δ3(z) across compensation schemes and channel

realizations. Conversely, δ3(z) is an UMPI test, whereas δ5(z)
is not. Again, phase precompensation provides considerable

performance gains, and are much greater than those of post-

compensation.

Fig. 10 depicts the KL divergence of type I for test δ5(z)
with respect to the number of sensors S, for different SNR val-

ues, K = 2 and d = N = 1. Our approximate KL divergence

with AirCompFDM-P is, again, very close to the empirical

average for all S, slightly underestimating the empirical KL

divergence. KL divergences for high SNR values are only

4.9% larger than the KL divergence with SNR of −10dB, on

average. Using AirCompFDM-U, our approximation is close

in all cases. It is particularly sharp for S ≤ 18 and low SNR,

and it overestimates the empirical KL divergence by less than

10% for S > 20 for all SNR values. Again, channel noise is

mitigated with increasing S, and higher SNR leads to a lower

number of participating sensors required to achieve maximum

detection performance.
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Fig. 11: ROC of legitimate server and eavesdropper for different number of
sensors S, with channel SNR −10dB, and d = N = K = 1. We average
1000 realizations over 1000 independent sensor deployments.

C. Privacy against eavesdroppers

Our results above show that phase pre-compensation (either

perfect or quantized) yields significant performance gains

across system parameters, compared with the aggregated phase

post-compensation of AirCompFDM-U. We want to empha-

size that, from a practical perspective, this performance gap

also corresponds to a privacy gap when a third-party node

attempts to perform the same decision.

Consider a network using phase pre-compensation, and an

eavesdropper node that aims to emulate the decision-making

of the legitimate server. The sensors have precompensated the

phase of their channels gi to the legitimate server, which are

different that those from sensors to eavesdropper gei . Hence,

the best that the eavesdropper can hope to achieve (without the

help from sensor precoding) is exact phase post-compensation

of its received signal

ye =
∑

i∈S

gei
gi
|gi|

ui(k) + n =
∑

i∈S

g̃ei ui(k) + n, (64)

with performance equal to that of AirCompFDM-U over

channels g̃ei .

Fig. 11 compares the performance of a legitimate server

using AirCompFDM-P and AirCompFDM-M to the perfor-

mance of an eavesdropper using AirCompFDM-U, for varying

number of sensors, channel SNR of −10dB, and d = N =
K = 1. For S = 1, the performance is the same in all compen-

sation methods, as pre- and post-compensation is equivalent.

Nevertheless, as S increases, detection performance of the

legitimate server using phase pre-compensation improves at

a much faster rate than the performance of the eavesdropper

using its best-case strategy. This is particularly interesting for

lower values of PF, which correspond to practical test designs,

where the gap is quite significant.

VII. CONCLUSIONS

In this work, we proposed a resource-efficient framework for

collaborative decision-making in sensor networks using over-

the-air aggregation of soft information. Thanks to over-the-

air computation, we exploit the natural mixing of signals in

wireless systems to reduce network coordination and resource

usage. We propose different pre- and post-compensation to

account for the detrimental effect of channel phases, and

design hypothesis testing under these conditions

By exploiting the natural mixture of signals in the multiple-

access channel, sensors share locally computed log-likelihood

ratios and the server observes the resulting aggregated sig-

nal. With careful design of pre- and post-processing, the

received signal corresponds to a good approximation of the

log-likelihood ratio computed over all observed data under

ideal communication conditions, as shown in Section III.

Furthermore, in Section IV we designed composite tests

for over-the-air collaborative detection, depending on the

knowledge of relevant system and channel parameters. Our

results show significant performance increase due to over-the-

air aggregation with simple protocol and minimal resource

requirements and coordination.

Our proposed framework has important applicability in low-

cost low-power wireless sensor networks. We will investigate,

in future work, over-the-air decision-making schemes that con-

sider self-censoring devices to further reduce energy consump-

tion, while still providing satisfactory detection performance.
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