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1 | INTRODUCTION

Epidural anesthesia is a versatile and transformative
anesthetic technique, which has improved pain relief and
heightened patient satisfaction. The procedure finds
application across the cervical, thoracic, and lumbar posi-
tions for a variety of operations, including cardiovascular
surgery [1], stomach surgery [2], and painless delivery [3].
It helps relieve perioperative stress responses and symp-
toms. Epidural anesthesia involves the insertion of a nee-
dle into the epidural space, followed by the injection of
local anesthetic around the spine. This procedure effec-
tively blocks the transmission of pain signals from the
spinal nerves to the brain. The epidural needle insertion
generally aims to the vertebral spinous spaces or parame-
dian vertebral interspace [4]. During the insertion, the
needle passes through subcutaneous fat, ligaments, and
ligamentum flavum and then arrives at the epidural
space where the spinal cord is located. Ensuring the pre-
cise placement of the epidural needle is critically impor-
tant to achieve both efficacy and safety in the
administration of epidural anesthesia. Any error in nee-
dle placement can lead to consequential complications.
Postdural puncture headache (PDPH) is a frequently
observed iatrogenic complication arising from inadver-
tent injury to the dura mater, with the overall incidence
rate from 6% to 36% [5]. Epidural anesthesia is widely
used in delivery when the estrogen secretion of the preg-
nant dramatically increases. Elevated estrogen levels can
impact the tone of cerebral vessels, potentially leading to
an increased vascular distension response to cerebrospi-
nal fluid hypotension. As a consequence, pregnant
mothers are at a heightened risk for PDPH [6]. Addition-
ally, if the epidural needle is misplaced, it may lead to
the occurrence of epidural hematomas, spinal cord dam-
age, and abscess [7].

To sense the position of the epidural needle tip during
its insertion, anesthesiologists generally employ a loss-
of-resistance (LOR) technique. This involves continu-
ously injecting saline or air into the needle via a syringe
and monitoring the resulting feedback force. By doing so,
they can sense the occurrence of the LOR, which indi-
cates the successful traversal of various spinal tissues and
the arrival of the needle to the epidural space [8].
However, LOR remains challenging in clinical practice as
it lacks visual feedback. Needle insertion guided solely by
LOR can lead to the failure rate of up to 20% [9].

To improve the precision of needle guidance in the
administration of epidural anesthesia, various imaging
techniques have been utilized. Notably, ultrasound has
become a widely employed imaging modality for needle
guidance during epidural anesthesia [10]. Real-time
ultrasound has been demonstrated to increase the epidu-
ral needle placement accuracy [11]. Fluoroscopy has been
employed to guide the epidural needle placement, partic-
ularly in non-obstetrical situations [12]. It was shown to
enhance the success rate of needle insertion in cases
involving adhesion and stenosis [13]. However, the reso-
lutions of ultrasound and fluoroscopy are usually at milli-
meter level. Thus, ultrasound and fluoroscopy encounter
challenges when attempting to discern the epidural
space, which exhibits a width spanning from 2 to 3 mm
in the cervical region and from 5 to 6 mm in the lumbar
region [14, 15]. Furthermore, acoustic window of ultra-
sound is limited by the complex back bones. Fluoroscopy
lacks soft tissue contrast, making it difficult to distinguish
different tissues [9]. More recently, novel techniques such
as fiberoptic bundle or optical spectral analysis have been
reported [16, 17], but the movement of surrounding
fluids or tissues in front of the imaging sites is likely to
impact their imaging results.

We demonstrated the use of optical coherence tomog-
raphy (OCT) for accurate identification of the epidural
needle position by taking the advantages of its
micrometer-level resolution in tissue visualization [18].
In our previous studies, we designed a forward-view
swept-source OCT (SS-OCT) endoscopic system to visual-
ize the tissues in front of the epidural needle [9, 19, 20].
To help anesthesiologists interpret the real-time imag-
ing during the operation, we developed deep-learning
models to automate the identification of tissue types
from the OCT images [19]. The overall classification
accuracy for identifying the correct tissue out of five
tissue types was only approximately 66% [19]. To
improve the tissue recognition accuracy, a series of
binary classification models were developed by assum-
ing a fixed sequence of spinal tissues to be encountered
during the needle insertion. The average accuracy of
96.65% was achieved by the binary model, whereas the
tissue was assumed to always manifest in a specific
sequence corresponding to the epidural anatomy. The
situations can be complicated as tissue distribution is
not always ideal, hindering the clinical translation of
the binary model.
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In this study, we developed a polarization-sensitive
OCT (PS-OCT) probe to improve the tissue recognition
accuracy for epidural needle placement. PS-OCT repre-
sents an advancement over traditional intensity OCT as it
enables the acquisition of polarization-related features
through birefringence and diattenuation optical sig-
nals [21]. Because tissues such as nerve fibers exhibit
strong polarization contrast signals, these additional
polarization features may enhance the accuracy of spinal
tissue recognition. The PS-OCT used in this study was
equipped with much higher axial resolution (~5.5 pm in
air) compared to the previous SS-OCT system (~14.0 pm
in air). Here, we developed a PS-OCT endoscope specifi-
cally designed to be fit inside the clinically used epidural
needle and tested it on porcine backbone samples. The
performance of PS-OCT for distinguishing the porcine
backbone tissues was benchmarked in this research.

2 | METHODS

2.1 | Experimental setup

The experimental setup of our PS-OCT probe is shown in
Figure 1. It is a single-input device with a unique PS detec-
tor unit, enabling simultaneous acquisition of two orthog-
onal polarization states at full imaging speed. A linear
polarized fiber laser operating at a center wavelength of
1300 nm with a bandwidth of 170 nm served as the light
source. The laser light was initially directed through a
polarization-maintaining (PM) circulator, ensuring its
transmission in a specific direction to facilitate the routing
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of laser signals among various components. Upon travers-
ing the circulator, the light was collimated within the
space and divided into a reference arm and a sample arm
using a beam splitter. The light directed into the sample
arm was illuminated to the tissue, whereas the light routed
into the reference arm served as the reference beam. A
quarter-wave plate (QWP) rotated by 22.5° orientation was
put in the reference arm and exited with a 45° linear
polarization after passing through the QWP twice.
Another QWP rotated by 45° was put in the sample arm to
obtain circularly polarized light, which made the system
sensitive to all polarization effects from the sample and
independent of the orientation of the sample in plane. PM
fiber was employed to ensure polarization preservation
across the entire system. The two lights, which were either
backscattered or reflected from the sample arm and
reflected within the reference arm, converged at the beam
splitter before re-entering the collimator. Subsequently,
the resulting interference light was transmitted to the opti-
cal subsystem for postprocessing. The optical subsystem
splits the interference light into the vertical linearly polar-
ized signal and horizontal linearly polarized signal by two
PS beam splitters, which are further detected and pro-
cessed by two PS channel sensors [22-24]. The two indi-
vidual OCT images from the unique PS detector unit can
be shown separately or combined in a total intensity
image.

In this system, we integrated a gradient index (GRIN)
lens into the sample arm to attain a forward view of the
endoscope, as depicted in the bottom right of Figure 1.
We specifically selected a GRIN lens with a diameter of
1.3 mm, closely resembling the dimensions of a typical
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FIGURE 1 Experimental setup of the PS-OCT probe.
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epidural needle. The GRIN lens measures 138.0 mm in
length and offers a viewing angle of 11.0°. The proximal
end of this GRIN lens is positioned near the focal plane
of the scanner lens to ensure sufficient light power passes
through the GRIN lens body. To counteract potential dis-
persion, which can affect image quality, we introduced
an additional GRIN lens with identical specifications into
the light path of the reference arm. This served as a com-
pensatory element, guaranteeing precise and accurate
imaging outcomes from the system. The axial imaging
resolution of the PS-OCT system can reach up to 5.5 pm
in air, allowing us to capture subtle structures within the
samples. The scanning rate ranges from 5.5 to 76.0 kHz,
and the sensitivity is 109 dB (at 5.5 kHz). The GRIN
lenses are from GoFoton Corporation, and the laser and
all other optical components are from Thorlabs Inc.

In addition to conventional intensity OCT imaging,
PS-OCT offers supplementary tissue contrast derived
from tissue birefringence characteristics. As illustrated in
Figure 1, our PS-OCT endoscope incorporates two sensors
designed to capture light with distinct polarization states.
Here, we consider the individual intensity of sensor 1 (receiv-
ing the vertical linear polarized light) as I, and the sensor 2
(receiving the horizontal linear polarized light) as I,.
OCT intensity results are calculated with the total inten-
sity of I =1, +1,, where I, =E; X E; and I, =E, X E} (E
represents the complex amplitude of the electric field). In
our system, PS imaging results include phase retardation,
optic axis, and degree of polarization uniformity
(DOPU) [25]. Stokes parameters can be calculated as [25]:

Q=E,E; —E,E} (1)
U=FE4sE, 4o —E 4sE ;o =E\E; +E:E;  (2)

V = ExEy ~ BB} =i(EE; — B E; ) (3)

The three PS-OCT imaging modes can be calculated
following the formula below:

Phase retardation = tan ! (\/I /1 2) €0,z/2] (4)

Optic axis :%atanZ(U, Qel-n/21/2 (5

DOPU=\/(Q)* + (U + (V) ef01]  (6)

The incorporation of PS modes resulted in enhanced
tissue contrast within the epidural samples. The assess-
ment of phase retardation was utilized to quantitatively
measure the accumulated phase change experienced by

light within the tissue across the two distinct channels.
Likewise, the assessment of the optic axis measured the
relative angular orientation between the fast and slow
axes. It is noteworthy that in instances where the sample
tissue displayed a uniform birefringence property, both
phase retardation and optic axis values exhibited a pro-
portional increase with depth. Furthermore, DOPU met-
ric facilitated a novel perspective. DOPU involved the
assessment of average Stokes parameters, which in turn
correlated with the extent of incident light depolarization
within the sample. This comprehensive utilization of PS
modes contributed to an enriched understanding of tissue
properties and interactions [25].

2.2 | Deep learning procedure
Six porcine backbone samples were imaged using our PS-
OCT probe. We scanned five different epidural tissue
layers: (1) subcutaneous fat; (2) interspinous ligament;
(3) ligamentum flavum; (4) epidural space; and (5) spinal
cord, as shown in Figure 2. The image size was set at
430 x 950 pixels with a pixel size of 3 pm. For each back-
bone sample, we obtained 1000 images in each imaging
mode from every tissue type, resulting in a total of 24 000
images (1000 images x 4 imaging modes x 6 samples).
Convolutional neural network (CNN) was employed for
the classification of tissue layers, enabling the automa-
tion of the epidural needle tip positioning procedure. Spe-
cifically, the ResNet50 architecture from the Keras
library was utilized for this purpose [26]. The SGD opti-
mizer was set with 50 epochs, with the learning rate of
0.01, momentum of 0.9, and decay of 0.01. The batch size
was set to be 24. We employed cross-validation to opti-
mize the number of training epochs while retaining the
model architecture and all other hyperparameters consis-
tent with our prior studies, and evaluate the prediction
results [19, 27, 28]. Images were separated into six folds
based on the imaging results. The dataset encompassed
images from all six samples. These configurations were
maintained consistently throughout all training ses-
sions. This uniformity facilitated the comparison of
performance among different imaging modes and
ensured an unbiased assessment of classification capa-
bilities. The cross-validation procedure encompassed
30 folds for each OCT imaging mode, resulting in a
total of 120 folds. In addition, we conducted cross-
testing with six folds. The computation time for each
fold was approximately 130 min, using one NVIDIA
RTX 3090 graphic card.

We used four parameters: (1) Accuracy; (2) Precision;
(3) Recall; and (4) F, score to evaluate the prediction per-
formance of our model. These metrics are widely used in
deep learning to assess classification performance and the
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capabilities of the modes. Accuracy is the correctness of
the measurements to the true value. Precision quantifies
the closeness of measurements among each other. Recall
indicates the proportion of relevant retrieved instances. F,
score represents the harmonic mean between precision
and recall. These metrics are computed as follows (where
TP stands for true positive, FP for false positive, TN for
true positive, and FN for false negative):

Interspinous Ligament

<

Ligamentum Flavum

TP+TN

Accuracy = (7)
TP+ FP+TN+FN
. TP
Precision =—— (8)
TP+ FP
TP
Recall= ——— (9)
TP+FN
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Precision - Recall TP
Precision + Recall TP +1(FP+FN)

Fi=2 (10)

3 | RESULTS

3.1 | PS-OCT imaging results

PS-OCT images of the five epidural tissues in the four
OCT modes and corresponding histology are shown in
Figure 3. Regarding the OCT intensity outcomes, the five
tissues exhibited distinct patterns in the OCT imaging
results, which align with findings from our prior studies
[9, 19]. Upon reaching the epidural space with the nee-
dle, a noticeable gap became evident between a promi-
nent line (indicated by yellow double arrows in Figure 3)
that aligned with the surface of the GRIN lens and the
dura mater of the spinal cord. The tissues that the needle
passed through during insertion were also distinguish-
able. The subcutaneous fat exhibited low imaging inten-
sity and depth, characterized by an irregular distribution
of bright bars or dots representing adipocytes. In contrast,
the ligament tissue displayed the greatest imaging depth
among all the tissues. Additionally, the ligament dis-
played horizontal lines attributed to the fibrous nature,
mirroring the characteristics observed in the histology
results. The flavum exhibited remarkably high brightness
in the OCT intensity output, a consequence of its dense
elastic fibers. Notably, when the needle penetrated the
spinal cord, the tissue region appeared exceedingly
bright, indicative of the densely packed nerve fibers.

In the PS imaging modes depicted in Figure 3, fiber-
based tissues are notably discernible, particularly in the
phase retardation and optic axis modes. Clear transverse
layers were evident within the interspinous ligament
and ligamentum flavum tissues, albeit exhibiting vary-
ing layer thicknesses and depths. While the spinal cord
also displayed transverse layer characteristics, they were
not as pronounced as those observed in the ligament
and flavum tissues, which consist predominantly of
elastin and collagen fibers [29, 30]. Conversely, in the
case of subcutaneous fat tissue, which lacks a fiber
structure, there existed lengthwise polarization contrast,
a phenomenon previously documented [31]. This obser-
vation suggests a promising avenue of incorporating PS
contrast into intensity results, with the potential to
enhance the recognition of epidural tissues.

3.2 | Prediction results by deep learning

The classification of the five epidural tissues was con-
ducted using the ResNet50 architecture based on its

strong performance demonstrated in our prior stud-
ies [19]. For this research, a total of 1000 cross-sectional
images were captured from each tissue layer within every
mode. In total, six backbone samples were utilized. Here
we evaluated the classification of the five epidural groups
in the four modes, respectively. The aggregated accuracy
for both cross-validation and cross-testing outcomes is
shown in Table 1. Notably, the intensity mode exhibited
weaker predictive performance than the other PS modes.
Collectively, DOPU was the most effective among the
three PS modes. In comparison to the OCT intensity
mode, which achieved an accuracy of 81.60%, all three
PS-OCT modes exhibited superior average predictive
capabilities. Specifically, phase retardation attained an
accuracy of 87.39%, the optic axis yielded 85.97%, and
DOPU outperformed with the highest result of 91.61%.
Cross-testing accuracy was subsequently computed for
each of the six testing folds. Like the cross-validation
findings, DOPU exhibited the highest accuracy at 91.53%,
while the OCT intensity mode recorded the lowest accu-
racy of 81.89%. Interestingly, in contrast to the cross-
validation outcomes, the optic axis mode surpassed the
performance of the phase retardation mode. Consider-
able variability in testing accuracy was observed across
different subjects, particularly pronounced in the case
of subject 1. Subject 1 displayed the lowest perfor-
mance across all four modes. This variability could be
attributed to differences in tissue characteristics among
various backbone samples. Furthermore, the subjects
achieving the highest performance varied across differ-
ent modes in the testing results. Specifically, subject
4 provided the best performance in the intensity and
phase retardation modes, whereas subject 5 generated
the optimal results in the optic axis and DOPU modes.
This variability in performance across different imag-
ing modes suggests a potential complementary effect
that can be harnessed.

Grad-CAM heatmaps were utilized to visually show
the explanations of the ResNet50 model classification
as shown in Figure 4. A conspicuous disparity between
the PS modes and the intensity mode lay in their dis-
tinct focal areas. In the case of the intensity mode, the
model predominantly emphasized the luminous sur-
face of the needle itself. In the three PS modes, the
model exhibited a discernible shift in focus, prioritizing
the tissues situated beneath the epidural space. An
advantage of PS modes is that the cumulative change
increases in the phase retardation and optic axis as the
depth increases. The value for DOPU is not affected by
depth change since it measures the Stokes parameters’
average level around each pixel, whereas in OCT inten-
sity mode, the signal decreases as the depth increases
due to light scattering. In other words, the signal from
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TABLE 1 Accuracies for cross-

o ’ ) Dataset Intensity Retardation Optic axis DOPU
validation and cross-testing results in

different imaging modes. Cross-validation

El 84.72% 92.00% 90.80% 94.01%

E2 82.48% 84.21% 84.93% 91.18%

E3 84.62% 87.78% 82.14% 91.74%

E4 75.42% 85.95% 85.70% 92.61%

E5 80.17% 84.74% 84.11% 89.34%

E6 82.22% 89.64% 88.13% 90.80%
Average 81.60 + 3.47% 87.39 + 3.02% 85.97 + 3.07% 91.61 + 1.60%
Cross-testing

El 66.34% 58.16% 76.84% 75.86%

E2 81.70% 81.82% 84.46% 87.48%

E3 73.06% 89.48% 91.42% 90.88%

E4 94.16% 99.54% 92.56% 98.52%

E5 93.58% 96.66% 93.94% 97.28%

E6 82.52% 90.38% 86.06% 99.18%
Average 81.89 + 11.02% 86.01 + 14.97% 87.55 + 6.44% 91.53 + 8.98%
Gradcam Heat Map

Epidural Spinal i Spinal

Ligament Flavum

Intensity

Retardation

Optic Axis ;

DOPU

FIGURE 4 Grad-CAM and heatmap examples of different imaging results in four modes.

the deep region provides less useful information in the ligaments, which only covered the shallower part of
OCT intensity mode while less affected in the PS the intensity image but spanned all the depth in the PS
modes. This is clearly shown in the heatmap for  modes.
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TABLE 2 Precision, recall, and F; score of different tissue types in each model.
OCT Imaging mode Fat Ligament Flavam Epidural space Spinal cord
Precision
Intensity 81.91 + 1.28% 86.20 + 4.92% 76.44 + 5.91% 99.89 + 2.52% 79.97 + 4.72%
Retardation 86.73 + 3.76% 91.31 + 3.81% 87.19 + 3.13% 99.97 + 2.31% 84.13 + 3.58%
Optic axis 87.59 + 3.86% 90.36 + 3.71% 84.13 + 3.87% 97.72 + 1.96% 83.02 + 2.33%
DOPU 94.80 + 2.76% 96.03 + 4.01% 87.11 + 3.32% 99.69 + 0.32% 88.94 + 1.65%
Recall
Intensity 92.85 + 3.05% 82.17 £ 2.54% 64.10 £ 3.77% 94.38 + 0.11% 74.52 + 2.81%
Retardation 83.78 + 3.52% 86.63 + 2.25% 82.94 + 2.57% 95.35 + 0.02% 88.26 + 2.82%
Optic Axis 83.50 + 1.66% 87.20 £ 2.31% 74.41 £ 2.90% 94.73 £ 1.15% 90.00 + 2.74%
DOPU 88.73 + 0.98% 86.27 + 0.75% 88.57 + 3.56% 99.46 + 0.31% 95.03 + 2.91%
F1
Intensity 85.82 + 1.93% 80.17 + 3.96% 64.07 + 4.37% 96.47 + 1.66% 73.38 + 3.44%
Retardation 82.90 + 3.39% 87.65 + 3.17% 84.13 + 2.54% 97.07 + 1.56% 83.97 + 3.28%
Optic Axis 83.88 + 2.60% 86.40 + 2.57% 76.13 + 2.79% 95.71 + 1.31% 84.74 + 1.72%
DOPU 90.85 + 1.87% 89.22 + 3.00% 86.87 + 3.22% 99.56 + 0.23% 90.70 + 1.87%

Intensity
ROC: Resnet micro average

Phase Retardation
ROC: Resnet micro average

FIGURE 5

ROC curves of

different imaging modes. AUC, Area

Table 2 displays the classification outcomes for
various tissue types, whereas the associated receiver oper-
ating characteristic curves are illustrated in Figure 5.
From the averaged values for each tissue layer, epidural
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space was the most easily recognizable due to the gap
between the needle tip and the tissue surface and DOPU
presented the best F; score of 99.56%. Given that the epi-
dural space is the target destination for the epidural
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needle, accurate identification of this site ensures precise
needle placement. Compared with other tissues, flavum
is the most difficult to identify but the results in retarda-
tion and DOPU are significantly improved (>84% F1
Score) compared with 64% F1 Score from intensity mode.
Fat, ligament, and spinal cord all had over 80% results in
all the values (precision, recall, and F; Score) in the PS
modes. Overall, DOPU mode provided the best measure-
ments among all the OCT imaging modes. Retardation
and Optic Axis also gave better performances than
intensity. Therefore, in comparison with conventional
structural OCT imaging, PS-OCT imaging can provide
better classification performance using more tissue
information.

4 | DISCUSSION

In this study, we assessed the performance of a forward-
view PS-OCT probe for guiding epidural anesthesia nee-
dle placement. Our innovative system offers significantly
improved resolution compared to conventional imaging
techniques such as ultrasound and fluoroscopy, providing
a clearer front view of the epidural needle. By employing
PS-OCT, our system can acquire both intensity and PS
signals and achieve a superior axial resolution of 5.5 pm,
outperforming our previous research on SS-OCT with an
axial resolution of ~14.0 pm. The high-resolution imag-
ing results offered intricate details, allowing medical pro-
fessionals to discern the epidural tissue type and
accurately determine the needle tip location, which
explained the significant increase in cross-validation
accuracy from 66% using SS-OCT to 81.60% using inten-
sity mode alone. Furthermore, the imaging results
obtained in PS modes revealed distinct features of the five
epidural tissue layers, enabling more effective differentia-
tion between them compared to the intensity mode
alone. This enhanced understanding of tissue characteris-
tics could aid in optimizing the needle guidance proce-
dure for epidural anesthesia.

Besides the intensity and penetration depth contrast
in the intensity OCT mode, PS modes enhanced the fea-
ture of the tissues with fiber structures such as ligament,
flavum, and spinal cord. We conducted a thorough
assessment of our models' generalization performance
using a nested cross-validation and cross-testing proce-
dure. This allowed us to gain valuable insights into their
robustness and potential for clinical applications. The
cross-testing results showed an excellent average accu-
racy of 91.53% in DOPU mode, with phase retardation
and optic axis also yielding accuracies at 86.01% and
87.55%, respectively. In contrast, intensity modes only
exhibited a prediction accuracy of 81.89% even with the
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improved imaging resolution. Further evaluation using
precision, recall, and F,; scores for each tissue type
revealed that the epidural space was consistently the easi-
est tissue layer to recognize in both PS modes and inten-
sity modes. This finding is particularly promising as the
epidural needle needs to be placed inside the epidural
space, making its recognition a critical step. The recogni-
tion accuracies were also improved for the other tissues
in all the three PS modes. In general, the three PS modes
provided better predictions than intensity except for fat,
and DOPU yielded the highest F; score across all five epi-
dural tissue types. Importantly, the diverse imaging
modes demonstrated unique capabilities in identifying
specific tissues. By integrating the strengths of each
mode, we anticipate significant improvements in tissue
classification accuracy. The inference time on NVIDIA
RTX 3090 GPUs was 0.0314 s per image and 0.1256 s for
all the four imaging modes on average, thus real-time
prediction using all four modes can still be achieved in
our system. When multiple GPUs are available, the infer-
ence time can be further reduced by parallelizing the
inferencing across GPUs.

The endoscopic PS-OCT system developed in this
study was based on a single input polarization state, thus
the polarization parameters (phase retardation, optic axis,
and DOPU) were all cumulative values [32]. The cumula-
tive phase retardation only indicated the phase retarda-
tion between the principal polarization states along the
complete optical path through the tissue rather than
the phase retardation effect at a single depth location
[33, 34]. Therefore, the ‘local’ polarization information
was not able to be quantitatively provided. On the other
hand, due to the direct proportionality between the local
birefringence mode and the actual birefringent signal per
pixel in the OCT images, the local polarization signal suf-
fers from diminished sensitivity [35, 36]. Compared with
the local polarization mode, the cumulative polarization
mode exhibited higher sensitivity and demanded a con-
siderably simplified system, so it remained the preferred
choice for image classification purposes [33, 35, 37]. Con-
sidering the key to the epidural guidance application is
the differentiation between different spinal tissues,
cumulative polarization parameters were applied in this
study. Additionally, we plan to upgrade our system to
enhance its usability and convenience in clinical settings.
To validate the clinical translatability of our PS-OCT
probe, we will continue to improve our technology using
in-vivo pig models. Furthermore, considering the anatom-
ical variations and tissue properties differences between
pig and human epidural tissues, we will continue this
project on human samples in the future. To improve the
automatic tissue prediction in our future work, we will
combine PS-OCT and intensity OCT as an integrated
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input into a multichannel CNN [38] or an ensemble
learning system [39]. By leveraging the strengths of indi-
vidual modes for identifying specific tissues, this inte-
grated approach is expected to achieve an enhanced
overall tissue recognition accuracy, albeit with the trade-
off of increased computational costs and model
complexity. Furthermore, by employing various model
interpretation methods [40, 41], we can gain insights into
which imaging features and modalities contribute most
to accurate classifications of different tissues. This will
help us further optimize our OCT imaging technique and
enhance its diagnostic capabilities. By pursuing these
steps, we aim to advance the capabilities of our PS-OCT
probe and deep learning model, ultimately contributing
to improved epidural anesthesia needle guidance proce-
dures and enhancing clinical outcomes.

ACKNOWLEDGMENTS

This work was supported by grants from the Institutional
Research Grant number IRG-19-142-01 from the
American Cancer Society, National Science Foundation
(OIA-2132161, 2238648), National Institute of Health
(RO1DK133717, P20GM135009, P20GM103639,
P30CA225520, NIGMSU54GM104938), Oklahoma Center
for the Advancement of Science and Technology (HR23-
071), and the medical imaging COBRE (P20GM135009).
Histology service provided by the Tissue Pathology
Shared Resource was supported in part by the and the
National Institutes of Health. The content is solely
the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of
Health or the Indian Health Service. Financial support
was provided by the OU Libraries' Open Access Fund.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are
openly available in Endoscopic_OCT_Epidural at https://
github.com/thepanlab/Endoscopic_OCT_Epidural.git.

ORCID
Chen Wang @ https://orcid.org/0000-0003-4645-3227
Feng Yan © https://orcid.org/0000-0001-9926-7554

REFERENCES

[1] V. Svircevic, D. van Dijk, A. P. Nierich, M. P. Passier, C. J.
Kalkman, G. J. M. G. van der Heijden, L. Bax, Anesthesiology
2011, 114, 271.

[2] H. Hayashi, T. Ochiai, H. Shimada, Y. Gunji, Surg. Endosc.
Other Interv. Tech. 2005, 19, 1172.

[3] R. J. Moraca, D. G. Sheldon, R. C. Thirlby, Ann. Surg. 2003,
238, 663.

[4] A. N. A. Hernandez, P. Singh, StatPearls [Internet], StatPearls
Publishing, Treasure Island, 2022.

[5] R. Patel, I. Urits, V. Orhurhu, M. S. Orhurhu, J. Peck, E.
Ohuabunwa, A. Sikorski, A. Mehrabani, L. Manchikanti, A. D.
Kaye, R. J. Kaye, J. A. Helmstetter, O. Viswanath, Curr. Pain
Headache Rep. 2020, 24, 1.

[6] B. Chekol, T. Yetneberk, D. Teshome, Ann. Med. Surg. 2021,
66, 102456.

[7] M. Tripathi, S. S. Nath, R. K. Gupta, Anesth. Analg. 2005, 101,
1209 table of contents.

[8] M. J. Frumin, H. Schwartz, J. J. Burns, B. B. Brodie, E. M.
Papper, Anesthesiology 1953, 14, 576.

[9] Q. Tang, C. P. Liang, K. Wu, A. Sandler, Y. Chen, Quant.
Imaging Med. Surg. 2015, 5, 118.

[10] S. Y. Kang, O. N. Kashlan, R. Singh, R. Rane, N. M. Adsul,
S. C. Jung, J. Yi, H. S. Cho, H. S. Kim, I. T. Jang, S. H. Oh,
J. Pain Res. 2020, 13, 211.

[11] H. Elsharkawy, W. Saasouh, R. Babazade, L. M. Soliman, J. L.
Horn, S. Zaky, Pain Med. 2019, 20, 1750.

[12] M. Yeager, E. E. Bae, M. C. Parra, P. A. Barr, A. K. Bonham,
B. D. Sites, Acta Anaesthesiol. Scand. 2016, 60, 513.

[13] S. Y. Kang, H. S. Cho, J. Yi, H. S. Kim, L. T. Jang, D. H. Kim,
World Neurosurg. 2022, 159, e103.

[14] J. Richardson, G. J. Groen, Contin. Educ. Anaesth. Crit. Care
Pain 2005, 5, 98.

[15] S. D. Waldman, Pain management E-book, Elsevier Health Sci-
ences, Philadelphia, PA, 2011.

[16] S. P. Lin, M. S. Mandell, Y. Chang, P. T. Chen, M. Y. Tsou,
K. H. Chan, C. K. Ting, Br. J. Anaesth. 2012, 108, 302.

[17] T. A. Anderson, J. W. Kang, T. Gubin, R. R. Dasari, P. T. C. So,
Anesthesiology 2016, 125, 793.

[18] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G.
Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A.
Puliafito, J. G. Fujimoto, Science 1991, 254, 1178.

[19] C. Wang, P. Calle, J. C. Reynolds, S. Ton, F. Yan, A. M.
Donaldson, A. D. Ladymon, P. R. Roberts, A. J. de Armendi,
K. M. Fung, S. S. Shettar, C. Pan, Q. Tang, Sci. Rep. 2022, 12,
9057.

[20] C. Wang, P. Calle, J. C. Reynolds, N. B. Ton, F. Yan, A. M.
Donaldson, A. D. Ladymon, P. R. Roberts, A. J. De Armendi,
K. M. Fung, S. S. Shettar, Endoscopic Optical Coherence
Tomography for Epidural Anesthesia Guidance (Conference
Presentation), Vol. PC11949, SPIE BiOS, San Francisco, CA,
2022.

[21] M. R. Hee, E. A. Swanson, J. G. Fujimoto, D. Huang, JOSA B
1992, 9, 903.

[22] J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson,
Opt. Lett. 1997, 22, 934.

[23] C. K. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher, A. F.
Fercher, Opt. Express 2001, 9, 780.

[24] J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, J. A. Izatt,
Opt. Lett. 2001, 26, 1069.

[25] J. F. de Boer, C. K. Hitzenberger, Y. Yasuno, Biomed. Opt.
Express 2017, 8, 1838.

[26] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2016.


https://github.com/thepanlab/Endoscopic_OCT_Epidural.git
https://github.com/thepanlab/Endoscopic_OCT_Epidural.git
https://orcid.org/0000-0003-4645-3227
https://orcid.org/0000-0003-4645-3227
https://orcid.org/0000-0001-9926-7554
https://orcid.org/0000-0001-9926-7554

WANG ET AL.

OURNAL OF

11 of 11
PHOTONICSJ—

[27] C. Wang, J. C. Reynolds, P. Calle, A. D. Ladymon, F. Yan, Y.
Yan, S. Ton, K. M. Fung, S. G. Patel, Z. Yu, C. Pan, Q. Tang,
J. Biophotonics 2022, 15, €202100347.

[28] C. Wang, P. Calle, N. B. Tran Ton, Z. Zhang, F. Yan, A. M.
Donaldson, N. A. Bradley, Z. Yu, K. M. Fung, C. Pan, Q. Tang,
Biomed. Opt. Express 2021, 12, 2404.

[29] S. Hirabayashi, Spine Surg Relat Res 2017, 1, 158.

[30] J. Iwanaga, E. Simonds, E. Yilmaz, M. Schumacher, M. Patel,
R. S. Tubbs, Asian. J. Neurosurg. 2019, 14, 1203.

[31] Z. Ding, Q. Tang, C. P. Liang, K. Wu, A. Sandlerc, H. Li, Y.
Chen, IEEE Photonics J. 2016, 8, 1.

[32] Z. Ding, C.-P. Liang, Y. Chen, Front. Optoelectron. 2015, 8, 128.

[33] M. G. Grife, J. A. van de Kreeke, J. Willemse, B. Braaf, Y. de
Jong, H. S. Tan, F. D. Verbraak, J. F. de Boer, Transl. Vis. Sci.
Technol. 2020, 9, 13.

[34] B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, J. F. de
Boer, Biomed. Opt. Express 2014, 5, 2736.

[35] F. Feroldi, J. Willemse, V. Davidoiu, M. G. O. Griife, D. J. van
Iperen, A. W. M. Goorsenberg, J. T. Annema, J. M. A. Daniels,
P. I. Bonta, J. F. de Boer, Biomed. Opt. Express 2019, 10, 3070.

[36] M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W.
Kirk, B. E. Bouma, D. D. Sampson, Sci. Rep. 20186, 6, 6.

[37] J. Willemse, M. G. O. Griife, J. A. van de Kreeke, F. Feroldi,
F. D. Verbraak, J. F. de Boer, Opt. Lett. 2019, 44, 3893.

[38] M. Y. Zhao, C. H. Chang, W. Xie, Z. Xie, J. Hu, IEEE Access
2020, 8, 44111.

[39] A. Kumar, J. Kim, D. Lyndon, M. Fulham, D. Feng, IEEE
J. Biomed. Health Inform. 2017, 21, 31.

[40] A. Badre, C. L. Pan, IEEE Access 2022, 10, 36166.

[41] A. Badre, C. L. Pan, PLoS Comput. Biol. 2023, 19, €1011211.

How to cite this article: C. Wang, Y. Liu,

P. Calle, X. Li, R. Liu, Q. Zhang, F. Yan, K. Fung,
A. K. Conner, S. Chen, C. Pan, Q. Tang, J.
Biophotonics 2023, €202300330. https://doi.org/10.
1002/jbi0.202300330



https://doi.org/10.1002/jbio.202300330
https://doi.org/10.1002/jbio.202300330

	Enhancing epidural needle guidance using a polarization-sensitive optical coherence tomography probe with convolutional neu...
	1  INTRODUCTION
	2  METHODS
	2.1  Experimental setup
	2.2  Deep learning procedure

	3  RESULTS
	3.1  PS-OCT imaging results
	3.2  Prediction results by deep learning

	4  DISCUSSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


