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Abstract

We introduce a light steering technology that operates

at megahertz frequencies, has no moving parts, and costs

less than a hundred dollars. Our technology can benefit

many projector and imaging systems that critically rely on

high-speed, reliable, low-cost, and wavelength-independent

light steering, including laser scanning projectors, LiDAR

sensors, and fluorescence microscopes. Our technology uses

ultrasound waves to generate a spatiotemporally-varying

refractive index field inside a compressible medium, such as

water, turning the medium into a dynamic traveling lens. By

controlling the electrical input of the ultrasound transducers

that generate the waves, we can change the lens, and thus

steer light, at the speed of sound (1.5 km/s in water). We

build a physical prototype of this technology, use it to real-

ize different scanning techniques at megahertz rates (three

orders of magnitude faster than commercial alternatives

such as galvo mirror scanners), and demonstrate proof-of-

concept projector and LiDAR applications. To encourage

further innovation towards this new technology, we derive

theory for its fundamental limits and develop a physically-

accurate simulator for virtual design. Our technology offers

a promising solution for achieving high-speed and low-cost

light steering in a variety of applications.

1. Introduction

Many imaging systems rely on the ability to steer light,

either as it leaves a source or as it reaches a sensor. Exam-

ples include laser scanning projectors [28,56], LiDAR depth

sensors [38, 74, 75], and microscopy techniques (confocal

microscopy [23, 50], light-sheet microscopy [55, 68], multi-

photon microscopy [17, 82]). Compared to full-field light-

ing and imaging, light steering systems help improve light

efficiency [47], counter indirect illumination [27, 42], and

enhance illumination and imaging contrast [9, 55]. However,

these advantages come at the cost of reduced acquisition

speed, bulky moving hardware, and motion artifacts. To

alleviate these costs, we introduce a new light steering tech-

nology that, through the use of ultrasonic sculpting, makes it

possible to scan light both transversally and axially at mega-

hertz (MHz) rates. Additionally, our technology achieves

these high scanning rates without any moving parts. Lastly,

prototypes of our technology cost no more than a hundred

dollars. Altogether, these characteristics represent significant
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(b) proposed steering (1 MHz)
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Figure 1. Megahertz light steering. (a) Light steering systems in

LiDAR systems and laser projectors have moving mechanical com-

ponents, limiting them to kHz scanning rates. (b) Our technology

uses the acousto-optic effect to enable MHz light steering without

moving parts. The insets show that, before galvo mirrors could

scan even a few points, our prototype scanned a thousand points to

project the letter “A” on the wall.

advances over previous light steering technologies (Table 1).

Our technology uses the acousto-optic effect1 to turn a

transparent medium, such as water, into a programmable

optic that steers an incident light beam. Sound is a pressure

wave that travels inside a medium by compressing and rar-

efying it, spatiotemporally changing the medium density. In

turn, this changes the refractive index of the medium, which

is proportional to the density [63,79]. We design the pressure

profile of the sound wave so that, at any time instant, the

spatially-varying refractive index makes the medium behave

as a periodic set of virtual gradient-index (GRIN) lenses,

each with an aperture equal to the sound wavelength. The

GRIN lenses bend light beams incident on the medium, with

the GRIN profile determining the beam trajectory. These

lenses travel at the speed of sound (1.5 km/s in water) and are

reconfigurable at MHz frequencies, allowing us to steer light

faster than mechanical devices. To enable flexible steering

1This is different from Bragg’s diffraction in acousto-optic deflectors.
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patterns, we combine this optic with a pulsed laser with a

programmable pulse rate. By synchronizing the laser source

with the sound waveform, and modulating the phase of the

sound waveform, we control both the speed of beam steering

and the location of the beam.

In Sections 3 and 4, we explain the physical and math-

ematical details of our technology. We introduce a new

design that uses two linear transducers to generate traveling

acoustic waves, and discuss how different synchronization

choices between ultrasound and pulsed laser result in differ-

ent scanning patterns. To facilitate the exploration of design

parameters (ultrasound speed and frequency, laser frequency)

and configurations (transducer geometry), we also develop a

physics-based simulator for our technology. In Section 6, we

also discuss the fundamental limits of our technology due to

diffraction and the uncertainty principle in wave physics.

In Section 5, we experimentally demonstrate these fast

programmable light steering techniques for various appli-

cations. In particular, in Section 5.2, we demonstrate an

arbitrary point projector that can scan arbitrary and pro-

grammable light patterns. Compared to raster scanning pro-

jectors, which can project billions of points per second in a

grid pattern but only a few thousand arbitrary points per sec-

ond, our prototype can project a million arbitrary points per

second, an acceleration by three orders of magnitude. In Sec-

tion 5.3, we demonstrate a LiDAR prototype that combines

our light steering technology with a single-photon avalanche

diode (SPAD). We show 3D scans of 100×100 resolution at

5000 frames per second (50 million points per second) with

a single-pixel SPAD, which is not feasible with scanning

galvo mirrors.

Contributions. Our main contributions are:

1. A new light steering technology based on the acousto-

optic effect that is three orders of magnitude faster than

state-of-the-art mechanical steering technologies.

2. A new hardware design with planar transducers gener-

ating of traveling waves.

3. An experimental prototype demonstrating ultrafast arbi-

trary point projection and LiDAR scanning.

4. A physics-based renderer to simulate digital twins of

our prototype and evaluate different designs.

5. The derivation of limits due to fundamental restrictions

from wave physics (diffraction limit, scanning speed vs.

aperture tradeoff, and uncertainty principle).

We provide our open-source simulator, data, and additional

details in the supplement and project website.2

Limitations. Our prototype has a diffraction-limited point

spread function (PSF) with a large spatial extent and a “+”

shape, due to the use of two linear transducers that create

a rectangular aperture. This limits spatial resolution, and

introduces structured blur artifacts. These limitations are not

fundamental to our core technology, and can be overcome

2https://imaging.cs.cmu.edu/ultrafast_steering

Table 1. Comparison of light steering technologies. MEMS is

microelectromechanical systems, OPA is optical phased arrays,

BW is optical bandwidth. For the arrows, red is bad, green is

good, down is low, and up is high, and more arrows imply a bigger

effect. Our method is superior in terms of cost, speed and supported

bandwidth, with no moving parts or fabrication.

Tech. speed fab. BW cost moving

galvo ↓↓ � ↑ ↓ �

liquid

lenses
↓↓↓ � ↑ ↓ �

MEMS ↑ � ↑ ↑ �

OPA ↑↑↑ � ↓ ↑↑ �

ours ↑↑ � ↑ ↓↓↓ �

with improved designs and better engineering (Section 6).

2. Related work

Light steering in imaging systems. Light steering is a core

component in scanning-based active imaging systems. For

example, fluorescence microscopy techniques such as con-

focal microscopy [23, 50], multiphoton microscopy [17, 82],

light sheet microscopy [55, 68], and superresolution mi-

croscopy [7], use scanning to decrease scattered light and

improve light efficiency and imaging contrast. Another ex-

ample is LiDAR sensors [84] found in commercial applica-

tions, such as autonomous cars. In these sensors, scanning

decreases multipath interference and helps reduce hardware

cost, removing the need for two-dimensional LiDAR ar-

rays. Our technology improves the speed and reliability of

scanning-based LiDAR, while further reducing the cost.

Light steering is also used in scanning-based laser pro-

jectors, to achieve high light efficiency and contrast by illu-

minating only where necessary. Laser projectors typically

perform a 2D raster scan the field of view, with a fast and

a slow scanning axis. The speed of the fast scanning axis

limits the frame rate to the order of hundreds of kHz. In con-

trast, our technique can operate at tens of MHz, improving

the raster scan rate by two orders of magnitude. Additionally,

raster scanners cannot project arbitrary point sequences at

a fast rate, and are limited to the frame rate of the projector

(60-120 points per second) even when the projection pattern

is very sparse. We demonstrate the projection of a million

arbitrary points per second, four orders of magnitude faster.

Computational imaging techniques that use laser projec-

tors or LiDAR are generally also scanning-based. Exam-

ples include structured light [26, 70], light-transport prob-

ing [47, 48], motion contrast 3D [44], epipolar gating [3, 46],

light curtains [11,76], slope-disparity gating [12,37,73], and

non-line-of-sight imaging [39, 41, 49, 51, 81]. As a conse-

quence, all these techniques can become orders of magnitude

faster if combined with our light steering device.

Light steering technologies We can distinguish between

mechanical and non-mechanical light steering techniques.

The former include rotating prisms [2, 78], mirrors [35, 45],

2
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Figure 2. Comparison to previous work. (a) Previous ultrasoni-

cally sculpted lenses [10, 32] change the focal length at high speed

(b) Our lens can change both focal length (transparencies) and the

spatial location (colors) at high speed. We achieve this using travel-

ing waves and synchronizing sound and light signals.

and digital micromechanical systems (MEMS) [61, 65].

The latter include acousto-optic (AO) [20, 83] or electro-

optic (EO) [69] deflectors, liquid crystal devices [64, 77],

and optical phased arrays (OPA) [29, 58]. Table 1 compares

these techniques to our MHz steering technology: Mechani-

cal techniques are slow due to the need to physically move

optical elements. AO and EO deflectors operate at kHz rates.

Liquid lenses and crystals typically have a long settling time,

making them the slowest among these techniques.

OPAs [29, 58] are solid-state on-chip devices that can

steer light at even GHz rates. However, they require on-

chip microscopic coherent laser generators [71] and cannot

easily be coupled to external lasers. They are also expensive

to fabricate and currently limited to low-resolution angles.

Cheng et al. [15] and Spector [67] have detailed reviews.

Acousto-optic devices. Many acousto-optic devices are com-

mercially available, including tunable filters [21], modula-

tors [5], frequency shifters [85], and deflectors [30]. Among

these, the acousto-optic deflector can serve as a light steering

device. However, acousto-optic deflectors use a different

physical phenomenon, Bragg’s diffraction [72], where beam

deviation is proportional to the acoustic wave frequency,

and are thus orders of magnitude slower than our technol-

ogy. Electro-optic deflectors [40, 66] operate on a similar

phenomenon and are thus similarly slow.

Tunable acoustic gradient-index (TAG) lenses [16,32] and

ultrasonically-sculpted virtual optical waveguides [10, 34]

use the same physical principles as our technology. TAG

lenses can change the focus depth of an incident beam

at kHz rates; however, unlike our technology, they can-

not steer it in the transverse axis (Figure 2). Following

their recent commercialization, TAG lenses fostered innova-

tion in scientific and application fields such as laser micro-

machining [14, 18], three-dimensional biomedical imag-

ing [36, 80], microscopy [13, 19, 33], optical coherence to-

mography [22], high-throughput industrial inspection [31],

and adaptive optics [62, 86]. We believe that the additional

transverse steering capabilities from our technology will

similarly help stimulate significant further innovation.

Table 2. Notation and parameters we use in the paper.

quantity symbol

speed cus

wavelength λus

frequency fus

angular frequency ωus = 2πfus

wavenumber kus = 2πλ−1
us

timeperiod Tus = f−1
us

3. Traveling-wave acousto-optic lenses

We generate ultrasonic waves inside a transparent

medium, such as water, by submerging inside it a planar

transducer that we drive with a single harmonic voltage (Fig-

ure 3(a)). The resulting pressure P (x, t) inside the medium

(Figure 3(b)) equals

P (x, t) = Po + Ps cos(kusx− ωust), (1)

where: t is time, x is distance normal to the transducer

plane—the pressure is independent of y and z coordinates—

Po is the medium pressure without ultrasound, Ps is propor-

tional to the transducer voltage amplitude, and the remaining

parameters are in Table 2.

The refractive index n(x, t) of the medium changes pro-

portionally to the pressure (Figure 3(c)):

n(x, t) = no + ns cos(kusx− ωust), (2)

where: no is the refractive index of the medium without the

transducer, ns = kPs, and k is an empirical coefficient (k =

1.402× 10−5 bar−1 for water) [63].

At time t = 0, the convex lobes of this refractive index

profile (i.e., regions x = [lλus − λus/2, lλus + λus/2]; l ∈ Z)

act as GRIN lenses. Each of these lenses focuses light rays

traveling parallel to the transducer onto a line (Figure 3(d)).

We can change the lens focal length and aperture by varying

the amplitude and frequency of the transducer voltage.

Traveling lenses. The pressure wave and refractive index

profile propagate along the x-direction. Thus, the convex

lobes vary as: x(t) = [cust+lλus−λus/2, cust+lλus+λus/2];
l ∈ Z. As a result, ultrasonically-sculpted cylindrical GRIN

lenses are dynamic, and focused lines travel normal to the

transducer at the speed of ultrasound (Figure 4).

4. Scanning techniques

Even though the ultrasonically-sculpted GRIN lenses

travel at the speed of ultrasound, we cannot control the speed

or location of the lens focus. To enable such control, we

use a pulsed laser with the same repetition frequency as the

ultrasound frequency, and programmable phase modulation

for the transducer voltage.

Single transducer. For intuition, we first describe the

case of a single transducer. Due to phase modulation, the

pressure pattern from Equation (1) becomes P (x, t) =
Po + Ps cos(kusx − ωust − φ(t)). If the illumination is

continuous, the position of the focused light is xn(t) =

3
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Figure 3. Ultrasonic sculpting. (a) By placing a planar piezoelectric transducer inside a compressible medium and vibrating the transducer

with a sinusoidal voltage, we generate ultrasound inside the medium. (b) Sound is a pressure wave, and at any given time, the pressure inside

the medium varies spatially based on the voltage waveform applied to the transducer. (c) The change in the refractive index of the medium is

proportional to the pressure. Therefore, the refractive index of the medium also varies spatially, turning the medium into a GRIN lens. (d)

Light rays that pass through this GRIN lens will curve continuously and focus on a set of lines. The focal length of these waveguides/lenses

is a function of the voltage and frequency applied to the transducer.
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Figure 4. Planar transducer steers the light. As sound propagates,

the spatial refractive index pattern also propagates at the speed

of sound. The focussed light, which is a set of lines, also travels

normal to the transducer plane at the speed of sound. Apart from the

ray diagrams, the images rendered with our simulator (submitted

as supplementary) show that the planar transducer moves the focus

region (in this case, a line) at the speed of sound.

cust−nλus+
φ(t)
2π λ;n ∈ Z, which is a set of lines moving con-

tinuously at the speed of sound. By pulsing the illumination

at ultrasound frequency, we get a set of lines flickering at the

ultrasound frequency: xn(mTus) = (m−n)λus+
φ(mTus)

2π λus.

If we modulate the phase linearly (φ(t) = kωust; k < 1), we

have x(mTus) = mkcusTus for m = n (i.e., the line due to

the same laser and ultrasound pulse). Therefore, the lines

travel at a reduced speed kcus.

4.1. Point scanning with two transducers

To focus light to a point, we use two orthogonal planar

transducers (Figure 5). We describe two extensions of the

above approach for focus point control: one for scanning

arbitrary point locations at the ultrasound frequency (i.e.,

MHz), and another for raster scanning at the laser repetition

frequency, which is higher than the ultrasound frequency.

Arbitrary point scanning. To scan arbitrary points

(x(mTus), y(mTus)) for each laser pulse m, we modulate

the phases φx(t) and φy(t) of both transducers. The focus

point location within the region [0, λus]× [0, λus] is:

x(t) = (φx(t)/kus + cust) mod λus, (3)

y(t) = (φy(t)/kus + cust) mod λus, (4)

Figure 6 shows the refractive index and ray diagram

for four sets of φx and φy values. To scan a set

of points (x(mTus), y(mTus)), we compute the phases

(φx(mTus), φy(mTus)) using Equations (3)-(4), and inter-

polate to compute (φx(t), φy(t)).

Raster scanning In theory, we could use arbitrary point

scanning to raster scan a two-dimensional grid of points. In

that case, the phase modulation for raster scanning would be

linear, (φx(t), φy(t)) = (kxωust, kyωust), where kx and ky
are phase modulation rates. The phase modulation rate for

the faster axis would be equal to the product of the number

of scan points and the modulation rate of the slower axis.

However, this approach would limit raster scanning fre-

quency to the ultrasound frequency. If the laser repetition

frequency is higher, we can scan more points by running the

laser at its highest frequency. Their locations will be:

x(mTL) = (mkx)
λus

s
mod λus, (5)

y(mTL) = (mky)
λus

s
mod λus, (6)

where s = fL/fus is the ratio of laser (fL) and ultrasound

(fus) frequencies, and TL = 1/fL is the inter-pulse time.

4
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Figure 5. Two planar transducers for focusing light at a point. (a) We place two planar piezoelectric transducers orthogonal to each

other inside a medium. We drive both transducers independently with a sinusoidal voltage. (b) The pressure wave inside the medium is a

superposition of the pressure waves generated by the transducers. (c) The change in the refractive index is proportional to the net pressure.

(d) Light rays from a wide beam focus on a set of points. We restrict the illumination beam size to focus light on a single point.

Figure 6. Point steering. By controlling the phases of the sinu-

soidal voltages applied to the transducers, we control the location

of the focus position. To continuously steer the focus location, we

phase modulate the voltages applied to both transducers.

5. Experiments

We discuss an experimental prototype implementing our

acousto-optic light steering technology, and combining it

with a pulsed laser, single-pixel SPAD, and galvo mirrors

(for comparison). We use this prototype to demonstrate

projector and LiDAR applications. We compare our light

steering system with commercially available galvo mirrors,

to demonstrate the speed and the new capabilities our system

enables. We keep the field-of-view and aperture same for

both systems. This comparison is not the most favorable for

galvo mirrors, as they typically have a larger field of view,

but it is a fair one for evaluating the system’s speed.

5.1. Prototype

Figure 7 shows our experimental prototype. We place two

planar piezo transducers (P-25.40mm-25.40mm-2.10mm-

880-WFB, APC International, Ltd) orthogonal to each other

and at an inclination of 45◦ relative to an acrylic tank con-

taining water, to minimize interference from interreflections.

A signal generator (SDG6022x, Siglent Tech.) drives the

transducers via a power amplifier (ENI A300, Bell elec-

tronics). We colocate a pulsed laser (ALPHALAS GmbH,

PICOPOWER-LD-510) and a gated SPAD (Microphoton

Devices s.r.l.) using a beamsplitter, similar to previous tech-

niques [24, 25, 57]. However, we do not place a lens in front

of the SPAD, as the ultrasonically-sculpted lens focuses light

from the object onto the SPAD. Instead, we place a lens in

front of the laser to create a diverging ray that undergoes the

same focusing by the ultrasonically-sculpted lens. We place

an aperture after the ultrasonically-sculpted lens to limit the

scanning area to only one ultrasonic period. A 45◦ mirror di-

rects the beam to a pair of galvo mirrors (GVS-212, Thorlabs

Inc.). We use the galvo mirrors only for comparisons.

To synchronize the transducers, laser, SPAD gate, and

SPAD timing circuit, we use two signal generators and syn-

chronize their clock and trigger signals. We use one sig-

nal generator to drive the transducers. The two channels

of the second signal generator run the laser and the SPAD

gate. We explain the SPAD timing synchronization details

in Section 5.3. We provide more details about our prototype,

including design and alignment, in the supplement.

5.2. Arbitrary point projector

We use the technique in Section 4.1 to compute the phases

and synthesize the transducer voltage waveforms required

to project an arbitrary target sequence of points. We drive

the transducers with this waveform and the laser at the same

frequency as ultrasound (1MHz).

To project the same sequence of points with the galvo

mirrors, we drive the laser and transducers at a fixed fre-

quency without any phase modulation, which results in a

single-point focus. We steer this point with the galvo mirrors

to scan the same desired sequence of points. We drive the

galvo mirrors at 1 kHz, 2 kHz, 5 kHz frequencies (points per

second). The galvo mirrors are rated for 1 kHz, and driving

it at frequencies higher than 5 kHz leads to higher motor

current and failure of the fuse.

We project the patterns on a white cardboard screen, and

5
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Figure 7. Hardware setup. We show the (a) schematic and (b) pro-

totype built for showing the proof-of-concept applications and com-

paring them with a galvo mirror system. We diverge the laser beam,

and the expanded beam is focused by the ultrasonically-sculpted

refractive index. The beam passes through the galvo mirrors onto

the scene. We steer the beam either with the ultrasonically-sculpted

lens or the galvo mirrors, but not both, depending on the experi-

ment. The reflected light from the object takes the same path back

to the sensor. The SPAD sensor, which is colocated with the laser,

does not have any optics in front of it other than the ultrasonically-

sculpted lenses. This setup allows us to compare the scanning speed

of our system with galvo mirrors, while keeping the aperture the

same.

capture images with a camera (Allied Vision PRO-GT3400-

09) for two exposures (1ms and 50ms) that we show in

Figure 8. In this case, we are projecting 100 points that form

the letter “A”. At 1ms exposure, the galvo mirrors only scan

a few points, whereas our technique scans the entire shape

ten times. At 100ms or higher exposure, the galvo mirrors

can project all the points without distortion.

5.3. LiDAR

We use a gated SPAD for depth and transient measure-

ments. The gate helps reject the backscattered photons from

various optics. After gating, our system does not suffer from

pile-up [54, 59, 60]. We use a signal generator to drive the

SPAD gate instead of the picosecond delayer (PSD) common

in SPAD-based LiDAR systems [8,41,49,53]. Our approach

is inexpensive and generates programmable delays at much

higher resolution (1μs) than the PSD (50 ns).

We run both the transducer and SPAD signal genera-

tors in burst mode with the trigger running at 100 Hz for

synchronization. We use picoharp (Microphoton Devices

s.r.l.) to measure the time-of-flight of the photons and to

synchronize the scanning position. Several previous tech-

niques [39, 43, 49, 57] achieve this synchronization by send-

ing a synchronization signal to picoharp, which reports a

marker event when the synchronization signal is detected.

Unfortunately, as our scanning runs at a much higher rate

than galvo mirror scanning, we cannot use an external syn-

chronization signal for picoharp due to the massive number

of events that would be generated. Fortunately, the picoharp

reports the pulse index for each laser pulse it detects. We use

the pulse index to compute when the photon is fired, and use

Equations (5)-(6) to compute the scan position.

We first use the pulsed raster scanning technique in Sec-

tion 4.1 to raster scan the scene. We set fL =50 MHz,

fus =1 MHz, kx = 1.0001, and ky = 1.01. These set-

tings result in a spatial resolution of 100 × 100 and scan

rate of 5000 frames per second. Figure 9 shows results for

four scenes, each with two letters at various depths. Our

single channel (single sensor and laser) system scans 50 mil-

lion points per second. This is three orders of magnitude

faster than the 128-channel high-end Velodyne VLS-128TM

LiDAR [1], which scans 5 million points per second.

We also use the arbitrary point scanning technique in

Section 4.1 to selectively scan a few points in the field of

view. An advantage of such an approach is the potential for

adaptive scanning [6]. In Figure 10, we create a three-point

scene and image it to compute their spatial locations. We

then scan these three points using both galvo mirrors and our

technique for 3ms (1ms per point). When scanning with the

galvo mirrors, a lot of time is spent moving the galvo mirrors

from one scan point to another. As a result, many pulses fired

by the laser are wasted during the travel time of the galvo

mirrors. By contrast, ultrasonic beam steering shifts the

focus within the time period of the two laser photons (1μs)

and does not waste any pulses. As a result, our technique’s

depth estimation accuracy (computed using mean squared

error averaged over a hundred experiments) is 250× higher

than that of the galvo mirrors.

6. Discussion

We introduced a high-speed, low-cost (the cost of each

transducer is only $26) technology to steer light. Our technol-

ogy uses the physics of traveling sound waves synchronized

with illumination and imaging sensors to enable multiple

scanning applications. We built an experimental prototype

to demonstrate proof-of-concept applications, such as the

ability to perform arbitrary point light projection and raster

scanning for LiDAR at MHz rates. In the rest of this section,

we discuss some fundamental limits and tradeoffs inherent

in our light steering technology due to wave physics, and

directions for further exploration they suggest. We summa-
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Figure 8. Acousto-optic vs. galvo-mirror projection. We compare our beam steering technique with commercially available Thorlabs

galvo mirrors (GVS-212). The “A” shape is made up of 100 points. With a 1 MHz transducer, we are able to project a million points per

second (pps), and hence, project ten thousand “A”s per second. Constrained by the laser’s low beam power (20µW at 1 MHz), practically

we can only capture “A” at 1 ms exposure. The commercially available galvo mirrors, which are only rated at 1 kpps, only project a streak

when driven at 1 kHz, 2 kHz, and 5 kHz. At 50 ms exposure and 1 kHz scan rate, the galvo mirrors only project half the pattern at the rated

1 kHz, and at higher frequencies, the galvo mirrors project a corrupted pattern as we are operating them well beyond their 1 kpps rating.
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Figure 9. Depth raster scanning. Each of the four scenes has two characters,“CV”, “PR”, “20”, “23”. “C” and “P” are at approximately

160 cm depth, “2” at 170 cm, and the remaining at 180 cm. The top row shows the peak of the transient measured by the SPAD, and the

bottom row shows the depth map in cm. We scan the scene at 100× 100 resolution using the raster scanning technique in Section 4.1 for an

exposure of one second. The Thorlabs galvo mirrors are not capable of scanning these scenes in under a second.
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Figure 10. Transient and depth measurement. We scan three

small objects placed at different depths using commercial galvo

mirrors and our technique. The total exposure duration is 3ms,

corresponding to the fastest speed (1kpps) at which the galvo mir-

rors can scan the scene. The laser repetition rate is 1MHz. We

show three transients measured by (a) the galvo mirrors and (b) our

technique when the scan location is at the first, second, and third

point. The galvo mirrors spend a significant amount of time moving

the focus point from one object to another, wasting pulses emitted

during that time. In contrast, our technique does not waste any

pulses, as it moves the focus point in just 1µs, the time between

two laser pulse emissions. This results in significant improvement

in depth estimation accuracy (computed from the highest peak of

the transient) compared to the galvo mirrors. The mean squared

depth error of our technique is 16× smaller than galvos.

1000

3000

5000

7000

9000

Figure 11. Beam shape. We show an HDR image of the measured

beam. It has a cross shape, as the ultrasonic lens has a square

aperture. Using more transducers can result in the beam shape to

be more Gaussian-like. The center peak vs. the crosshairs intensity

ratio is 20, and the center peak vs. the background ratio is 400.

rize some of these tradeoffs in Table 3. In the supplement,

we provide a physics-based renderer that can help virtually

evaluate improved designs of our technology.

Scanning speed vs. aperture tradeoff. For the arbitrary

point projector, the scanning speed (points per second, pps)

is equal to the frequency of the ultrasonic transducer voltage.

The aperture of the ultrasonically-sculpted lens is equal to the

ultrasound wavelength λus = cus/fus. Therefore, the product

of scanning frequency and the lens aperture is always less

than or equal to the speed of sound. Increasing the scanning

speed decreases the aperture of the ultrasonic lens. This

decrease in the aperture size is not a problem for projector

applications, but for LiDAR applications, the decrease in

aperture decreases light throughput.

Diffraction limit. The numerical aperture of the

ultrasonically-sculpted lens is approximately nλus/2F , where

Table 3. Tradeoffs between various system parameters. ↑ is better.

parameter cus fus λ n
scan speed ↑ ↑ ↓ –

aperture ↑ ↓ – –

spatial resolution ↑ ↓ ↓ ↑

F is the focal length of the ultrasonically-sculped waveguide.

Therefore, the diffraction-limited spot size is

∆x =
λ

2NA
≈

λ

λus

F

n
=

λfus

cus

F

n
. (7)

Uncertainty principle. Spatial resolution is inversely pro-

portional to the diffraction-limited spot size, and as men-

tioned earlier, temporal resolution is determined by the fre-

quency of the transducer. So, we have the following uncer-

tainty principle between spatial and temporal resolution:

∆x∆T ≤
λ

cus

F

n
. (8)

To improve spatiotemporal resolution, we can decrease the

focal length of the waveguide by increasing the voltage ap-

plied to the transducer. However, increasing the voltage

makes the system non-linear and increases the probability of

cavitation in the medium [52].

Another approach to improve the system’s overall quality

(increase aperture size, spatial and temporal resolutions) is

to use a medium with a higher speed of sound. For example,

tellurium dioxide (TeO2) glass has three times higher speed

of sound and 50% higher refractive index than water. Using

tellurium dioxide glass will improve light efficiency by an

order of magnitude, and simultaneously improve spatial res-

olution by five times. This material is also part of existing

acousto-optic devices [30], but we found them hard to mod-

ify. Tellurium dioxide, being a solid, would additionally be

a more stable medium than liquid water.

Shape of the blur kernel. We used two transducers in

our system, and each one of them creates a cylindrical lens.

The net effect of these two cylindrical lenses is a square

aperture, whose Fourier transform is the product of two 1D

sincs. Therefore, our blur kernel has a cross-shape, as we

can see in Fig. 11. We can make this blur kernel closer to

a Gaussian-like blur kernel by using multiple transducers

arranged around a circular path and synchronized. Based on

the application, we can also use deconvolution techniques to

improve the results in post-processing [4].
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