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Abstract

We introduce a method that recovers full-surround 3D

reconstructions from a single kaleidoscopic image using

a neural surface representation. Full-surround 3D recon-

struction is critical for many applications, such as aug-

mented and virtual reality. A kaleidoscope, which uses a

single camera and multiple mirrors, is a convenient way of

achieving full-surround coverage, as it redistributes light

directions and thus captures multiple viewpoints in a single

image. This enables single-shot and dynamic full-surround

3D reconstruction. However, using a kaleidoscopic im-

age for multi-view stereo is challenging, as we need to de-

compose the image into multi-view images by identifying

which pixel corresponds to which virtual camera, a process

we call labeling. To address this challenge, pur approach

avoids the need to explicitly estimate labels, but instead

“sculpts” a neural surface representation through the care-

ful use of silhouette, background, foreground, and texture

information present in the kaleidoscopic image. We demon-

strate the advantages of our method in a range of simulated

and real experiments, on both static and dynamic scenes.

1. Introduction

Generating digital replicas of real-world objects from

image measurements is a hard problem. Multi-view recon-

struction approaches require a diverse set of viewpoints that

provide full-surround coverage. A single camera, even if

it is moving, can be insufficient for this problem, for exam-

ple when the object under consideration undergoes dynamic

motion and has complex shape. To capture the shape of a

dynamic object, we would need simultaneous captures from

multiple viewpoints. While a multi-camera system can pro-

vide such information, its cost and complexity can be pro-

hibitive when we need to acquire objects with very complex

appearance, geometry, and self-occlusions, and thus requir-

ing very large numbers of viewpoints.

We use a kaleidoscope [6] to achieve single-shot full-

surround 3D reconstruction for general dynamic objects.

A kaleidoscope is a configuration of multiple interreflect-

ing mirrors imaged by a camera, and dramatically increases

Figure 1. 3D printing of shape reconstructions. The proposed

neural kaleidoscopic space sculpting can generate replicas of real

objects with a range of shapes and reflectances. Reconstructed

meshes are available on the project webpage [2].

the number of viewpoints, thereby enabling a virtual time-

synchronized multi-view system. However, 3D reconstruc-

tion with a kaleidoscope requires identifying the specific se-

quence of mirrors encountered by light reaching each cam-

era pixel; this is equivalent to identifying the specific vir-

tual view corresponding to the pixel, commonly referred

to as the labeling problem. This labeling problem can be

solved using time-of-flight cameras [36] or structured light

systems [3], but such active techniques require long scan

times that make them unsuitable for dynamic objects. On

the other hand, prior art with passive illumination first con-

structs the visual hull of the object, then uses it to estimate

its label [29]. This two-stage process often produces erro-

neous results, especially when the visual hull differs signif-

icantly from the true shape.

Contributions. We propose a technique for full-surround

3D reconstruction with a single kaleidoscopic image. Our

key insight is that a single pixel in a kaleidoscopic image

is equivalent to multiple such pixels in its multi-camera

counterpart. For example, the pre-image of the background

pixel, which is the collection of 3D points that map to that

pixel, in a kaleidoscope does not intersect with the object;

this implies that is also a background pixel in all virtual

views associated with it. Similarly, even a foreground pixel

that intersects with the object can be used to carve out space

since all of the light path prior to a ray’s intersection with
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the object can be considered as background.

Armed with these insights on the nature of information

encoded in a kaleidoscopic image, we propose a technique

that we call kaleidoscopic space sculpting; sculpting sets

up an optimization problem that updates a neural implicit

surface [37] using a collection of cost functions that en-

code background information (to remove regions) and fore-

ground regions (to add regions), as well as the texture of

the object. Interestingly, our technique does not explicitly

calculate the label information. Despite this, it provides ro-

bust single-shot full-surround 3D reconstructions. For dy-

namic objects, we apply our technique separately on each

frame of a kaleidoscopic video, to obtain full-surround 3D

videos. Figure 1 shows a gallery of objects placed beside

their 3D printed counterparts, obtained using neural kalei-

doscopic space sculpting.

Limitations. Our technique has a number of limitations,

some of which are inherent in the use of a kaleidoscope.

First, the size of objects we can scan is restricted by the

kaleidoscope; for our lab setup, this constrains our tech-

nique to objects that fit in a sphere of diameter 4 inches.

Second, the total number of pixels that we have at our dis-

posal is limited to that of a single image sensor; divvying

this pixel budget across the many (virtual) views results

in lower resolution imagery, especially when we consider

multi-view alternatives where the total pixel count grows

linearly with the number of cameras. Third, our proposed

technique is sensitive to foreground-background masking.

We observed that automatic masking techniques produce

erroneous masks that significantly reduce the quality of the

final result. For this reason, we manually correct such mis-

takes prior to shape estimation.

2. Related Work

Full-surround 3D reconstruction. We refer to full-

surround 3D reconstruction as reconstructing a 3D object

in all its complexity. To achieve this, various approaches

exist to obtain multiple viewpoints including turntable [21],

single camera [7,11,13,16,19,20,22,33,34], multiple cam-

eras [8, 12, 30], and non-optical methods (e.g., dip trans-

form [1]). However, with the exception of multi-camera

systems, these techniques cannot handle dynamic scenes.

Neural rendering. The proposed technique relies on re-

cent advances in neural rendering and representations,

which have found immense success in shape estimation

[37] and novel viewpoint synthesis [5, 18, 31]), especially

for scenes that are largely static. There have been some

recent works towards extending these techniques for dy-

namic scenes [24,25,28]. The most successful among these

work use class-specific priors for faces and the human body

[17,26,27,32,35]. In contrast, our technique provides a low-

cost (vs. multi-view) solution for general objects (non-class

specific). As our technique can reconstruct the scene frame

by frame from a video, it can handle topology and color

changes that cannot be modeled as rigid deformations.

3. Overview

Our problem formulation is as follows: given a kaleido-

scopic image I and its silhouette mask M, we seek to recon-

struct a 3D surface that is photo- and silhouette-consistent.

There are many solutions to the multi-view version of this

problem, where the input is multiple images instead of a

single kaleidoscopic image, including neural-rendering ap-

proaches [18, 37] that have recently found great success.

However, multi-view approaches do not directly apply to

our problem, because the kaleidoscopic image has an addi-

tional challenge—the labeling problem. We discuss label-

ing and other concepts related to our approach.

Labels. We define a label as the sequence of mirrors that

the ray backprojected from a pixel encounters before inter-

secting the object [3, 29]. With the label information, and

given the mirror geometry, we can decompose the kaleido-

scopic image into the corresponding virtual camera images,

by unfolding backprojected rays and assign the virtual view-

points for each pixel. In particular, given the mirror geome-

try, we can determine the label from the number of bounces

b for each pixel x. As the label of an empty kaleidoscope

(i.e., without object) can be precomputed, b ∈ {0..B∅
x
} can

determine the label and thereby the pose of the virtual cam-

era, where B∅
x

is the length of the empty label [3]. Fig-

ure 2(a) shows a labeling example where the empty label

(1, 2) is the sequence of mirror numbers. If we can figure

out the number of bounces before hitting the object being

b = 1 ∈ {0, 1, 2} (B∅
x
= 2), then the resulting label be-

comes (1), implying that this ray is equivalent to the ray

from the virtual camera generated by the label (1). Thus,

labeling allows kaleidoscopic imaging to serve as a virtual

multi-view imaging system and to reconstruct the object ge-

ometry via multi-view stereo (MVS). However, it is chal-

lenging to obtain the label since it itself is a function of the

unknown object shape.

Kaleidoscopic visual hull. Visual hull [14, 15], initially

used for multi-view images, is obtained by “carving” the

voxels that are not consistent with the silhouette of the input

images. A visual hull can provide a good approximation of

3D shape, if we have ample multi-view images and if the

object under consideration is not overly complex.

Visual hulls have been utilized for kaleidoscopic im-

ages [29] where the background rays are reflected multiple

times. To be specific, this method backprojects a ray from
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Figure 2. Background. (a) Labeling is needed to utilize a kalei-

doscopic imaging system as a virtual multi-view imaging system.

(b) The kaleidoscopic visual hull [29] has the same silhouette as

the true object but may have different labels because of the lack of

label information in the silhouette.

a pixel x and reflects it with mirrors, and computes the rays

rb
x
(t) = ob

x
+ tdb

x
for each bounce b. o0

x
is the real camera

location, d0
x

is the backprojected direction, ob+1
x

is the in-

tersection point between rb
x
(t) and the mirrors, and db+1

x
is

the reflected direction. Once the visual hull is obtained, the

label can also be obtained simply by ray tracing to the visual

hull inside the kaleidoscope. The key idea underlying this

approach is that it requires only background pixels, which

are easy to label as the background labels are independent

of the object shape.

A useful property of the visual hull is that it is the max-

imal shape among silhouette-consistent shapes [14]. Based

on this property, the possible labels can be narrowed down

by ignoring the bounces that do not intersect with the visual

hull [29]. To be specific, for a pixel x, if we define the set

of bounces hitting the visual hull as

Hvh
x

= {b | rb
x
(t) intersects with the visual hull}, (1)

then the true bounce should satisfy btrue ∈ Hvh
x

. Further-

more, when |Hvh
x
| = 1, implying there is only one bounce

intersecting with the visual hull, the label of the pixel can be

uniquely determined, which is refered to as a reliable pixel.

However, the visual hull cannot resolve ambiguities in-

herent in silhouette information. First, it cannot reconstruct

concave objects, as concavity cannot be captured by silhou-

ette. Second, kaleidoscopic visual hull cannot disambiguate

shapes with the same silhouette but different label maps.

We refer to this effect as virtual occlusion, as it is caused

by the visual hull not being carved when the background is

occluded by a virtual object. The ambiguity causes errors

in decomposing the images into multi-view images, which

results in an incorrect shape (Figure 2(b)). To resolve these

ambiguities and obtain better labels, it is essential to use

texture information from foreground pixels, which requires

labeling, setting up a chicken-and-egg problem.

Neural surface representation. We represent the surface

using neural signed distance function (SDF) [23,37]. In par-

ticular, we optimize for the surface using IDR [37], which

we briefly review here. In IDR, shape and texture are rep-

resented by two separate neural networks θ and φ, which

are updated to achieve a silhouette-consistent and photo-

consistent shape based on input mask images {M} and

RGB images {I}. To update these networks, IDR backpro-

jects a ray rx(t) from a pixel x, checks if it intersects with

the current shape, and computes a rendered mask M̂(x, θ).
The intersection is computed using the sphere tracing algo-

rithm [10] since the surface is represented as SDF f(·; θ).

If the ray hits the surface (i.e., M̂(x) = 1), it computes an

RGB value Î(x; θ, φ) by giving the intersection point, sur-

face normal, and view direction to the texture network. To

be specific, it computes the point along the ray that has the

minimum SDF, which is represented by

px(θ) = argmin
p∈rx(t) f(p; θ). (2)

IDR updates the shape and texture with the following loss:

loss(θ, φ) = losstex(θ, φ) + lossmask(θ) + losseik(θ). (3)

The texture loss losstex(θ, φ) compares the rendered image

and the input image as

losstex(θ, φ) = λtex/|X |

∑
x∈Xin

|I(x)− Î(x; θ, φ)|, (4)

where λtex is the weight for texture loss, X is a set of pixels

in the image, and Xin =
{
x | M(x) = 1 and M̂(x) = 1

}
.

The mask loss lossmask(θ) compares the rendered mask and

the input mask as

lossmask(θ) = λmask/|X |

∑
x∈Xout

BCE (m(px(θ)),M(x)),

(5)

where λmask is the weight for mask loss, BCE is the binary

cross-entropy function, m(·) is the soft binarization func-

tion for SDF defined as

m(p) = sigmoid (−αf(p)) , (6)

to make the loss differentiable, α is a parameter that controls

the softness, and Xout = X−Xin. The eikonal loss losseik(θ)
enforces the gradient of the SDF to have a unit norm as

losseik(θ) = λeikE (‖∇pf(p; θ)‖ − 1)
2
, (7)

where λeik is the weight for eikonal loss, and p is uniformly

distributed in a bounding box of the scene.

4. Neural Kaleidoscopic Space Sculpting

Our goal is to jointly solve the labeling and geometry

reconstruction from a kaleidoscopic image. To solve this

problem, we propose a method that we call kaleidoscopic

space sculpting, which updates the shape both in additive

and subtractive ways without the necessity of labels.
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4.1. Method

Our method uses two observations, which follow from

the definitions of background and foreground pixels.

Observation 1 (Background rays). Background rays do not

intersect with the object for all bounces, that is, for a back-

ground pixel x,

∀b ∀t, f(rb
x
(t)) > 0, (8)

where f is the object SDF, and rb
x
(t) is the pre-image of the

pixel including mirror reflections.

Observation 2 (Foreground rays). Foreground rays inter-

sect with the object for at least one bounce, that is, for a

foreground pixel x,

∃b, mint |f(r
b

x
(t))| = 0, (9)

where rb
x
(t) is a ray bounced b times in a kaleidoscope after

being backprojected from pixel x, and f is the object SDF.

From these observations, we can update the 3D shape

by carving the points on the background rays, as they will

never intersect the object; and modeling a point on the fore-

ground rays, as there will be at least one intersection with

the object. To do so, we need to answer the following ques-

tions: (1) How do we select points on the rays to carve and

model? (2) how do we represent the shape and update it?

Point selection and labeling. The point selection for

carving is straightforward, as all bounces can be used for

carving in background rays. However, this is problematic

for foreground rays, as we do not know which foreground

ray bounce rb
x
(t) will intersect with the object among all the

possible bounces b ∈ {0..B∅
x
}. We need to select a point on

the ray with the correct bounce b to avoid erroneous solu-

tions. We can expect the current shape to be close to the true

shape as the iteration proceeds, especially since an initial

shape estimates can be determined by the background rays.

Thus, we pick the foreground bounce with the minimum

distance value in each iteration for selecting the modeling

points. This turns out to be a simple yet effective approach.

We now proceed to introduce how to update the shape with

the silhouette constraint and texture constraint.

4.1.1 Silhouette constraint

To obtain a silhouette-consistent shape from a kaleidoscopic

silhouette mask M, we use the following loss function to

update the neural SDF f(·; θ) inspired by the IDR [37]:

losssil(θ) =losscarve(θ;Pcarve(θ))+

lossmodel(θ;Pmodel(θ)) + losseik(θ).
(10)

Pcarve(θ) is the set of points for carving, Pmodel(θ) is the set

of points for modeling, losscarve(θ) is the carving loss,

losscarve(θ) ≡ λcarve/|X |

∑
p∈Pcarve(θ)

BCE(m(p), 0), (11)

and lossmodel(θ) is the modeling loss,

lossmodel(θ) ≡ λmodel/|X |

∑
p∈Pmodel(θ)

BCE(m(p), 1), (12)

where m(p) is the soft binarization function defined in

Equation (6), and λcarve and λmodel are the weights for the

carving loss and modeling loss, respectively. The differ-

ence in our method compared to IDR is that we use different

point selection methods because rays are multiply reflected

in the kaleidoscope with unknown labels. Next, we describe

the point selection methods in detail for carving and model-

ing. Figure 3 illustrates the point selection methods.

Carving. Selecting the points for the carving Pcarve(θ)
from background rays is straightforward as all the points

p on the background rays should have positive SDF val-

ues (i.e., Observation 1) and thereby m(p) should be zero.

However, instead of using all the points on the ray (e.g.,

stratified sampling), we use a single point per each ray that

has the minimum SDF value following IDR, which is more

memory efficient and provides promising results. For a

background pixel x, these points can be expressed as

Pbg
x
(θ) =

{
p | argmin

p∈rb
x
(t)

f(p; θ), ∀b ∈ {0..B∅
x
}

}
. (13)

We collect Pbg
x (θ) for all background pixels x ∈ Xbg and

obtain {Pbg
x (θ)}x∈Xbg

. We use Xbg, which is different from

Xin in IDR [29]. Then, the point set for carving becomes

Pcarve(θ) = {Pbg
x
(θ)}x∈Xbg

. (14)

Figure 3(a-b) illustrates the point selection for background

pixels for carving the shape.

Modeling. For the modeling, we select a point on the

foreground ray with the minimum distance to the current

shape without knowing the label. As we will select the point

with the minimum SDF value again on this ray, the selected

point will have the minimum value on all foreground rays

{rb
x
(t)}

B
∅
x

b=0. We select points only when the ray does not

hit the object (i.e., M̂(x) = 0) because the ray already hit-

ting the object should not model the space further. Thus, the

points for modeling P fg,nh
x (θ) from a foreground pixel x is

P fg,nh
x

(θ) =

{
argmin

p∈{rb
x
(t)}

B∅
x

b=0

f(p; θ) if M̂(x) = 0,

∅ if M̂(x) = 1.
(15)
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Figure 3. Point selection for sculpting. We select the points for

sculpting differently in each case: (a-b) Background pixel (Equa-

tion (13)). (c) Foreground pixel not hitting the current shape

(Equation (15)). (d) Foreground pixel hitting the current shape.

We collect P fg,nh
x (θ) for all foreground pixels x ∈ Xfg and

compute {P fg,nh
x (θ)}x∈Xfg

. Then,

Pmodel(θ) = {P fg,nh
x

(θ)}x∈Xfg
. (16)

Figure 3(c) shows the point selection for foreground pixels

for modeling the shape.

4.1.2 Visual hull constraint

Although the point selection method described above works

promisingly, we introduce another constraint that can be

naturally incorporated into our method—the visual hull

constraint based on Equation (1). As the true bounce btrue

satisfies btrue ∈ Hvh
x

, we can exclude the bounces that are

not in Hvh
x

(i.e., outside the visual hull) from the modeling.

The points on these bounces are represented as

Povh
x

= {p | argmin
p∈rb

x
(t)

f(p; θ), ∀b /∈ Hvh
x
}, (17)

and these points should be carved rather than modeled. We

compute {Povh
x

}x∈Xfg
for all foreground pixels, then the

point sets for carving and modeling becomes

Pcarve(θ) = {Pbg
x
(θ)}x∈Xbg

∪ {Povh
x

(θ)}x∈Xfg
, (18)

and

Pmodel(θ) = {P fg,nh
x

(θ)− Povh
x

(θ)}x∈Xfg
. (19)

Figure 4 illustrates the visual hull constraint. Note that our

kaleidoscopic sculpting technique naturally handles unreli-

able pixels as well as reliable pixels.
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Figure 4. Visual hull constraint. The rays not intersecting with

the visual hull never intersect with the true shape, so we can ex-

clude the points on these rays from modeling.

4.1.3 Texture constraint

One of the main advantages of our technique compared to

the visual hull technique [29] is that ours is designed to uti-

lize foreground pixels as well as background pixels, and

thereby can take advantage of texture information on the

foreground pixels. On the other hand, the visual hull tech-

nique relies only on the background pixels, ignoring fore-

ground pixels that provide the information of correspon-

dence, and thus it cannot capture concavity, virtual occlu-

sion, or high-frequency details on the surface. The texture

loss is the same as the texture loss in IDR (Equation (4)),

but we use the first intersection points along all the bounces

as there can be multiple bounces intersecting with the ob-

ject. We collect these points from all foreground pixels and

use them for the texture loss as

Ptex = {P fg,h
x

(θ)}x∈Xfg
. (20)

Figure 3(d) shows the point selection for foreground pixels

for the texture constraint.

4.2. Information in a kaleidoscopic image

A kaleidoscopic image encodes information in a more

complicated way compared to an image without any

reflection—a kaleidoscopic pixel x is associated with mul-

tiple rays {rb
x
(t)}

B
∅
x

b=0, whereas a regular pixel is associated

with just a single ray (i.e., backprojected ray).

Conventional kaleidoscopic imaging methods [3, 36]

chose the ray out of all the bounces that is intersecting with

the object (i.e., labeling) and it could achieve the benefit of

the redistribution of the ray in the kaleidoscope. Ours not

only achieves this benefit but also achieves another benefit

of using multiple rays {rb
x
(t)}

B
∅
x

b=0 per pixel either for carv-

ing or modeling. Interestingly, not only the background rays

but also the foreground pixels can be multiply used by mak-

ing use of the rays not hitting the visual hull for carving.
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Table 1. Comparison of the kaleidoscopic visual hull [29] and

the proposed neural kaleidoscopic space sculpting.

Visual hull [29] Space sculpting (ours)

Background pixels � �

Foreground pixels � �

Texture � �

Shape representation voxel neural SDF

Shape update subtract add & subtract

Comparison to kaleidoscopic visual hull [29]. Table 1

summarizes the differences between the visual hull and

ours. They use the same number of rays for background pix-

els but ours additionally uses foreground pixels and thereby

texture information. Also, we have more rays to carve as

we collect points for carving Povh
x

from foreground pixels.

5. Implementation

Hardware and calibration. We developed a hardware

prototype for kaleidoscopic imaging, comprising an RGB

camera (FLIR Blackfly S BFS-U3-200S6C) and four trian-

gular mirrors (Edmund optics 46-656 customized). The im-

age size is 5472 × 3648. We calibrated the kaleidoscope

following [3], which uses a reference sphere object of di-

ameter 40mm. The calibration error is 346µm in sphere

fitting error and 1.327 pixels in reprojection error.

Implementation detail. We obtain the input mask by

computing the difference between the images with and

without the object, and manually refining the mask using

Adobe Photoshop for some pixels. We evaluate the effect

of mask refinement in the supplement. For the shape and

texture network, we use the same architecture as IDR [37].

The shape network is initialized to be an SDF of an approxi-

mate unit sphere [4]. We provide the results with a different

initialization in the supplemental where the network is pre-

trained to represent the visual hull using [9]. For the final

mesh results, we ran a marching cube from f(·; θ) and ex-

tracted the largest connected part for the final results [37].

The weights used for the loss are λtex = 1.0 λeik = 0.1
λmodel = 100.0 λcarve = 20.0. Note that λcarve is smaller

than λmodel by 5, which is about the average number of rays

per pixel.

6. Results

We evaluate the proposed method through both simu-

lated and real experiments. Our implementation and data

are available on our project page [2].

6.1. Simulated experiments

We simulate a kaleidoscopic image of an armadillo of

height 60mm, and Figure 5 and Table 2 show the qualitative

Table 2. Quantitative results for simulated experiments.

Method PSNR↑ chamfer↓ mask err↓ label err↓
[dB] [µm] [%] [%]

visual hull [29] - 9.11 0.93 4.12

IDR w/ VH label (first ray) 6.92 2.3 × 103 26.8 37.71
IDR w/ VH label (last ray) 12.21 1.8 × 103 21.63 20.67
IDR w/ VH label (all rays) 21.84 4.42 0.80 2.74
IDR w/ VH label (reliable) 21.89 4.39 0.78 2.64
IDR w/ GT label 22.53 1.87 0.62 1.42
ours, SIL 13.73 5.53 0.95 3.11
ours, SIL+VH 13.95 6.22 0.80 2.45
ours, SIL+TEX 23.04 2.56 0.59 1.66
ours, SIL+VH+TEX 22.85 1.87 0.57 1.39

and quantitative results for the simulated experiment.

Comparisons to baseline methods. We compare our

method with other kaleidoscopic imaging methods: kalei-

doscopic visual hull [29], and IDR after decomposing the

kaleidoscopic image into virtual multi-view images. For the

virtual multi-view decomposition, we test several variations

in the use of background rays while using the foreground la-

bel from the visual hull: (1) use only first background rays,

(2) use only final background rays, and (3) use all back-

ground rays. Also, we have: (4) use only reliable pixels,

and (5) use the ground-truth labels with all background rays.

Figure 5(a-e) shows the results for the baselines (1-5), and

Figure 5(f) shows the kaleidoscopic visual hull.

Ours with all constraints performs best overall qualita-

tively and quantitatively, with the exception of PSNR where

it ranks second. There are artifacts near the left ear of the

armadillo in (Figure 5(c-d)) because of the incorrect label

from the visual hull. This is caused by the virtual occlusion

as the background near the left ear is occluded by another

virtual object and observed as a foreground, and thereby the

space is not carved. Our method does not have this problem

as we are jointly solving the labeling and 3D reconstruction.

Ablation study. We conduct an ablation study with the

silhouette constraint, visual hull constraint, and texture con-

straint as shown in Figure 5(g-j) and Table 2. Silhouette

constraint provides the result without details, and texture

constraint captures the detail on the surface. Adding the

visual hull constraint additionally improves the result.

6.2. Real experiments

We capture a kaleidoscopic image with our hardware

prototype and reconstruct the 3D shape. The objects are

placed inside the kaleidoscope either directly on the mir-

ror or hung with strings. The size of the object is within

100mm (e.g., Treble clef has the height 100mm).

Scanned objects. Figure 9 shows the reconstruction re-

sults on the real objects exhibiting a range of shapes with

different visibilities and reflectances with different textures
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Figure 5. Simulated experiments. We compare our method with other kaleidoscopic imaging methods on the simulated image of the

armadillo. (a-e) Virtual multi-view decomposition followed by IDR, where the kaleidoscopic image is decomposed into virtual multi-view

images either with the visual hull label or ground-truth labels. (f) Kaleidoscopic visual hull. (g-j) Ablation study of our method.

Table 3. Statistics for real experiments.

Object #views FG #rays BG #rays PSNR↑ mask err↓
/#pixels /#pixels [dB] [%]

Toy 107 5.68 6.08 20.47 1.55

Chair 112 5.77 6.34 22.19 1.38

Treble clef 123 5.72 5.97 15.91 3.73

Venus 88 5.72 6.02 25.83 1.07

Monkey 84 5.80 5.99 21.77 2.42

Spinner 111 5.67 6.06 21.62 0.75
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Figure 6. Comparison to kaleidoscopic structured light [3]. Our

method produces a comparable result to kaleidoscopic structured

light that uses an additional projector for active illumination.

and materials. The label map is visualized by sorting the la-

bel in ascending order and using the “rainbow” Matplotlib

colormap. We observe that our technique produces high-

quality results for this variety of objects.

Statistics. Table 3 shows the statistics of the results for

each object. The number of viewpoints (i.e., the number

of different labels) is about 100 viewpoints for all objects,

which shows the light direction is redistributed well by the

�������������������

Figure 7. Comparison to Nerfies [24]. Nerfies fail to model

the large deformation between the different views of the swinging

monkey, whereas ours does not suffer from the dynamic move-

ment since we capture multiple viewpoints in a single shot.
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Figure 8. Ablation study on Chair data.

kaleidoscope. The number of rays per pixel is 5.67 − 5.80
for foreground pixels and 5.97−6.34 for background pixels,

which shows each pixel in a kaleidoscope produces about 6
times more information compared to a regular pixel with-

out any reflection. PSNR and mask error shows the recon-

structed shape is photo-consistent and silhouette-consistent.

4355

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 15,2024 at 07:09:34 UTC from IEEE Xplore.  Restrictions apply. 



������������	� �
����
�
���	 �������	���������������� �������������
�


�

�
�
�

�

�
��
�
��
��
��
�

�
��
�
�

	���������������� ����������
���

� ���

��������
���

Figure 9. Real object reconstructions from neural kaleidoscopic space sculpting. We provide more results in the supplement.

Comparison to kaleidoscopic structured light. Fig-

ure 6 shows the comparison to the kaleidoscopic structured

light [3], which uses a projector additionally for labeling

and better correspondences. We compare the results from

our method and baseline methods to the result of kaleido-

scopic structured light for Treble clef object. For each re-

sult, we compute the distance of each vertex from the kalei-

doscopic structured light mesh, and visualize it as the ver-

tex color. Our technique produces high-quality results both

qualitatively and quantitatively.

Comparison to Nerfies [24]. Figure 7 shows the compar-

ison with Nerfies, which can handle dynamic objects. We

captured the video of Monkey data where the monkey play-

ing on the swings using a smartphone camera (iPhone SE

2) from surrounding views. Nerfies cannot capture the de-

formation of this dynamic object and fail to reconstruct the

object. By contrast, ours can capture multiple viewpoints

in a single shot and obtain the full-surround reconstruc-

tion. Note that both methods use different inputs, where

our method captures multiple viewpoints of a dynamic ob-

ject in a single frame, whereas Nerfies reconstructs dynamic

objects from multiple frames by optimizing for a deforma-

tion field.

Ablation study Figure 8 shows the ablation study on the

real chair data. The result using only silhouette constraint

produces an over-carved result, partly because of the imper-

fect input mask. Adding the visual hull constraint improves

the over-carved parts. Adding the texture constraint greatly

improves the result, and applying the visual hull constraint

additionally improves some artifacts on the armrest.

7. Conclusion

We introduce a single-shot full-surround 3D reconstruc-

tion method producing a silhouette-consistent and photo-

consistent shape from a single kaleidoscopic image. Based

on neural SDF representation, our method carves and mod-

els the space by selecting adequate points without the ne-

cessity of labels, and jointly solves the labeling and 3D re-

construction problems. We show that our method takes the

advantage of the information in the kaleidoscope by reusing

the pixels multiple times by the number of reflections.
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