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Abstract. Ride-pooling, which accommodates multiple passenger requests in a single trip,
has the potential to substantially enhance the throughput of mobility-on-demand (MoD)
systems. This paper investigates MoD systems that operate mixed fleets composed of
“basic supply” and “augmented supply” vehicles. When the basic supply is insufficient to
satisfy demand, augmented supply vehicles can be repositioned to serve rides at a higher
operational cost. We formulate the joint vehicle repositioning and ride-pooling assignment
problem as a two-stage stochastic integer program, where repositioning augmented supply
vehicles precedes the realization of ride requests. Sequential ride-pooling assignments aim
to maximize total utility or profit on a shareability graph: a hypergraph representing the
matching compatibility between available vehicles and pending requests. Two approxima-
tion algorithms for midcapacity and high-capacity vehicles are proposed in this paper; the
respective approximation ratios are 1/p? and (e — 1)/(2¢ + o(1))p Inp, where p is the maxi-
mum vehicle capacity plus one. Our study evaluates the performance of these approximation
algorithms using an MoD simulator, demonstrating that these algorithms can parallelize com-
putations and achieve solutions with small optimality gaps (typically within 1%). These effi-
cient algorithms pave the way for various multimodal and multiclass MoD applications.

History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in
Transportation Science and Logistics.
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1. Introduction

One of the MoD platform’s central tasks is to achieve a

Ride-pooling assignment aims to dynamically determine
the efficient dispatching of vehicles to handle multiple
ride requests in a single ride in mobility-on-demand
(MoD) systems. It generalizes various fleet management
problems in applications ranging from ride-hailing
(Santi et al. 2014) to microtransit (Li, Luo, and Hampshire
2021) and shared autonomous vehicles (Lokhandwala
and Cai 2018). Efficient ride-pooling assignment algo-
rithms can enhance the profitability of MoD services and
increase the system throughput, that is, the number of
completed customer trips per unit of time (Ke et al. 2021).
Although consumers may experience trip delays due to
detours, they are compensated by splitting the fare with
coriders. More importantly, ride-pooling can decrease
dead-heading trips that contribute to excessive energy
use and greenhouse gas emissions of MoD platforms
(Markov etal. 2021).
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dynamic balance between supply (available vehicles) and
demand (pending ride requests). However, this balance is
often unattainable due to supply shortages, such as a lack
of freelance drivers during peak hours (Guda and Subra-
manian 2019), the inefficacy of empty-car cruising and
searching for customers (Braverman et al. 2019), and dri-
vers’ perception errors regarding the supply-demand
imbalance (Dong et al. 2021). Contrariwise, the heteroge-
neity of travel demand and driver types, as well as
advancements in vehicle automation, have introduced
the notion of “mixed fleet” into MoD platforms, which is
illustrated by the following examples:

Example 1. Transportation network companies (TNCs)
such as Uber and Didi Chuxing cater to diverse market
segments by offering various service options. UberX is
a standard service operated by freelancers, whereas
Uber Black and Didi Chauffeur are premium services
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driven by professional drivers. Typically, the platform
pairs users with their requested service class. However,
when the standard class is in short supply, it may be
advantageous for the platform to reposition premium
vehicles to high-demand areas to fulfill standard-class
ride requests and minimize cancellations.

Example 2. A mixed-autonomy platform operates both
fully automated vehicles (AVs) owned by the platform
and conventional vehicles (CVs) driven by human free-
lancers to provide on-demand transit services (Figure 1).
When selecting the type of vehicle to dispatch, the oper-
ator must consider that (1) customers may prefer to be
served by an AV or a CV, depending on their level of
trust in automation (Lavieri and Bhat 2019), and (2) the
accessible areas and operational costs of AVs and CVs
for transporting customers may differ (Chen et al. 2017a,
Shladover 2018).

Although these examples have distinct contexts,
they can be generalized as the following stochastic ride-
pooling assignment with mixed fleets (SRAMF) problem.
The mixed fleets consist of “basis supply” vehicles
and “augmented supply” vehicles. Basis supply refers
to vehicles operated by freelance drivers who use self-
interested strategies when searching for customers,
serve most customers in a decentralized manner, and
presumably produce friction in balancing supply and
demand (Dong et al. 2023). Augmented supply refers
to vehicles (such as AVs) that follow the platform’s
centralized repositioning policies. Because of the dif-
ferent characteristics of supply sources, the platform
faces a tradeoff between cost and control when match-
ing ride requests with available vehicles. For a given
level of demand, assigning nearby basis supply vehi-
cles will incur lower operational costs than assigning

Figure 1. (Color online) Ride-Pooling with AVs and CVs
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augmented set vehicles. For example, the platform
must pay salaries to full-time drivers in the aug-
mented supply in Example 1 and costly maintenance
costs for AVs in Example 2, which will be incorpo-
rated into the cost of serving each ride request. On the
other hand, the platform may only have the authority
to proactively reposition and reassign augmented
supply vehicles to complement unsatisfied demand.
As such, the platform’s decision involves whether and
where to reposition augmented supply vehicles,
which primarily depends on the consequent assign-
ment between available basis and augmented supply
vehicles with realized ride requests.

Two unique operational challenges arise due to the
diversification of vehicle fleets on MoD platforms. First,
operating MoD with mixed fleets face inherent uncertain-
ties in the sequential vehicle repositioning and ride-
pooling assignment processes as follows. In the first-stage
vehicle repositioning decisions, the platform forecasts
future demand and repositions selected premium service
vehicles (Example 1) or AVs (Example 2) to specific
locations to accommodate unmet demands for the basis
supply. In the second-stage ride-pooling assignment deci-
sions, the platform assigns realized ride requests to avail-
able vehicles, including basis and augmented supply, to
maximize the total value of assignments. The uncertain-
ties between the vehicle repositioning and assignment
stages can be categorized as supply-based or demand-
based factors. Supply-based uncertainty concerns whether
basis-supply drivers stay active in future periods.
Demand-based uncertainty includes the origins and desti-
nations of upcoming ride requests, the number of passen-
gers per order, customers’ unknown preferred vehicle
type, and their value of time. Because falsely repositioned

(=W Automated vehicles
'Ell Conventional vehicles
9 Trip request
.4
AV dedicated region

Note. The first-stage decision involves repositioning AVs in dedicated regions; the second-stage decision is to solve a general assignment prob-

lem (GAP).
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vehicles will result in a supply-demand mismatch in the
future, joint repositioning and assignment will cause com-
plicated tradeoffs in MoD operations.

Second, previous aggregate vehicle repositioning mod-
els are not implementable for vehicle-level operation in
MoD systems. The SRAMF problem differs from the large
body of mixed-fleet planning literature (Guo, Caros, and
Zhao 2021; Karamanis et al. 2021) that used an aggregate
matching model in region-to-region repositioning flow
computations. Focusing on vehicle-level operations under
uncertainty will cause significantly more computational
burden than the aggregate setting. This scalability issue
intensifies as the platform uses high-capacity augmented
supply vehicles to compensate for their high operational
costs, such as on-demand transit services (Hasan and Van
Hentenryck 2021). With expanded vehicle capacity, the
number of candidate pickup and dropoff routes can grow
exponentially. These unique technical challenges of joint
repositioning and assignment decisions motivate the
development of effective and efficient SRAMF algorithms
in this study.

Figure 2. (Color online) SRAMF Procedure per Step
(@)
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This study expands the deterministic ride-pooling
assignment of homogeneous vehicle fleets in Santi
et al. (2014) and Alonso-Mora et al. (2017) to a stochas-
tic setting in a nontrivial way. The scalable framework
addresses the computational challenge of the second-
stage problem in SRAMF by separating the vehicle
routing and trip-to-vehicle assignment into two
sequential steps based on the notion of “shareability
graphs.” Specifically, given ride requests and avail-
able vehicles in each time interval, Alonso-Mora et al.
(2017) proposed a procedure that guaranteed anytime
optimality; that is, the resulting ride-pooling assign-
ments attain the same solutions as the integrated vehi-
cle routing and trip assignment formulation (see
Appendix B, Section B.1). The procedure is summa-
rized as follows:

1. First, the algorithm constructs a shareability graph
that represents the matchable relationship between all
ride requests (demand) and available vehicles (supply)
(Figure 2) and computes the value associated with each
matching.

(b)

Scenario §;
9 el
- H)rosmags,l
dy Bl ) = Legend:
e Fiyperedge e A\ W Vehicles in Sg
.s§ o _77_1_1,2-;-" @ Vehicles in 5,
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= & Demand
T e

Stage 1: Vehicle Positioning

Stage 2: Ridepooilng Assignment

Scenario §y

Notes. Sp ={s?,s5} is the basis set (e.g., CVs) and Sy = {s{,s§ } is the augmented set (e.g., AVs). (a) Algorithm’s input, including the current loca-
tions of S, and Sg, and obtains demand forecast. (b) Shareability graph for each scenario, where each trip is a clique containing one vehicle and
multiple matchable requests. (c) SRAMF problem by approximation algorithms, in which one or more ride requests are assigned to a selected
vehicle in each scenario . (d) Computed decisions and updates the system state.
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2. Next, the algorithm maximizes the total matching
value by solving a general assignment problem (GAP)
on the shareability graph.

3. Finally, the shareability graph is updated by deleting
occupied vehicles and assigned demand and substituting
them with incoming requests and available vehicles.

The SRAMF problem can be formulated as a two-stage
stochastic integer program. Incorporating repositioning
decisions into the deterministic ride-pooling assignment
is difficult due to the relationship between these consecu-
tive steps. Because the vehicle repositioning decision
must select augmented supply vehicles by repositioning
them from the augmented supply set (a set of candidate
locations) before the realization of demand, convoluted
tradeoffs must be made between the first- and second-
stage decisions. If the platform underestimates demand
and selects fewer vehicles, it cannot meet all future
requests. If the platform overestimates demand and
selects more vehicles than needed, it must pay extra oper-
ational costs. In addition, because of various sources of
uncertainties stated previously, the size of the shareability
graph grows rapidly with the number of scenarios sam-
pled. As a result, solving GAP in SRAMF using exact
methods becomes inefficient or even infeasible.

1.1. Main Results and Contribution

The primary objective of this study is to develop approxi-
mation algorithms for solving large-scale SRAMF pro-
blems. We focus on the expected value maximization
setting for several reasons. First, real-world concerns
emphasize the need to enhance MoD systems’ throughput
and profitability (Ashlagi et al. 2018; Simonetto, Monteil,
and Gambella 2019). Second, devising approximation algo-
rithms for maximizing GAPs tends to be more challenging
than minimizing GAPs (Fleischer et al. 2006). The objective
function of SRAMF can incorporate various attributes,
such as trip fares, pickup times, and ride-pooling prefer-
ences. The primary performance metric for the proposed
algorithms is the tightness of approximation ratios, offering
a provable performance guarantee in worst-case scenarios.

To summarize our work, let p denote the mixed fleets’
largest vehicular capacity plus one. Our main results are
as follows:

1. The SRAMF problem is proved to be NP-hard for
any finite number of scenarios, and its objective lacks
attractive submodular properties. These characteristics
necessitate the development of new approximation
algorithms to exploit the computational advantages of
shareability graphs.

2. Our analysis provides provable worst-case perfor-
mance guarantees as follows:

(a) For midcapacity vehicles, we develop a local-
search linear-program-relaxation (LSLPR) algorithm,
with an approximation ratio of 1/p?. Midcapacity vehi-
cles carrying up to four passengers simultaneously are
suitable for applications in Example 1.

(b) For high-capacity vehicles, we develop a max-
min online (MMO) algorithm, with an approximation
ratio of (¢e—1)/(2e+o0(1))plnp. High-capacity vehicles
carrying more than four requests are suitable for auto-
mated transit services in Example 2.

(c) These approximation ratios are close to the
best possible bounds: no polynomial-time algorithm
can achieve a ratio better than O(Inp/p) under standard
complexity assumptions.

Our methods rely on a linear relaxation of the second-
stage GAP and carefully bound the integrality gap of the
relaxation in each scenario. Additionally, this analysis
explains the sources of computational intractability of
SRAMF and recognizes the significance of considering
uncertainties per assignment.

This study contributes to the literature on MoD system
operations as follows:

1. Propose a two-stage stochastic integer program
for SRAMF and propose approximation algorithms
with satisfactory performance guarantees. These easy-
to-implement algorithms can facilitate fleet operations
on MoD platforms and guarantee their performance in
the face of uncertainties with provable bounds.

2. Derive a general estimator for marginal values of
trip-to-vehicle matchings. The primary analytical bar-
rier for the design of approximation algorithms for
SRAMEF is to evaluate the expected value of reposition-
ing additional vehicles to serve future demand in a spe-
cific area. Our proof bounds this value and is of
independent interest to relevant literature, for example,
fleet sizing in MoD systems (Benjaafar et al. 2021).

3. Provide analytical solutions for fractional hyper-
graph matchings. Our analysis for the MMO algorithm
derives a closed-form solution for the dual problem of
fractional hypergraph matchings to accelerate enu-
merations. This closed-form solution can be transferred
to other decomposition-based ride-pooling assignment
methods.

We conducted comparative studies to illustrate the
computational efficiency and optimality gaps of our
developed algorithms using real-world taxicab trip data
(TLC 2021). Numerical results showed our algorithms to
be almost as competitive as mixed integer programming
(MIP), indicating that the derived worst-case approxima-
tion ratios are conservative. This framework can incorpo-
rate various demand forecasts (Yang et al. 2020) and use
state-dependent matching intervals (Qin et al. 2021).
Moreover, our results extend to mixed fleets of more
than two vehicle types.

1.2. Organization and General Notation

The remainder of the paper is organized as follows. We
first review the related literature in Section 2. Section 3
formulates the SRAMF problem and shows its hardness.
Section 4 proposes two approximation algorithms that
achieve nearly tight approximation ratios. We test the
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effectiveness of these approximation algorithms using
real-world and simulated data in Section 5 and draw
conclusions in Section 6.

The following notation is used throughout this work.
The notation := stands for “defined as”. For any integer
n, we let [n]:={1,2,...,n}. We use v(-) as the actual
value function and 9(-) as the approximate or estimated
value function. P stands for the class of questions for
which some algorithm can provide an answer in polyno-
mial time, and NP stands for those with nondeterministic
polynomial time algorithms. For any set S, | S| is its cardi-
nality. Given two sets A and B, A + B or A U B represents
the union of A and B; A — B or A\B represents modifying
A by removing the elements belonging to B. A ~ B repre-
sents that set A intersects with B, thatis, A N B # 0. i.i.d.
stands for “independent and identically distributed.”
Other notation and acronyms used in this paper are sum-
marized in Table A.1.

2. Literature Review

We refer to ride-pooling (also called ride-splitting / carshar-
ing rides) in the broad context and focus on operations-
level decisions. Solving the optimal ride-pooling assign-
ment is challenging because the number of possible shared
trips grows exponentially in the vehicle capacity and
matching intervals. The following review covers the recent
development of computational methods for ride-pooling
applications with different objectives of maximizing the
utilization of vehicles or reducing the negative externalities
related to deadhead miles.

2.1. Decomposition and Approximate Dynamic
Programming Approaches

Compared with the substantial body of literature for
matching supply and demand without the ride-pooling
option (Wang and Yang 2019), there are only a few
attempts to solve the ride-pooling assignment problem
at the vehicle level by combining heuristic and decompo-
sition methods (Herminghaus 2019, Yu and Shen 2019,
Sundt et al. 2021). Although these heuristics achieved
satisfying performance in numerical experiments, they
cannot balance computational efficiency and accuracy
with theoretical guarantees. The trip planning for ride-
pooling is more tractable with fixed travel patterns, such
as providing services for daily commuting. Hasan, Van
Hentenryck, and Legrain (2020) proposed a commute
trip-sharing algorithm that maximized total shared rides
for a set of commute trips satisfying various time-
window, capacity, pairing, ride duration, and driver
constraints.

Another stream of papers emphasized the importance
of nonmyopic policies in MoD systems, as supply and
demand dynamics are influenced by prior decisions.
Unfortunately, because of the computational complexity,
most nonmyopic ride-pooling assignment policies are

restricted to aggregate models and compute optimal
flows between regions. Shah, Lowalekar, and Varakan-
tham (2020) developed an approximate dynamic pro-
gramming method to learn from the integer program
(IP)-based assignment and approximate the value func-
tion by neural networks. We refer readers to a compre-
hensive review Qin, Zhu, and Ye (2021) of reinforcement
learning methods for ride-sharing assignments and other
sequential decisions.

2.2. Deterministic Ride-Pooling Assignment
for Shareability Graphs

To tackle those unprecedented computational challenges
in MoD systems, Santi et al. (2014) quantified the tradeoff
between social benefits and passenger discomfort from
ride-pooling by introducing the concept of “shareability
networks.” They found that the total empty-car travel
time was reduced by 40% in the offline setting (i.e., with
ex post demand profiles) or 32% when demand is
revealed en route. This work suffers a limitation in vehi-
cle capacity as the matching-based algorithm can only
handle up to three-passenger shared rides. Alonso-Mora
et al. (2017) expanded the framework to up to 10 riders
per vehicle. The high-capacity ride-pooling trip assign-
ment is solved by decomposing the shareability graph
into trip sets and vehicle sets and then solving the opti-
mal assignments by a large-scale IP. As the vehicle capac-
ities increase, the moderate size of the shared vehicle
fleet (2,000 vehicles with capacities of four rides in their
case studies) can serve most travel demands with short
waiting times and trip delays. Simonetto, Monteil, and
Gambella (2019) improved this approach’s computa-
tional efficiency by formulating the master problem as a
linear assignment problem. The resulting large-scale
assignment on shareability networks is calculated in a
distributed manner. However, despite the easy imple-
mentation of these methods, they lack theoretical perfor-
mance guarantees.

2.3. Approximation Algorithms
for Maximization GAP

Approximation algorithms can find near-optimal assign-
ments with provable guarantees on the quality of
returned solutions. Because the ride-pooling assignment
problem is a variant of GAP (Oncan 2007), we list the sig-
nificant results here. Shmoys and Tardos (1993) and
Chekuri and Khanna (2005) obtained polynomial-time
1-approximation algorithms. Fleischer et al. (2006)
obtained an linear programming (LP)-rounding based
(1 —(1/e))-approximation algorithm and a local-search
based 1/2-approximation algorithm. Previous studies
have explored GAP algorithms for both instant and
batched dispatching settings. Instant dispatching assigns
requests to available vehicles on arrival. Lowalekar,
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Varakantham, and Jaillet (2020) developed approxima-
tion algorithms for online vehicle dispatch systems. Their
setting with i.i.d. demand assumptions are markedly dif-
ferent from the current work. Batched dispatching uses
GAP on a hypergraph to search for locally optimal
assignments. Mori and Samaranayake (2021) developed
1/e-approximation LP-rounding algorithms for the
deterministic request-trip-vehicle assignment problem.
In contrast, the current work considers a stochastic set-
ting in which sequential repositioning and assignment
decisions jointly determined the objective in SRAMF. As
a batched dispatching algorithm, this stochastic formula-
tion can be applied to arbitrary demand distributions.

2.4. Shared Mobility with Mixed Fleets
Mixed-fleet ride-sharing systems are emerging research
topics in literature. The first stream of research is moti-
vated by MoD platforms’ transition to a blended work-
force of permanent employees and freelance workers.
Dong and Ibrahim (2020) investigated the staffing prob-
lem in which a ride-hailing platform determined the num-
ber of fore-hire drivers considering its impact on other
flexible workers. Dong et al. (2021) justified the dual-
source strategy for mitigating the demand uncertainty in
ride-hailing systems and designed optimal contracts to
coordinate the mixed workforce. Castro et al. (2020) mod-
eled the ridesharing market as matching queues where
drivers had different flexibility levels. They proposed a
robust throughput-maximizing capacity reservation pol-
icy against the unknown driver engagement function.
The introduction of automation in MoD systems in the
foreseeable future motivates a second stream of mixed-
fleet research. Lokhandwala and Cai (2018) used agent-
based simulations to evaluate the impact of heteroge-
neous preferences and revealed that the transition to a
mixed fleet would reduce the total number of vehicles,
focus on areas of dense demands, and lower the overall
service levels in the suburban regions. Wei, Pedarsani,
and Coogan (2020) studied the equilibrium of a mixed
autonomy network in which AVs are fully controlled by
the platform and CVs are operated by individual drivers.
The optimal pricing for the mixed service is formulated as
a convex program. Li, Chen, and Zhang (2022) proposed
a traffic network equilibrium model with mixed auton-
omy based on two-player games and proved the existence
of a speed policy that guarantees Pareto-efficient equilib-
ria. Xie, Liu, and Chen (2023) developed an actor-critic
learning approach for mixed-autonomy fleet manage-
ment considering bounded rational drivers. In contrast,
this work is one of the first attempts to develop algorithms
for mixed-autonomy operations at the vehicle level.

3. Problem Description

3.1. Basic Setting

This section introduces the formulation of the SRAMF
problem as a two-stage stochastic integer program and

shows its NP-hardness. These technical challenges moti-
vate the design of new approximation algorithms in the
remainder of this work.

3.1.1. Preliminaries: Constructing a Shareability Graph
of Mixed Fleets. Ride-pooling assignment is conducted
on a shareability graph, represented by a hypergraph
G ={S, D, E}. The vertices of the hypergraph are SU D,
where S denotes supply (available vehicles) and D
denotes demand (ride requests). Each hyperedge/clique e €
E consists of one vehicle and a subset of ride requests. In
conventional assignments, each vehicle can serve only
one ride request at a time, so G reduces to a bipartite
graph. In the ride-pooling setting, each hyperedge e € E
can contain any number of ride requests within the vehi-
cle’s capacity. Other constraints, such as the upper
bounds for detour times, are considered when construct-
ing the shareability graph (we refer readers to the discus-
sion of shareability graphs in Appendix B). The platform
continuously updates such a hypergraph following the
procedure outlined in Section 1.1. Appendix B also
describes a sequence of matching rules that can construct a
hierarchical tree of matchable requests, significantly reduc-
ing the computational burden of dial-a-ride problems.

This generic model covers most MoD applications
described in Section 1. The mixed-fleet supply contains a
set S4 of locations to reposition augmented vehicles and
a set of basis vehicles Sg. We assume that each aug-
mented vehicle can reposition to any of the locations S 4
and serve nearby ride requests covered by their incident
hyperedges. Let S=54 U Sg,|Sa| =n4, and |Sg| =np.
To keep notation simple, we will refer to the “locations to
reposition augmented vehicles” S, simply as the aug-
mented supply/vehicles. We denote p = 1+ max;cs,us,
{C;} where C; is the capacity of vehicle i. Without loss of
generality, we let the cost of using vehicles in Sg be zero
and the cost of each vehicle in S, be normalized to one.
This will be extended to a more general setting of parti-
tion constraints in Section 4.3. The varying setup costs of
S, and Sg can be justified by the additional operations
expenditure of repositioning centralized-controlled vehi-
cles in the augmented set S 4, such as the annualized extra
salary paid to full-time drivers in Example 1. Each hyper-
edge e = {i, [ };c5 jcp corresponds to a potential trip where
vehicle i serves ride requests in J.

The MoD platform will implement SRAMF algorithms
using the online procedure outlined below. The platform
first predicts available vehicles in S and ride requests D
per batch and then constructs a shareability graph
according to the procedure outlined in Appendix B, Sec-
tion B.1. After calculating the value of each hyperedge v,
the platform solves a two-stage stochastic integer pro-
gram to determine the optimal centralized repositioning
policy for vehicles in S4. The platform then observes
actual demand and vehicle locations and updates
the shareability graph. The remainder of this section
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formally defines the SRAMF problem and highlights its
unique technical challenges.

3.1.2. Formulation of SRAMF. Before actual ride requests
are sent, the platform chooses a subset Sg C S4 of (at
most) K locations to reposition vehicles from the aug-
mented supply. After requests are revealed, the platform
can assign ride requests only to vehicles in Sg U Sg and
collect instantaneous rewards (profits) from completing
these trips; that is, reassignment is not allowed.

The sequential decisions for the SRAMF problem are
as follows:

1. In the first stage, for each augmented vehicle
i € 54, y; = 1 denotes that an augmented vehicle is allo-
cated to location i for future assignment and y; = 0
denotes not selected. Let Sg:={i€[na]l:y;=1}C Sy
denote a set of selected augmented vehicles. All basis
supply vehicles are included, as they impose no additional
setup cost, and the available supply in the second stage is
Sk U Sp. The first-stage decision space is Y € {0,1}""".

2. In the second stage, a scenario & reveals a set of
actual ride requests D(&) and their associated hyper-
edges E(&). The scenario & is assumed to follow a ran-
dom distribution F(£) with support on E, which
incorporates a demand forecast model. Each hyperedge
e€ E(&) includes a vehicle i from either basis or aug-
mented supply and a subset of requests | C D(&). {w;}¢;
denotes the numbers of passengers in each ride request j.
The total number of passengers in a set of ride requests |
must satisfy 7;;w; < C; where C; is the capacity of vehi-
cle i. The hyperedge value of ¢ may include the following
elements:

(@) The profit u; gained from serving the ride
request j.

(b) A trip t = {j1,/o, -1 jx €]} represents a sequence
of picking up ride requests in . The associated travel
cost (i, t) assumes that the vehicle i follows the shortest
pick-up trip to minimize customers’ waiting times.

(c) Each request j gains additional utility i; if
matched with their preferred vehicle type.

The hyperedge value for e € E(&) collected from a
potential assignment is given by

ve:Zuj+thij—c(i,t)20. 1)

jel j€l

The hyperedge value captures various sources of uncer-
tainties between vehicle repositioning and trip assignment
stages. u; considers the uncertain number of ride requests
and their origin and destination; w; and the set | considers
the unknown number of passengers in each ride request;
it considers the customers’ uncertain preference for vehi-
cle types. Finally, because of fluctuating traffic conditions
and different vehicle technology (e.g., CVs and AVs), c(i, t)

represents that pickup times are uncertain. However, in
the second stage (after the scenario & is observed), all
hyperedge values are known precisely. It is worth men-
tioning that the calculation of hyperedge values can be inte-
grated with advanced value function approximation
techniques. For example, Tang et al. (2019) calculated the
associated hyperedge value as a reward signal derived
from a reinforcement learning-based estimator.

3. The platform assigns ride requests to each avail-
able vehicle by determining x, € {0,1} for all e € E(£).
The second-stage assignment decision is equivalent to
choosing a set of hyperedges in which every pair of
hyperedges is disjoint. This condition guarantees that
each vehicle and each ride request can be included no
more than once in the final assignment per scenario.
An assignment is only feasible between the chosen
supply Sg U Sp (denoted as e ~ Sg U Sp) and realized
demand D(&) in each scenario.

The optimal value of assignments in scenario & is cal-
culated by Q : Y x E — R. Given a scenario, the second-
stage decisions are trip assignments denoted by
x = {Xe}eep(s)- Our objective is to maximize the expected
total value.

The SRAMF problem can be formulated as a two-stage
stochastic integer program:

maxiymize E[Q(y, &)] )
s.t. Z yi <K (budget), (2a)

i€Sy

yi €{0,1} Vie Sy, (2b)

yi=1 Vi € S, (20)

and the second-stage problem is given by

Qy, &) = maxjgnize Z UeXe 3)

e€E(&)

s.t. Z x. <1 VjeD(&) (assignment I), (3a)
ecE(&)yjee

Z X <y; VieSpUSa (assignmentIl), (3b)

ecE(&):ice

x.€{0,1} Vee E(&). (30)

In the first-stage problem (2), K is the maximum number
of locations for repositioning augmented supply vehi-
cles. In the second-stage problem (3), Constraints (3a)
and (3b) guarantee that each supply and demand is
matched at most once and the vehicles selected in Sg U
Sp are matchable. In other words, unassigned vehicles
and ride requests in the hypermatching x will either
renege or postpone to the next batch. The second-stage
GAP is a p-set packing problem with p representing the
maximum size of hyperedges, which is known to be
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NP-hard (Fiiredi, Kahn, and Seymour 1993; Chan and
Lau2012).

3.1.3. Roadmap for Proving SRAMF Approximation
Algorithms. Figure 3 provides an overview of the per-
formance analysis of two proposed approximation algo-
rithms and their approximation ratios, respectively. We
start with reducing the objective of (2) to the sample-
average estimate in Section 3.2. We then show the hard-
ness of the SRAMF problem in Section 3.3. Because the
GAP problem (3) is NP-hard, our approximation algo-
rithms rely heavily on the “fractional assignment” tech-
nique that relaxes the integrality constraints in (3) as a
polynomial-time solvable linear program. Two different
approximation algorithms, LSLPR and MMO, are
discussed in detail in Section 4.1 and Section 4.2,
respectively.

3.2. Reduction to Sample-Average Estimate

The sample-average approximation (SAA) method is com-
monly used to solve two-stage stochastic integer programs.
It draws N scenarios {& ,5}5:1 from a scenario-generating ora-
cle (e.g., demand forecasting and vehicle simulation mod-
els) and approximates the expected objective function by a

sample-average estimate E[Q(y, £)] ~ Z?’zl Q(y, &) /N.

To simplify the analysis of Problem (2), we reduce the
objective function E(Q(y, £)) to finite-sample proximity.
The main analysis is conditional on N mutually disjoint
sets of ride requests D(&) and hyperedges E(&). Because
the second-stage assignment ensures unique matchings
per scenario, we can make multiple disjoint copies when
an identical ride request appears in multiple scenarios.
The consistency and shrinking bias of the sample-
average estimate are well studied in literature; hence, the
proof of SAA is detailed in Appendix C, Section C.1, for
completeness. Altogether, the optimal value of any
approximation algorithm converges to E[Q(y, &)] as the
number of scenarios N — oo.

This study’s focus is therefore developing algorithms
to solve the SRAMF problem in (2) with the sample-

average estimate. As mentioned earlier, we will work
with an LP relaxation of (3) as the original p-set packing
problem is NP-hard. For any subset Sg € S 4 and scenario
&, define 9(Sg, &) to be the optimal value of the following
LP:

maximize Z VeXe (4)
e€L(&)

st. > x<1 VjeD(&), (4a)
ecE(&):jee

> x<1 VieS,4USp,  (4b)
ecE(&):ie

X, =0 V€~SA\SR, (4C)

X >0 Ve € E(&). (4d)

Solutions to the LP relaxation of (3) are called fractional
assignments; v(Sg, &) denotes the optimal value of exact
solutions to (3), given a set of selected augmented supply
Sg. Furthermore, we define two objective functions
related to the sample average estimate:

e The objective value using the exact GAP in (3) for
each scenario is given by

0*(Sr) = % > 0(Sk, &) ©)

Ce[N]

o The objective value using the LP relaxation of (4)
is given by

6(50) = 5 O 9050, £0) ©

Le[N]

Fractional assignments of the p-set packing problem
enjoy the following properties. (1) The integrality gap
between the exact solution and LP relaxation is at most p
times (Arkin and Hassin 1998). (2) A greedy algorithm
selecting hyperedges e in decreasing order of their values
v, while maintaining feasibility achieves a 1/p-approxi-
mation to the LP value. We restate them in the following
theorem.

Figure 3. Roadmap for the Performance Analysis on SRAMF Algorithms

L oa —_— LSLPR ALG
== Approximation oo -’cm
g (Theorem 2) U(SR ax)
1-0) ¥
RAMF SAA Bound
S L (Appen;l':rnc b SAA i-Appmximation LP .
objective Objective Relaxation
E[Q(y,$)] v*(5p) B(S,)
[
0 (lnTp) — Approximation . 3
(Proposition 1) m - Approximation MMO ALG
Best-possible (Theorem 3) o(S§)

Approximation ALG

Notes. The approximation ratios on arrows refer to the results in this paper. Sp is the optimal selection of vehicles, and Sg is the section of

vehicles generated by approximation algorithms.
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Theorem 1. For any Sg C Sa, we have v*(Sg) < 9(Sg) <
p - v*(SR); furthermore, the greedy algorithm obtains a solu-
tion of value at least 1/p - 6(Sg).

These reductions narrow down the main task of
bounding the approximation ratio of 9(Sg). In particular,
we will focus on the SRAMF problem with fractional
assignments:

el 150 2
If we obtain an a-approximation algorithm for (7), then
combine it with Theorem 1, we would obtain an
a/p-approximation algorithm for SRAMF (with integral
assignments). Also, observe that the objective in (7) is
monotone nondecreasing in the selected vehicle set Sg.
Therefore, any maximal solution (including the optimal
solution) selects exactly K vehicles in the repositioning
decision. Before jumping into the design of approxima-
tion algorithms, the following section elaborates on some
technical challenges.

3.3. Hardness and Properties of SRAMF

We show that solving SRAMF is computationally chal-
lenging due to the following reasons: (1) Proposition 1
shows that the second-stage assignment problem is
NP-hard. Hence, computing the exact assignment for
any Sg is costly. (2) Proposition 2 shows that 9(Sg) is not
submodular, preventing the use of efficient submodular
maximization algorithms. These facts motivate the
development of new approximation algorithms in Sec-
tion 4 to exploit the specific structure of the SRAMF
problem.

Proposition 1. There is no algorithm for SRAMEF (even
with n = 1 scenario) with an approximation ratio better
than O(Inp/p), unless P = NP.

Proof for the Hardness of SRAMF. We reduce from
the p-dimensional matching problem, defined as fol-
lows. There is a hypergraph H with vertices V parti-
tioned into p parts {V,}_,, and hyperedges E. Each
hyperedge contains exactly one vertex from each part
(so each hyperedge’s size is p). The goal is to find a
collection F of disjoint hyperedges that have maxi-
mum cardinality |F|.

Given any p-dimensional matching as above, we
generate the following SRAMF instance. The aug-
mented vehicles are Sy = V7 and the basis vehicles are
Sg =0. There is n = 1 scenario with ride requests V5 U
...V, and hyperedges E (each of value of one). Each
vehicle has a capacity of p — 1, and each ride request
has one or more passengers. Each hyperedge contains
precisely one vehicle, as required in SRAMF. The
bound K= |S4]| so the optimal first stage solution is
clearly Sg = Sa (select all locations for augmented
vehicles). Now, the SRAMF problem instance reduces

to its second-stage problem (3), which involves select-
ing a maximum cardinality subset of disjoint hyper-
edges. This is precisely the p-dimensional matching
problem.

It follows that if there is any a-approximation algo-
rithm for SRAMF with n = 1 scenario, then there is an
a-approximation algorithm for p-dimensional match-
ing. Finally, Hazan, Safra, and Schwartz (2006) proved
that it is NP-hard to approximate p-dimensional match-
ing better than an O(Inp/p) factor (unless P = NP). The
proposition now follows. O

This intractability is the reason that we work with the
fractional assignment problem (7). A natural approach for
budgeted maximization problems such as (7) is to prove
that the objective function is submodular, in which case
one can directly use the (1 — (1/e))-approximation algo-
rithm by (Nemhauser, Wolsey, and Fisher 1978). How-
ever, we show a negative result about the submodularity
of v*(Sg) and 9(Sg), which precludes the use of such
an approach. Recall that a set function f : 29, R, on
groundset Q is submodular if f(U U {i}) — f(U) > f(W U
{i}) —f(W)foralUC W C Qandie Q\ W.

Proposition 2. The objective functions v*(Sg) and 6(Sg)
are not submodular functions.

Proof. Recall that the ground set for both functions v*
and 9 is QO:= 5, the set of augmented vehicles. We
provide an SRAMF instance with 7 = 1 scenario where
these functions are not submodular. Consider a share-
ability graph with [Ss|=3,Sp=0 and three ride
requests {dy,d»,d3}. Let p = 3, that is, each vehicle can
carry at most two requests. The set of hyperedges is

{(S{i/ dl)r (S{i/ dZ/ d3)/ (S?/ dZ)/ (S?/ d3)}

See also Figure 4. The value of each hyperedge reduces
to the number of ride requests it covers.

Let subsets U = {s{} and W = {s{},s4}. Also, let i = s4.
Clearly, v*(U) =2 (serving d,, ds), v'(W) =2 (serving
dy, dy or dy, d3), v (U U {i}) = 2 (serving d;, ds or dy, d3),

Figure 4. (Color online) Nonsubmodularity of Function
0*(Sr)



Downloaded from informs.org by [108.65.202.174] on 15 January 2024, at 04:02 . For personal use only, all rights reserved.

Luo et al.: Efficient Algorithms for Stochastic Ridepooling Assignment
Transportation Science, 2023, vol. 57, no. 4, pp. 908-936, © 2023 INFORMS

917

and v*(W U {i}) = 3. Therefore, we have
v(WU{i}) —v"(W)=1>0=0(UU{i}) —o'(U),

which implies the set function v* is not submodular. It is
easy to check that the LP value function 9 = v* for this
instance, so function 7 is also not submodular. O

4. Approximation Algorithms for SRAMF
This section provides two different approximation algo-
rithms for SRAMEF. Both the algorithms focus on solving
the fractional assignment problem (7) and achieve approx-
imation ratios 1/p and = (e —1)/(2e - Inp), respectively.
Combined with Theorem 1, these imply approximation
algorithms for SRAMF with an additional factor of 1/p.

4.1. Local Search Algorithm for

Mid-Capacity SRAMF
The mid-capacity SRAMF models the current ride-hailing
market, in which each vehicle can deliver two to four ride
requests simultaneously. In this section, we propose an
LSLPR algorithm that obtains 1/p-approximation for the
fractional assignment problem (7).

4.1.1. Overview of the LSLPR Algorithm. Let € > 0 be
an arbitrarily small parameter to serve as the algorithm’s
stopping criterion. The outline of the LSLPR algorithm is
as follows:

1. Start from any solution Sg C S4 with [Sg| =K.

2. Consider all alternative solutions Sgr = Sg — {i} +
{i"} where i € Sg and i’ ¢ S after swapping one vehicle
and evaluate the corresponding LP value 6(Sg/).

3. Change the current solution Sk to Sy if the objective
value improves significantly, i.e., 5(Sg') > (1 +€) - 5(Sg).

4. Stop if such a significant local swap does not exist.

Formally, let k index the iterations. Let Sk denote the
current solution in iteration k. The following subroutine
implements a single iteration.

Algorithm 1 (Local Swap Subroutine)
forie Sk and i’ € S,\Sk do

obtain 9(S& — i +i") by solving the fractional assign-
ment problem;
end
let (c,c’) be the pair that maximizes O(Sk —i+17")
overi€ Sk and i € S4\Sk;
if 0°(Sk —c+c’)>(1+€)-6(Sk) then

| set Sk« Sk — ¢+ ¢’ and continue with k « k +1;
else

| halt local search and output S¥;
end

In a broad sense, the local swap subroutine does not
necessarily enumerate all pairs (7,7") to search for the
optimal (¢, ¢’). A more efficient alternative is terminating
each iteration at the first pair of i € Sg and i’ € S4\Sg that
increases the objective by more than e - (S%).

The complete LSLPR algorithm is as follows.

Algorithm 2 (LSLPR Algorithm for Midcapacity SRAMF)
Data: Augmented supply S4, basis supply Sg, sce-
narios {&,}}_, and € > 0.
Result: Near-optimal Sg € Sy and the correspond-
ing trip assignment.
Initialization: Set k = 1 and randomly select K vehi-
cles from S, as Sk;

while k < k. do
Run the local swap subroutine in Algorithm 1;
Obtain the final trip assignment with Sg = S}fg““
using the greedy algorithm (Theorem 1).

end

Algorithm 2 obtains the final selection of vehicles Sk,
where the maximal number of iterations k,,,, will be
derived later. In the final step, the algorithm obtains an
integral assignment for each scenario instead of the frac-
tional assignments. To this end, we can use the greedy
algorithm (see Theorem 1) to select the assignment for
each scenario, which is guaranteed to have an objective
value at least 1/p times the fractional assignment. In Sec-
tion 4.1.2, we first analyze the approximation ratio and
then the computational complexity of LSLPR.

4.1.2. Analysis of the LSLPR Algorithm. Recall that Sg
is the solution obtained by our algorithm and |Sg| = K.
Let Sp denote the optimal solution: We assume (without
loss of generality) | So| = K. Note that S is a fixed subset
only used in the analysis. Also, let x = (x°) and z = (z°)
denote the optimal LP solutions to 4(Sg) and 4(So),
respectively.

It will be convenient to consider the overall hyper-
graph on vertices Sy U Sp U (UsD(&)) and hyperedges
U¢E(&). As the objective 3(-) is additive over the scenarios
&, we may assume, by duplicating demands and hyper-
edges (if necessary), that demands D(¢) and hyperedges
E(&) are disjoint across scenarios &. Recall that x* (and z¢)
has a decision variable corresponding to each hyperedge
in E(&). For each demand d € UzD(¢), let H; denote the
hyperedges incident to it. For each vehicle i€ Sy U Sg
and scenario &, let E; ¢ denote the hyperedges in E(&)
containing i. Therefore, F; := U¢E; ¢ is the set of hyper-
edges incident to vehicle i.

For any demand d, the following lemma sets up a map-
ping between the hyperedges (incident to d) used in the
solutions x and z. For the analysis, we add a dummy
hyperedge L incident to d so that the assignment con-
straints in the LP solutions x and z are binding at d. So,
DeenXetxr=1and } oy zr+2z1 =1. Let Hj:=H; U
{L} denote the hyperedges incident to d.

Lemma 1. For any demand d, there exists a decomposition
mapping A, : Hy x Hy — R satisfying the following conditions:
1. Mapping Ay(e,f) >0 foralle,f € HY;
2. Forallf € H) ZeeH;Ad(e,f) =z
3. Foralle e H, ZfeH;Ad(e,f) =X,
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Figure 5. Mapping A4(e,f) with E(&) = {e1, ez, €3}

1
1 Ay(L 1) K
Ag(es L)
%, | Aq(es, f3) Z,
Aq(es, f2)
Xe, Aq(ez f2) Zfz
Aq(eq, f2)
X
o T Menf) |z
X V4

Figure 5 illustrates this mapping. Appendix C includes
the definition of A4(e, f) and the proof of Lemma 1. Note
that >, ZfeH, A4(e,f) =1 for any demand d. For any
subset F'e H}, “we use the shorthand Ay(e,F):=
ZfeFAd(e f) and Ad(P 8) ZfeFAd(f €)

Here is an outline of the remaining analysis. Let £
denote a bijection between Si (LSLPR algorithm’s solu-
tion) and Sp (optimal solution), consisting of pairs (iy, i)
where i; € Sg and i, € Spo. We also ensure that £ contains
the pairs (i, i) for all vehicles i € Sg N Sp. There is such a
bijection because |Sr| =K =|So|. We first consider a
swap Sg — {i1} + {i2} where (i1, 1) € £, and lower bound
the objective increase. The approximate local optimality
of Sk implies that the objective increase is at most
€ -9(Sr). Then, we add the inequalities corresponding to
the objective increase for the swaps in £ and obtain the
approximation ratio.

4.1.2.1. Analysis of a Single Swap (iy, i>). Consider
any i1 € Sg and i, € So. We now lower bound 9(Sg — {i1}
+{i2}) —9(Sr). Recall that for any subset S, 9(S)=
> £0(S, &) where 9(S, &) is the LP value for scenario &.
Therefore, we have

0(Sr — {i1} +{i2}) —9(Sr)

= %Z(ﬁ(sk —{i1} + {ix}, &) — 5(Sg, &)).
g

We now focus on a single scenario & and lower bound
O(Sr — {i1} + {i2}, &) — O(Sg, &). X° represents a feasible
solution for fractional assignment 9(Sg — {i1} + {i2}, &).
Recall that x° denotes the optimal solution for LP 6(Sg, &).
Therefore, we can then bound:

0(Skr —{in} +{i2}, &) = 0(Sg, &) 20 % —v'x*,  (§)

where v is the vector of hyperedge values for E(&). As we

focus on a single scenario &, we drop & from the notation
whenever it is clear.

We are now ready to construct the new fractional
assignment ¥. Define the following:

1. Let x, =0 for all e € F;,. This corresponds to drop-
ping vehicle i; from Sg.

2. Let x, =z, for all e € F;,. This corresponds to add-
ing vehicle i, to Sg.

3. Let X, = x, — maxge.As(e, F;, N Hy) for all e€ E(&)
\Fi, \ Fi,.

If iy = i, then we drop case 1. The third case is needed
to make space for the hyperedges incident to the new
vehicle 7, (which is increased in case 2). The following
two lemmas prove the feasibility of this solution ¥ and
bound its objective value. Later, we assume that i; # i,
(the proof for iy = i, is nearly the same, in fact even sim-
pler). Therefore, i1 € Sg \ Sp and i, € Sp \ Sk.

Lemma 2. The fractional assignment X is a feasible solu-
tion for 9(Sg — {i1} + {i2}).

Proof for Lemma 2. We show the feasibility by check-
ing all constraints in (4). Note that X, = 0 for all hyper-
edges e incident to a vehicle in S4 \ (Sg — {i1} + {i2}).

Constraint x > 0. It suffices to check this for hyperedges
ee E\ F; \ F;,. Note that

Xe=Xe— IgaXAd(e,Fiz NHy)= r;njn(xe —Ag(e,Fi,NHy)) >0,
€e €e
where the inequality uses Lemma 1 (condition 3), that is,

Xe = Ad(E,H;,) > Ay(e, Fi, N Hy).
Constraint (4a): By definition of ¥, for any demand

d, we have
Z Xe < Z Ze + Z [xe - Ad(e/Fiz N Hd)]
ecH, eeHyNF;, e€Hy\Fi \Fi,
< Y ze+ Y [x—Adle,Fy N Hy) )
e€HyNE;, ecH),
= Z Ze + Z X — Z Ayie, Fi, N Hy)
eeHdﬂF,-z eEH‘; eEH;
= D w+) %= Y AdHf)
e€eH4NE;, eeH) feFiz NH,
EEH[{

(9) uses x, > Ay(e,F;, N Hy) by Lemma 1, and the first
equality in (10) uses z; = Ay(H}, f) by Lemma 1 (condi-
tion 2).

Constraint (4b): The augmented vehicle set can be
divided into three groups.

1. Vehicle i;: ZeeF x. =0.

2. Vehicle i: Zeep X, = Zeel—" z, < 1 by definition.

3. Vehicles j # iy, bo: ZeeF X, < ZeeF x, < 1. Here, we
used the definition of ¥, and Mg, )> 0 by Lemma 1
(condition 1).

Therefore, ¥ is a feasible fractional assignment
solution. O
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Lemma 3. The increase in the objective is > Z Z VoZe — Z Z vy
i€So eePiz i ES,<f€F11
& _ A& & &
dow@-x)z Y, wz- Y U —S "0 Adle, Hy) (12)
e€E(&) e€F;, NE(E) feFi NE(E) i
= > v> Adle,F;, N Hy). 23N vz - Y > vy
e€E(&)  dee 1€So ecki, €Sk feF,
D )
Proof for Lemma 3. By definition of ¥, ceE  dee
. _ T T
Ze ifeeF, =vz—-v JC—z:|{d€€}|vexe
. ecE
ye_xez —Xe 1f€€F11

—max A4(e,Fi, N Hy) otherwise.
€e

We used that x, = 0 for all e € F;, as i € S4\Sg. There-
fore, we have

Z V(X — Xp) = Z VeZe — Z vfXf

ecE(&) eeF;, NE(E) felfi1 NE(&)
— Z vemaxAy(e, Fi, N Hy)
C€E(E) dee
> Z VeZe — Z VfXf
e€F;, NE(E) feFi, NE(E)

= > 0> Adle,F, NHy). O

ecE(&)  dee

Combining Lemmas 2 and 3, and adding over scenarios
&, we obtain the following.

Lemma 4. For any pair (i1,1,) € L, we have

O(Sk — {1} +{}) = 0(SR) 2 D _veze — > vpxy

ecF;, feF i
—> 0.y Adle,F;, N Hy).
ecE dee

4.1.2.2. Combining All the Swaps. Recall that L is a
bijection between Sg and Sp, so | £| = K. Moreover, using
the local-search termination condition, there is no swap
that improves the objective of the final solution Sk by
more than € - (Sg). Hence,

Ke -9(Sg) > Z [0(Sr — {i1} + {i2}) — O(Sr)]

(i1,i2)eL

> Y [Z VeZe— D UpXy

(i1,i2)eL EEFiZ fEF,‘.l
S oS Ao Es anﬂ a)
ecE dee
P IPILEED DI
€SO CEF,‘Z i1€SRf€Fi1

- Z Zvez Ag(e, Fi, N Hy)

i,€So ecE dee

>vlz—o'x—(p-1o'x=0"z
—p-0'x=3(So) —p- 6(Sk)- (14)

(11) is by Lemma 4, (12) uses that {F;, }; s, are disjoint,
(13) uses Lemma 1, and the inequality in (14) uses that
each hyperedge has at most p — 1 demands.

Setting e€=1/pK?, it follows that 9(Sg)>1/
(p+0(1))-6(So). Combined with Theorem 1, we obtain
0 (Sr) 2 1/p-3(Sr) = (1/(72 +0(p)) - 6(So).

Theorem 2. The LSLPR algorithm for SRAMF is a
1/p?-approximation algorithm.

4.1.2.3. Time Complexity of the LSLPR Algorithm. Each
iteration of Algorithm 1 involves considering K(n4 — K)
potential swaps and recall that 74 = |S4|. For each swap,
we need to evaluate 9, which can be done using any
polynomial time LP algorithm such as the ellipsoid
method (Bertsimas and Tsitsiklis 1997). Therefore, the
time taken in each iteration is polynomial.

We now bound the number of local search iterations.
In each iteration, the objective value increases by a factor
of atleast 1 + €. Therefore, after k iterations,

H(SK) > (1 + ) D(Sh).

Clearly, the assignment associated with the initial solu-
tion S% has a lower bound 6(S%) > (1/N) - Upin, Where
Umin = MiNg:y,500, 1S the minimum value over all hyper-
edges. Recall that hyperedges with nonpositive values
are not considered in any assignment. The maximum
objective of any solution is at most (114 + 1) - Umax, Where
|Sal =14, |Sg| = ng and vy = max,v, is the maximum
value over all hyperedges. Hence,

A 1
(na +1B) * Vmax = v(Sf{l) >(1+ e)k . Nvmi“’

which implies that the maximum number of iterations

kmax < 10g1+€ <N(nA;_ ﬁB)vmaX>

-0 (1 logN(nA + HB)Umax> .
€ OUmin

Using € = 1/pK?, it follows that the number of iterations
is polynomial.
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The last step of Algorithm 2 implements the greedy p-
set packing algorithm for each scenario, which also takes
polynomial time. It follows that LSLPR solves the
SRAMF problem in polynomial time regarding para-
metersp, K, N, |E|, n4, and ng.

4.2. Max-Min Online Algorithm for
High-Capacity SRAMF

The LSLPR algorithm is capable of assigning rides in shared
mobility applications using midcapacity vehicles. When the
maximal capacity of vehicles in MoD is large (e.g., the maxi-
mum capacity of MoD transit service is 10 in Alonso-Mora
et al. (2017)), the 1/p?-approximation ratio is disadvanta-
geous. We propose an alternative method for high-capacity
SRAMF. The main idea of the max-min online (MMO) algo-
rithm is to use LP-duality to reformulate ¢ as a covering linear
program. Then, the max-min optimization in Feige et al.
(2007) can further improve the approximation ratio. This
framework requires two technical properties (monotonicity
and online competitiveness), which are satisfied in the
SRAMF problem. We will prove that the MMO algorithm
obtains an approximation ratio of (1 — (1/¢))(1/2plnp).

Using LP duality and the definition of 5(Sg) (see the der-
ivation in Appendix C, Section C.3), we can reformulate

9(Sg) = minimize SN uge (15)

& geG

%
s.t. Zug,g = NE'

qee
VEEFZ‘,& VE, ViESRUSB,
u>0.

Here, G =54 U S U (U:D(&)) is a combined groundset
consisting of all vehicles and demands from all scenarios.
For any vehicle i and scenario &, set F; € E(&) denotes
all the hyperedges incident to i in scenario &.

We can scale the covering constraints to normalize the
right-hand side to one and rewrite the constraints as
> gee UMeMg,g > 1. The row sparsity of this constraint matrix
(i.e., the maximum number of nonzero entries in any con-
straint) is max.ce|e| =p and v, > 0 for all hyperedges.
Let ¢, be the row of constraint coefficients for any hyper-
edgee € E = U:E(&), thatis,

N
98 =1 0 ifgeeandeeE(E)'

0 otherwise

Then, the SRAMF problem with fractional assignments
maxg,cs,:|sg|<k0(Sr) can be treated as the following
max-min problem:

max  min{1"u|c,u>1, Ve€F;, VieSgUSg;u>0},
SrCSA:|SrI<K U

(16)
where F; = U¢F; ¢ for each vehicle i. For the remainder,
t=1,2,... indexes steps of the online algorithm.

The main result is as follows.

Theorem 3. There is a (e —1)/(2e + o(1))Inp-approxima-
tion algorithm for (16).

Before proving this result, we introduce two important
properties.

Definition 1 (Competitive Online Property). An a-com-
petitive online algorithm for the covering problem
(15) takes as input any sequence (i1,7,...,4,...) of
vehicles from S, and maintains a nondecreasing solu-
tion u such that the following hold for all steps ¢.

e Solution u satisfies constraints ¢, u >1 for e € F;,
for all vehiclesi € {iy,i,...,i}, and

e Solution u is an a-approximate solution, i.e., the
objective 1Tu < a-9({i1,ia, ..., it}).

The online algorithm may only increase variables u
in each step t.

Definition 2 (Monotone Property). For any u# >0 and
S C Sy, let
Aug*(S|u) = {m>151 1TTw:c](u+w)>1,
w2

VeeF;, VieSU Sg}.

The covering problem (15) is said to be monotone if
for any u >u’ >0 (coordinate wise) and any S C Sy,
Aug'(S|u) < Aug*(S|u’).

These properties were used by Feige et al. (2007) to
show the following result.

Theorem 4 (Feige et al. 2007). If the covering problem
(15) satisfies the monotone and a-competitive online prop-
erties, there is a (e — 1)/ (e - a)-approximation for the max-
min problem in (16).

Our max-min problem indeed satisfies both these
properties.

Lemma 5. The covering problem (15) has an a = O(Inp)
competitive online algorithm. Moreover, when p is large,
the factor e = (2 + o(1))Inp.

Proof. Recall that (15) is a covering LP with row-
sparsity p. Moreover, in the online setting, constraints
to (15) arrive over time. Therefore, this is an instance
of online covering LPs, for which an O(Inp)-competi-
tive algorithm is known (Gupta and Nagarajan 2014).
See also Buchbinder et al. (2014) for simpler proof.
Moreover, one can optimize the constant factor in
Buchbinder et al. (2014) to get a = (2 + o(1))Inp.

These previous papers work with the online model
when only one covering constraint arrives in each
step. Although Lemma 5 involves multiple covering
constraints F; arriving in each step, this complexity
can easily be reduced to the prior setting as follows.
We introduce the constraints in F; one by one in any
order. The algorithms in Gupta and Nagarajan (2014)
and Buchbinder et al. (2014) can therefore be used
directly. O
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Lemma 6. The covering problem (15) is monotone.

Proof. Consider any u>u">0 and any SCS4. Let
w’ >0 denote an optimal solution to Aug*(Sg|u’). As
all constraint coefficients ¢, > 0, it follows that ¢, (u +
w)>c] (W +w')>=1 for all ecF; and i€SUSs.
Hence, w’ is also a feasible for the constraints in
Aug*(S|u). Therefore, Aug*(S|u)<1'w’ = Aug*(S|w’),
which proves the monotonicity. O

Combining Lemmas 5 and 6 with Theorem 4, we
obtain Theorem 3. Our Q(1/Inp) approximation ratio is
nearly the best possible for the max-min problem (16), as
the problem is hard to approximate to a factor better than
O(Inlnp/Inp) (Feige et al. 2007).

We now describe the complete algorithm for SRAMF.
This is a combination of the online LP algorithm from
Buchbinder et al. (2014) and the max-min algorithm from
Feige et al. (2007). For any ordered subset S of vehicles,
let 5on(S) denote the objective value of the online algo-
rithm for (15) after adding constraints corresponding to
the vehicles in S (in that order). Algorithm 3 describes the
updates performed by the online algorithm when a vehi-
cleiis added.

Algorithm 3 (Updating Subroutine in the MMO Algorithm)
For a giveni € Sy U Sg, perform the following updates;
foree F; = U:F; : do

let {ug E}gge be the values of variables in hyper-

edgeeand I, =3 u, s

ifI, <% then

o 1+el-6 v
update Ug & <ug,é +N ) m N
forallgee.

end
end

Proof for the Updating Subroutine in the MMO
Algorithm. Consider the updates when vehicle i is
added. Consider any scenario & and hyperedge
e€F;:: the corresponding covering constraint is
clu=(N /Ug)zgeeug,(g >1. Let  be a continuous vari-
able denoting time and 6 > 0 be a constant. The online
LP algorithm in (Buchbinder et al. 2014) raises vari-
ables u, ; in a continuous manner as follows:

ou & N
agT =5 s +5, Vgee, (17)
until the constraint is satisfied. Letting I'. = 3 qeellg &, We

have

31“
NZug + le] - 6—NI}+|6| 0.
e gee

By integrating, it follows that the duration of this
update is

T:/r: oMo _v NIy + lef -0
r:r;%Fe+|e|-6 N S—jl—‘;+|€|6

e 1+e|-0
N M, +lel-0)

Earlier, ', and I’} denote the values of T, at the start
and end of this update step; I'/ =v,/N as the updates
stop as soon as the constraint is satisfied. For each
g €e, using (17),

T=/T Qige In U_Niugé-‘_é

=07 ugg+6 N vg£+6

Again, Ug s and u; . denote the values of ug : at the
start and end of this update step. Combined with the
previous value for T, we get a closed-form expression
for the new variable values:

N . N _ 1+e|-0

—Uy +0=—u, +0 | 77—, Vgee O
Ve &€ <ve 8¢ > UMBF;+|6|-6 §

The complete MMO algorithm is described in Algorithm 4.

Algorithm 4 (MMO Algorithm for SRAMF)
Data: Augmented supply S4, basis supply S, hyper-
graph G with E(£), and € > 0.
Result: Near-optimal Sg € S4 and the correspond-
ing trip assignment.
Initialization: Sg «— @ and dual variables u < 0;
For each vehicle in Sg (in any order), run Algorithm
3 to obtain 9on(Sg)
fork=1,...,Kdo
forie S,\Sg do
Run the updating subroutine in Algorithm 3
and obtain don(Sp + Sk + {i}).
end
i* = arg maX;es,\s,0oN(Sp + Sg + {i});
Sr S+ {I"};
end

4.3. Extensions to SRAMF Under Partition
Constraints

We now consider a more general setting where the aug-

mented set S, is partitioned into M subsets Sa(1), -

Sa(m), ---,S4(M), and the platform requires K,, vehicles

from each subset.

Example 3. In the market segmentation of Example 1
described in Section 1, there are M types of vehicles,
so the cardinality constraint is further specified for
each vehicle type as partition constraints ) s, (,¥i <
K, for all m € [M].
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Example 4. In the mixed autonomy application of
Example 2, there are M separate AV zones, and the
repositioning capacity requirement is proportional to
the demand density in each zone; s, Vi < Kn is
now a constraint for each AV zone m € [M].

The original SRAMF problem (2) is now expanded to
solve

maxiymize E[Q(y, &)] (18)
st. Y yi<Ky Vme[M], (18a)

i€Sy(m)
yi€{0,1} VieS,. (18b)

We can extend our result to obtain the following.

Theorem 5. The MMO algorithm is a (1/(4+0(1))
plogp)-approximation algorithm for SRAMEF with partition
constraints.

The proof is identical to that of Theorem 3. The only
difference is the use of the following result for max-min
covering under a partition constraint (instead of Theo-
rem 4, which only holds for a cardinality constraint).

Theorem 6 (Gupta, Nagarajan, and Ravi 2015). If the cov-
ering problem (15) satisfies the monotone and a-competitive
online properties, there is a 1/2a-approximation for the max-
min problem with a partition (or matroid) constraint.

5. Numerical Experiments

5.1. Data Description and Experiment Setup

We evaluate the effectiveness of the proposed approxima-
tion algorithms in two hypothetical mixed-fleet scenarios:

1. Setting 1 simulates mixed fleets of standard and
premium vehicles in Example 1 and represents the
midcapacity SRAMF scenario. The MoD platform peri-
odically repositions premium vehicles of S, to serve
ride requests when the future demand exceeds the
capacity of standard vehicles in Sp. We consider the
stochastic nature of system dynamics as the probability
of demand surges in some zones across the city. The
value of hyperedges in these zones increases when
demand surges, rewarding algorithms that successfully
reposition in locations with high surge probability. The
main task is to reposition premium vehicles to accom-
modate predicted surge demand.

2. Setting 2 simulates the early deployment of AVs
in Example 2 and represents the high-capacity SRAMF
scenario. Because of regulatory or technological restric-
tions, we assume that automated MoD buses operate
only within certain AV zones (Chen et al. 2017b) and
deliver up to 10 passengers per trip (Alonso-Mora et al.
2017). The main task is to periodically reposition K
automated MoD buses in these AV zones to accommo-
date future demand.

To demonstrate the value of using a stochastic assign-
ment framework, we consider two benchmark models:

1. Benchmark 1: Stochastic assignment using IP solver
solves SRAMF exactly using the SAA approach in Sec-
tion 3.2. This benchmark method and approximation
algorithms use the same set of samples to assess on a
fair basis. The SAA approach is implemented in a state-
of-the-art IP solver (Gurobi 9.1).

2. Benchmark 2: Assignment with mean demand fore-
casts solves a deterministic ride-pooling assignment
problem based on the mean demand forecasts. This
method solves the joint vehicle repositioning and trip
assignment problem using a one-shot approach based
on the mean hyperedge value and demand distribution
F(&). The goal is to address the significance of consider-
ing demand and supply uncertainties in SRAMEF, albeit
at the expense of increased computing complexity.

The objective values of Benchmark 2 and SRAMF are
not comparable. The following reconstruction proce-
dure is therefore used in evaluations. (1) Select a set of
augmented supply Sk based on the average scenario.
(2) Generate a new set of test samples as outlined in the
SAA method. (3) Recompute the objective values for
all algorithms using identical test samples. This proce-
dure can prevent the fallacy of cherry-picking in
numerical experiments and is described further in Sec-
tion5.1.2.

5.1.1. Data Description and Preprocess. We test the
performance of these approximation algorithms in a sim-
ulated MoD system with mixed fleets. The ride-pooling
simulation follows a batch-to-batch procedure similar to
that employed in Alonso-Mora et al. (2017), with a
demand forecast module to maximize the expected total
value realized by serving travel demand.

Table 1 summarizes our experiment settings. The pri-
mary data inputs include the following:

1. Road networks: The road network in Manhattan,
NYC is obtained from the OpenStreetMap data. The
average traveling time on each road segment is com-
puted using the historical speed data in (Sundt et al.
2021). In Setting 1, both vehicle types can serve any
nearby ride requests made in Manhattan. To demon-
strate AVs’ early deployment in Setting 2, two AV
zones are selected in the planning phase (Figure 9(a)).
These zones are highly congested areas proposed for
pedestrianization and could potentially be closed off to
most vehicles besides MoD transit services. Because of
regulations for safety concerns, automated MoD buses
only operate within these AV zones (Chen et al. 2017b).

2. Supply: The basis set S represents ride-hailing
vehicles with a fixed capacity of two that provides the
standard service.

e In Setting 1, the augmented set S, represents a
set of locations to which premium vehicles can be
repositioned (Figure 6). Full-time drivers provide
reservation-based service with these premium vehi-
cles, which have a capacity of three passengers (Ma
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Table 1. Parameters in Numerical Experiments
Augmented set Sy Basis set Sp
Demand- Matching Number of
Location Vehicle no. Problem to-supply interval sample
Setting Capacity no. |S4| K Capacity |Sg| statement ratio (min) scenarios N
Setting 1 2 115 60 2 60 Mid-Capacity 1.7-2.0 1 10
SRAMF for
Example 1
(standard-
premium cars)
Setting 2 10 30 5 2 115 High-Capacity 3545 10 50
SRAMEF for
Example 2
(mixed
autonomy)

et al. 2017). Thus, the MoD platform can allocate at
most K idling premium vehicles to facilitate freelan-
cing drivers who accommodate ad-hoc demand
surges for standard services (Dong et al. 2023).

e In Setting 2, the augmented set S, represents
the initial parking locations from which auto-
mated MoD buses are repositioned (Figure 9).
Each shuttle bus in S4 has a capacity of up to ten
passengers and can operate only within AV zones
at the beginning of intervals. If each MoD bus can
be repositioned only to a particular subset of loca-
tions, we use the generalized setting in Section
4.3, where K, represents the set of approachable
locations for vehicle m. The same approximation
ratio holds for this extension.

3. Demand: We create a demand forecast model to
sample ride requests from the NYC Taxi and Limou-
sine Commission trip data (TLC 2021). The forecast
model uses this data set’s origin-destination, number
of passengers, trip time, and fare information to predict
hyperedge values as accurately as possible (Figure
9(b)).

4. Hyperedge values: The value of each hyperedge ¢
is computed by (1). Each trip’s pickup time follows the
shortest path connecting all ride requests in the hyper-
edge ¢, and customers’ preference over mixed fleets is
randomly generated such that v, > 0.

5. Time intervals: We choose different matching inter-
vals in Setting 1 and Setting 2 in the batch-to-batch imple-
mentation. Setting 1 uses a one-minute interval to provide

Figure 6. (Color online) Midcapacity Mixed Autonomy Traffic Experiment in Manhattan, NYC

(a) Demand density

(b) Surging demand areas

(c) Sa and Sp for Setting 1 in a given scenario
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convenient and responsive MoD services; Setting 2 uses a
ten-minute interval to permit repositioning between AV
zones. Choosing the relatively large matching interval
(ten-minute) also illustrates the scalability of approxima-
tion algorithms, whereas Qin et al. (2021) showed that the
optimal interval might depend on the supply-demand
relationship.

5.1.2. Assessment of Algorithms in Mixed-Fleet Simu-
lations. The objective of both settings established in Sec-
tion 5.1 is to choose a subset of locations for repositioning
vehicles S, to maximize the total expected assignment
value. Consequently, the assessment of different bench-
marks and proposed approximation algorithms consider
three metrics: total computational time (runtime in sec-
onds), the expected assignment value based on predicted
demand samples (the objective value of the SRAMF
problem defined in (2)), and the average realized assign-
ment value of the proposed locations given new demand
samples. In this section we describe these assessment
methods and how they are calculated. The numerical
experiments conducted in this study generate a fixed
number of scenarios, each of which constructs a share-
ability graph using the process outlined in Appendix B
and creates all hyperedges with only positive values.

We measure runtime as the duration in seconds it
takes an algorithm to produce the desired output, a sub-
set of augmented supply locations, given the inputs of a
hyperedge graph (including associated hyperedge
values and the samples of predicted demand). In Bench-
mark 1, the SRAMF problem is solved to optimality
using Gurobi 9.1, a highly optimized MIP solver. The
number of variables in Equation (2) equals the product of
the number of hyperedges and the sample size, which
may increase exponentially in real-world applications.
Hence, we set a six-hour computation time limit for solv-
ing the SRAMF problem with any method, mainly for
the exact solver. Unlike in Benchmark 1, our proposed
approximation algorithms focus on solving the SRAMF
problem by swapping vehicle locations or adding them
sequentially from the set Su, rather than solving the
entire two-stage integer program at once. As a result, a
parallel-computing scheme can considerably reduce the
total runtime of approximation algorithms by evaluating
multiple scenarios concurrently. We report two compu-
tation times for these parallelized versions, one for the
observed runtime (programmed by Python 3.8 on our
server) and another for the hypothetical runtime based
on a maximum number of threads. The maximal com-
puting resource (max-thread) runtime limit means that
the algorithm can simultaneously evaluate all pairs of
candidates in the active set of LSLPR or the dual vari-
ables for all hyperedges in MMO. This limit includes
additional time for computations in series but excludes
the overhead cost of creating processes. The number of
used threads for each experiment setting is provided in

the footnotes of Tables 2 and 3. Computation times are
reported from performance on a server with an 18-core 3.1-
GHz processor and 192 GB RAM. In some experiments,
the overhead cost of parallelizing the MMO algorithm in
Python actually increases the overall computation time, so
we report a simply vectorized version. Given the ineffi-
ciency of the parallelizing process in Python, we believe
times closer to the parallel limit can still be achieved.

The computation times of generating demand fore-
casts and the corresponding shareability graph are not
reported, because this study focuses on reducing the
computation time for a given shareability graph (hyper-
graph) in the SRAMF problem. In practice, the construc-
tion processes of these hypergraphs may include more
sophisticated demand forecast models (Geng et al. 2019),
so their preprocessing times are not considered in the
assessment. Approximation algorithms can handle more
extensive shareability graphs or require significantly
shorter computation time limits. However, measuring
their optimality gaps requires comparing objective
values of approximation algorithms with that of bench-
mark methods and downsampling from the original
taxicab data. The end of this section appends a separate
set of experiments to demonstrate the scalability of
approximation algorithms with larger instances.

Additionally, we evaluate the performance of our algo-
rithms by comparing the objective value they achieve to
that of the optimal IP solution, commonly known as the
optimality gap. Let the objective of the IP solver be OPT
and the approximation algorithm’s solution be ALG. The
optimality gap is measured by (OPT — ALG)/OPT and is
reported as a percentage.

Finally, to assess the value of incorporating stochasti-
city in ride-pooling matching, we compare the average
performances of these algorithms by dividing the data
set into training and test samples. They are evaluated
based on 10 new test samples drawn from the same dis-
tribution F() as the training samples used for initializing
the algorithms. Each algorithm and benchmark returns a
subset of augmented vehicle locations from the training
samples, which are optimally assigned to incoming
demand in the next interval. For each test sample, we cal-
culate the optimal matching that can be achieved given
the selected augmented supply vehicles. The perfor-
mance is calculated as a multiplier of the assignment
value achieved by Benchmark 1 within each realized
sample, which are then averaged across all 10 test sam-
ples to give the reported average test performance. Note
that this multiplier can be greater than one, as the IP solver
often produces locations that are optimal for the training
samples but may not generalize well to the overall distribu-
tion. The IP solver may also reach the computation time
limit and find a suboptimal solution. Benchmark 2 was cal-
culated by solving a deterministic second-stage assignment
problem (3) with average demand forecasts, reducing it to
amuch easier-to-solve integer assignment program.
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5.2. Numerical Results for Mid-Capacity SRAMF
Setting 1 uses large fleets of premium and standard vehi-
cles to provide ride-pooling services in tandem. The
demand density, surging demand areas, and two sets S4,
Sp are shown in Figure 6. We generate data for surging
demand as follows: (1) divide Manhattan, NYC, into 12
regions (using NYC Community Districts (Data 2022))
and (2) create a probability matrix of all regions to chart
the occurrence of surging demand. For concision, we
choose three regions with high probabilities of surges
(Figure 6(b)); the remaining regions have a low probabil-
ity of surging demand. These regions were chosen to be
outside of areas with high demand at the time of predic-
tion to test the quality of service with highly fluctuating
demand distributions. The surging magnitude is defined
by the multiplier of sampling rates of surging vs. the non-
surging cases from the actual trips from the NYC taxi
data set. (3) Generate ii.d. demand profile and build
shareability graphs for each scenario. (4) Run all algo-
rithms on the same sample set, using benchmark models,
and evaluate numerical results.

Because the shareability graph is constructed for each
scenario, the computed optimal routes in a sample sce-
nario are shown in Figure 7. As can be seen, premium
vehicles selected from the augmented set S, pick up
mainly customers in the surging demand areas. Because
the hyperedge values of these rides are likely to have a
surge multiplier, the platform tends to reposition more
idling premium vehicles and switch them to serve stan-
dard requests. The computational results for Setting 1
are summarized in Table 2.

5.2.1. Computation Times. At small sample sizes, the
IP’s runtime is fairly comparable to that of the LSLPR
approximation algorithm. Gurobi is a powerful and
heavily optimized MIP solver, so this result is unsurpris-
ing. MMO and LSLPR have a clear advantage at larger
sample sizes because they can use parallel computation
resources. MMO is also the only algorithm to complete
within the time limit for this setting, although many
LSLPR runs can also reach this threshold with enough
parallel threads.

The runtime of LSLPR varies widely as the swap order
greatly affects the runtime. When the value € in the stop-
ping criterion is small in cases analyzed by large-scale
shareability graph, long runtimes for approximation
algorithms are occasionally observed. This is primarily
because the algorithm must evaluate many swaps to find
one that improves the overall objective value. If the algo-
rithm randomly initializes with a competitive solution of
Sg, finding another swap to improve the objective value
becomes increasingly difficult. This can lead to the algo-
rithm’s evaluating a combinatorial number of swaps per
iteration, but the quality of such an approximation
attains near optimality. One advantage of LSLPR is that
it can be stopped early and still return valid assignments
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Table 3. Summary of Numerical Results for High-Capacity SRAMF

LSLPR MMO

Demand- Benchmark 1 LSLPR runtime LSLPR runtime MMO MMO

supply ratio  S4, Sg IP runtime (s)  (8-thread) (s) (max-thread) (s) Optimal gap (8-thread) (s) (max-thread) (s) Optimal gap
1.78 10,115 1,177 384 20 0.2% 38 16 0.4%
1.78 15,115 1,332 383 19 0.9% 51 19 0.8%
1.78 20,115 1,470 337 23 0.7% 58 15 0.8%
1.78 25,115 1,354 357 24 0.9% 72 26 0.8%
1.78 30,115 1,464 548 31 0.5% 82 15 0.9%
1.78 35,115 1,448 599 27 0.4% 97 17 1.0%
1.83 10,115 1,425 460 29 0.3% 48 15 0.1%
1.83 15,115 1,516 509 63 0.1% 60 17 0.0%
1.83 20,115 1,730 449 33 0.5% 77 19 0.3%
1.83 25,115 1,817 483 35 0.3% 91 22 0.7%
1.83 30,115 2,027 566 31 0.7% 104 21 0.8%
1.83 35,115 2,373 565 44 0.5% 137 31 1.2%
1.87 10,115 1,180 353 26 0.7% 87 65 0.3%
1.87 15,115 1,350 398 12 0.5% 66 34 0.1%
1.87 20,115 1,509 455 55 1.0% 78 38 0.1%
1.87 25,115 1,650 488 18 1.0% 128 70 0.3%
1.87 30,115 1,690 536 35 1.0% 105 32 0.3%
1.87 35,115 1,795 535 77 1.3% 141 42 0.3%
1.93 10,115 4,468 1,011 196 0.4% 121 63 0.2%
1.93 15,115 6,411 1,036 58 0.5% 250 140 0.4%
1.93 20,115 11,243 1,237 204 0.2% 224 72 0.3%
1.93 25,115 11,820 1,318 28 0.4% 390 167 0.2%
1.93 30,115 5,432 1,453 99 0.8% 397 86 0.6%
1.93 35,115 7,038 1,830 64 0.6% 516 133 0.4%
2.02 10,115 4,348 998 50 0.6% 226 182 1.0%
2.02 15,115 5,843 1,792 157 0.2% 175 93 1.0%
2.02 20,115 9,802 2,177 210 0.2% 442 214 1.0%
2.02 25,115 16,787 3,508 300 0.5% 609 201 0.9%
2.02 30,115 22,141 4,143 198 0.6% 1,234 477 0.4%
2.02 35,115 20,920 6,327 161 0.4% 1,362 487 0.5%

Notes. The demand-supply ratio is the average ride requests over the total number of vehicles (K+ |Sg|); K = 5. The max-thread runtimes
assume enough threads to evaluate all potential swaps or drivers at once. The total number of variables in Benchmark 1 (IP) ranges from 3 x 10°
to 1.2 x 107. Bold entries are the best results.

Figure 7. (Color online) Optimal Trip Assignment and Routes in the Midcapacity Scenario

(a) Standard vehicle routes (b) Premium vehicle routes

Legend:

o Standard car initial locations
Standard car pickup locations

® Premium car initial locations

A Premium car pickup locations
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without searching all swaps, which other algorithms and
benchmarks cannot do. We verify this hypothesis by the
following observation: With € = 0.1, Table 2 shows the
very small optimality gaps this algorithm can achieve.
LSLPR becomes time-competitive in runtime for most
instances (Figure 8) when € increases to 0.2.

5.2.2. Optimality Gaps. Table 2 shows that the actual
optimality gaps throughout the numerical experi-
ments are smaller than the theoretical bounds. The
optimality gaps of LSLPR (<1%) are significantly smal-
ler than those of MMO (3%-10%), which matches the
theoretical analysis.

Regarding performance on the test samples, LSLPR
and MMO vehicle selections consistently achieve
12%-25% higher objective values than those of Bench-
mark 1 (IP solver). This advantage is always slightly
worse when more samples are used initially, demon-
strating that the benchmark is optimizing heavily to the
specific training samples. This result does not generalize
to demand distributions as well as LSLPR or MMO.
Although Benchmark 1 might outperform our algo-
rithms on some test samples and obtain a larger objective
value with enough initial samples, the IP solver scales

poorly in regard to the average runtime (Table 5). Addi-
tionally, the deterministic benchmark shows that disre-
garding demand uncertainty entirely can cause a 15%-22%
loss of objective value in the worst case when compared
with values that LSLPR and MMO achieved. This is a sig-
nificant difference considering that the future MoD market
is a billion-dollar industry. Therefore, it is valuable to imple-
ment SRAMF algorithms to proactively reposition vehicles
as in ride-hailing literature (Qin, Zhu, and Ye 2021) instead
of solving the deterministic problem.

5.3. Sensitivity Analysis

To evaluate the impacts of this parameter on the compu-
tational efficiency, we test the computation times and
optimality gaps with varying K € [10,80]. The results in
Figure 8 show that the computation times of approxima-
tion algorithms increase significantly with K, which is a
shortcoming of any local-search-based algorithm. The IP
solver is relatively unaffected by the change of para-
meters. However, the optimality gap of these approxima-
tion algorithms drops to nearly zero with the increasing
budget, as the increased budget has diminishing marginal
value to the ride-pooling assignment (i.e., the market is
saturated already). Therefore, the platform can select a

Figure 8. (Color online) Impact of K on Computation Time and Optimality Gap in the Midcapacity Scenario

(a) Computation times
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Table 4. Impact of Vehicle Capacity on Computation Time and Optimality Gap

Number of AV Number of Runtime of IP Optimality gap of Optimality gap of
locations AV capacity Cay hyperedges (second) LSLPR (%) MMO (%)

35 2 8,121 220 0.62 1.12

35 4 11,396 288 0.80 0.88

35 6 12,048 299 0.99 0.43

35 8 12,068 298 1.00 0.03

35 10 12,070 301 1.00 0.02

reasonably small budget for approximation algorithms to
have clear advantages over the exact solver.

5.4. Numerical Results for High-Capacity SRAMF
In Setting 2, the proposed algorithm computes near-
optimal solutions for the mixed-autonomy fleet, includ-
ing repositioning automated MoD buses (AVs) among
locations S, (Figure 9) and determining their pickup
routes for demand samples.

The performance of the proposed approximation algo-
rithm is evaluated under different supply and demand
distributions. The system is tested in both a relatively bal-
anced demand scenario as well as a massive undersup-
ply scenario, with mean numbers of demand across
scenarios ranging from 250 to 4,000, respectively, which
are considerably larger in a stochastic setting. Figure 10
shows that algorithms allocate four AVs to the high-
demand-for-AV zone and one AV to the low-demand-
for-AV zone for such demand forecasts. Notice that these
decisions are complementary to CVs’ trip assignment
decisions, as the latter fleets are still the primary MoD
service providers.

5.4.1. Computation Times. The reported computation
time includes solving for the near-optimal vehicle
selection and exact assignment in each scenario. This
comparison excludes the runtime required to generate
hypergraphs to emphasize the performance of algo-
rithms in solving the SRAMF problem. Recall that the
size of the augmented set |S4 | and the number of hyper-
edges (the number of decision variables in each scenario)
determine the size of the shareability graph. Table 3
shows how the total runtime grows with the increasing
size of the hypergraph. The computation time of LSLPR
and MMO algorithms are shown in Table 3.

The largest runtime per iteration is reported in Table 3,
where the number of hyperedges is the maximal number
across all scenarios. Our results show the following. (a)
The max-thread MMO setting obtains near-optimal solu-
tions to SRAMF with the smallest runtimes because it
evaluates all potential vehicles in S5 \ Sg in parallel. (b)
The performance of LSLPR is worse than MMO for high-
capacity SRAMF, which matches our approximation
ratio analyses where the number of potential swaps
grows exponentially. Nevertheless, its computation time
will always improve when additional resources are
available.

5.4.2. Optimality Gaps. Table 3 shows that optimality
gaps of both algorithms grow slightly with the size of
shareability graphs, but the overall performance of the
proposed approximation algorithms is satisfactory for
various supply-demand ratios. The optimality gaps are
below 2% throughout tested instances, confirming that
approximation ratios derived for the worst-case scenario,
1/p? or (e —1)/(2e +0(1))plnp, are loose with the real-
world trip data. In other words, the performance degra-
dation of these approximation algorithms is negligible
when implementing them in shared mobility systems.

5.4.3. Sensitivity Analysis. Three sensitivity analyses
for the high-capacity SRAMF problem involve (a) distri-
bution of hyperedge values, (b) vehicle number and
capacity, and (c) sample size. They test how the perfor-
mance of these approximation algorithms is affected
based on changes in input data and model assumptions.
We discuss them individually in this section.

5.4.3.1. Hyperedge Value Distribution. The first set of
sensitivity analyses aims to check algorithms’ performance

Table 5. Impact of Sample Size on Computation Time and Optimality Gap

Number of Number of AV Average number Runtime of

samples locations AV capacity of hyperedges Runtime of IP (s) LSLPR (s) Optimality gap (%)
10 20 5 3,100 14 2 3.23

25 20 5 3,100 104 5 1.63

50 20 5 3,100 445 12 2.03

75 20 5 3,100 907 15 2.01

100 20 5 3,100 2,088 25 091

150 20 5 3,100 4,076 38 3.15

200 20 5 3,100 7,485 109 1.01
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Figure 9. (Color online) High-Capacity Mixed Autonomy Traffic Experiment in Manhattan, NYC

(a) CVs’ and AVS’ initial

locations in Setting 2
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degrades with different supply and demand distribu-
tions. By replacing the empirical hyperedge values

(b) Request pickup locations in a sampled exper-
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algorithms outperforms other algorithms with uniformly
distributed values.

with randomly generated hyperedge values, this anal-

ysis examines the robustness of these algorithms.
Figure 11 shows the runtime and optimality gaps with
uniformly generated hyperedge values. Figure 9(c)
represents that customers’ level of trust in the AV tech-
nology dominates the hyperedge value such that v, =
D el + jetﬁij —c(i,t) ~ Zjetﬂi] for each e€ E(&) and

]

it;j follows a uniform distribution.

The runtime of random hyperedge values is smaller
than those of real-world data, and the optimality gaps
stay low across most instances. This is mainly because
the empirical hyperedge values are more concentrated
around specific values (i.e., the average trip length).
Hence it is more difficult to reposition vehicles from the
augmented set. In this case, the local search—based

5.4.3.2. Vehicle Capacity. In Setting 2’s numerical
experiments, automated MoD buses (AVs) provide
mixed autonomy mass transport whose vehicle capacity
is up to 10 passengers. CVs have a fixed capacity of three
passengers. Recall that p bounds the vehicle capacity.
Table 4 shows how the vehicle capacity affects the
approximation ratios. A surprising observation is that
the vehicle capacity is not the bottleneck of approxima-
tion algorithms’” performance throughout the experi-
ments. In contrast, the IP benchmark’s computation time
increases significantly vehicle capacities. This is because
the number of hyperedges plateaus above a certain
capacity due to the process of constructing shareability
graphs outlined in Section 5.1. For a high-capacity trip to
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Figure 10. (Color online) Optimal Trip Assignment and Routes in Mixed Autonomy, High-Capacity SRAMF

(a) CV routes (b) AV routes

Legend:
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Figure 11. (Color online) Impact of Input Distribution on Computation Time and Optimality Gap
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exist, thatis, the corresponding hyperedge value is positive,
all subset trips must also exist. This requirement leads to a
combinatorially decreasing number of hyperedges with
large trip sizes unless an even larger set of compatible
trips exist. Because the density of ride requests in the AV
zones does not satisfy the existence conditions for compat-
ible trips, the optimality gaps of both approximation algo-
rithms are not evidently affected by the AV capacity.

5.4.3.3. Sample Size. The SAA method guaranteeing a
uniform convergence to the optimal value does not
directly reveal how the sample size affects the total com-
putation time of solving the SRAMF problem. Table 5
summarizes the computational results of algorithms
compared with the same instances, which reports run-
times with finite and maximal computational resources
(i.e,, number of threads for parallel computing).

The approximation algorithms address demand uncer-
tainties in MoD platforms while controlling the computa-
tional time to increase linearly with the sample size. Table 5
demonstrates that optimality gaps are small for all
instances investigated. In light of the important nature of
stochastic demand and the movement of basis vehicles,
our numerical results suggest that MoD platforms should
employ more computational resources to facilitate approxi-
mation algorithms with large sample sizes to improve the
platform’s average profit and quality of service.

6. Conclusion

SRAMEF uses a two-stage stochastic integer program to
calculate joint vehicle repositioning and assignment for
large-scale MoD systems with mixed fleets. This research
introduces two approximation algorithms, LSLPR and

Appendix A. Summary of Notation

Table A.1. Summary of Notation and Acronyms

MMO, which leverage the structure of shareability
graphs to assess potential matchings with increased sup-
ply. These algorithms efficiently generate near-optimal
solutions for maximizing the expected total value of
ride-pooling assignments in a relatively short time. The
main theoretical results provide provable guarantees for
their worst-case performance, as validated by extensive
numerical experiments involving midcapacity and high-
capacity vehicles. Our results illustrate the significant
benefits of integrating stochastic programming modules
into the MoD vehicle dispatching processes to improve
system profitability and throughput.

To close this paper, we point out several promising
future research avenues to address the following limita-
tions. First, alternative pickups and dropoffs in trip plan-
ning are not permitted, i.e., the total number of ride
requests per hyperedge is less or equal to vehicle capac-
ity. Second, as the SRAMF problem only considers a
two-stage uncertainty structure, it is meaningful to
extend this framework to a multistage setting with time-
varying demand forecasts and vehicle repositioning
decisions that adapt to revealing scenarios. Constructing
hypergraphs with multistage demand forecasts will be a
major computational bottleneck. Hence, new representa-
tions for potential matchings must be developed to
address computational issues. Third, penalties related to
balking trips or carryover supply are not directly consid-
ered in the current setting, whereas they can be incorpo-
rated into the hyperedge value in Section 3.1. Finally, the
current trip assignment does not consider cancellation
and reassignment after dispatching vehicles to passen-
gers. Considering these factors in practice may improve
the stability of ride-pooling algorithms.

Notation Description

Sa, Sp Augmented set and basis set of vehicles

& Randomly generated scenario

e [N] Index for sampled scenarios and the total number of samples

D(&) Set of demand in scenario &

E() Set of hyperedges in scenario &

G Shareability graph, a hypergraph consists of supply and demand vertices and hyperedges
e Each hyperedge e = {i,[};cs jcp is a potential trip where vehicle i serves requests |
u; The expected profit of request j

it Utility gained from matching request j with preferred vehicle type i

c(i, t) Travel cost for vehicle i to serve trip t

et Approximation ratio

n Total number of vehicles such that |Ss| =n4 and |Sg| =ng

K Maximum number of vehicles allowed from the augmented set

C; Capacity of vehicle i€ S4 U Sp

w; Number of passengers in request j

p Maximum capacity of hyperedge, p = maxies,us, {1+ C;}

Index for travel demand j € D(&)




Downloaded from informs.org by [108.65.202.174] on 15 January 2024, at 04:02 . For personal use only, all rights reserved.

932

Luo et al.: Efficient Algorithms for Stochastic Ridepooling Assignment
Transportation Science, 2023, vol. 57, no. 4, pp. 908-936, © 2023 INFORMS

Table A.1. (Continued)

Notation Description

w; Size of travel demand j € D(&)

Ei¢ Set of hyperedges contains vertex i € Sg U Sy in scenario &

t Trip is a set of demand following the shortest pickup-and-then-dropoff order
Ve Value of hyperedge e € E(&)

nb(e) Neighboring hyperedges ¢’ € E(£) intersecting with e

X, Decision variable for hyperedge ¢, x. € {0,1}

Xe Decision variable for fractional assignment, x, € [0,1]

Yi Decision variable for vehicle i € [Sa], yi € {0,1}

() Optimal value of the exact GAP

Qy, &) Optimal value of the assignment in scenario &

Umax Maximal hyperedge value for all e € E

Umin Minimal hyperedge value for all e € E such that v, >0

z Independent set as a union of hyperedges satisfying the set-packing constraint
So Optimal choice of vehicles for SRAMF Sp C S4

Sk Choice of vehicles from the algorithm Sg C S4

L The bijection between Sk and So

() The objective value of fractional assignment

z Optimal LP solutions to 9(Sp)

F; Hyperedges intersect with vehicle i

Hy Hyperedges intersect with demand d

L Dummy hyperedge in LSLPR

Ag(e,f) Decomposition mapping between hyperedge e and f

Ui, Marginal value function with i € Sg and i, € Sp

GoN Objective value of the online algorithm

Ug, Dual variable in the MMO algorithm for g € e and scenario &

T, I.= Zgug,g as the left side of dual constraints

ce Row of cost coefficient in the dual covering problem with entry c.(g, &)
M The augmented set is partitioned into M subsets

€ Error tolerance (for stopping criteria)

o Error tolerance (for sample average approximation) or constant in MMO update subroutine
OPT Optimal value of the SRAMF problem

ALG Objective value of solving SRAMF by approximation algorithms
Acronym

CV/AV Conventional /automated vehicle

GAP General assignment problem

LpP Linear program

IP Integer program

LSLPR Local-search linear-program-relaxation algorithm

MMO Max-min online algorithm

SAA Sample average approximation

SRAMF Stochastic ride-pooling assignment with mixed fleets

VRP Vehicle routing problem

DVRP Dynamic vehicle routing problem

Appendix B. Performance Analysis of
Construction of Shareability Graphs

The main idea of recent ride-pooling assignment papers
(Santi et al. 2014; Alonso-Mora et al. 2017; Simonetto, Mon-
teil, and Gambella 2019) is to separate the problem into two
parts: (1) constructing the shareability graph and compati-
ble requests and vehicles and (2) optimally assigning those
trips to vehicles by solving GAP. This paper primarily
focuses on algorithms and approximation bounds for the
stochastic extension to the second part. Still, we acknowl-
edge the importance and difficulty of the first task and
describe them in detail below for completeness.

B.1. Procedure for Constructing Shareability Graphs
D(&) is a set of all ride requests revealed in scenario &, and
this section omits & when there is no confusion because the

hyperedges for scenarios are generated separately. We con-
sider many parameters to be given by the customer or exter-
nally dictated to the platform (based on desired service
parameters). These include, for each customer j, the maxi-
mum waiting time, w;, and allowable delay, ;.

o (Constraint 1) Travel time from vehicle location to pick-
up of customer j in order must be less than w.

o (Constraint 1I) Travel time from origin to destination of
customer j in order must be less than r;.

Additionally, as defined in the setting, the hyperedge
weight consists of three parts: value of ride requests 3,
preference of the vehicle type i, and travel cost of deliver-
ing all ride requests in a single trip. We take a three-request
clique (j1,j2,j3) as an example. Let t, = {O;,,0,,...,Dj,,D},}
be a specific ordered sequence of origins and destinations
and SP(t) be the shortest path route connecting them. Let
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T, = Uty. This is slightly less demanding than finding all feasi-
ble Hamiltonian paths if we enforce that, in all trips, the origins
must be picked up before any destination is visited. Let
c(s,e) = miny,c1,v(f), where c(t;) is the cost of serving all
requests following the shortest-path SP(t;). We define a set
function f(e) that takes a hyperedge consisting of a vehicle s and
a potential combination of trips, T, as follows:

0
o

c(s,e) otherwise.

if Vi, € T,, SP(t) violates constraints I and II

The bottleneck of computation time is still finding vehicle
routes that satisfy the given constraints by solving a con-
strained VRP problem, which is NP-hard. Therefore, all
heuristic methods can only minimize this bottleneck as
much as possible by reducing the number of combinations
to check at each step. For example, Ke et al. (2021) suggested
a reformulation for finding c(s, e) to avoid enumerating all
possible paths.

We combine multiple heuristic methods in literature to
construct the shareability graph. First, we must identify the
valid single-customer trips for a given vehicle s. Let D; be
the demand that can be served by vehicle s in a single trip
within the allowable pickup time. We may further reduce
the number of trips by planning on a spatiotemporal graph
and examining compatible trip cliques. By testing trips in
order of increasing size and only considering a trip if all
subsets of trips (where one request is removed from the
trip) are feasible, we reduce the number of candidate trips
by orders of magnitude. This heuristic generates the share-
ability graph in Figure 2 in which a set of requests is tested
for trip compatibility only if every subset of that set of
requests is also compatible.

Lemma B1 (Alonso-Mora et al. 2017). A trip associated with
the hyperedge e is feasible for vehicle s only if, for all j ~e,j € D;,
hyperedges ¢’ = e\{j} are feasible.

The heuristic reduces the candidate hyperedge sets by
leveraging the topological relationship between matchable
trips of size k and k + 1 (Figure B.1), without eliminating
potentially feasible trips. The hypergraph can then be con-
structed in order of increasing capacity to minimize the
number of request sets tested. Additionally, we adopt the
following rules to further reduce the number of candidate
trips:

1. Because only hyperedges with nonnegative edge weights
are of interest, we remove all the trips from the candidate set
subject to f(e) <= 0.

2. If a vehicle v is not feasible for trip t; at time 7, it will not
be feasible for t; at any time 7’ > 7 (Liu and Samaranayake
2020).

Let Ci(D) be the set of combinations of size k of the ele-
ments of the set D. This process is summarized as follows.

Algorithm B.1 (Construction of Shareability Graph)
Data: Vehicle locations and requests (request time, pick-
up, drop-off, preferred vehicle type, acceptable delay)
Result: Set of hyperedges, E, each containing a vehicle, s,
and a set of compatible requests for that vehicle to serve in
one trip. Hyperedge values are v, for all e € E.

Figure B.1. (Color online) Topological Relationship Between
Cliques of Matchable Requests

Note. In this example, (2,3,4) is not a valid combination of requests
because the (2,4) combination was not valid.

Initialize E=0

forse S, USgdo

Identify candidate passengers

D! « {e€D|f((s,e)) > 0}

Add hyperedges of size one

Ep — UeeD} (Sr 6‘)

fork=2,...,cdo

for Demand set d € C,(D') do
Add trips of size k if all subsets exist and value
greater than 0
if (s,e’) € Ex_1 Vie C_q(d)and f((s,e’)) > 0 then
LE“—Eku(s,d) T
D’S‘ — D’S‘ ud

E=U_E

Return hyperedges E and their values v,

B.2. Performance and Complexity Analysis of the
Hypergraph Construction Procedure

B.2.1. Optimality Analysis. The two-step ride-pooling
assignment that first constructs the hypergraph and then
solves GAP obtains the exact solution of the joint VRP and
enjoys the computational advantage for large fleets. Because
this work focuses on stochastic assignment, the optimality
analysis does not consider the errors of computing hyper-
edge values. The following results from Alonso-Mora et al.
(2017) provide positive guarantees for returning a feasible
set of hyperedges in the shareability graph: without enumer-
ating all trip combinations:

1. The optimal value v* from solving GAP on the share-
ability graph obtains the optimal value for ride-pooling for
an arbitrary batch of supply and demand.

2. The construction of the shareability graph is anytime opti-
mal, that is, given additional computational resources, the set of
hyperedges is only expanded to allow for improved matching.

The second property guarantees using a capacity bound, the
threshold of which is derived later, as an early stopping crite-
rion in generating the hypergraph will still provide satisfactory
results. Solving GAP on this reduced shareability graph can
guarantee anytime optimality such that the output is near-
optimal for the original problem with high probability.

B.2.2. Computational Complexity Analysis. We consider
a fixed sample of demand D and vehicles S in this section as
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the hyperedges of each scenario can be generated in parallel.
The realized demand has size |D| =d.

Lemma B.2. In the worst case, where all demand is compatible
and can be served by all vehicles, the runtime is O(|S|dP~1).

Although in the worst case, runtime is large, this scenario
only arises when all trips are compatible with ride-pooling,
which is unlikely in practice. Therefore, we consider the
Erdos-Renyi model in which an arbitrary pair of demands
is matchable (i.e., satisfy the conditions above) with proba-
bility q. Empirical studies showed that g was often a small
number (<0.1) over a large area (Ke et al. 2021).

Lemma B.3 (Bollobds and Erdos 1976). The expected number
)
of cliques of size k is (i) q 2/,

For example, with d = 1,000 and g = 0.1, the expected
number of cliques of size 3 (each vehicle delivers at most
two requests in a single trip) is 500. Often, we observe the
size of complete cliques of compatible trips to be less than
10, our maximum tested capacity and the total number of
hyperedges is manageable.

Lemma B.4 (Matula 1976). As d — oo, the maximal clique size
p takes on one of at most two values around (2logd)/(log1/q)
with probability tending to one, that is, with b =1/q, |2log,d] <
p <[2log,d].

Therefore, we only need to consider hyperedges with
size less than p* =min{p,p +1} (i.e., the height of the cli-
ques’ graph in Figure B.1). We have the following theorem
for the runtime of constructing shareability graphs.

Theorem B.1. In the average case that the demand and supply
profiles satisfy the random geometric graph conditions, the run-
time is O(|S|dV" ).

Proof. The expected number of hyperedges connected to
vehicle s, E; max, is bounded by

d d d
Es max = 12 22 . 1 2 _(p*-2)
' (1) ' (2) " +((P*—1))(p ra
ed\?_, ed \F! 2
—_ * p=2)
Sed+(2) 2°g+ +(P*—1) (p"—1)q

3 1| [eqd 2, eqd AR, — (-1
_ed+q{(2) Zier () grap|-0w,

where ¢ is the Euler'snumber. [

Appendix C. Supplementary Results for

Approximation Algorithms
C.1. Proof for Sample Average Approximation in SRAMF

Proof. We denote the optimal value of the SRAMF problem
(2) as v* and the optimal value for the objective from Algo-
rithm 2 as 9(Sp). Let 6 be the upper bound of the optimality
gap v* —0(Sp). We assume that E[Q(y, &)] = Q(m~2) for any
& where m is a given constant. The main task is to show that
E[6(So)] = Q(m?) with the sample size N =m*/6* and

Pr6(So) ¢ [(1 - 6)0", (1 +8)0*]) < exp( — /Z)E[ﬁ(so)]).

Let D(&) < D for all &. For any selection of vehicles in S,
denoted by y e, E[Q(y,é)z] < 00, because we can choose
K vertices in S, with maximum number of D edges. The
upper bound of hyperedge value v;; is Umax. Thus, we have
E[Q(, £)*] < K?|Umax |*D? < c0. Without loss of generality,
we draw the following observations from the standard sto-
chastic programming literature (Pagnoncelli, Ahmed, and
Shapiro 2009):

1. The objective value 9(Sp) — v* as N — co;

2. The expected value E[$(Sp)] = v".

Since N samples are i.i.d., we can use the Chernoff bound
on the measure:

2
Pr(6(So) ¢ [(1 — 0)v", (1 + 0)v*]) < exp (—%]E[z?(so)]).

Setting N = m*/ 6% and using the assumption that E[Q(y, &)]
= Q(m?2), by Jensen’s inequality, we have

8°E[6(S0)] = &*N - E[Q(y, &)1,
thatis, 6% - E[6(So)] = Q(m?). We have

Pr(6(Sp) & [(1 — 8)v", (1 + 6)v*]) < exp(—Q(m?)),

which achieves the second task as

(5o (G-eJo-ox)

ere((3-<)otsor= (3-Javow)
amr(ats0< (1-e)a-ow)

o5 (1Y vow)

< exp(—Q(m?)).

The first inequality is because (1/p*)3(So) < 9(Sr) < 0(So). This
concludes the approximation ratio for LSLPR algorithm for the
stochastic counterpart of the ride-pooling problem. O

C.2. Proof for Lemma 1
We use a network flow formulation to prove the existence
of the mapping A;:H) xH);— R,. Consider a bipartite
graph with nodes L ={(,:e € H}} and R= {ry:f € H}}, and
arcs L X R. There is an additional source node s, and arcs
from s to each L-node and arcs from each R-node to s. Every
arc (i, j) in this network has a lower bound a(i,j) and an upper
bound B(i,j). The goal is to find a circulation z such that
a(i,j) <z(i,j) < B(i,j) for all arcs (i, j). Recall that circulation is
an assignment of nonnegative values to the arcs of the net-
work so that the in-flow equals the out-flow at every node.
The lower /upper bounds are set as follows.

1. Foreacharc (i,j) € L X R,wehavea(i,j) = 0 and (i, j) = co.

2. For each arc (s,{,) where e€H/, we have a(s,(,) =
ﬁ(sl 58) = Xe-

3. For each arc (r4,s), where f € H), we have a(ry,s)=
B(rs,8) = z.

Recall that x and z are the LP solutions corresponding to
UA(SR) and ﬁ(So)
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Given any circulation z, we define Ay(e,f) = z(£,, 1) for all
e,f € H). Then, it is easy to see that all three conditions in
Lemma 4 are satisfied.

It just remains to prove the existence of some circulation.
By Hoffman’s circulation theorem (Hoffman 2003), there is
a circulation if and only if

a(é_(T)) < ﬁ(a*(T)),

Previously, 6~ (T) denotes all arcs from a node outside T to a
node inside T; similarly, 6*(T) denotes all arcs from a node
inside T to a node outside T. This condition can be verified
using the following cases:

e Case 1: TNL#0 and TN R # R. In this case, there is
some arc from L x R in 6*(T), so the RHS in (19) is oo, which
clearly satisfies the condition.

e Case 2: TNL=0. If source s¢ T then a(6 (T))=0; so
(C.1) is clearly true. If source s € T then B(6*(T)) = >,y Xe =
1 as all of L lies outside T, and clearly a(6™(T)) <1; so fC.l)
holds.

e Case 3: TNR=R.If s T then a(6 (T))=0; so (C.1) is
clearly true. If source s ¢ T then B(67(T)) > ZfeH;Zf =1lasall
of R lies inside T, and clearly a(6™(T)) < 1; so (C.1) holds.

VT subset of nodes. (C.1

C.3. Supplementary Results for MMO Algorithm

Recall that 9(Sg) = Eéﬁ(SR,é), where 9(Sg, &) is defined as
the LP in (4). Therefore, we can write 9(Sg) as the following
LP:

9(Sr) = maximize %Z Z VexS (C2)
* T ecE(©)
st Y <1 VjeD(E) V&,
ecE(&)jee
> oab<i VieSaUSp Ve,
ecE(&):iee
x6=0 Ve~Sa\Sk V&,
x>0 VeeE(&) VE.

For any vehicle i and scenario &, set F; : € E(£) denotes all the
hyperedges incident to i in scenario &. All variables x5 with e ~
S \ Sg are set to zero. Therefore, it suffices to consider the LP
with variables x5 fore € F; s and i € S U Sg.

We now consider the dual of the above LP (which has the
same optimal value by strong duality). Let G=S54 U Sp U
(UgD(&)) denote a combined groundset consisting of all vehicles
and demands from all scenarios. The dual variables are 1, ¢ for
all ¢ € G and scenarios &. The dual LP is

9(Sr) = minimize Z‘S:Zug,g

geG
s.t. Zug,g Z%},
g€e
VeeF; s, V& VieSgUSp
u>0.
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