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Abstract. Ride-pooling, which accommodates multiple passenger requests in a single trip, 
has the potential to substantially enhance the throughput of mobility-on-demand (MoD) 
systems. This paper investigates MoD systems that operate mixed fleets composed of 
“basic supply” and “augmented supply” vehicles. When the basic supply is insufficient to 
satisfy demand, augmented supply vehicles can be repositioned to serve rides at a higher 
operational cost. We formulate the joint vehicle repositioning and ride-pooling assignment 
problem as a two-stage stochastic integer program, where repositioning augmented supply 
vehicles precedes the realization of ride requests. Sequential ride-pooling assignments aim 
to maximize total utility or profit on a shareability graph: a hypergraph representing the 
matching compatibility between available vehicles and pending requests. Two approxima
tion algorithms for midcapacity and high-capacity vehicles are proposed in this paper; the 
respective approximation ratios are 1=p2 and (e � 1)=(2e + o(1))p lnp, where p is the maxi
mum vehicle capacity plus one. Our study evaluates the performance of these approximation 
algorithms using an MoD simulator, demonstrating that these algorithms can parallelize com
putations and achieve solutions with small optimality gaps (typically within 1%). These effi
cient algorithms pave the way for various multimodal and multiclass MoD applications.

History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in 
Transportation Science and Logistics. 

Funding: This work was supported by the National Science Foundation [Grants CCF-2006778 and FW- 
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1. Introduction
Ride-pooling assignment aims to dynamically determine 
the efficient dispatching of vehicles to handle multiple 
ride requests in a single ride in mobility-on-demand 
(MoD) systems. It generalizes various fleet management 
problems in applications ranging from ride-hailing 
(Santi et al. 2014) to microtransit (Li, Luo, and Hampshire 
2021) and shared autonomous vehicles (Lokhandwala 
and Cai 2018). Efficient ride-pooling assignment algo
rithms can enhance the profitability of MoD services and 
increase the system throughput, that is, the number of 
completed customer trips per unit of time (Ke et al. 2021). 
Although consumers may experience trip delays due to 
detours, they are compensated by splitting the fare with 
coriders. More importantly, ride-pooling can decrease 
dead-heading trips that contribute to excessive energy 
use and greenhouse gas emissions of MoD platforms 
(Markov et al. 2021).

One of the MoD platform’s central tasks is to achieve a 
dynamic balance between supply (available vehicles) and 
demand (pending ride requests). However, this balance is 
often unattainable due to supply shortages, such as a lack 
of freelance drivers during peak hours (Guda and Subra
manian 2019), the inefficacy of empty-car cruising and 
searching for customers (Braverman et al. 2019), and dri
vers’ perception errors regarding the supply-demand 
imbalance (Dong et al. 2021). Contrariwise, the heteroge
neity of travel demand and driver types, as well as 
advancements in vehicle automation, have introduced 
the notion of “mixed fleet” into MoD platforms, which is 
illustrated by the following examples:
Example 1. Transportation network companies (TNCs) 
such as Uber and Didi Chuxing cater to diverse market 
segments by offering various service options. UberX is 
a standard service operated by freelancers, whereas 
Uber Black and Didi Chauffeur are premium services 
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driven by professional drivers. Typically, the platform 
pairs users with their requested service class. However, 
when the standard class is in short supply, it may be 
advantageous for the platform to reposition premium 
vehicles to high-demand areas to fulfill standard-class 
ride requests and minimize cancellations.

Example 2. A mixed-autonomy platform operates both 
fully automated vehicles (AVs) owned by the platform 
and conventional vehicles (CVs) driven by human free
lancers to provide on-demand transit services (Figure 1). 
When selecting the type of vehicle to dispatch, the oper
ator must consider that (1) customers may prefer to be 
served by an AV or a CV, depending on their level of 
trust in automation (Lavieri and Bhat 2019), and (2) the 
accessible areas and operational costs of AVs and CVs 
for transporting customers may differ (Chen et al. 2017a, 
Shladover 2018).

Although these examples have distinct contexts, 
they can be generalized as the following stochastic ride- 
pooling assignment with mixed fleets (SRAMF) problem. 
The mixed fleets consist of “basis supply” vehicles 
and “augmented supply” vehicles. Basis supply refers 
to vehicles operated by freelance drivers who use self- 
interested strategies when searching for customers, 
serve most customers in a decentralized manner, and 
presumably produce friction in balancing supply and 
demand (Dong et al. 2023). Augmented supply refers 
to vehicles (such as AVs) that follow the platform’s 
centralized repositioning policies. Because of the dif
ferent characteristics of supply sources, the platform 
faces a tradeoff between cost and control when match
ing ride requests with available vehicles. For a given 
level of demand, assigning nearby basis supply vehi
cles will incur lower operational costs than assigning 

augmented set vehicles. For example, the platform 
must pay salaries to full-time drivers in the aug
mented supply in Example 1 and costly maintenance 
costs for AVs in Example 2, which will be incorpo
rated into the cost of serving each ride request. On the 
other hand, the platform may only have the authority 
to proactively reposition and reassign augmented 
supply vehicles to complement unsatisfied demand. 
As such, the platform’s decision involves whether and 
where to reposition augmented supply vehicles, 
which primarily depends on the consequent assign
ment between available basis and augmented supply 
vehicles with realized ride requests.

Two unique operational challenges arise due to the 
diversification of vehicle fleets on MoD platforms. First, 
operating MoD with mixed fleets face inherent uncertain
ties in the sequential vehicle repositioning and ride- 
pooling assignment processes as follows. In the first-stage 
vehicle repositioning decisions, the platform forecasts 
future demand and repositions selected premium service 
vehicles (Example 1) or AVs (Example 2) to specific 
locations to accommodate unmet demands for the basis 
supply. In the second-stage ride-pooling assignment deci
sions, the platform assigns realized ride requests to avail
able vehicles, including basis and augmented supply, to 
maximize the total value of assignments. The uncertain
ties between the vehicle repositioning and assignment 
stages can be categorized as supply-based or demand- 
based factors. Supply-based uncertainty concerns whether 
basis-supply drivers stay active in future periods. 
Demand-based uncertainty includes the origins and desti
nations of upcoming ride requests, the number of passen
gers per order, customers’ unknown preferred vehicle 
type, and their value of time. Because falsely repositioned 

Figure 1. (Color online) Ride-Pooling with AVs and CVs 

Note. The first-stage decision involves repositioning AVs in dedicated regions; the second-stage decision is to solve a general assignment prob
lem (GAP).
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vehicles will result in a supply-demand mismatch in the 
future, joint repositioning and assignment will cause com
plicated tradeoffs in MoD operations.

Second, previous aggregate vehicle repositioning mod
els are not implementable for vehicle-level operation in 
MoD systems. The SRAMF problem differs from the large 
body of mixed-fleet planning literature (Guo, Caros, and 
Zhao 2021; Karamanis et al. 2021) that used an aggregate 
matching model in region-to-region repositioning flow 
computations. Focusing on vehicle-level operations under 
uncertainty will cause significantly more computational 
burden than the aggregate setting. This scalability issue 
intensifies as the platform uses high-capacity augmented 
supply vehicles to compensate for their high operational 
costs, such as on-demand transit services (Hasan and Van 
Hentenryck 2021). With expanded vehicle capacity, the 
number of candidate pickup and dropoff routes can grow 
exponentially. These unique technical challenges of joint 
repositioning and assignment decisions motivate the 
development of effective and efficient SRAMF algorithms 
in this study.

This study expands the deterministic ride-pooling 
assignment of homogeneous vehicle fleets in Santi 
et al. (2014) and Alonso-Mora et al. (2017) to a stochas
tic setting in a nontrivial way. The scalable framework 
addresses the computational challenge of the second- 
stage problem in SRAMF by separating the vehicle 
routing and trip-to-vehicle assignment into two 
sequential steps based on the notion of “shareability 
graphs.” Specifically, given ride requests and avail
able vehicles in each time interval, Alonso-Mora et al. 
(2017) proposed a procedure that guaranteed anytime 
optimality; that is, the resulting ride-pooling assign
ments attain the same solutions as the integrated vehi
cle routing and trip assignment formulation (see 
Appendix B, Section B.1). The procedure is summa
rized as follows: 

1. First, the algorithm constructs a shareability graph 
that represents the matchable relationship between all 
ride requests (demand) and available vehicles (supply) 
(Figure 2) and computes the value associated with each 
matching.

Figure 2. (Color online) SRAMF Procedure per Step 

Notes. SB � {sB
1 , sB

2 } is the basis set (e.g., CVs) and SA � {sA
1 , sA

2 } is the augmented set (e.g., AVs). (a) Algorithm’s input, including the current loca
tions of SA and SB, and obtains demand forecast. (b) Shareability graph for each scenario, where each trip is a clique containing one vehicle and 
multiple matchable requests. (c) SRAMF problem by approximation algorithms, in which one or more ride requests are assigned to a selected 
vehicle in each scenario ξ. (d) Computed decisions and updates the system state.
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2. Next, the algorithm maximizes the total matching 
value by solving a general assignment problem (GAP) 
on the shareability graph.

3. Finally, the shareability graph is updated by deleting 
occupied vehicles and assigned demand and substituting 
them with incoming requests and available vehicles.

The SRAMF problem can be formulated as a two-stage 
stochastic integer program. Incorporating repositioning 
decisions into the deterministic ride-pooling assignment 
is difficult due to the relationship between these consecu
tive steps. Because the vehicle repositioning decision 
must select augmented supply vehicles by repositioning 
them from the augmented supply set (a set of candidate 
locations) before the realization of demand, convoluted 
tradeoffs must be made between the first- and second- 
stage decisions. If the platform underestimates demand 
and selects fewer vehicles, it cannot meet all future 
requests. If the platform overestimates demand and 
selects more vehicles than needed, it must pay extra oper
ational costs. In addition, because of various sources of 
uncertainties stated previously, the size of the shareability 
graph grows rapidly with the number of scenarios sam
pled. As a result, solving GAP in SRAMF using exact 
methods becomes inefficient or even infeasible.

1.1. Main Results and Contribution
The primary objective of this study is to develop approxi
mation algorithms for solving large-scale SRAMF pro
blems. We focus on the expected value maximization 
setting for several reasons. First, real-world concerns 
emphasize the need to enhance MoD systems’ throughput 
and profitability (Ashlagi et al. 2018; Simonetto, Monteil, 
and Gambella 2019). Second, devising approximation algo
rithms for maximizing GAPs tends to be more challenging 
than minimizing GAPs (Fleischer et al. 2006). The objective 
function of SRAMF can incorporate various attributes, 
such as trip fares, pickup times, and ride-pooling prefer
ences. The primary performance metric for the proposed 
algorithms is the tightness of approximation ratios, offering 
a provable performance guarantee in worst-case scenarios.

To summarize our work, let p denote the mixed fleets’ 
largest vehicular capacity plus one. Our main results are 
as follows: 

1. The SRAMF problem is proved to be NP-hard for 
any finite number of scenarios, and its objective lacks 
attractive submodular properties. These characteristics 
necessitate the development of new approximation 
algorithms to exploit the computational advantages of 
shareability graphs.

2. Our analysis provides provable worst-case perfor
mance guarantees as follows: 

(a) For midcapacity vehicles, we develop a local- 
search linear-program-relaxation (LSLPR) algorithm, 
with an approximation ratio of 1=p2. Midcapacity vehi
cles carrying up to four passengers simultaneously are 
suitable for applications in Example 1.

(b) For high-capacity vehicles, we develop a max- 
min online (MMO) algorithm, with an approximation 
ratio of (e � 1)=(2e + o(1))plnp. High-capacity vehicles 
carrying more than four requests are suitable for auto
mated transit services in Example 2.

(c) These approximation ratios are close to the 
best possible bounds: no polynomial-time algorithm 
can achieve a ratio better than O(lnp=p) under standard 
complexity assumptions.

Our methods rely on a linear relaxation of the second- 
stage GAP and carefully bound the integrality gap of the 
relaxation in each scenario. Additionally, this analysis 
explains the sources of computational intractability of 
SRAMF and recognizes the significance of considering 
uncertainties per assignment.

This study contributes to the literature on MoD system 
operations as follows: 

1. Propose a two-stage stochastic integer program 
for SRAMF and propose approximation algorithms 
with satisfactory performance guarantees. These easy- 
to-implement algorithms can facilitate fleet operations 
on MoD platforms and guarantee their performance in 
the face of uncertainties with provable bounds.

2. Derive a general estimator for marginal values of 
trip-to-vehicle matchings. The primary analytical bar
rier for the design of approximation algorithms for 
SRAMF is to evaluate the expected value of reposition
ing additional vehicles to serve future demand in a spe
cific area. Our proof bounds this value and is of 
independent interest to relevant literature, for example, 
fleet sizing in MoD systems (Benjaafar et al. 2021).

3. Provide analytical solutions for fractional hyper
graph matchings. Our analysis for the MMO algorithm 
derives a closed-form solution for the dual problem of 
fractional hypergraph matchings to accelerate enu
merations. This closed-form solution can be transferred 
to other decomposition-based ride-pooling assignment 
methods.

We conducted comparative studies to illustrate the 
computational efficiency and optimality gaps of our 
developed algorithms using real-world taxicab trip data 
(TLC 2021). Numerical results showed our algorithms to 
be almost as competitive as mixed integer programming 
(MIP), indicating that the derived worst-case approxima
tion ratios are conservative. This framework can incorpo
rate various demand forecasts (Yang et al. 2020) and use 
state-dependent matching intervals (Qin et al. 2021). 
Moreover, our results extend to mixed fleets of more 
than two vehicle types.

1.2. Organization and General Notation
The remainder of the paper is organized as follows. We 
first review the related literature in Section 2. Section 3
formulates the SRAMF problem and shows its hardness. 
Section 4 proposes two approximation algorithms that 
achieve nearly tight approximation ratios. We test the 
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effectiveness of these approximation algorithms using 
real-world and simulated data in Section 5 and draw 
conclusions in Section 6.

The following notation is used throughout this work. 
The notation :� stands for “defined as”. For any integer 
n, we let [n] :� {1, 2, : : : , n}. We use v(·) as the actual 
value function and v̂(·) as the approximate or estimated 
value function. P stands for the class of questions for 
which some algorithm can provide an answer in polyno
mial time, and NP stands for those with nondeterministic 
polynomial time algorithms. For any set S, |S | is its cardi
nality. Given two sets A and B, A + B or A ∪ B represents 
the union of A and B; A – B or A\B represents modifying 
A by removing the elements belonging to B. A ~ B repre
sents that set A intersects with B, that is, A ∩ B ≠ ∅. i.i.d. 
stands for “independent and identically distributed.” 
Other notation and acronyms used in this paper are sum
marized in Table A.1.

2. Literature Review
We refer to ride-pooling (also called ride-splitting/carshar
ing rides) in the broad context and focus on operations- 
level decisions. Solving the optimal ride-pooling assign
ment is challenging because the number of possible shared 
trips grows exponentially in the vehicle capacity and 
matching intervals. The following review covers the recent 
development of computational methods for ride-pooling 
applications with different objectives of maximizing the 
utilization of vehicles or reducing the negative externalities 
related to deadhead miles.

2.1. Decomposition and Approximate Dynamic 
Programming Approaches

Compared with the substantial body of literature for 
matching supply and demand without the ride-pooling 
option (Wang and Yang 2019), there are only a few 
attempts to solve the ride-pooling assignment problem 
at the vehicle level by combining heuristic and decompo
sition methods (Herminghaus 2019, Yu and Shen 2019, 
Sundt et al. 2021). Although these heuristics achieved 
satisfying performance in numerical experiments, they 
cannot balance computational efficiency and accuracy 
with theoretical guarantees. The trip planning for ride- 
pooling is more tractable with fixed travel patterns, such 
as providing services for daily commuting. Hasan, Van 
Hentenryck, and Legrain (2020) proposed a commute 
trip-sharing algorithm that maximized total shared rides 
for a set of commute trips satisfying various time- 
window, capacity, pairing, ride duration, and driver 
constraints.

Another stream of papers emphasized the importance 
of nonmyopic policies in MoD systems, as supply and 
demand dynamics are influenced by prior decisions. 
Unfortunately, because of the computational complexity, 
most nonmyopic ride-pooling assignment policies are 

restricted to aggregate models and compute optimal 
flows between regions. Shah, Lowalekar, and Varakan
tham (2020) developed an approximate dynamic pro
gramming method to learn from the integer program 
(IP)-based assignment and approximate the value func
tion by neural networks. We refer readers to a compre
hensive review Qin, Zhu, and Ye (2021) of reinforcement 
learning methods for ride-sharing assignments and other 
sequential decisions.

2.2. Deterministic Ride-Pooling Assignment 
for Shareability Graphs

To tackle those unprecedented computational challenges 
in MoD systems, Santi et al. (2014) quantified the tradeoff 
between social benefits and passenger discomfort from 
ride-pooling by introducing the concept of “shareability 
networks.” They found that the total empty-car travel 
time was reduced by 40% in the offline setting (i.e., with 
ex post demand profiles) or 32% when demand is 
revealed en route. This work suffers a limitation in vehi
cle capacity as the matching-based algorithm can only 
handle up to three-passenger shared rides. Alonso-Mora 
et al. (2017) expanded the framework to up to 10 riders 
per vehicle. The high-capacity ride-pooling trip assign
ment is solved by decomposing the shareability graph 
into trip sets and vehicle sets and then solving the opti
mal assignments by a large-scale IP. As the vehicle capac
ities increase, the moderate size of the shared vehicle 
fleet (2,000 vehicles with capacities of four rides in their 
case studies) can serve most travel demands with short 
waiting times and trip delays. Simonetto, Monteil, and 
Gambella (2019) improved this approach’s computa
tional efficiency by formulating the master problem as a 
linear assignment problem. The resulting large-scale 
assignment on shareability networks is calculated in a 
distributed manner. However, despite the easy imple
mentation of these methods, they lack theoretical perfor
mance guarantees.

2.3. Approximation Algorithms 
for Maximization GAP

Approximation algorithms can find near-optimal assign
ments with provable guarantees on the quality of 
returned solutions. Because the ride-pooling assignment 
problem is a variant of GAP (Öncan 2007), we list the sig
nificant results here. Shmoys and Tardos (1993) and 
Chekuri and Khanna (2005) obtained polynomial-time 
1
2-approximation algorithms. Fleischer et al. (2006) 
obtained an linear programming (LP)-rounding based 
(1 � (1=e))-approximation algorithm and a local-search 
based 1=2-approximation algorithm. Previous studies 
have explored GAP algorithms for both instant and 
batched dispatching settings. Instant dispatching assigns 
requests to available vehicles on arrival. Lowalekar, 
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Varakantham, and Jaillet (2020) developed approxima
tion algorithms for online vehicle dispatch systems. Their 
setting with i.i.d. demand assumptions are markedly dif
ferent from the current work. Batched dispatching uses 
GAP on a hypergraph to search for locally optimal 
assignments. Mori and Samaranayake (2021) developed 
1=e-approximation LP-rounding algorithms for the 
deterministic request-trip-vehicle assignment problem. 
In contrast, the current work considers a stochastic set
ting in which sequential repositioning and assignment 
decisions jointly determined the objective in SRAMF. As 
a batched dispatching algorithm, this stochastic formula
tion can be applied to arbitrary demand distributions.

2.4. Shared Mobility with Mixed Fleets
Mixed-fleet ride-sharing systems are emerging research 
topics in literature. The first stream of research is moti
vated by MoD platforms’ transition to a blended work
force of permanent employees and freelance workers. 
Dong and Ibrahim (2020) investigated the staffing prob
lem in which a ride-hailing platform determined the num
ber of fore-hire drivers considering its impact on other 
flexible workers. Dong et al. (2021) justified the dual- 
source strategy for mitigating the demand uncertainty in 
ride-hailing systems and designed optimal contracts to 
coordinate the mixed workforce. Castro et al. (2020) mod
eled the ridesharing market as matching queues where 
drivers had different flexibility levels. They proposed a 
robust throughput-maximizing capacity reservation pol
icy against the unknown driver engagement function.

The introduction of automation in MoD systems in the 
foreseeable future motivates a second stream of mixed- 
fleet research. Lokhandwala and Cai (2018) used agent- 
based simulations to evaluate the impact of heteroge
neous preferences and revealed that the transition to a 
mixed fleet would reduce the total number of vehicles, 
focus on areas of dense demands, and lower the overall 
service levels in the suburban regions. Wei, Pedarsani, 
and Coogan (2020) studied the equilibrium of a mixed 
autonomy network in which AVs are fully controlled by 
the platform and CVs are operated by individual drivers. 
The optimal pricing for the mixed service is formulated as 
a convex program. Li, Chen, and Zhang (2022) proposed 
a traffic network equilibrium model with mixed auton
omy based on two-player games and proved the existence 
of a speed policy that guarantees Pareto-efficient equilib
ria. Xie, Liu, and Chen (2023) developed an actor-critic 
learning approach for mixed-autonomy fleet manage
ment considering bounded rational drivers. In contrast, 
this work is one of the first attempts to develop algorithms 
for mixed-autonomy operations at the vehicle level.

3. Problem Description
3.1. Basic Setting
This section introduces the formulation of the SRAMF 
problem as a two-stage stochastic integer program and 

shows its NP-hardness. These technical challenges moti
vate the design of new approximation algorithms in the 
remainder of this work.

3.1.1. Preliminaries: Constructing a Shareability Graph 
of Mixed Fleets. Ride-pooling assignment is conducted 
on a shareability graph, represented by a hypergraph 
G � {S, D, E}. The vertices of the hypergraph are S ∪ D, 
where S denotes supply (available vehicles) and D 
denotes demand (ride requests). Each hyperedge/clique e ∈

E consists of one vehicle and a subset of ride requests. In 
conventional assignments, each vehicle can serve only 
one ride request at a time, so G reduces to a bipartite 
graph. In the ride-pooling setting, each hyperedge e ∈ E 
can contain any number of ride requests within the vehi
cle’s capacity. Other constraints, such as the upper 
bounds for detour times, are considered when construct
ing the shareability graph (we refer readers to the discus
sion of shareability graphs in Appendix B). The platform 
continuously updates such a hypergraph following the 
procedure outlined in Section 1.1. Appendix B also 
describes a sequence of matching rules that can construct a 
hierarchical tree of matchable requests, significantly reduc
ing the computational burden of dial-a-ride problems.

This generic model covers most MoD applications 
described in Section 1. The mixed-fleet supply contains a 
set SA of locations to reposition augmented vehicles and 
a set of basis vehicles SB. We assume that each aug
mented vehicle can reposition to any of the locations SA 
and serve nearby ride requests covered by their incident 
hyperedges. Let S � SA ∪ SB, |SA | � nA, and |SB | � nB. 
To keep notation simple, we will refer to the “locations to 
reposition augmented vehicles” SA simply as the aug
mented supply/vehicles. We denote p � 1 + maxi∈SA∪SB 

{Ci} where Ci is the capacity of vehicle i. Without loss of 
generality, we let the cost of using vehicles in SB be zero 
and the cost of each vehicle in SA be normalized to one. 
This will be extended to a more general setting of parti
tion constraints in Section 4.3. The varying setup costs of 
SA and SB can be justified by the additional operations 
expenditure of repositioning centralized-controlled vehi
cles in the augmented set SA, such as the annualized extra 
salary paid to full-time drivers in Example 1. Each hyper
edge e � {i, J}i∈S, J⊆D corresponds to a potential trip where 
vehicle i serves ride requests in J.

The MoD platform will implement SRAMF algorithms 
using the online procedure outlined below. The platform 
first predicts available vehicles in SB and ride requests D 
per batch and then constructs a shareability graph 
according to the procedure outlined in Appendix B, Sec
tion B.1. After calculating the value of each hyperedge ve, 
the platform solves a two-stage stochastic integer pro
gram to determine the optimal centralized repositioning 
policy for vehicles in SA. The platform then observes 
actual demand and vehicle locations and updates 
the shareability graph. The remainder of this section 
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formally defines the SRAMF problem and highlights its 
unique technical challenges.

3.1.2. Formulation of SRAMF. Before actual ride requests 
are sent, the platform chooses a subset SR ⊂ SA of (at 
most) K locations to reposition vehicles from the aug
mented supply. After requests are revealed, the platform 
can assign ride requests only to vehicles in SR ∪ SB and 
collect instantaneous rewards (profits) from completing 
these trips; that is, reassignment is not allowed.

The sequential decisions for the SRAMF problem are 
as follows: 

1. In the first stage, for each augmented vehicle 
i ∈ SA, yi � 1 denotes that an augmented vehicle is allo
cated to location i for future assignment and yi � 0 
denotes not selected. Let SR :� {i ∈ [nA] : yi � 1} ⊆ SA 
denote a set of selected augmented vehicles. All basis 
supply vehicles are included, as they impose no additional 
setup cost, and the available supply in the second stage is 
SR ∪ SB. The first-stage decision space is Y ∈ {0, 1}

nA+nB .
2. In the second stage, a scenario ξ reveals a set of 

actual ride requests D(ξ) and their associated hyper
edges E(ξ). The scenario ξ is assumed to follow a ran
dom distribution F(ξ) with support on Ξ, which 
incorporates a demand forecast model. Each hyperedge 
e ∈ E(ξ) includes a vehicle i from either basis or aug
mented supply and a subset of requests J ⊂ D(ξ). {wj}j∈J 
denotes the numbers of passengers in each ride request j. 
The total number of passengers in a set of ride requests J 
must satisfy 

P
j∈Jwj ≤ Ci where Ci is the capacity of vehi

cle i. The hyperedge value of e may include the following 
elements: 

(a) The profit uj gained from serving the ride 
request j.

(b) A trip t � {j1, j2, ⋯: jk ∈ J} represents a sequence 
of picking up ride requests in J. The associated travel 
cost c(i, t) assumes that the vehicle i follows the shortest 
pick-up trip to minimize customers’ waiting times.

(c) Each request j gains additional utility ũij if 
matched with their preferred vehicle type.

The hyperedge value for e ∈ E(ξ) collected from a 
potential assignment is given by

ve �
X

j∈J
uj +

X

j∈J
ũij � c(i, t) ≥ 0: (1) 

The hyperedge value captures various sources of uncer
tainties between vehicle repositioning and trip assignment 
stages. uj considers the uncertain number of ride requests 
and their origin and destination; wj and the set J considers 
the unknown number of passengers in each ride request; 
ũij considers the customers’ uncertain preference for vehi
cle types. Finally, because of fluctuating traffic conditions 
and different vehicle technology (e.g., CVs and AVs), c(i, t) 

represents that pickup times are uncertain. However, in 
the second stage (after the scenario ξ is observed), all 
hyperedge values are known precisely. It is worth men
tioning that the calculation of hyperedge values can be inte
grated with advanced value function approximation 
techniques. For example, Tang et al. (2019) calculated the 
associated hyperedge value as a reward signal derived 
from a reinforcement learning–based estimator. 

3. The platform assigns ride requests to each avail
able vehicle by determining xe ∈ {0, 1} for all e ∈ E(ξ). 
The second-stage assignment decision is equivalent to 
choosing a set of hyperedges in which every pair of 
hyperedges is disjoint. This condition guarantees that 
each vehicle and each ride request can be included no 
more than once in the final assignment per scenario. 
An assignment is only feasible between the chosen 
supply SR ∪ SB (denoted as e ~ SR ∪ SB) and realized 
demand D(ξ) in each scenario.

The optimal value of assignments in scenario ξ is cal
culated by Q : Y × Ξ→ R. Given a scenario, the second- 
stage decisions are trip assignments denoted by 
x � {xe}e∈E(ξ). Our objective is to maximize the expected 
total value.

The SRAMF problem can be formulated as a two-stage 
stochastic integer program:

maximize
y

E[Q(y, ξ)] (2) 

s:t:
X

i∈SA

yi ≤ K (budget), (2a) 

yi ∈ {0, 1} ∀i ∈ SA, (2b) 

yi � 1 ∀i ∈ SB, (2c) 

and the second-stage problem is given by

Q(y, ξ) � maximize
x

X

e∈E(ξ)

vexe (3) 

s:t:
X

e∈E(ξ):j∈e
xe ≤ 1 ∀j ∈ D(ξ) (assignment I), (3a) 

X

e∈E(ξ):i∈e
xe ≤ yi ∀i ∈ SB ∪ SA (assignment II), (3b) 

xe ∈ {0,1} ∀e ∈ E(ξ): (3c) 

In the first-stage problem (2), K is the maximum number 
of locations for repositioning augmented supply vehi
cles. In the second-stage problem (3), Constraints (3a) 
and (3b) guarantee that each supply and demand is 
matched at most once and the vehicles selected in SR ∪

SB are matchable. In other words, unassigned vehicles 
and ride requests in the hypermatching x will either 
renege or postpone to the next batch. The second-stage 
GAP is a p-set packing problem with p representing the 
maximum size of hyperedges, which is known to be 
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NP-hard (Füredi, Kahn, and Seymour 1993; Chan and 
Lau 2012).

3.1.3. Roadmap for Proving SRAMF Approximation 
Algorithms. Figure 3 provides an overview of the per
formance analysis of two proposed approximation algo
rithms and their approximation ratios, respectively. We 
start with reducing the objective of (2) to the sample- 
average estimate in Section 3.2. We then show the hard
ness of the SRAMF problem in Section 3.3. Because the 
GAP problem (3) is NP-hard, our approximation algo
rithms rely heavily on the “fractional assignment” tech
nique that relaxes the integrality constraints in (3) as a 
polynomial-time solvable linear program. Two different 
approximation algorithms, LSLPR and MMO, are 
discussed in detail in Section 4.1 and Section 4.2, 
respectively.

3.2. Reduction to Sample-Average Estimate
The sample-average approximation (SAA) method is com
monly used to solve two-stage stochastic integer programs. 
It draws N scenarios {ξℓ}N

ℓ�1 from a scenario-generating ora
cle (e.g., demand forecasting and vehicle simulation mod
els) and approximates the expected objective function by a 
sample-average estimate E[Q(y,ξ)] ≈

PN
ℓ�1 Q(y,ξℓ)=N.

To simplify the analysis of Problem (2), we reduce the 
objective function E(Q(y,ξ)) to finite-sample proximity. 
The main analysis is conditional on N mutually disjoint 
sets of ride requests D(ξ) and hyperedges E(ξ). Because 
the second-stage assignment ensures unique matchings 
per scenario, we can make multiple disjoint copies when 
an identical ride request appears in multiple scenarios. 
The consistency and shrinking bias of the sample- 
average estimate are well studied in literature; hence, the 
proof of SAA is detailed in Appendix C, Section C.1, for 
completeness. Altogether, the optimal value of any 
approximation algorithm converges to E[Q(y,ξ)] as the 
number of scenarios N → ∞.

This study’s focus is therefore developing algorithms 
to solve the SRAMF problem in (2) with the sample- 

average estimate. As mentioned earlier, we will work 
with an LP relaxation of (3) as the original p-set packing 
problem is NP-hard. For any subset SR ⊆ SA and scenario 
ξ, define v̂(SR,ξ) to be the optimal value of the following 
LP:

maximize
x

X

e∈E(ξ)

vexe (4) 

s:t:
X

e∈E(ξ):j∈e
xe ≤ 1 ∀j ∈ D(ξ), (4a) 

X

e∈E(ξ):i∈e
xe ≤ 1 ∀i ∈ SA ∪ SB, (4b) 

xe � 0 ∀e ~ SA \ SR, (4c) 
xe ≥ 0 ∀e ∈ E(ξ): (4d) 

Solutions to the LP relaxation of (3) are called fractional 
assignments; v(SR,ξ) denotes the optimal value of exact 
solutions to (3), given a set of selected augmented supply 
SR. Furthermore, we define two objective functions 
related to the sample average estimate: 

• The objective value using the exact GAP in (3) for 
each scenario is given by

v∗(SR) �
1
N
X

ℓ∈[N]

v(SR, ξℓ): (5) 

• The objective value using the LP relaxation of (4) 
is given by

v̂(SR) �
1
N
X

ℓ∈[N]

v̂(SR, ξℓ): (6) 

Fractional assignments of the p-set packing problem 
enjoy the following properties. (1) The integrality gap 
between the exact solution and LP relaxation is at most p 
times (Arkin and Hassin 1998). (2) A greedy algorithm 
selecting hyperedges e in decreasing order of their values 
ve while maintaining feasibility achieves a 1=p-approxi
mation to the LP value. We restate them in the following 
theorem.

Figure 3. Roadmap for the Performance Analysis on SRAMF Algorithms 

Notes. The approximation ratios on arrows refer to the results in this paper. SO is the optimal selection of vehicles, and SR is the section of 
vehicles generated by approximation algorithms.
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Theorem 1. For any SR ⊆ SA, we have v∗(SR) ≤ v̂(SR) ≤

p · v∗(SR); furthermore, the greedy algorithm obtains a solu
tion of value at least 1=p · v̂(SR).

These reductions narrow down the main task of 
bounding the approximation ratio of v̂(SR). In particular, 
we will focus on the SRAMF problem with fractional 
assignments:

max
SR⊆SA: | SR | ≤K

v̂(SR): (7) 

If we obtain an α-approximation algorithm for (7), then 
combine it with Theorem 1, we would obtain an 
α=p-approximation algorithm for SRAMF (with integral 
assignments). Also, observe that the objective in (7) is 
monotone nondecreasing in the selected vehicle set SR. 
Therefore, any maximal solution (including the optimal 
solution) selects exactly K vehicles in the repositioning 
decision. Before jumping into the design of approxima
tion algorithms, the following section elaborates on some 
technical challenges.

3.3. Hardness and Properties of SRAMF
We show that solving SRAMF is computationally chal
lenging due to the following reasons: (1) Proposition 1
shows that the second-stage assignment problem is 
NP-hard. Hence, computing the exact assignment for 
any SR is costly. (2) Proposition 2 shows that v̂(SR) is not 
submodular, preventing the use of efficient submodular 
maximization algorithms. These facts motivate the 
development of new approximation algorithms in Sec
tion 4 to exploit the specific structure of the SRAMF 
problem.

Proposition 1. There is no algorithm for SRAMF (even 
with n � 1 scenario) with an approximation ratio better 
than O(lnp=p), unless P � NP.

Proof for the Hardness of SRAMF. We reduce from 
the p-dimensional matching problem, defined as fol
lows. There is a hypergraph H with vertices V parti
tioned into p parts {Vr}

p
r�1, and hyperedges E. Each 

hyperedge contains exactly one vertex from each part 
(so each hyperedge’s size is p). The goal is to find a 
collection F of disjoint hyperedges that have maxi
mum cardinality |F | .

Given any p-dimensional matching as above, we 
generate the following SRAMF instance. The aug
mented vehicles are SA � V1 and the basis vehicles are 
SB � ∅. There is n � 1 scenario with ride requests V2 ∪

: : : Vp and hyperedges E (each of value of one). Each 
vehicle has a capacity of p � 1, and each ride request 
has one or more passengers. Each hyperedge contains 
precisely one vehicle, as required in SRAMF. The 
bound K � |SA | so the optimal first stage solution is 
clearly SR � SA (select all locations for augmented 
vehicles). Now, the SRAMF problem instance reduces 

to its second-stage problem (3), which involves select
ing a maximum cardinality subset of disjoint hyper
edges. This is precisely the p-dimensional matching 
problem.

It follows that if there is any α-approximation algo
rithm for SRAMF with n � 1 scenario, then there is an 
α-approximation algorithm for p-dimensional match
ing. Finally, Hazan, Safra, and Schwartz (2006) proved 
that it is NP-hard to approximate p-dimensional match
ing better than an O(lnp=p) factor (unless P � NP). The 
proposition now follows. w

This intractability is the reason that we work with the 
fractional assignment problem (7). A natural approach for 
budgeted maximization problems such as (7) is to prove 
that the objective function is submodular, in which case 
one can directly use the (1 � (1=e))-approximation algo
rithm by (Nemhauser, Wolsey, and Fisher 1978). How
ever, we show a negative result about the submodularity 
of v∗(SR) and v̂(SR), which precludes the use of such 
an approach. Recall that a set function f : 2Ω → R+ on 
groundset Ω is submodular if f (U ∪ {i}) � f (U) ≥ f (W ∪

{i}) � f (W) for all U ⊆ W ⊆ Ω and i ∈ Ω \ W.

Proposition 2. The objective functions v∗(SR) and v̂(SR)

are not submodular functions.

Proof. Recall that the ground set for both functions v∗

and v̂ is Ω :� SA the set of augmented vehicles. We 
provide an SRAMF instance with n � 1 scenario where 
these functions are not submodular. Consider a share
ability graph with |SA | � 3, SB � ∅ and three ride 
requests {d1, d2, d3}. Let p � 3, that is, each vehicle can 
carry at most two requests. The set of hyperedges is

{(sA
1 , d1), (sA

1 , d2, d3), (sA
2 , d2), (sA

3 , d3)}:

See also Figure 4. The value of each hyperedge reduces 
to the number of ride requests it covers.

Let subsets U � {sA
1 } and W � {sA

1 , sA
2 }. Also, let i � sA

3 . 
Clearly, v∗(U) � 2 (serving d2, d3), v∗(W) � 2 (serving 
d1, d2 or d2, d3), v∗(U ∪ {i}) � 2 (serving d1, d3 or d2, d3), 

Figure 4. (Color online) Nonsubmodularity of Function 
v∗(SR)
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and v∗(W ∪ {i}) � 3. Therefore, we have
v∗(W ∪ {i}) � v∗(W) � 1 > 0 � v∗(U ∪ {i}) � v∗(U), 

which implies the set function v∗ is not submodular. It is 
easy to check that the LP value function v̂ � v∗ for this 
instance, so function v̂ is also not submodular. w

4. Approximation Algorithms for SRAMF
This section provides two different approximation algo
rithms for SRAMF. Both the algorithms focus on solving 
the fractional assignment problem (7) and achieve approx
imation ratios 1=p and ≈ (e � 1)=(2e · lnp), respectively. 
Combined with Theorem 1, these imply approximation 
algorithms for SRAMF with an additional factor of 1=p.

4.1. Local Search Algorithm for 
Mid-Capacity SRAMF

The mid-capacity SRAMF models the current ride-hailing 
market, in which each vehicle can deliver two to four ride 
requests simultaneously. In this section, we propose an 
LSLPR algorithm that obtains 1=p-approximation for the 
fractional assignment problem (7).

4.1.1. Overview of the LSLPR Algorithm. Let ɛ > 0 be 
an arbitrarily small parameter to serve as the algorithm’s 
stopping criterion. The outline of the LSLPR algorithm is 
as follows: 

1. Start from any solution SR ⊆ SA with |SR | � K.
2. Consider all alternative solutions SR′ � SR � {i} +

{i′} where i ∈ SR and i′ ∉ SR after swapping one vehicle 
and evaluate the corresponding LP value v̂(SR′ ).

3. Change the current solution SR to SR′ if the objective 
value improves significantly, i.e., v̂(SR′ ) > (1 + ɛ) · v̂(SR).

4. Stop if such a significant local swap does not exist.
Formally, let k index the iterations. Let Sk

R denote the 
current solution in iteration k. The following subroutine 
implements a single iteration.

Algorithm 1 (Local Swap Subroutine)
for i ∈ Sk

R and i′ ∈ SA\Sk
R do

obtain v̂(Sk
R � i + i′) by solving the fractional assign

ment problem;
end
let (c, c′) be the pair that maximizes v̂(Sk

R � i + i′)
over i ∈ Sk

R and i′ ∈ SA\Sk
R;

if v̂∗(Sk
R � c + c′) > (1 + ɛ) · v̂(Sk

R) then
set Sk+1

R ← Sk
R � c + c′ and continue with k ← k + 1;

else
halt local search and output Sk

R;
end

In a broad sense, the local swap subroutine does not 
necessarily enumerate all pairs (i, i′) to search for the 
optimal (c, c′). A more efficient alternative is terminating 
each iteration at the first pair of i ∈ SR and i′ ∈ SA\SR that 
increases the objective by more than ɛ · v̂(Sk

R).
The complete LSLPR algorithm is as follows.

Algorithm 2 (LSLPR Algorithm for Midcapacity SRAMF)
Data: Augmented supply SA, basis supply SB, sce

narios {ξℓ}N
ℓ�1 and ɛ > 0.

Result: Near-optimal SR ⊂ SA and the correspond
ing trip assignment.

Initialization: Set k � 1 and randomly select K vehi
cles from SA as S1

R;
while k ≤ kmax do

Run the local swap subroutine in Algorithm 1;
Obtain the final trip assignment with SR � Skmax

R 
using the greedy algorithm (Theorem 1).

end

Algorithm 2 obtains the final selection of vehicles Skmax
R , 

where the maximal number of iterations kmax will be 
derived later. In the final step, the algorithm obtains an 
integral assignment for each scenario instead of the frac
tional assignments. To this end, we can use the greedy 
algorithm (see Theorem 1) to select the assignment for 
each scenario, which is guaranteed to have an objective 
value at least 1=p times the fractional assignment. In Sec
tion 4.1.2, we first analyze the approximation ratio and 
then the computational complexity of LSLPR.

4.1.2. Analysis of the LSLPR Algorithm. Recall that SR 
is the solution obtained by our algorithm and |SR | � K. 
Let SO denote the optimal solution: We assume (without 
loss of generality) |SO | � K. Note that SO is a fixed subset 
only used in the analysis. Also, let x � 〈xξ〉 and z � 〈zξ〉
denote the optimal LP solutions to v̂(SR) and v̂(SO), 
respectively.

It will be convenient to consider the overall hyper
graph on vertices SA ∪ SB ∪ (∪ξD(ξ)) and hyperedges 
∪ξE(ξ). As the objective v̂(·) is additive over the scenarios 
ξ, we may assume, by duplicating demands and hyper
edges (if necessary), that demands D(ξ) and hyperedges 
E(ξ) are disjoint across scenarios ξ. Recall that xξ (and zξ) 
has a decision variable corresponding to each hyperedge 
in E(ξ). For each demand d ∈ ∪ξD(ξ), let Hd denote the 
hyperedges incident to it. For each vehicle i ∈ SA ∪ SB 
and scenario ξ, let Ei,ξ denote the hyperedges in E(ξ)
containing i. Therefore, Fi :� ∪ξEi,ξ is the set of hyper
edges incident to vehicle i.

For any demand d, the following lemma sets up a map
ping between the hyperedges (incident to d) used in the 
solutions x and z. For the analysis, we add a dummy 
hyperedge ⊥ incident to d so that the assignment con
straints in the LP solutions x and z are binding at d. So, 
P

e∈Hd
xe + x⊥ � 1 and 

P
f ∈Hd

zf + z⊥ � 1. Let H′
d :� Hd ∪

{⊥} denote the hyperedges incident to d.

Lemma 1. For any demand d, there exists a decomposition 
mapping ∆d : H′

d × H′
d → R satisfying the following conditions: 

1. Mapping ∆d(e, f ) ≥ 0 for all e, f ∈ H′
d;

2. For all f ∈ H′
d 
P

e∈H′
d
∆d(e, f ) � zf ;

3. For all e ∈ H′
d 
P

f ∈H′
d
∆d(e, f ) � xe.
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Figure 5 illustrates this mapping. Appendix C includes 
the definition of ∆d(e, f ) and the proof of Lemma 1. Note 
that 

P
e∈H′

d

P
f ∈H′

d
∆d(e, f ) � 1 for any demand d. For any 

subset F ∈ H′
d, we use the shorthand ∆d(e, F) :�

P
f ∈F∆d(e, f ) and ∆d(F, e) :�

P
f ∈F∆d(f , e).

Here is an outline of the remaining analysis. Let L 

denote a bijection between SR (LSLPR algorithm’s solu
tion) and SO (optimal solution), consisting of pairs (i1, i2) 
where i1 ∈ SR and i2 ∈ SO. We also ensure that L contains 
the pairs (i, i) for all vehicles i ∈ SR ∩ SO. There is such a 
bijection because |SR | � K � |SO | . We first consider a 
swap SR � {i1} + {i2} where (i1, i2) ∈ L, and lower bound 
the objective increase. The approximate local optimality 
of SR implies that the objective increase is at most 
ɛ · v̂(SR). Then, we add the inequalities corresponding to 
the objective increase for the swaps in L and obtain the 
approximation ratio.

4.1.2.1. Analysis of a Single Swap (i1, i2). Consider 
any i1 ∈ SR and i2 ∈ SO. We now lower bound v̂(SR � {i1}

+{i2}) � v̂(SR). Recall that for any subset S, v̂(S) �
1
N
P
ξv̂(S,ξ) where v̂(S,ξ) is the LP value for scenario ξ. 

Therefore, we have

v̂(SR � {i1} + {i2}) � v̂(SR)

�
1
N
X

ξ

(v̂(SR � {i1} + {i2},ξ) � v̂(SR,ξ)):

We now focus on a single scenario ξ and lower bound 
v̂(SR � {i1} + {i2},ξ) � v̂(SR,ξ). x̄ξ represents a feasible 
solution for fractional assignment v̂(SR � {i1} + {i2},ξ). 
Recall that xξ denotes the optimal solution for LP v̂(SR,ξ). 
Therefore, we can then bound:

v̂(SR � {i1} + {i2},ξ) � v̂(SR,ξ) ≥ v⊤x̄ξ � v⊤xξ, (8) 

where v is the vector of hyperedge values for E(ξ). As we 

focus on a single scenario ξ, we drop ξ from the notation 
whenever it is clear.

We are now ready to construct the new fractional 
assignment x̄. Define the following: 

1. Let xe � 0 for all e ∈ Fi1 . This corresponds to drop
ping vehicle i1 from SR.

2. Let xe � ze for all e ∈ Fi2 . This corresponds to add
ing vehicle i2 to SR.

3. Let xe � xe � maxd∈e∆d(e, Fi2 ∩ Hd) for all e ∈ E(ξ)
\Fi1 \ Fi2 .

If i1 � i2, then we drop case 1. The third case is needed 
to make space for the hyperedges incident to the new 
vehicle i2 (which is increased in case 2). The following 
two lemmas prove the feasibility of this solution x̄ and 
bound its objective value. Later, we assume that i1 ≠ i2 
(the proof for i1 � i2 is nearly the same, in fact even sim
pler). Therefore, i1 ∈ SR \ SO and i2 ∈ SO \ SR.

Lemma 2. The fractional assignment x̄ is a feasible solu
tion for v̂(SR � {i1} + {i2}).

Proof for Lemma 2. We show the feasibility by check
ing all constraints in (4). Note that xe � 0 for all hyper
edges e incident to a vehicle in SA \ (SR � {i1} + {i2}).

Constraint x̄ ≥ 0. It suffices to check this for hyperedges 
e ∈ E \ Fi1 \ Fi2 . Note that
xe �xe �max

d∈e
∆d(e,Fi2 ∩Hd)�min

d∈e
(xe �∆d(e,Fi2 ∩Hd))≥0, 

where the inequality uses Lemma 1 (condition 3), that is, 
xe � ∆d(e, H′

d) ≥ ∆d(e, Fi2 ∩ Hd).
Constraint (4a): By definition of x̄, for any demand 

d, we have
X

e∈Hd

xe ≤
X

e∈Hd∩Fi2

ze +
X

e∈Hd\Fi1 \Fi2

[xe � ∆d(e, Fi2 ∩ Hd)]

≤
X

e∈Hd∩Fi2

ze +
X

e∈H′
d

[xe � ∆d(e, Fi2 ∩ Hd)] (9) 

�
X

e∈Hd∩Fi2

ze +
X

e∈H′
d

xe �
X

e∈H′
d

∆d(e, Fi2 ∩ Hd)

�
X

e∈Hd∩Fi2

ze +
X

e∈H′
d

xe �
X

f ∈Fi2 ∩Hd

∆d(H′
d, f )

�
X

e∈H′
d

xe � 1: (10) 

(9) uses xe ≥ ∆d(e, Fi2 ∩ Hd) by Lemma 1, and the first 
equality in (10) uses zf � ∆d(H′

d, f ) by Lemma 1 (condi
tion 2).

Constraint (4b): The augmented vehicle set can be 
divided into three groups. 

1. Vehicle i1: 
P

e∈Fi1
xe � 0.

2. Vehicle i2: 
P

e∈Fi2
xe �

P
e∈Fi2

ze ≤ 1 by definition.
3. Vehicles j ≠ i1, i2: 

P
e∈Fj

xe ≤
P

e∈Fj
xe ≤ 1. Here, we 

used the definition of xe and ∆d(·, ·) ≥ 0 by Lemma 1
(condition 1).

Therefore, x̄ is a feasible fractional assignment 
solution. w

Figure 5. Mapping ∆d(e, f ) with E(ξ) � {e1, e2, e3}
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Lemma 3. The increase in the objective is
X

e∈E(ξ)

ve(xξe � xξe ) ≥
X

e∈Fi2 ∩E(ξ)

vezξe �
X

f ∈Fi1 ∩E(ξ)

vf xξf

�
X

e∈E(ξ)

ve
X

d∈e
∆d(e, Fi2 ∩ Hd):

Proof for Lemma 3. By definition of x̄,

xe � xe �

ze if e ∈ Fi2

�xe if e ∈ Fi1

� max
d∈e

∆d(e, Fi2 ∩ Hd) otherwise:

8
>><

>>:

We used that xe � 0 for all e ∈ Fi2 as i2 ∈ SA\SR. There
fore, we have
X

e∈E(ξ)

ve(xe � xe) ≥
X

e∈Fi2 ∩E(ξ)

veze �
X

f ∈Fi1 ∩E(ξ)

vf xf

�
X

e∈E(ξ)

ve max
d∈e

∆d(e, Fi2 ∩ Hd)

≥
X

e∈Fi2 ∩E(ξ)

veze �
X

f ∈Fi1 ∩E(ξ)

vf xf

�
X

e∈E(ξ)

ve
X

d∈e
∆d(e, Fi2 ∩ Hd): w 

Combining Lemmas 2 and 3, and adding over scenarios 
ξ, we obtain the following.

Lemma 4. For any pair (i1, i2) ∈ L, we have

v̂(SR � {i1} + {i2}) � v̂(SR) ≥
X

e∈Fi2

veze �
X

f ∈Fi1

vf xf

�
X

e∈E
ve
X

d∈e
∆d(e, Fi2 ∩ Hd):

4.1.2.2. Combining All the Swaps. Recall that L is a 
bijection between SR and SO, so |L | � K. Moreover, using 
the local-search termination condition, there is no swap 
that improves the objective of the final solution SR by 
more than ɛ · v̂(SR). Hence,

Kɛ · v̂(SR) ≥
X

(i1, i2)∈L

[v̂(SR � {i1} + {i2}) � v̂(SR)]

≥
X

(i1, i2)∈L

"
X

e∈Fi2

veze �
X

f ∈Fi1

vf xf

�
X

e∈E
ve
X

d∈e
∆d(e, Fi2 ∩ Hd)

#

(11) 

�
X

i2∈SO

X

e∈Fi2

veze �
X

i1∈SR

X

f ∈Fi1

vf xf

�
X

i2∈SO

X

e∈E
ve
X

d∈e
∆d(e, Fi2 ∩ Hd)

≥
X

i2∈SO

X

e∈Fi2

veze �
X

i1∈SR

X

f ∈Fi1

vf xf

�
X

e∈E
ve
X

d∈e
∆d(e, Hd) (12) 

≥
X

i2∈SO

X

e∈Fi2

veze �
X

i1∈SR

X

f ∈Fi1

vf xf

�
X

e∈E
ve
X

d∈e
xe (13) 

� vTz � vTx �
X

e∈E
| {d ∈ e} |vexe 

≥ vTz � vTx � (p � 1)vTx � vTz
� p · vTx � v̂(SO) � p · v̂(SR): (14) 

(11) is by Lemma 4, (12) uses that {Fi2 }i2∈SO are disjoint, 
(13) uses Lemma 1, and the inequality in (14) uses that 
each hyperedge has at most p � 1 demands.

Setting ɛ � 1=pK2, it follows that v̂(SR) ≥ 1=

(p + o(1)) · v̂(SO). Combined with Theorem 1, we obtain 
v∗(SR) ≥ 1=p · v̂(SR) ≥ (1=(p2 + o(p))) · v̂(SO).

Theorem 2. The LSLPR algorithm for SRAMF is a 
1=p2-approximation algorithm.

4.1.2.3. Time Complexity of the LSLPR Algorithm. Each 
iteration of Algorithm 1 involves considering K(nA � K)

potential swaps and recall that nA � |SA | . For each swap, 
we need to evaluate v̂, which can be done using any 
polynomial time LP algorithm such as the ellipsoid 
method (Bertsimas and Tsitsiklis 1997). Therefore, the 
time taken in each iteration is polynomial.

We now bound the number of local search iterations. 
In each iteration, the objective value increases by a factor 
of at least 1 + ɛ. Therefore, after k iterations,

v̂(Sk+1
R ) ≥ (1 + ɛ)

kv̂(S1
R):

Clearly, the assignment associated with the initial solu
tion S0

R has a lower bound v̂(S0
R) ≥ (1=N) · vmin, where 

vmin � mine:ve>0ve is the minimum value over all hyper
edges. Recall that hyperedges with nonpositive values 
are not considered in any assignment. The maximum 
objective of any solution is at most (nA + nB) · vmax, where 
|SA | � nA, |SB | � nB and vmax � maxeve is the maximum 
value over all hyperedges. Hence,

(nA + nB) · vmax ≥ v̂(Sk+1
R ) ≥ (1 + ɛ)

k
·

1
N

vmin, 

which implies that the maximum number of iterations

kmax ≤ log1+ɛ

N(nA + nB)vmax

vmin

� �

� O 1
ɛ

log N(nA + nB)vmax

vmin

� �

:

Using ɛ � 1=pK2, it follows that the number of iterations 
is polynomial.

Luo et al.: Efficient Algorithms for Stochastic Ridepooling Assignment 
Transportation Science, 2023, vol. 57, no. 4, pp. 908–936, © 2023 INFORMS 919 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

08
.6

5.
20

2.
17

4]
 o

n 
15

 Ja
nu

ar
y 

20
24

, a
t 0

4:
02

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



The last step of Algorithm 2 implements the greedy p- 
set packing algorithm for each scenario, which also takes 
polynomial time. It follows that LSLPR solves the 
SRAMF problem in polynomial time regarding para
meters p, K, N, |E | , nA, and nB.

4.2. Max-Min Online Algorithm for 
High-Capacity SRAMF

The LSLPR algorithm is capable of assigning rides in shared 
mobility applications using midcapacity vehicles. When the 
maximal capacity of vehicles in MoD is large (e.g., the maxi
mum capacity of MoD transit service is 10 in Alonso-Mora 
et al. (2017)), the 1=p2-approximation ratio is disadvanta
geous. We propose an alternative method for high-capacity 
SRAMF. The main idea of the max-min online (MMO) algo
rithm is to use LP-duality to reformulate v̂ as a covering linear 
program. Then, the max-min optimization in Feige et al. 
(2007) can further improve the approximation ratio. This 
framework requires two technical properties (monotonicity 
and online competitiveness), which are satisfied in the 
SRAMF problem. We will prove that the MMO algorithm 
obtains an approximation ratio of (1 � (1=e))(1=2plnp).

Using LP duality and the definition of v̂(SR) (see the der
ivation in Appendix C, Section C.3), we can reformulate

v̂(SR) � minimize
u

X

ξ

X

g∈G
ug,ξ (15) 

s:t:
X

g∈e
ug,ξ ≥

ve

N
,

∀e ∈ Fi,ξ, ∀ξ, ∀i ∈ SR ∪ SB, 
u ≥ 0:

Here, G � SA ∪ SB ∪ (∪ξD(ξ)) is a combined groundset 
consisting of all vehicles and demands from all scenarios. 
For any vehicle i and scenario ξ, set Fi,ξ ⊆ E(ξ) denotes 
all the hyperedges incident to i in scenario ξ.

We can scale the covering constraints to normalize the 
right-hand side to one and rewrite the constraints as 
P

g∈e
N
ve

ug,ξ ≥ 1. The row sparsity of this constraint matrix 
(i.e., the maximum number of nonzero entries in any con
straint) is maxe∈E |e | � p and ve > 0 for all hyperedges. 
Let ce be the row of constraint coefficients for any hyper
edge e ∈ E � ∪ξE(ξ), that is,

ce(g,ξ) �

N
ve

if g ∈ e and e ∈ E(ξ)

0 otherwise
:

8
<

:

Then, the SRAMF problem with fractional assignments 
maxSR⊆SA: | SR | ≤Kv̂(SR) can be treated as the following 
max-min problem:

max
SR⊆SA: | SR | ≤K

min
u

{1⊤u |c⊤
e u≥1, ∀e∈Fi, ∀i∈SR ∪SB; u≥0},

(16) 
where Fi � ∪ξFi,ξ for each vehicle i. For the remainder, 
t � 1, 2, : : : indexes steps of the online algorithm.

The main result is as follows.

Theorem 3. There is a (e � 1)=(2e + o(1))lnp-approxima
tion algorithm for (16).

Before proving this result, we introduce two important 
properties.

Definition 1 (Competitive Online Property). An α-com
petitive online algorithm for the covering problem 
(15) takes as input any sequence (i1, i2, : : : , it, : : : ) of 
vehicles from SA and maintains a nondecreasing solu
tion u such that the following hold for all steps t. 

• Solution u satisfies constraints c⊤
e u ≥ 1 for e ∈ Fi, 

for all vehicles i ∈ {i1, i2, : : : , it}, and
• Solution u is an α-approximate solution, i.e., the 

objective 1⊤u ≤ α · v̂({i1, i2, : : : , it}).
The online algorithm may only increase variables u 

in each step t.

Definition 2 (Monotone Property). For any u ≥ 0 and 
S ⊆ SA, let

Aug∗(S |u) :� {min
w≥0

1⊤w : c⊤
e (u + w) ≥ 1,

∀e ∈ Fi, ∀i ∈ S ∪ SB}:

The covering problem (15) is said to be monotone if 
for any u ≥ u′ ≥ 0 (coordinate wise) and any S ⊆ SA, 
Aug∗(S |u) ≤ Aug∗(S |u′).

These properties were used by Feige et al. (2007) to 
show the following result.

Theorem 4 (Feige et al. 2007). If the covering problem 
(15) satisfies the monotone and α-competitive online prop
erties, there is a (e � 1)=(e ·α)-approximation for the max- 
min problem in (16).

Our max-min problem indeed satisfies both these 
properties.

Lemma 5. The covering problem (15) has an α � O(lnp)

competitive online algorithm. Moreover, when p is large, 
the factor α � (2 + o(1))lnp.

Proof. Recall that (15) is a covering LP with row- 
sparsity p. Moreover, in the online setting, constraints 
to (15) arrive over time. Therefore, this is an instance 
of online covering LPs, for which an O(lnp)-competi
tive algorithm is known (Gupta and Nagarajan 2014). 
See also Buchbinder et al. (2014) for simpler proof. 
Moreover, one can optimize the constant factor in 
Buchbinder et al. (2014) to get α � (2 + o(1))lnp.

These previous papers work with the online model 
when only one covering constraint arrives in each 
step. Although Lemma 5 involves multiple covering 
constraints Fi arriving in each step, this complexity 
can easily be reduced to the prior setting as follows. 
We introduce the constraints in Fi one by one in any 
order. The algorithms in Gupta and Nagarajan (2014) 
and Buchbinder et al. (2014) can therefore be used 
directly. w
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Lemma 6. The covering problem (15) is monotone.

Proof. Consider any u ≥ u′ ≥ 0 and any S ⊂ SA. Let 
w′ ≥ 0 denote an optimal solution to Aug∗(SR |u′). As 
all constraint coefficients ce ≥ 0, it follows that c⊤

e (u +

w′) ≥ c⊤
e (u′ + w′) ≥ 1 for all e ∈ Fi and i ∈ S ∪ SB. 

Hence, w′ is also a feasible for the constraints in 
Aug∗(S |u). Therefore, Aug∗(S |u) ≤ 1⊤w′ � Aug∗(S |u′), 
which proves the monotonicity. w

Combining Lemmas 5 and 6 with Theorem 4, we 
obtain Theorem 3. Our Ω(1=lnp) approximation ratio is 
nearly the best possible for the max-min problem (16), as 
the problem is hard to approximate to a factor better than 
O(lnlnp=lnp) (Feige et al. 2007).

We now describe the complete algorithm for SRAMF. 
This is a combination of the online LP algorithm from 
Buchbinder et al. (2014) and the max-min algorithm from 
Feige et al. (2007). For any ordered subset S of vehicles, 
let v̂ON(S) denote the objective value of the online algo
rithm for (15) after adding constraints corresponding to 
the vehicles in S (in that order). Algorithm 3 describes the 
updates performed by the online algorithm when a vehi
cle i is added.

Algorithm 3 (Updating Subroutine in the MMO Algorithm)
For a given i ∈ SA ∪ SB, perform the following updates;
for e ∈ Fi � ∪ξFi,ξ do

let {u�
g,ξ}g∈e be the values of variables in hyper

edge e and Γ�
e �

P
g∈eu�

g,ξ;
if Γ�

e < ve
N then

update ug,ξ ← u�
g,ξ +

ve

N
δ

� �
·

1 + |e | · δ
N
ve
Γ�

e + |e | · δ
�

ve

N
δ,

for all g ∈ e:

end
end

Proof for the Updating Subroutine in the MMO 
Algorithm. Consider the updates when vehicle i is 
added. Consider any scenario ξ and hyperedge 
e ∈ Fi,ξ: the corresponding covering constraint is 
cT

e u � (N=ve)
P

g∈eug,ξ ≥ 1. Let τ be a continuous vari
able denoting time and δ > 0 be a constant. The online 
LP algorithm in (Buchbinder et al. 2014) raises vari
ables ug,ξ in a continuous manner as follows:

∂ug,ξ

∂τ
�

N
ve

ug,ξ + δ, ∀g ∈ e, (17) 

until the constraint is satisfied. Letting Γe �
P

g∈eug,ξ, we 
have

∂Γe

∂τ
�

N
ve

X

g∈e
ug,ξ + |e | · δ �

N
ve
Γe + |e | · δ:

By integrating, it follows that the duration of this 
update is

T �

Z Γ+
e

Γ�Γ�
e

∂Γe
N
ve
Γe + |e | · δ

�
ve

N
· ln

N
ve
Γ+

e + |e | · δ
N
ve
Γ�

e + |e | · δ

 !

�
ve

N · ln 1 + |e | · δ
N
ve
Γ�

e + |e | · δ

 !

:

Earlier, Γ�
e and Γ+

e denote the values of Γe at the start 
and end of this update step; Γ+

e � ve=N as the updates 
stop as soon as the constraint is satisfied. For each 
g ∈ e, using (17),

T �

Z T

τ�0

∂ug,ξ
N
ve

ug,ξ + δ
�

ve

N · ln
N
ve

u+
g,ξ + δ

N
ve

u�
g,ξ + δ

 !

:

Again, u�
g,ξ and u+

g,ξ denote the values of ug,ξ at the 
start and end of this update step. Combined with the 
previous value for T, we get a closed-form expression 
for the new variable values:
N
ve

u+
g,ξ + δ �

N
ve

u�
g,ξ + δ

� �

·
1 + |e | · δ

N
ve
Γ�

e + |e | · δ
, ∀g ∈ e: w 

The complete MMO algorithm is described in Algorithm 4.

Algorithm 4 (MMO Algorithm for SRAMF)
Data: Augmented supply SA, basis supply SB, hyper

graph G with E(ξ), and ɛ > 0.
Result: Near-optimal SR ⊂ SA and the correspond

ing trip assignment.
Initialization: SR ← ∅ and dual variables u ← 0;
For each vehicle in SB (in any order), run Algorithm 
3 to obtain v̂ON(SB)

for k � 1, : : : , K do
for i ∈ SA\SR do

Run the updating subroutine in Algorithm 3
and obtain v̂ON(SB + SR + {i}).

end
i∗ � arg maxi∈SA\SR v̂ON(SB + SR + {i});
SR ← SR + {i∗};

end

4.3. Extensions to SRAMF Under Partition 
Constraints

We now consider a more general setting where the aug
mented set SA is partitioned into M subsets SA(1), ⋯ 
SA(m), ⋯ , SA(M), and the platform requires Km vehicles 
from each subset.

Example 3. In the market segmentation of Example 1
described in Section 1, there are M types of vehicles, 
so the cardinality constraint is further specified for 
each vehicle type as partition constraints 

P
i∈SA(m)yi ≤

Km for all m ∈ [M].
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Example 4. In the mixed autonomy application of 
Example 2, there are M separate AV zones, and the 
repositioning capacity requirement is proportional to 
the demand density in each zone; 

P
i∈SA(m)yi ≤ Km is 

now a constraint for each AV zone m ∈ [M].

The original SRAMF problem (2) is now expanded to 
solve

maximize
y

E[Q(y, ξ)] (18) 

s:t:
X

i∈SA(m)

yi ≤ Km ∀m ∈ [M], (18a) 

yi ∈ {0, 1} ∀i ∈ SA: (18b) 

We can extend our result to obtain the following.
Theorem 5. The MMO algorithm is a (1=(4 + o(1))

plogp)-approximation algorithm for SRAMF with partition 
constraints.

The proof is identical to that of Theorem 3. The only 
difference is the use of the following result for max-min 
covering under a partition constraint (instead of Theo
rem 4, which only holds for a cardinality constraint).

Theorem 6 (Gupta, Nagarajan, and Ravi 2015). If the cov
ering problem (15) satisfies the monotone and α-competitive 
online properties, there is a 1=2α-approximation for the max- 
min problem with a partition (or matroid) constraint.

5. Numerical Experiments
5.1. Data Description and Experiment Setup
We evaluate the effectiveness of the proposed approxima
tion algorithms in two hypothetical mixed-fleet scenarios: 

1. Setting 1 simulates mixed fleets of standard and 
premium vehicles in Example 1 and represents the 
midcapacity SRAMF scenario. The MoD platform peri
odically repositions premium vehicles of SA to serve 
ride requests when the future demand exceeds the 
capacity of standard vehicles in SB. We consider the 
stochastic nature of system dynamics as the probability 
of demand surges in some zones across the city. The 
value of hyperedges in these zones increases when 
demand surges, rewarding algorithms that successfully 
reposition in locations with high surge probability. The 
main task is to reposition premium vehicles to accom
modate predicted surge demand.

2. Setting 2 simulates the early deployment of AVs 
in Example 2 and represents the high-capacity SRAMF 
scenario. Because of regulatory or technological restric
tions, we assume that automated MoD buses operate 
only within certain AV zones (Chen et al. 2017b) and 
deliver up to 10 passengers per trip (Alonso-Mora et al. 
2017). The main task is to periodically reposition K 
automated MoD buses in these AV zones to accommo
date future demand.

To demonstrate the value of using a stochastic assign
ment framework, we consider two benchmark models: 

1. Benchmark 1: Stochastic assignment using IP solver 
solves SRAMF exactly using the SAA approach in Sec
tion 3.2. This benchmark method and approximation 
algorithms use the same set of samples to assess on a 
fair basis. The SAA approach is implemented in a state- 
of-the-art IP solver (Gurobi 9.1).

2. Benchmark 2: Assignment with mean demand fore
casts solves a deterministic ride-pooling assignment 
problem based on the mean demand forecasts. This 
method solves the joint vehicle repositioning and trip 
assignment problem using a one-shot approach based 
on the mean hyperedge value and demand distribution 
F(ξ). The goal is to address the significance of consider
ing demand and supply uncertainties in SRAMF, albeit 
at the expense of increased computing complexity.

The objective values of Benchmark 2 and SRAMF are 
not comparable. The following reconstruction proce
dure is therefore used in evaluations. (1) Select a set of 
augmented supply SR based on the average scenario. 
(2) Generate a new set of test samples as outlined in the 
SAA method. (3) Recompute the objective values for 
all algorithms using identical test samples. This proce
dure can prevent the fallacy of cherry-picking in 
numerical experiments and is described further in Sec
tion 5.1.2.

5.1.1. Data Description and Preprocess. We test the 
performance of these approximation algorithms in a sim
ulated MoD system with mixed fleets. The ride-pooling 
simulation follows a batch-to-batch procedure similar to 
that employed in Alonso-Mora et al. (2017), with a 
demand forecast module to maximize the expected total 
value realized by serving travel demand.

Table 1 summarizes our experiment settings. The pri
mary data inputs include the following: 

1. Road networks: The road network in Manhattan, 
NYC is obtained from the OpenStreetMap data. The 
average traveling time on each road segment is com
puted using the historical speed data in (Sundt et al. 
2021). In Setting 1, both vehicle types can serve any 
nearby ride requests made in Manhattan. To demon
strate AVs’ early deployment in Setting 2, two AV 
zones are selected in the planning phase (Figure 9(a)). 
These zones are highly congested areas proposed for 
pedestrianization and could potentially be closed off to 
most vehicles besides MoD transit services. Because of 
regulations for safety concerns, automated MoD buses 
only operate within these AV zones (Chen et al. 2017b).

2. Supply: The basis set SB represents ride-hailing 
vehicles with a fixed capacity of two that provides the 
standard service. 

• In Setting 1, the augmented set SA represents a 
set of locations to which premium vehicles can be 
repositioned (Figure 6). Full-time drivers provide 
reservation-based service with these premium vehi
cles, which have a capacity of three passengers (Ma 
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et al. 2017). Thus, the MoD platform can allocate at 
most K idling premium vehicles to facilitate freelan
cing drivers who accommodate ad-hoc demand 
surges for standard services (Dong et al. 2023).

• In Setting 2, the augmented set SA represents 
the initial parking locations from which auto
mated MoD buses are repositioned (Figure 9). 
Each shuttle bus in SA has a capacity of up to ten 
passengers and can operate only within AV zones 
at the beginning of intervals. If each MoD bus can 
be repositioned only to a particular subset of loca
tions, we use the generalized setting in Section 
4.3, where Km represents the set of approachable 
locations for vehicle m. The same approximation 
ratio holds for this extension.

3. Demand: We create a demand forecast model to 
sample ride requests from the NYC Taxi and Limou
sine Commission trip data (TLC 2021). The forecast 
model uses this data set’s origin-destination, number 
of passengers, trip time, and fare information to predict 
hyperedge values as accurately as possible (Figure 
9(b)).

4. Hyperedge values: The value of each hyperedge e 
is computed by (1). Each trip’s pickup time follows the 
shortest path connecting all ride requests in the hyper
edge e, and customers’ preference over mixed fleets is 
randomly generated such that ve > 0.

5. Time intervals: We choose different matching inter
vals in Setting 1 and Setting 2 in the batch-to-batch imple
mentation. Setting 1 uses a one-minute interval to provide 

Table 1. Parameters in Numerical Experiments

Setting

Augmented set SA Basis set SB

Problem 
statement

Demand- 
to-supply 

ratio

Matching 
interval 
(min)

Number of 
sample 

scenarios NCapacity
Location 
no. |SA | K Capacity

Vehicle no. 
|SB |

Setting 1 2 115 60 2 60 Mid-Capacity 
SRAMF for 
Example 1
(standard- 
premium cars)

1.7–2.0 1 10

Setting 2 10 30 5 2 115 High-Capacity 
SRAMF for 
Example 2
(mixed 
autonomy)

35–45 10 50

Figure 6. (Color online) Midcapacity Mixed Autonomy Traffic Experiment in Manhattan, NYC 

(a) (b) (c)
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convenient and responsive MoD services; Setting 2 uses a 
ten-minute interval to permit repositioning between AV 
zones. Choosing the relatively large matching interval 
(ten-minute) also illustrates the scalability of approxima
tion algorithms, whereas Qin et al. (2021) showed that the 
optimal interval might depend on the supply-demand 
relationship.

5.1.2. Assessment of Algorithms in Mixed-Fleet Simu
lations. The objective of both settings established in Sec
tion 5.1 is to choose a subset of locations for repositioning 
vehicles SA to maximize the total expected assignment 
value. Consequently, the assessment of different bench
marks and proposed approximation algorithms consider 
three metrics: total computational time (runtime in sec
onds), the expected assignment value based on predicted 
demand samples (the objective value of the SRAMF 
problem defined in (2)), and the average realized assign
ment value of the proposed locations given new demand 
samples. In this section we describe these assessment 
methods and how they are calculated. The numerical 
experiments conducted in this study generate a fixed 
number of scenarios, each of which constructs a share
ability graph using the process outlined in Appendix B
and creates all hyperedges with only positive values.

We measure runtime as the duration in seconds it 
takes an algorithm to produce the desired output, a sub
set of augmented supply locations, given the inputs of a 
hyperedge graph (including associated hyperedge 
values and the samples of predicted demand). In Bench
mark 1, the SRAMF problem is solved to optimality 
using Gurobi 9.1, a highly optimized MIP solver. The 
number of variables in Equation (2) equals the product of 
the number of hyperedges and the sample size, which 
may increase exponentially in real-world applications. 
Hence, we set a six-hour computation time limit for solv
ing the SRAMF problem with any method, mainly for 
the exact solver. Unlike in Benchmark 1, our proposed 
approximation algorithms focus on solving the SRAMF 
problem by swapping vehicle locations or adding them 
sequentially from the set SA, rather than solving the 
entire two-stage integer program at once. As a result, a 
parallel-computing scheme can considerably reduce the 
total runtime of approximation algorithms by evaluating 
multiple scenarios concurrently. We report two compu
tation times for these parallelized versions, one for the 
observed runtime (programmed by Python 3.8 on our 
server) and another for the hypothetical runtime based 
on a maximum number of threads. The maximal com
puting resource (max-thread) runtime limit means that 
the algorithm can simultaneously evaluate all pairs of 
candidates in the active set of LSLPR or the dual vari
ables for all hyperedges in MMO. This limit includes 
additional time for computations in series but excludes 
the overhead cost of creating processes. The number of 
used threads for each experiment setting is provided in 

the footnotes of Tables 2 and 3. Computation times are 
reported from performance on a server with an 18-core 3.1- 
GHz processor and 192 GB RAM. In some experiments, 
the overhead cost of parallelizing the MMO algorithm in 
Python actually increases the overall computation time, so 
we report a simply vectorized version. Given the ineffi
ciency of the parallelizing process in Python, we believe 
times closer to the parallel limit can still be achieved.

The computation times of generating demand fore
casts and the corresponding shareability graph are not 
reported, because this study focuses on reducing the 
computation time for a given shareability graph (hyper
graph) in the SRAMF problem. In practice, the construc
tion processes of these hypergraphs may include more 
sophisticated demand forecast models (Geng et al. 2019), 
so their preprocessing times are not considered in the 
assessment. Approximation algorithms can handle more 
extensive shareability graphs or require significantly 
shorter computation time limits. However, measuring 
their optimality gaps requires comparing objective 
values of approximation algorithms with that of bench
mark methods and downsampling from the original 
taxicab data. The end of this section appends a separate 
set of experiments to demonstrate the scalability of 
approximation algorithms with larger instances.

Additionally, we evaluate the performance of our algo
rithms by comparing the objective value they achieve to 
that of the optimal IP solution, commonly known as the 
optimality gap. Let the objective of the IP solver be OPT 
and the approximation algorithm’s solution be ALG. The 
optimality gap is measured by (OPT � ALG)=OPT and is 
reported as a percentage.

Finally, to assess the value of incorporating stochasti
city in ride-pooling matching, we compare the average 
performances of these algorithms by dividing the data 
set into training and test samples. They are evaluated 
based on 10 new test samples drawn from the same dis
tribution F(ξ) as the training samples used for initializing 
the algorithms. Each algorithm and benchmark returns a 
subset of augmented vehicle locations from the training 
samples, which are optimally assigned to incoming 
demand in the next interval. For each test sample, we cal
culate the optimal matching that can be achieved given 
the selected augmented supply vehicles. The perfor
mance is calculated as a multiplier of the assignment 
value achieved by Benchmark 1 within each realized 
sample, which are then averaged across all 10 test sam
ples to give the reported average test performance. Note 
that this multiplier can be greater than one, as the IP solver 
often produces locations that are optimal for the training 
samples but may not generalize well to the overall distribu
tion. The IP solver may also reach the computation time 
limit and find a suboptimal solution. Benchmark 2 was cal
culated by solving a deterministic second-stage assignment 
problem (3) with average demand forecasts, reducing it to 
a much easier-to-solve integer assignment program.
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5.2. Numerical Results for Mid-Capacity SRAMF
Setting 1 uses large fleets of premium and standard vehi
cles to provide ride-pooling services in tandem. The 
demand density, surging demand areas, and two sets SA, 
SB are shown in Figure 6. We generate data for surging 
demand as follows: (1) divide Manhattan, NYC, into 12 
regions (using NYC Community Districts (Data 2022)) 
and (2) create a probability matrix of all regions to chart 
the occurrence of surging demand. For concision, we 
choose three regions with high probabilities of surges 
(Figure 6(b)); the remaining regions have a low probabil
ity of surging demand. These regions were chosen to be 
outside of areas with high demand at the time of predic
tion to test the quality of service with highly fluctuating 
demand distributions. The surging magnitude is defined 
by the multiplier of sampling rates of surging vs. the non
surging cases from the actual trips from the NYC taxi 
data set. (3) Generate i.i.d. demand profile and build 
shareability graphs for each scenario. (4) Run all algo
rithms on the same sample set, using benchmark models, 
and evaluate numerical results.

Because the shareability graph is constructed for each 
scenario, the computed optimal routes in a sample sce
nario are shown in Figure 7. As can be seen, premium 
vehicles selected from the augmented set SA pick up 
mainly customers in the surging demand areas. Because 
the hyperedge values of these rides are likely to have a 
surge multiplier, the platform tends to reposition more 
idling premium vehicles and switch them to serve stan
dard requests. The computational results for Setting 1 
are summarized in Table 2.

5.2.1. Computation Times. At small sample sizes, the 
IP’s runtime is fairly comparable to that of the LSLPR 
approximation algorithm. Gurobi is a powerful and 
heavily optimized MIP solver, so this result is unsurpris
ing. MMO and LSLPR have a clear advantage at larger 
sample sizes because they can use parallel computation 
resources. MMO is also the only algorithm to complete 
within the time limit for this setting, although many 
LSLPR runs can also reach this threshold with enough 
parallel threads.

The runtime of LSLPR varies widely as the swap order 
greatly affects the runtime. When the value ɛ in the stop
ping criterion is small in cases analyzed by large-scale 
shareability graph, long runtimes for approximation 
algorithms are occasionally observed. This is primarily 
because the algorithm must evaluate many swaps to find 
one that improves the overall objective value. If the algo
rithm randomly initializes with a competitive solution of 
SR, finding another swap to improve the objective value 
becomes increasingly difficult. This can lead to the algo
rithm’s evaluating a combinatorial number of swaps per 
iteration, but the quality of such an approximation 
attains near optimality. One advantage of LSLPR is that 
it can be stopped early and still return valid assignments Ta
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Table 3. Summary of Numerical Results for High-Capacity SRAMF

Demand- 
supply ratio SA, SB

Benchmark 1

LSLPR MMO

IP runtime (s)
LSLPR runtime 

(8-thread) (s)
LSLPR runtime 
(max-thread) (s) Optimal gap

MMO 
(8-thread) (s)

MMO 
(max-thread) (s) Optimal gap

1.78 10,115 1,177 384 20 0.2% 38 16 0.4%
1.78 15,115 1,332 383 19 0.9% 51 19 0.8%
1.78 20,115 1,470 337 23 0.7% 58 15 0.8%
1.78 25,115 1,354 357 24 0.9% 72 26 0.8%
1.78 30,115 1,464 548 31 0.5% 82 15 0.9%
1.78 35,115 1,448 599 27 0.4% 97 17 1.0%
1.83 10,115 1,425 460 29 0.3% 48 15 0.1%
1.83 15,115 1,516 509 63 0.1% 60 17 0.0%
1.83 20,115 1,730 449 33 0.5% 77 19 0.3%
1.83 25,115 1,817 483 35 0.3% 91 22 0.7%
1.83 30,115 2,027 566 31 0.7% 104 21 0.8%
1.83 35,115 2,373 565 44 0.5% 137 31 1.2%
1.87 10,115 1,180 353 26 0.7% 87 65 0.3%
1.87 15,115 1,350 398 12 0.5% 66 34 0.1%
1.87 20,115 1,509 455 55 1.0% 78 38 0.1%
1.87 25,115 1,650 488 18 1.0% 128 70 0.3%
1.87 30,115 1,690 536 35 1.0% 105 32 0.3%
1.87 35,115 1,795 535 77 1.3% 141 42 0.3%
1.93 10,115 4,468 1,011 196 0.4% 121 63 0.2%
1.93 15,115 6,411 1,036 58 0.5% 250 140 0.4%
1.93 20,115 11,243 1,237 204 0.2% 224 72 0.3%
1.93 25,115 11,820 1,318 28 0.4% 390 167 0.2%
1.93 30,115 5,432 1,453 99 0.8% 397 86 0.6%
1.93 35,115 7,038 1,830 64 0.6% 516 133 0.4%
2.02 10,115 4,348 998 50 0.6% 226 182 1.0%
2.02 15,115 5,843 1,792 157 0.2% 175 93 1.0%
2.02 20,115 9,802 2,177 210 0.2% 442 214 1.0%
2.02 25,115 16,787 3,508 300 0.5% 609 201 0.9%
2.02 30,115 22,141 4,143 198 0.6% 1,234 477 0.4%
2.02 35,115 20,920 6,327 161 0.4% 1,362 487 0.5%

Notes. The demand-supply ratio is the average ride requests over the total number of vehicles (K + |SB |); K � 5. The max-thread runtimes 
assume enough threads to evaluate all potential swaps or drivers at once. The total number of variables in Benchmark 1 (IP) ranges from 3 × 106 

to 1:2 × 107. Bold entries are the best results.

Figure 7. (Color online) Optimal Trip Assignment and Routes in the Midcapacity Scenario 

(a) (b)
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without searching all swaps, which other algorithms and 
benchmarks cannot do. We verify this hypothesis by the 
following observation: With ɛ � 0:1, Table 2 shows the 
very small optimality gaps this algorithm can achieve. 
LSLPR becomes time-competitive in runtime for most 
instances (Figure 8) when ɛ increases to 0.2.

5.2.2. Optimality Gaps. Table 2 shows that the actual 
optimality gaps throughout the numerical experi
ments are smaller than the theoretical bounds. The 
optimality gaps of LSLPR (≤1%) are significantly smal
ler than those of MMO (3%–10%), which matches the 
theoretical analysis.

Regarding performance on the test samples, LSLPR 
and MMO vehicle selections consistently achieve 
12%–25% higher objective values than those of Bench
mark 1 (IP solver). This advantage is always slightly 
worse when more samples are used initially, demon
strating that the benchmark is optimizing heavily to the 
specific training samples. This result does not generalize 
to demand distributions as well as LSLPR or MMO. 
Although Benchmark 1 might outperform our algo
rithms on some test samples and obtain a larger objective 
value with enough initial samples, the IP solver scales 

poorly in regard to the average runtime (Table 5). Addi
tionally, the deterministic benchmark shows that disre
garding demand uncertainty entirely can cause a 15%–22% 
loss of objective value in the worst case when compared 
with values that LSLPR and MMO achieved. This is a sig
nificant difference considering that the future MoD market 
is a billion-dollar industry. Therefore, it is valuable to imple
ment SRAMF algorithms to proactively reposition vehicles 
as in ride-hailing literature (Qin, Zhu, and Ye 2021) instead 
of solving the deterministic problem.

5.3. Sensitivity Analysis
To evaluate the impacts of this parameter on the compu
tational efficiency, we test the computation times and 
optimality gaps with varying K ∈ [10, 80]. The results in 
Figure 8 show that the computation times of approxima
tion algorithms increase significantly with K, which is a 
shortcoming of any local-search-based algorithm. The IP 
solver is relatively unaffected by the change of para
meters. However, the optimality gap of these approxima
tion algorithms drops to nearly zero with the increasing 
budget, as the increased budget has diminishing marginal 
value to the ride-pooling assignment (i.e., the market is 
saturated already). Therefore, the platform can select a 

Figure 8. (Color online) Impact of K on Computation Time and Optimality Gap in the Midcapacity Scenario 

(a) (b)

(c)
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reasonably small budget for approximation algorithms to 
have clear advantages over the exact solver.

5.4. Numerical Results for High-Capacity SRAMF
In Setting 2, the proposed algorithm computes near- 
optimal solutions for the mixed-autonomy fleet, includ
ing repositioning automated MoD buses (AVs) among 
locations SA (Figure 9) and determining their pickup 
routes for demand samples.

The performance of the proposed approximation algo
rithm is evaluated under different supply and demand 
distributions. The system is tested in both a relatively bal
anced demand scenario as well as a massive undersup
ply scenario, with mean numbers of demand across 
scenarios ranging from 250 to 4,000, respectively, which 
are considerably larger in a stochastic setting. Figure 10
shows that algorithms allocate four AVs to the high- 
demand-for-AV zone and one AV to the low-demand- 
for-AV zone for such demand forecasts. Notice that these 
decisions are complementary to CVs’ trip assignment 
decisions, as the latter fleets are still the primary MoD 
service providers.

5.4.1. Computation Times. The reported computation 
time includes solving for the near-optimal vehicle 
selection and exact assignment in each scenario. This 
comparison excludes the runtime required to generate 
hypergraphs to emphasize the performance of algo
rithms in solving the SRAMF problem. Recall that the 
size of the augmented set |SA | and the number of hyper
edges (the number of decision variables in each scenario) 
determine the size of the shareability graph. Table 3
shows how the total runtime grows with the increasing 
size of the hypergraph. The computation time of LSLPR 
and MMO algorithms are shown in Table 3.

The largest runtime per iteration is reported in Table 3, 
where the number of hyperedges is the maximal number 
across all scenarios. Our results show the following. (a) 
The max-thread MMO setting obtains near-optimal solu
tions to SRAMF with the smallest runtimes because it 
evaluates all potential vehicles in SA \ SR in parallel. (b) 
The performance of LSLPR is worse than MMO for high- 
capacity SRAMF, which matches our approximation 
ratio analyses where the number of potential swaps 
grows exponentially. Nevertheless, its computation time 
will always improve when additional resources are 
available.

5.4.2. Optimality Gaps. Table 3 shows that optimality 
gaps of both algorithms grow slightly with the size of 
shareability graphs, but the overall performance of the 
proposed approximation algorithms is satisfactory for 
various supply-demand ratios. The optimality gaps are 
below 2% throughout tested instances, confirming that 
approximation ratios derived for the worst-case scenario, 
1=p2 or (e � 1)=(2e + o(1))plnp, are loose with the real- 
world trip data. In other words, the performance degra
dation of these approximation algorithms is negligible 
when implementing them in shared mobility systems.

5.4.3. Sensitivity Analysis. Three sensitivity analyses 
for the high-capacity SRAMF problem involve (a) distri
bution of hyperedge values, (b) vehicle number and 
capacity, and (c) sample size. They test how the perfor
mance of these approximation algorithms is affected 
based on changes in input data and model assumptions. 
We discuss them individually in this section.

5.4.3.1. Hyperedge Value Distribution. The first set of 
sensitivity analyses aims to check algorithms’ performance 

Table 4. Impact of Vehicle Capacity on Computation Time and Optimality Gap

Number of AV 
locations AV capacity CAV

Number of 
hyperedges

Runtime of IP 
(second)

Optimality gap of 
LSLPR (%)

Optimality gap of 
MMO (%)

35 2 8,121 220 0.62 1.12
35 4 11,396 288 0.80 0.88
35 6 12,048 299 0.99 0.43
35 8 12,068 298 1.00 0.03
35 10 12,070 301 1.00 0.02

Table 5. Impact of Sample Size on Computation Time and Optimality Gap

Number of 
samples

Number of AV 
locations AV capacity

Average number 
of hyperedges Runtime of IP (s)

Runtime of 
LSLPR (s) Optimality gap (%)

10 20 5 3,100 14 2 3.23
25 20 5 3,100 104 5 1.63
50 20 5 3,100 445 12 2.03
75 20 5 3,100 907 15 2.01
100 20 5 3,100 2,088 25 0.91
150 20 5 3,100 4,076 38 3.15
200 20 5 3,100 7,485 109 1.01
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degrades with different supply and demand distribu
tions. By replacing the empirical hyperedge values 
with randomly generated hyperedge values, this anal
ysis examines the robustness of these algorithms. 
Figure 11 shows the runtime and optimality gaps with 
uniformly generated hyperedge values. Figure 9(c)
represents that customers’ level of trust in the AV tech
nology dominates the hyperedge value such that ve �P

j∈tuj +
P

j∈tũij � c(i, t) ≈
P

j∈tũij for each e ∈ E(ξ) and 
ũij follows a uniform distribution.

The runtime of random hyperedge values is smaller 
than those of real-world data, and the optimality gaps 
stay low across most instances. This is mainly because 
the empirical hyperedge values are more concentrated 
around specific values (i.e., the average trip length). 
Hence it is more difficult to reposition vehicles from the 
augmented set. In this case, the local search–based 

algorithms outperforms other algorithms with uniformly 
distributed values.

5.4.3.2. Vehicle Capacity. In Setting 2’s numerical 
experiments, automated MoD buses (AVs) provide 
mixed autonomy mass transport whose vehicle capacity 
is up to 10 passengers. CVs have a fixed capacity of three 
passengers. Recall that p bounds the vehicle capacity. 
Table 4 shows how the vehicle capacity affects the 
approximation ratios. A surprising observation is that 
the vehicle capacity is not the bottleneck of approxima
tion algorithms’ performance throughout the experi
ments. In contrast, the IP benchmark’s computation time 
increases significantly vehicle capacities. This is because 
the number of hyperedges plateaus above a certain 
capacity due to the process of constructing shareability 
graphs outlined in Section 5.1. For a high-capacity trip to 

Figure 9. (Color online) High-Capacity Mixed Autonomy Traffic Experiment in Manhattan, NYC 

(a) (b)

(c)
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Figure 10. (Color online) Optimal Trip Assignment and Routes in Mixed Autonomy, High-Capacity SRAMF 

(a) (b)

Figure 11. (Color online) Impact of Input Distribution on Computation Time and Optimality Gap 

(a)

(b)
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exist, that is, the corresponding hyperedge value is positive, 
all subset trips must also exist. This requirement leads to a 
combinatorially decreasing number of hyperedges with 
large trip sizes unless an even larger set of compatible 
trips exist. Because the density of ride requests in the AV 
zones does not satisfy the existence conditions for compat
ible trips, the optimality gaps of both approximation algo
rithms are not evidently affected by the AV capacity.

5.4.3.3. Sample Size. The SAA method guaranteeing a 
uniform convergence to the optimal value does not 
directly reveal how the sample size affects the total com
putation time of solving the SRAMF problem. Table 5
summarizes the computational results of algorithms 
compared with the same instances, which reports run
times with finite and maximal computational resources 
(i.e., number of threads for parallel computing).

The approximation algorithms address demand uncer
tainties in MoD platforms while controlling the computa
tional time to increase linearly with the sample size. Table 5
demonstrates that optimality gaps are small for all 
instances investigated. In light of the important nature of 
stochastic demand and the movement of basis vehicles, 
our numerical results suggest that MoD platforms should 
employ more computational resources to facilitate approxi
mation algorithms with large sample sizes to improve the 
platform’s average profit and quality of service.

6. Conclusion
SRAMF uses a two-stage stochastic integer program to 
calculate joint vehicle repositioning and assignment for 
large-scale MoD systems with mixed fleets. This research 
introduces two approximation algorithms, LSLPR and 

MMO, which leverage the structure of shareability 
graphs to assess potential matchings with increased sup
ply. These algorithms efficiently generate near-optimal 
solutions for maximizing the expected total value of 
ride-pooling assignments in a relatively short time. The 
main theoretical results provide provable guarantees for 
their worst-case performance, as validated by extensive 
numerical experiments involving midcapacity and high- 
capacity vehicles. Our results illustrate the significant 
benefits of integrating stochastic programming modules 
into the MoD vehicle dispatching processes to improve 
system profitability and throughput.

To close this paper, we point out several promising 
future research avenues to address the following limita
tions. First, alternative pickups and dropoffs in trip plan
ning are not permitted, i.e., the total number of ride 
requests per hyperedge is less or equal to vehicle capac
ity. Second, as the SRAMF problem only considers a 
two-stage uncertainty structure, it is meaningful to 
extend this framework to a multistage setting with time- 
varying demand forecasts and vehicle repositioning 
decisions that adapt to revealing scenarios. Constructing 
hypergraphs with multistage demand forecasts will be a 
major computational bottleneck. Hence, new representa
tions for potential matchings must be developed to 
address computational issues. Third, penalties related to 
balking trips or carryover supply are not directly consid
ered in the current setting, whereas they can be incorpo
rated into the hyperedge value in Section 3.1. Finally, the 
current trip assignment does not consider cancellation 
and reassignment after dispatching vehicles to passen
gers. Considering these factors in practice may improve 
the stability of ride-pooling algorithms.

Table A.1. Summary of Notation and Acronyms

Notation Description

SA, SB Augmented set and basis set of vehicles
ξ Randomly generated scenario
ℓ ∈ [N] Index for sampled scenarios and the total number of samples
D(ξ) Set of demand in scenario ξ
E(ξ) Set of hyperedges in scenario ξ
G Shareability graph, a hypergraph consists of supply and demand vertices and hyperedges
e Each hyperedge e � {i, J}i∈S, J⊆D is a potential trip where vehicle i serves requests J
uj The expected profit of request j
ũij Utility gained from matching request j with preferred vehicle type i
c(i, t) Travel cost for vehicle i to serve trip t
α Approximation ratio
n Total number of vehicles such that |SA | � nA and |SB | � nB
K Maximum number of vehicles allowed from the augmented set
Ci Capacity of vehicle i ∈ SA ∪ SB
wi Number of passengers in request j
p Maximum capacity of hyperedge, p � maxi∈SA∪SB {1 + Ci}

j Index for travel demand j ∈ D(ξ)

Appendix A. Summary of Notation

Luo et al.: Efficient Algorithms for Stochastic Ridepooling Assignment 
Transportation Science, 2023, vol. 57, no. 4, pp. 908–936, © 2023 INFORMS 931 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

08
.6

5.
20

2.
17

4]
 o

n 
15

 Ja
nu

ar
y 

20
24

, a
t 0

4:
02

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Appendix B. Performance Analysis of 
Construction of Shareability Graphs

The main idea of recent ride-pooling assignment papers 
(Santi et al. 2014; Alonso-Mora et al. 2017; Simonetto, Mon
teil, and Gambella 2019) is to separate the problem into two 
parts: (1) constructing the shareability graph and compati
ble requests and vehicles and (2) optimally assigning those 
trips to vehicles by solving GAP. This paper primarily 
focuses on algorithms and approximation bounds for the 
stochastic extension to the second part. Still, we acknowl
edge the importance and difficulty of the first task and 
describe them in detail below for completeness.

B.1. Procedure for Constructing Shareability Graphs
D(ξ) is a set of all ride requests revealed in scenario ξ, and 
this section omits ξ when there is no confusion because the 

hyperedges for scenarios are generated separately. We con
sider many parameters to be given by the customer or exter
nally dictated to the platform (based on desired service 
parameters). These include, for each customer j, the maxi
mum waiting time, ωj, and allowable delay, rj. 

• (Constraint I) Travel time from vehicle location to pick- 
up of customer j in order must be less than ωj.

• (Constraint II) Travel time from origin to destination of 
customer j in order must be less than rj.

Additionally, as defined in the setting, the hyperedge 
weight consists of three parts: value of ride requests 

P
juj, 

preference of the vehicle type ũsj, and travel cost of deliver
ing all ride requests in a single trip. We take a three-request 
clique (j1, j2, j3) as an example. Let tk � {Oj1 , Oj2 , : : : , Dj2 , Dj3 }

be a specific ordered sequence of origins and destinations 
and SP(tk) be the shortest path route connecting them. Let 

Table A.1. (Continued)

Notation Description

wj Size of travel demand j ∈ D(ξ)
Ei,ξ Set of hyperedges contains vertex i ∈ SB ∪ SR in scenario ξ
t Trip is a set of demand following the shortest pickup-and-then-dropoff order
ve Value of hyperedge e ∈ E(ξ)
nb(e) Neighboring hyperedges e′ ∈ E(ξ) intersecting with e
xe Decision variable for hyperedge e, xe ∈ {0, 1}

xe Decision variable for fractional assignment, xe ∈ [0, 1]

yi Decision variable for vehicle i ∈ [SA], yi ∈ {0, 1}

v∗(·) Optimal value of the exact GAP
Q(y,ξ) Optimal value of the assignment in scenario ξ
vmax Maximal hyperedge value for all e ∈ E
vmin Minimal hyperedge value for all e ∈ E such that ve > 0
I Independent set as a union of hyperedges satisfying the set-packing constraint
SO Optimal choice of vehicles for SRAMF SO ⊂ SA
SR Choice of vehicles from the algorithm SR ⊂ SA
L The bijection between SR and SO
v̂(·) The objective value of fractional assignment
z Optimal LP solutions to v̂(SO)

Fi Hyperedges intersect with vehicle i
Hd Hyperedges intersect with demand d
⊥ Dummy hyperedge in LSLPR
∆d(e, f ) Decomposition mapping between hyperedge e and f
Ui1 i2 Marginal value function with i1 ∈ SR and i2 ∈ SO
v̂ON Objective value of the online algorithm
ug,ξ Dual variable in the MMO algorithm for g ∈ e and scenario ξ
Γe Γe �

P
gug,ξ as the left side of dual constraints

ce Row of cost coefficient in the dual covering problem with entry ce(g,ξ)
M The augmented set is partitioned into M subsets
ɛ Error tolerance (for stopping criteria)
δ Error tolerance (for sample average approximation) or constant in MMO update subroutine
OPT Optimal value of the SRAMF problem
ALG Objective value of solving SRAMF by approximation algorithms
Acronym
CV/AV Conventional/automated vehicle
GAP General assignment problem
LP Linear program
IP Integer program
LSLPR Local-search linear-program-relaxation algorithm
MMO Max-min online algorithm
SAA Sample average approximation
SRAMF Stochastic ride-pooling assignment with mixed fleets
VRP Vehicle routing problem
DVRP Dynamic vehicle routing problem
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Te � ∪ktk. This is slightly less demanding than finding all feasi
ble Hamiltonian paths if we enforce that, in all trips, the origins 
must be picked up before any destination is visited. Let 
c(s, e) � mintk∈Te v(tk), where c(tk) is the cost of serving all 
requests following the shortest-path SP(tk). We define a set 
function f(e) that takes a hyperedge consisting of a vehicle s and 
a potential combination of trips, Te, as follows:

f (e) �
0 if ∀tk ∈ Te, SP(tk) violates constraints I and II
c(s, e) otherwise:

(

The bottleneck of computation time is still finding vehicle 
routes that satisfy the given constraints by solving a con
strained VRP problem, which is NP-hard. Therefore, all 
heuristic methods can only minimize this bottleneck as 
much as possible by reducing the number of combinations 
to check at each step. For example, Ke et al. (2021) suggested 
a reformulation for finding c(s, e) to avoid enumerating all 
possible paths.

We combine multiple heuristic methods in literature to 
construct the shareability graph. First, we must identify the 
valid single-customer trips for a given vehicle s. Let Ds be 
the demand that can be served by vehicle s in a single trip 
within the allowable pickup time. We may further reduce 
the number of trips by planning on a spatiotemporal graph 
and examining compatible trip cliques. By testing trips in 
order of increasing size and only considering a trip if all 
subsets of trips (where one request is removed from the 
trip) are feasible, we reduce the number of candidate trips 
by orders of magnitude. This heuristic generates the share
ability graph in Figure 2 in which a set of requests is tested 
for trip compatibility only if every subset of that set of 
requests is also compatible.

Lemma B1 (Alonso-Mora et al. 2017). A trip associated with 
the hyperedge e is feasible for vehicle s only if, for all j ~ e, j ∈ Ds, 
hyperedges e′ � e\{j} are feasible.

The heuristic reduces the candidate hyperedge sets by 
leveraging the topological relationship between matchable 
trips of size k and k + 1 (Figure B.1), without eliminating 
potentially feasible trips. The hypergraph can then be con
structed in order of increasing capacity to minimize the 
number of request sets tested. Additionally, we adopt the 
following rules to further reduce the number of candidate 
trips:

1. Because only hyperedges with nonnegative edge weights 
are of interest, we remove all the trips from the candidate set 
subject to f (e) <� 0.

2. If a vehicle v is not feasible for trip tk at time τ, it will not 
be feasible for tk at any time τ′ > τ (Liu and Samaranayake 
2020).

Let Ck(D) be the set of combinations of size k of the ele
ments of the set D. This process is summarized as follows.

Algorithm B.1 (Construction of Shareability Graph)
Data: Vehicle locations and requests (request time, pick- 

up, drop-off, preferred vehicle type, acceptable delay)
Result: Set of hyperedges, E, each containing a vehicle, s, 

and a set of compatible requests for that vehicle to serve in 
one trip. Hyperedge values are ve for all e ∈ E.

Initialize E � ∅

for s ∈ SA ∪ SB do
Identify candidate passengers
D1

s ← {e ∈ D | f ((s, e)) > 0}

Add hyperedges of size one
Ek ← ∪e∈D1

s
(s, e)

for k � 2, : : : , c do
for Demand set d ∈ Ck(Dk�1

s ) do
Add trips of size k if all subsets exist and value 
greater than 0
if (s, e′) ∈ Ek�1 ∀i ∈ Ck�1(d) and f ((s, e′)) > 0 then

Ek ← Ek ∪ (s, d)

Dk
s ← Dk

s ∪ d 

E � ∪
p�1
k�1 Ek

Return hyperedges E and their values ve

B.2. Performance and Complexity Analysis of the 
Hypergraph Construction Procedure
B.2.1. Optimality Analysis. The two-step ride-pooling 
assignment that first constructs the hypergraph and then 
solves GAP obtains the exact solution of the joint VRP and 
enjoys the computational advantage for large fleets. Because 
this work focuses on stochastic assignment, the optimality 
analysis does not consider the errors of computing hyper
edge values. The following results from Alonso-Mora et al. 
(2017) provide positive guarantees for returning a feasible 
set of hyperedges in the shareability graph: without enumer
ating all trip combinations: 

1. The optimal value v∗ from solving GAP on the share
ability graph obtains the optimal value for ride-pooling for 
an arbitrary batch of supply and demand.

2. The construction of the shareability graph is anytime opti
mal, that is, given additional computational resources, the set of 
hyperedges is only expanded to allow for improved matching.

The second property guarantees using a capacity bound, the 
threshold of which is derived later, as an early stopping crite
rion in generating the hypergraph will still provide satisfactory 
results. Solving GAP on this reduced shareability graph can 
guarantee anytime optimality such that the output is near- 
optimal for the original problem with high probability.

B.2.2. Computational Complexity Analysis. We consider 
a fixed sample of demand D and vehicles S in this section as 

Figure B.1. (Color online) Topological Relationship Between 
Cliques of Matchable Requests 

Note. In this example, (2,3,4) is not a valid combination of requests 
because the (2,4) combination was not valid.
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the hyperedges of each scenario can be generated in parallel. 
The realized demand has size |D | � d.

Lemma B.2. In the worst case, where all demand is compatible 
and can be served by all vehicles, the runtime is O( |S |dp�1).

Although in the worst case, runtime is large, this scenario 
only arises when all trips are compatible with ride-pooling, 
which is unlikely in practice. Therefore, we consider the 
Erdos-Renyi model in which an arbitrary pair of demands 
is matchable (i.e., satisfy the conditions above) with proba
bility q. Empirical studies showed that q was often a small 
number (<0.1) over a large area (Ke et al. 2021).

Lemma B.3 (Bollob�as and Erd€os 1976). The expected number 

of cliques of size k is d
k

� �

q
k
2

� �

.

For example, with d � 1,000 and q � 0.1, the expected 
number of cliques of size 3 (each vehicle delivers at most 
two requests in a single trip) is 500. Often, we observe the 
size of complete cliques of compatible trips to be less than 
10, our maximum tested capacity and the total number of 
hyperedges is manageable.

Lemma B.4 (Matula 1976). As d → ∞, the maximal clique size 
ρ takes on one of at most two values around (2logd)=(log1=q)

with probability tending to one, that is, with b � 1=q, ⌊2 logbd⌋ <

ρ < ⌈2 logbd⌉.

Therefore, we only need to consider hyperedges with 
size less than p∗ � min{p,ρ+ 1} (i.e., the height of the cli
ques’ graph in Figure B.1). We have the following theorem 
for the runtime of constructing shareability graphs.

Theorem B.1. In the average case that the demand and supply 
profiles satisfy the random geometric graph conditions, the run
time is O( |S |dp∗�1).

Proof. The expected number of hyperedges connected to 
vehicle s, Es, max, is bounded by

Es,max �
d
1

� �

12 +
d
2

� �

22q+⋯+
d

(p∗ �1)

� �

(p∗ �1)
2q(p∗�2)

≤ ed+
ed
2

� �2
22q+⋯+

ed
p∗ �1

� �p∗�1
(p∗ �1)

2q(p∗�2)

� ed+
1
q

eqd
2

� �2
22+⋯+

eqd
p∗ �1

� �p∗�1
(p∗ �1)

2

" #

�O(dp∗�1), 

where e is the Euler’s number. w

Appendix C. Supplementary Results for 
Approximation Algorithms

C.1. Proof for Sample Average Approximation in SRAMF

Proof. We denote the optimal value of the SRAMF problem 
(2) as v∗ and the optimal value for the objective from Algo
rithm 2 as v̂(SO). Let δ be the upper bound of the optimality 
gap v∗ � v̂(SO). We assume that E[Q(y,ξ)] � Ω(m�2) for any 
ξ where m is a given constant. The main task is to show that 

E[v̂(SO)] � Ω(m2) with the sample size N � m4=δ2 and 
Pr(v̂(SO) ∉ [(1 � δ)v∗, (1 + δ)v∗]) ≤ exp

�
� (δ2=2)E[v̂(SO)]

�
.

Let D(ξ) < D for all ξ. For any selection of vehicles in SA 
denoted by y ∈ Y, E[Q(y,ξ)2

] < ∞, because we can choose 
K vertices in SA with maximum number of D edges. The 
upper bound of hyperedge value vij is vmax. Thus, we have 
E[Q(y,ξ)2

] < K2 |vmax |
2D2 < ∞. Without loss of generality, 

we draw the following observations from the standard sto
chastic programming literature (Pagnoncelli, Ahmed, and 
Shapiro 2009): 

1. The objective value v̂(SO) → v∗ as N → ∞;
2. The expected value E[v̂(SO)] ≥ v∗.
Since N samples are i.i.d., we can use the Chernoff bound 

on the measure:

Pr(v̂(SO) ∉ [(1 � δ)v∗, (1 + δ)v∗]) ≤ exp �
δ2

2 E[v̂(SO)]

� �

:

Setting N � m4=δ2 and using the assumption that E[Q(y,ξ)]
� Ω(m�2), by Jensen’s inequality, we have

δ2E[v̂(SO)] ≥ δ2N · E[Q(y,ξ)], 

that is, δ2 ·E[v̂(SO)] � Ω(m2). We have

Pr(v̂(SO) ∉ [(1 � δ)v∗, (1 + δ)v∗]) ≤ exp(�Ω(m2)), 

which achieves the second task as

Pr 1
2 � ɛ

� �

v̂(SO) <
1
2 � ɛ

� �

(1 � δ)v∗

� �

+ Pr 1
2 � ɛ

� �

v̂(SO) >
1
2 � ɛ

� �

(1 + δ)v∗

� �

≤ Pr v̂(SR) <
1
2 � ɛ

� �

(1 � δ)v∗

� �

+ Pr v̂(SR) >
1
2 � ɛ

� �

(1 + δ)v∗

� �

≤ exp(�Ω(m2)):

The first inequality is because (1=p2)v̂(SO) ≤ v̂(SR) ≤ v̂(SO). This 
concludes the approximation ratio for LSLPR algorithm for the 
stochastic counterpart of the ride-pooling problem. w

C.2. Proof for Lemma 1
We use a network flow formulation to prove the existence 
of the mapping ∆d : H′

d × H′
d → R+. Consider a bipartite 

graph with nodes L � {ℓe : e ∈ H′
d} and R � {rf : f ∈ H′

d}, and 
arcs L × R. There is an additional source node s, and arcs 
from s to each L-node and arcs from each R-node to s. Every 
arc (i, j) in this network has a lower bound α(i, j) and an upper 
bound β(i, j). The goal is to find a circulation z such that 
α(i, j) ≤ z(i, j) ≤ β(i, j) for all arcs (i, j). Recall that circulation is 
an assignment of nonnegative values to the arcs of the net
work so that the in-flow equals the out-flow at every node. 
The lower/upper bounds are set as follows. 

1. For each arc (i, j) ∈ L × R, we have α(i, j) � 0 and β(i, j) � ∞.
2. For each arc (s, ℓe) where e ∈ H′

d, we have α(s, ℓe) �

β(s, ℓe) � xe.
3. For each arc (rf , s), where f ∈ H′

d, we have α(rf , s) �

β(rf , s) � zf .
Recall that x and z are the LP solutions corresponding to 

v̂(SR) and v̂(SO).
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Given any circulation z, we define ∆d(e, f ) � z(ℓe, rf ) for all 
e, f ∈ H′

d. Then, it is easy to see that all three conditions in 
Lemma 4 are satisfied.

It just remains to prove the existence of some circulation. 
By Hoffman’s circulation theorem (Hoffman 2003), there is 
a circulation if and only if

α
�
δ�(T)

�
≤ β
�
δ+(T)

�
, ∀T subset of nodes: (C.1) 

Previously, δ�(T) denotes all arcs from a node outside T to a 
node inside T; similarly, δ+(T) denotes all arcs from a node 
inside T to a node outside T. This condition can be verified 
using the following cases: 

• Case 1: T ∩ L ≠ ∅ and T ∩ R ≠ R. In this case, there is 
some arc from L × R in δ+(T), so the RHS in (19) is ∞, which 
clearly satisfies the condition.

• Case 2: T ∩ L � ∅. If source s ∉ T then α(δ�(T)) � 0; so 
(C.1) is clearly true. If source s ∈ T then β(δ+(T)) ≥

P
e∈H′

d
xe �

1 as all of L lies outside T, and clearly α(δ�(T)) ≤ 1; so (C.1) 
holds.

• Case 3: T ∩ R � R. If s ∈ T then α(δ�(T)) � 0; so (C.1) is 
clearly true. If source s ∉ T then β(δ+(T)) ≥

P
f ∈H′

d
zf � 1 as all 

of R lies inside T, and clearly α(δ�(T)) ≤ 1; so (C.1) holds.

C.3. Supplementary Results for MMO Algorithm
Recall that v̂(SR) �

P
ξv̂(SR,ξ), where v̂(SR,ξ) is defined as 

the LP in (4). Therefore, we can write v̂(SR) as the following 
LP:

v̂(SR) � maximize
x

1
N
X

ξ

X

e∈E(ξ)

vexξe (C.2) 

s:t:
X

e∈E(ξ):j∈e
xξe ≤ 1 ∀j ∈ D(ξ) ∀ξ, 

X

e∈E(ξ):i∈e
xξe ≤ 1 ∀i ∈ SA ∪ SB ∀ξ, 

xξe � 0 ∀e ~ SA \ SR ∀ξ, 
xξe ≥ 0 ∀e ∈ E(ξ) ∀ξ:

For any vehicle i and scenario ξ, set Fi,ξ ⊆ E(ξ) denotes all the 
hyperedges incident to i in scenario ξ. All variables xξe with e ~ 
SA \ SR are set to zero. Therefore, it suffices to consider the LP 
with variables xξe for e ∈ Fi,ξ and i ∈ SB ∪ SR.

We now consider the dual of the above LP (which has the 
same optimal value by strong duality). Let G � SA ∪ SB ∪

(∪ξD(ξ)) denote a combined groundset consisting of all vehicles 
and demands from all scenarios. The dual variables are ug,ξ for 
all g ∈ G and scenarios ξ. The dual LP is

v̂(SR) � minimize
u

X

ξ

X

g∈G
ug,ξ

s:t:
X

g∈e
ug,ξ ≥

ve

N
,

∀e ∈ Fi,ξ, ∀ξ, ∀i ∈ SR ∪ SB

u ≥ 0:
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